Overview

Luciano Lavagno, Grant E. Martin, Louis K. Scheffer, and Igor L. Markov

CONTENTS

1.1

1.2

Introduction to Electronic Design Automation for Integrated Circuits Handbook,
Second Edition

1.1.1
1.1.2
1.1.3

Brief History of Electronic Design Automation
Major Industry Conferences and Publications

Structure of the Book

System-Level Design

1.2.1
1.2.2
1.2.3
1.24

1.2.5
1.2.6
1.2.7
1.2.8
1.2.9

Tools and Methodologies for System-Level Design
System-Level Specification and Modeling Languages
SoC Block-Based Design and IP Assembly

Performance Evaluation Methods for Multiprocessor
Systems-on-Chip Design

System-Level Power Management

Processor Modeling and Design Tools

Models and Tools for Complex Embedded Software and Systems

Using Performance Metrics to Select Microprocessor Cores for IC Designs

High-Level Synthesis

©O OV VW 0 U1 un

10
10

10
10
10
10
10
1

4 1.1 Introduction to Electronic Design Automation for Integrated Circuits Handbook, Second Edition

1.3 Microarchitecture Design "
1.3.1 Back-Annotating System-Level Models M
1.3.2 Microarchitectural Power Estimation and Optimization 1
1.3.3 Design Planning and Closure 1
1.4 Logic Verification 1
1.4.1 Design and Verification Languages N
1.4.2 Digital Simulation 1
1.4.3 Leveraging Transactional-Level Models in a SoC Design Flow 1
144 Assertion-Based Verification 12
1.4.5 Hardware-Assisted Verification and Software Development 12
1.4.6 Formal Property Verification 12
1.5 Test 12
1.5.1 Design-for-Test 12
1.5.2 Automatic Test Pattern Generation 12
1.5.3 Analog and Mixed-Signal Test 12
1.6 RTL to GDSII or Synthesis, Place, and Route 13
1.6.1 Design Flows 13
1.6.2 Logic Synthesis 13
1.6.3 Power Analysis and Optimization from Circuit to Register-Transfer Levels 13
1.6.4 Equivalence Checking 13
1.6.5 Digital Layout: Placement 13
1.6.6 Static Timing Analysis 13
1.6.7 Structured Digital Design 13
1.6.8 Routing 14
1.6.9 Physical Design for 3D ICs 14
1.6.10 Gate Sizing 14
1.6.11 Clock Design and Synthesis 14
1.6.12 Exploring Challenges of Libraries for Electronic Design 14
1.6.13 Design Closure 14
1.6.14 Tools for Chip-Package Co-Design 14
1.6.15 Design Databases 15
1.6.16 FPGA Synthesis and Physical Design 15
1.7 Analog and Mixed-Signal Design 15
1.7.1 Simulation of Analog and RF Circuits and Systems 15

1.7.2 Simulation and Modeling for Analog and Mixed-Signal Integrated Circuits 15
1.7.3 Layout Tools for Analog ICs and Mixed-Signal SoCs: A Survey 15
1.8 Physical Verification 15
1.8.1 Design Rule Checking 15

Chapter 1 - Overview

5

1.8.2 Resolution Enhancement Techniques and Mask Data Preparation 16
1.8.3 Design for Manufacturability in the Nanometer Era 16
1.8.4 Design and Analysis of Power Supply Networks 16
1.8.5 Noise in Digital ICs 16
1.8.6 Layout Extraction 16
1.8.7 Mixed-Signal Noise Coupling in System-on-Chip Design: Modeling,
Analysis, and Validation 16
1.9 Technology Computer-Aided Design 17
1.9.1 Process Simulation 17
1.9.2 Device Modeling: From Physics to Electrical Parameter Extraction 17
1.9.3 High-Accuracy Parasitic Extraction 17
References 17

1.1 INTRODUCTION TO ELECTRONIC DESIGN AUTOMATION
FOR INTEGRATED CIRCUITS HANDBOOK, SECOND EDITION

Modern integrated circuits (ICs) are enormously complicated, sometimes containing billions of
devices. The design of these ICs would not be humanly possible without software (SW) assistance
at every stage of the process. The tools and methodologies used for this task are collectively called
electronic design automation (EDA).

