
 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 1(62)

DAT110
METHODS FOR ELECTRONIC SYSTEM

DESIGN AND VERIFICATION

Per Larsson-Edefors
VLSI Research Group

 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 2(62)

LECTURE 4:
SYNTHESIS.

Lecture 4: Synthesis. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 3(62)

PRESENT SCENARIO: HARDWARE SYNTHESIS

Design verification
 function timing 

Behavior
synthesis

Module
re-use

RTL
design

Design for test

Logic
synthesis

Custom
design

Floorplanning

Place
and

route
Parasitic
extraction

Layout
verification

Fab

Customer

Chip test
Chip

Arch.
analysis

Spec.

HW/SW
partitioning

Behavior
design

Analog / RF design

Lecture 4: Synthesis. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 4(62)

SYNTHESIS LEVELS

 General design flow.
1. Behavior (C code or HDL)  RTL High-level synthesis
2. RTL  Physical implementation Logic synthesis

 Conventional design flow for ASICs.
1. RTL-specification  Generic gate netlist.
2. Generic gate netlist  Cell library.
3. Cell library  Placement & routing.

Lecture 4: Synthesis. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 5(62)

TOPICS OF TODAY

 Logic synthesis.
- Logic minimization.
- Technology mapping.

 High-level synthesis (HLS).

Lecture 4: Synthesis. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 6(62)

Logic synthesis

Lecture 4: Synthesis. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 7(62)

LOGIC SYNTHESIS

Design verification
 function timing 

Behavior
synthesis

Module
re-use

RTL
design

Design for test

Logic
synthesis

Custom
design

Floorplanning

Place
and

route
Parasitic
extraction

Layout
verification

Fab

Customer

Chip test
Chip

Arch.
analysis

Spec.

HW/SW
partitioning

Behavior
design

Analog / RF design

Lecture 4: Synthesis. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 8(62)

TWO STEPS INSIDE LOGIC SYNTHESIS

 Logic minimization starts with RTL descriptions,
from which sets of Boolean expressions are extracted.
- Two-level, multi-level and sequential minimization.
- Manual methods: Karnaugh maps and Quine-McCluskey tables.
- Automated methods: ESPRESSO (the first EDA tool for 2-level min.)

 Technology mapping takes a minimized logic expression and
maps this to the logic gates of a standard cell library.

The product of logic synthesis is a standard-cell netlist (ASIC) or
reconfiguration data for FPGAs etc.

Lecture 4: Synthesis. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 9(62)

Logic minimization
[some figures courtesy of Zhou]

Lecture 4: Synthesis. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 10(62)

BASIC DEFINITIONS

 B = {0, 1}, Y = {0, 1, D}, where D is don’t care.

 A Boolean function f: Bm  Yn.
 m is input count (literals, i.e. variable and inverse variable),

n is output count.
 Input variables: x1, x2, ...

 The value of the output divides Bm into three sets:
the ON-set, the OFF-set and the DC-set (= don’t care).

Lecture 4: Synthesis. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 11(62)

MINTERMS AND CUBES

 A minterm is a product of all input variables or their negations.
A minterm corresponds to a single point in Bn (one truth table row).

 A cube is a product of the input variables or their negations.
The fewer the number of variables in the product,
the bigger the space covered by the cube.

Lecture 4: Synthesis. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 12(62)

IMPLICANTS AND PRIMES

 An implicant is a cube whose points are either in the
ON-set or the DC-set.

 A prime implicant is an implicant
that is not included in any other implicant.

 A set of prime implicants that together cover all points in the ON-set
(and some or all points of the DC-set) is called a prime cover.

 An prime cover is irredundant
when none of its prime implicants can be removed from the cover.

 An irredundant prime cover is minimal
when the cover has the minimal number of prime implicants.

Lecture 4: Synthesis. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 13(62)

EXAMPLES OF COVERS

Lecture 4: Synthesis. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 14(62)

TWO-LEVEL LOGIC MINIMIZATION

 Popular cost function:
the number of literals in
the sum of products expression (“a b + c d”).

 The goal is to find a minimal irredundant prime cover.