EDA tools span a very wide range, from logic-centric tools that implement and verify func-
tionality to physically-aware tools that create blueprints for manufacturing and verify their
feasibility. EDA methodologies combine multiple tools into EDA design flows, invoking the
most appropriate software packages based on how the design progresses through optimiza-
tions. Modern EDA methodologies can reuse existing design blocks, develop new ones, and
integrate entire systems. They not only automate the work of circuit engineers, but also process
large amounts of heterogeneous design data, invoke more accurate analyses and more powerful
optimizations than what human designers are capable of.

1.1.1 BRIEF HISTORY OF ELECTRONIC DESIGN AUTOMATION

The need for design tools became clear soon after ICs were invented. Unlike a breadboard, an IC
cannot be modified easily after fabrication; therefore, testing even a simple change takes weeks
(for new masks and a new fabrication run) and requires considerable expense. The internal nodes
of an IC are difficult to probe because they are physically small and may be covered by other
layers of the IC. Internal nodes with high impedances are difficult to measure without dramati-
cally changing the performance. Therefore, circuit simulators became crucial to IC design almost
as soon as ICs came into existence. These programs appeared in the 1960s and are covered in
Chapter 17 of Electronic Design Automation for IC Implementation, Circuit Design, and Process
Technology (hereafter referred to as Volume 2 of this Handbook).

As the circuits grew larger, clerical help was required in producing the masks. At first, the
designer drew shapes with colored pencils but the coordinates were transferred to the computer
by digitizing programs, written to magnetic tape (hence the handoff from design to fabrication
is still called “tapeout”), and then transferred to the mask-making machines. In the 1960s and
1970s, these early programs were enhanced to full-fledged layout editors. Analog designs in
the modern era are still largely laid out manually, with some tool assistance, as Chapter 19 of
Volume 2 will attest.

6

1.1 Introduction to Electronic Design Automation for Integrated Circuits Handbook, Second Edition

As the circuits scaled up further, ensuring the correctness of logic designs became difficult,
and logic simulation (Chapter 16) was introduced into the IC design flow. Testing completed
chips proved difficult too, since unlike circuit boards, internal nodes could not be observed
or controlled through a “bed of nails” fixture. Therefore, automatic test pattern generation
(ATPG) programs were developed to generate test vectors that can be entered through acces-
sible pins. Other techniques that modified designs to make them more controllable, observable,
and testable were not far behind. These techniques, covered in Chapters 21 and 22, were first
available in the mid-1970s. Specialized needs were met by special testers and tools, discussed
in Chapter 23.

As the number of design rules, number of layers, and chip size continued to increase, it
became increasingly difficult to verify by hand that a layout met all the manufacturing rules
and to estimate the parasitics of the circuit. Therefore, as demonstrated in Chapters 20 and
25 of Volume 2 new software was developed, starting in the mid-1970s, to address this need.
Increasing numbers of interconnect layers made the process more complex, and the original
analytic approximations to R, C, and L values became inadequate, and new techniques for para-
sitic extraction were required to determine more accurate values, or at least calibrate the param-
eter extractors.

The next bottleneck was in determining the precise location of each polygon and drawing
its detailed geometry. Placement and routing programs for standard-cell designs allowed the
user to specify only the gate-level netlist—the computer would then decide on the location
of the gates and route the wires connecting them. This greatly improved productivity (with a
moderate loss of silicon efficiency), making IC design accessible to a wider group of electronics
engineers. Chapters 5 and 8 of Volume 2 cover these programs, which became popular in the
mid-1980s.