Lecture 4: Synthesis. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 15(62)

GLOBAL OR LOCAL OPTIMUM?

f1 = x1 x2 + x1 x3 + x1 x2 + x1 x3
f2 = x1 x2 + x1 x3 + x2 x3

Lecture 4: Synthesis. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 16(62)

LET US CHECK THE OUTPUT RESULT, F1 AND F2
f1 = x1 x2 + x1 x3 + x1 x2 + x1 x3
f2 = x1 x2 + x1 x3 + x2 x3

x1 x2 x3 f1 f2
0 0 0 1 1 1 1
0 0 1 1 1 1
0 1 0 1 1 1
0 1 1
1 0 0
1 0 1 1 1 1
1 1 0 1 1 1
1 1 1 1 1 1 1

Lecture 4: Synthesis. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 17(62)

MINIMIZATION ...
 Out of

f1 = x1 x2 + x1 x3 + x1 x2 + x1 x3
f2 = x1 x2 + x1 x3 + x2 x3

we choose f2 since it has fewer literals.

Lecture 4: Synthesis. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 18(62)

CANONICAL FORM

 For the truth table (TT) used, we can create
the sum of minterms (a sum-of-products expression):

x1 x2 x3 + x1 x2 x3 + x1 x2 x3 +
x1 x2 x3 + x1 x2 x3 + x1 x2 x3

 This expression (and the TT) is on canonical form,
since it represents the logic function in a unique way.

 Complex expressions  bad for implementation!
 Uniqueness  useful in e.g. formal verification,

since it becomes easy to compare expressions.

000 1
001 1
010 1
011 0
100 0
101 1
110 1
111 1

Lecture 4: Synthesis. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 19(62)

KARNAUGH MAPS

 Function ƒ(x1, x2, x3, x4) = m(4, 5, 6, 8, 9, 10, 13) + d(0, 7, 15)
represented in a Karnaugh map (1953):

- Veitch maps (1952); these did not use Gray coding.

D 1 0 1
0 1 1 1
0 D D 0
0 1 0 1

00 01 11 10
00
01
11
10

x3
x4

x1

x2

Lecture 4: Synthesis. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 20(62)

REPRESENTATION

 m(4, 5, 6, 8, 9, 10, 13) + d(0, 7, 15) means
0 0000 D
1 0001 0
2 0010 0
3 0011 0
4 0100 1
5 0101 1
6 0110 1
7 0111 D
8 1000 1
9 1001 1
10 1010 1
...

Lecture 4: Synthesis. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 21(62)

MANUAL OPTIMIZATION USING A KARNAUGH MAP

 Embed all variables 1 or D with as large rings as possible.
The larger a ring, the fewer the literals in a cube.

 The minimal expression is
f = x1 x2 x4 + x1 x3 x4 + x1 x2.

D 1 0 1
0 1 1 1
0 D D 0
0 1 0 1

00 01
00
01
11
10

1011

Lecture 4: Synthesis. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 22(62)

THE QUINE-MCCLUSKEY ALGORITHM

 Generation of all prime implicants, followed by
extraction of a minimum prime cover.
1. In phase 1, we select ON-set and DC-set minterm indices,

and we group by number of logical ones.
2. In phase 2, compare the minterms of neighbor groups:

A 1-bit difference implies adjacency.
Eliminate the variable representing difference
(mark it with e.g. ‘-’) and place in next column.

3. Return to phase 2, and treat the eliminated variables (‘-’) as variables.

 [Edward McCluskey, "Minimization of Boolean functions,"
Bell Syst. Tech. J., April 1956]. Based on work by Quine (1952-1955).

Lecture 4: Synthesis. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 23(62)

Q-M EXAMPLE - PRIME IMPLICANTS 1(3)
 We have ƒ(x1, x2, x3, x4) = m(4, 5, 6, 8, 9, 10, 13) + d(0, 7, 15).

0000 (0 - a don’t care value)
0100 (4 - a logical one)
1000 (8 - a logical one)
0101 (5 - a logical one)
0110 (6 - a logical one)
1001 (9 - a logical one)
1010 (10 - a logical one)
0111 (7 - a don’t care value)
1101 (13 - a logical one)
1111 (15 - a don’t care value)

Lecture 4: Synthesis. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 24(62)

Q-M EXAMPLE - PRIME IMPLICANTS 2(3)
0000 0-00 and -000
0100 010- and 01-0
1000 100- and 10-0
0101 01-1 and -101
0110 011-
1001 1-01
1010 (has already been combined with 1000)
0111 -111
1101 11-1

1111 (has already been combined with 0111 and 1101)

Lecture 4: Synthesis. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 25(62)

Q-M EXAMPLE - PRIME IMPLICANTS 3(3)
1. 0-00 no further combinations are possible
2. -000 no further combinations are possible
3. 010- 01-- combined with row 9
4. 01-0 01-- combined with row 7
5. 100- no further combinations are possible
6. 10-0 no further combinations are possible
7. 01-1 01--/-1-1 combined with row 4 / 12
8. -101 -1-1 combined with row 11
9. 011- combined with row 3
10. 1-01 no further combinations are possible
11. -111 combined with row 8
12. 11-1 -1-1 combined with row 7

Lecture 4: Synthesis. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 26(62)

Q-M EXAMPLE - MINIMUM_COVER 1(5)
 After all prime implicants have been identified,
0-00, -000, 100-, 10-0, 1-01, 01--, -1-1
which is the minimal cover? (Columns are ON-set rows.)

4 5 6 8 9 10 13
0-00 X
-000 X
100- X X
10-0 X X
1-01 X X
01-- X X X
-1-1 X X

Lecture 4: Synthesis. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 27(62)

Q-M EXAMPLE - MINIMUM_COVER
 10-0 and 01-- are special;

these essential prime implicants are unique for a column
and must appear in the minimum cover.

4 5 6 8 9 10 13
0-00 X
-000 X
100- X X
10-0 X X
1-01 X X
01-- X X X
-1-1 X X

Lecture 4: Synthesis. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 28(62)

Q-M EXAMPLE - MINIMUM_COVER 2(5)
 We will now take away the essential prime implicants ...

4 5 6 8 9 10 13
0-00 X
-000 X
100- X X
10-0 X X
1-01 X X
01-- X X X
-1-1 X X

Lecture 4: Synthesis. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 29(62)

Q-M EXAMPLE - MINIMUM_COVER 3(5)
 ... and the columns that are covered by

these essential prime implicants.

4 5 6 8 9 10 13
0-00 X
-000 X
100- X X
10-0 X X
1-01 X X
01-- X X X
-1-1 X X

Lecture 4: Synthesis. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 30(62)

Q-M EXAMPLE - MINIMUM_COVER 4(5)
 There isn’t all that much left to optimize.

 Here we choose 1-01.

9 13
0-00
-000
100- X
1-01 X X
-1-1 X

Lecture 4: Synthesis. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 31(62)

Q-M EXAMPLE - MINIMUM_COVER 5(5)
 We have now chosen the following prime implicants:
10-0 and 01-- and 1-01.

 This corresponds to
f = x1 x2 x4 + x1 x2 + x1 x3 x4,
which can be compared to the result of the Karnaugh map
f = x1 x2 x4 + x1 x3 x4 + x1 x2.

Lecture 4: Synthesis. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 32(62)

EXACT SOLUTIONS ARE HARD TO COMPUTE

 In Quine-McCluskey, the number of prime implicants grows rapidly
with the number of inputs: G = p1 + p2 + ... + p,

where  = § and n is the number of inputs:
1. Generate cover of all primes.
2. Make G irredundant (in optimum way). Q-M gives an exact minimum.

 ESPRESSO attempts an approximative solution - a heuristic:
1. Don't generate all prime implicants (as in Q-M phase 1).
2. Select a subset of primes that still covers the ON-set

(similar to Karnaugh maps).
§ [Hong et al., “MINI: A heuristic approach for logic minimization,” IBM J. Res. Dev., 1974]

3n n

Lecture 4: Synthesis. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 33(62)

ESPRESSO CORE 1(2)
Procedure ESPRESSO (F, D, R) /*F - ON set, D - don’t care, R - OFF*/

R = COMPLEMENT(F+D); /* Compute complement */
F = EXPAND(F, R) ; /* Initial expansion */
F = IRREDUNDANT(F,D); /* Initial irredundant cover */
F = ESSENTIAL(F,D) /* Detecting essential primes */
F = F - E; /* Remove essential primes from F */
D = D + E; /* Add essential primes to D */

Lecture 4: Synthesis. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 34(62)

ESPRESSO CORE 2(2)
WHILE Cost(F) keeps decreasing DO

F = REDUCE(F,D); /* Perform reduction */
F = EXPAND(F,R); /* Perform expansion */
F = IRREDUNDANT(F,D); /* Perform irredundant cover */

ENDWHILE;
F = F + E;
RETURN F;

END Procedure;

Lecture 4: Synthesis. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 35(62)

ESPRESSO PHASES 1(3)

Lecture 4: Synthesis. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 36(62)

ESPRESSO PHASES 2(3)

1 1 0 0
1 1 1 1
0 0 1 1
1 1 1 1

00 01 11 10
00
01
11
10

1 1 0 0
1 1 1 1
0 0 1 1
1 1 1 1

00 01 11 10
00
01
11
10

Initial set “Reduce” implicants

Lecture 4: Synthesis. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 37(62)

ESPRESSO PHASES 3(3)

1 1 0 0
1 1 1 1
0 0 1 1
1 1 1 1

00 01 11 10
00
01
11
10

1 1 0 0
1 1 1 1
0 0 1 1
1 1 1 1

00 01 11 10
00
01
11
10

“Expand“ implicants “Irredundant” cover

Lecture 4: Synthesis. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 38(62)

EARLY EDA TOOLS

 MINI from IBM 1974.
 ESPRESSO-I 1981.

- Robert Brayton et al., "A comparison of logic minimization
strategies using ESPRESSO", ISCAS'82.

 ESPRESSO-II developed in 1982 was the first widespread
two-level logic minimization EDA tool.

 Read more in Brayton et al.
[Logic Minimization Algorithms for VLSI Synthesis]
from Kluwer 1984. (Available from CHANS / SpringerLink.)

Lecture 4: Synthesis. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 39(62)

LOGIC MINIMIZATION: CONCLUSION

 All considerations so far are for two-level minimization.
 But multi-level logic minimization is required for efficient solutions.

- abeg + abfg + abeg + aceg + acfg + aceg + deg + dfg + deg =
(a(b + c) + d)(eg + g(f + e)) [see example in coming slides...].

- Read more [Sec. 6.3.3 of Ch6_LogicSynthesis.pdf]
 Since ESPRESSO was introduced,

other, more efficient techniques have been developed:
Binary Decision Diagram (BDD) representations.

Lecture 4: Synthesis. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 40(62)

Technology mapping
[inset courtesy of Robert Brayton, Berkeley]

Technology MappingTechnology MappingTechnology MappingTechnology Mapping

Example:Example: t5’
F

Example:Example:
tt1 = a + bc;
t2 = d + e;

5

t4h + t2t3t2 d e;
t3 = ab + d;
t4 = t1t2 + fg;

t1t2 + fg

t5 = t4h + t2t3;
F = t5’; d+ea+bc ab+d

This shows an unoptimized set of logic equations This shows an unoptimized set of logic equations
consisting of consisting of 1616 literalsliterals

Slides by Robert Brayton

consisting of consisting of 1616 literalsliterals

Optimized EquationsOptimized EquationsOptimized EquationsOptimized Equations

Using technology independent optimization these Using technology independent optimization these Using technology independent optimization, these Using technology independent optimization, these
equations are optimized using only equations are optimized using only 1414 literals:literals:
t1 = d + e;t1 d e;
t2 = b + h;
t3 = at2 + c; t4’

F

Ft4 = t1t3 + fgh;
F = t4’;

4

t1t3 + fght5’

F

at2 +c
t1t3 fgh

t1t2 + fg
t4h + t2t3

Slides by Robert Brayton
d+e b+h

d+ea+bc

1 2 g

ab+d

Optimized EquationsOptimized EquationsOptimized EquationsOptimized Equations

Implement this network using a set of gates Implement this network using a set of gates Implement this network using a set of gates Implement this network using a set of gates
which form a which form a librarylibrary. Each gate has a cost (i.e.
its area, delay, etc.), y,)

Slides by Robert Brayton

Subject graphSubject graphSubject graphSubject graph

F
F

Subject
graph of

F

t4’

f

g p
2-input
NANDs and
invertors

at2 +c

t1t3 + fgh

d’ e’
c

invertors

d+e b+h

at2 c

a

d e
hg

Slides by Robert Brayton

d+e b+h

b’ h’

Algorithmic ApproachAlgorithmic ApproachAlgorithmic ApproachAlgorithmic Approach
A A covercover is a collection of pattern graphs such thatis a collection of pattern graphs such that

11 every node of the subject graph is every node of the subject graph is containedcontained in one (or more) in one (or more) 1.1. every node of the subject graph is every node of the subject graph is containedcontained in one (or more) in one (or more)
pattern graphs pattern graphs

2.2. each each inputinput required by a pattern graph is actually an required by a pattern graph is actually an outputoutput
of some other graph of some other graph (i e the inputs of one gate must exists (i e the inputs of one gate must exists of some other graph of some other graph (i.e. the inputs of one gate must exists (i.e. the inputs of one gate must exists
as outputs of other gates.)as outputs of other gates.)

For minimum area, the cost of the cover is the For minimum area, the cost of the cover is the sum of sum of
the areasthe areas of the gates in the cover.of the gates in the cover.

Technology mapping problem:Technology mapping problem: Find a Find a minimum cost minimum cost
coveringcovering of the subject graph by choosing from the of the subject graph by choosing from the

Slides by Robert Brayton

collection of pattern graphs for all the gates in the collection of pattern graphs for all the gates in the
librarylibrary..

Subject GraphSubject GraphSubject GraphSubject Graph

f

t = d + e;

f

g
t1 = d + e;
t2 = b + h;
t3 = at2 + c; F

d

e
t4 = t1t3 + fgh;
F = t4’; h

bb
a

Slides by Robert Brayton

c

Pattern Graphs for the Pattern Graphs for the
 b bIWLS LibraryIWLS Library

inv(1) nand3 (3)nand2(2)inv(1) nand3 (3)

3 (3)

nand2(2)

nor(2)
nor3 (3)

oai22 (4)aoi21 (3)

xor (5)

Slides by Robert Brayton

Subject graph coveringSubject graph coveringSubject graph coveringSubject graph covering

f

t = d + e;

f

g
t1 = d + e;
t2 = b + h;
t3 = at2 + c; F

d

e
t4 = t1t3 + fgh;
F = t4’; h

bb
a

Total cost = 23

Slides by Robert Brayton

c
ota cost

Better CoveringBetter CoveringBetter CoveringBetter Covering

f
and2(3)

t = d + e;

f

g aoi22(4)
2(3)t1 = d + e;

t2 = b + h;
t3 = at2 + c; F

d

e

or2(3)

t4 = t1t3 + fgh;
F = t4’; h

b
or2(3)

nand2(2)b
a

d2(2)

nand2(2)

Slides by Robert Brayton

cTotal area = 19 nand2(2)

inv(1)

Alternate CoveringAlternate CoveringAlternate CoveringAlternate Covering

f d3(3)d3(3)

t = d + e;

f

g

nand3(3)nand3(3)

oai21(3)oai21(3) and2(3)t1 = d + e;
t2 = b + h;
t3 = at2 + c; F

d

e

oai21(3)oai21(3) and2(3)

t4 = t1t3 + fgh;
F = t4’; h

bb
a

oai21 (3)oai21 (3)

d2(2)
Slides by Robert Brayton

cTotal area = 15
inv(1)

nand2(2)

Lecture 4: Synthesis. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 51(62)

TECHNOLOGY MAPPING

 Graph covering (algorithmic) approaches.
- Inspired by code generation in compilers (K. Keutzer, DAGON,1987).
- Dynamic programming provides optimization with linear complexity,

however, partitioning into forest of trees makes optimization local.
- Choice of base functions in subject graph is critical.

 Rule-based approaches iteratively perform local transformations.
- Can merge technology-independent and -dependent phases.

 Technology mapping for remapping one design to
a different process technology: design migration.

 Read more [Sec. 6.3.4 of Ch6_LogicSynthesis.pdf].

Lecture 4: Synthesis. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 52(62)

LOGIC SYNTHESIS: CONCLUSION

 Multi-level logic minimization
followed by technology mapping are
used in present-day systems.

 Technology scaling  wires
become more important for each
tech generation: Gate-based
synthesis is not sufficient.

 Physically knowledgeble synthesis is needed to avoid problems with
timing closure; this would entail either better models of
physical hardware earlier or use of rapid prototyping
(quick and dirty “optimization” that resembles true optimization).

RTL

Gates
Floorplanning

Place-and-route
Layout

Logic synthesis

Lecture 4: Synthesis. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 53(62)

High-level synthesis
[some text courtesy of Gerez]

Lecture 4: Synthesis. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 54(62)

HIGH-LEVEL SYNTHESIS

Design verification
 function timing 

Behavior
synthesis

Module
re-use

RTL
design

Design for test

Logic
synthesis

Custom
design

Floorplanning

Place
and

route
Parasitic
extraction

Layout
verification

Fab

Customer

Chip test
Chip

Arch.
analysis

Spec.

HW/SW
partitioning

Behavior
design

Analog / RF design

Lecture 4: Synthesis. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 55(62)

HIGH-LEVEL SYNTHESIS (HLS)
 Logic synthesis ...

- starts from a register-transfer level (RTL) description;
where circuit behavior in each clock cycle is established.

- uses logic minimization/tech mapping techniques
to optimize the design.

- generates a standard-cell netlist.
 High-level (architectural/behavioral) synthesis on the other hand ...

- starts from an abstract behavioral description (for example C code).
- generates an RTL description.
- HLS is still far less widespread than logic synthesis.

Lecture 4: Synthesis. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 56(62)

STRICT MAPPING TARGETS

 Efficient design exploration would require flexible hardware targets,
to enable optimal implementations. This is a challenge!

 The mapping of behavioral code to RTL is done,
assuming a certain number of RTL building blocks
(the architectural template), for example:
- functional units.
- registers.
- multiplexers.
- buses.
- tri-state bus drivers.

Lecture 4: Synthesis. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 57(62)

DESIGN PARAMETERS FOR HARDWARE MODEL

 Clocking strategy: single or multiple phase clocks.
 Interconnect: allowing or disallowing buses.
 Clocking of functional units: allowing or disallowing ...

- multicycle operations.
- chaining.
- pipelined units.

Lecture 4: Synthesis. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 58(62)

CONTROL AND DATAPATH SYNTHESIS

 Hardware is normally partitioned ...
- datapath (arithmetic):

a network of functional units, registers, multiplexers and buses.
The actual ‘‘computation’’ takes place in the datapath.

- control (FSM and memory):
ensures data are present at the right place at
a specific time (memory handling),
presents the right instructions to a programmable unit, etc.

 Traditionally high-level synthesis has concentrated
on datapath synthesis.

Lecture 4: Synthesis. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 59(62)

HLS TOOLS

 Mentor/Siemens:
- Catapult C represents general-purpose HLS.

 Cadence:
- Stratus includes Forte Cynthesizer data-centric HLS

and C-to-Silicon Compiler general-purpose HLS.
 Synopsys:

- Synphony C Compiler (previously PICO from Synfora)
represents general-purpose HLS.

- SPW represents data-centric HLS.

Lecture 4: Synthesis. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 60(62)

HLS FLOW

 Input: Either a conventional programming language,
such as C, or an HDL (better at expressing HW parallelism).

 The description has to be parsed and
transformed into an internal representation;
here conventional compiler techniques can be used.

 As internal representation, a data-flow graph (DFG)
may be suitable (hence no explicit information on control flow).
In a DFG there are ...
- vertices (nodes) that represent computations/operations.
- edges that represent precedence relations.

Lecture 4: Synthesis. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 61(62)

COMPUTATION, DFG AND RTL

 Read more [Ch5_ESL_and_HLS.pdf].

A

+ +

**

CB DE

F G

F = E*(A+B);
G = (A+B)*(C+D);

Limited
resources


scheduling,
allocation,
binding.

tim
e 1

tim
e 2

tim
e 3

Mux Mux

A C

Only datapath here,
muxes need control
signals of course.

Lecture 4: Synthesis. 2018

Per Larsson-Edefors, Chalmers University of Technology DAT110 Methods for Electronic System Design and Verification 62(62)

SYNTHESIS: CONCLUSION

 High-level synthesis:
Behavior (C code or HDL)  RTL blocks visible.

 Logic synthesis:
RTL code of blocks  Physical implementation.
- Logic minimization.
- Technology mapping.