Even just the gate-level netlist soon proved unwieldy, and synthesis tools were developed to
create such a netlist from a higher-level specification, usually expressed in a hardware descrip-
tion language (HDL). This step is called Logic Synthesis. It became available in the mid-1980s. In
the late 2000s, the issues described in Chapter 2 of Volume 2 have become a major area of con-
cern and the main optimization criterion, respectively, for many designs, especially in the por-
table and battery-powered categories. Around this time, the large collections of disparate tools
required to complete a single design became a serious problem. Electronic design automation
Design Databases were introduced as common infrastructure for developing interoperable tools.
In addition, the techniques described in Chapter 1 of Volume 2 grew more elaborate in how tools
were linked together to support design methodologies, as well as use models for specific design
groups, companies, and application areas.

In the late 1990s, as transistors continued to shrink, electromagnetic noise became a serious
problem. Programs that analyzed power and ground networks, cross-talk, and substrate noise in
systematic ways became commercially available. Chapters 23, 24, and 26 of Volume 2 cover these
topics.

Gradually through the 1990s and early 2000s, chips and design processes became so com-
plex that yield optimization developed into a separate field called Design for Manufacturability
in the Nanometer Era, otherwise known as “Design for Yield.” In this time frame, the smallest
on-chip features dropped below the wavelength of the light used to manufacture them with
optical lithography. Due to the diffraction limit, the masks could no longer faithfully copy what
the designer intended. The creation of these more complex masks is covered under Chapter 21
of Volume 2.

Developing the manufacturing process itself was also challenging. Process Simulation (Volume
2, Chapter 27) tools were developed to explore sensitivities to process parameters. The output of
these programs, such as doping profiles, was useful to process engineers but too detailed for
electrical analysis. A newly developed suite of tools (see Volume 2, Chapter 28) predicted device
performance from a physical description of devices. These models were particularly useful when
developing a new process.

System-level design became useful very early in the history of design automation. However,
due to the diversity of application-dependent issues that it must address, it is also the least stan-
dardized level of abstraction. As Chapter 10 points out, one of the first instruction set simulators

Chapter 1 - Overview

7

appeared soon after the first digital computers did. Yet, until the present day, system-level design
has consisted mainly of a varying collection of tricks, techniques, and ad hoc modeling tools.

The logic simulation and synthesis processes introduced in the 1970s and 1980s, respec-
tively, are, as was discussed earlier, much more standardized than system-level design. The
front-end IC design flow would have been much more difficult without standard HDLs. Out
of a huge variety of HDLs introduced from the 1960s to the 1980s, Verilog and VHDL have
become the major Design and Verification Languages (Chapter 15). Until the late 1990s, veri-
fication of digital designs seemed stuck at standard digital simulation—although at least since
the 1980s, a variety of Hardware-Assisted Verification and Software Development (Chapter
19) solutions have been available to designers. However, advances in verification languages
and growing design complexity have motivated more advanced verification methods, and the
last decade has seen considerable interest in Leveraging Transactional-Level Models in a SoC
Design Flow (Chapter 17), Assertion-Based Verification (Chapter 18), and Formal Property
Verification (Chapter 20). Equivalence Checking (Volume 2, Chapter 4) has been the formal
technique most tightly integrated into design flows, since it allows designs to be compared
before and after various optimizations and back-end-related modifications, such as scan
insertion.

For many years, specific system-design domains have fostered their own application-specific
Tools and Methodologies for System-Level Design (Chapter 3)—especially in the areas of algo-
rithm design from the late 1980s to this day. The late 1990s saw the emergence of and competi-
tion between a number of C/C++-based System-Level Specification and Modeling Languages
(Chapter 4). With the newly available possibility to incorporate all major functional units of a
design (processors, memories, digital and mixed-signal HW blocks, peripheral interfaces, and
complex hierarchical buses) onto a single silicon substrate, the last 20 years have seen the rise of
the system on chip (SoC). Thus, the area of SoC Block-Based Design and IP Assembly (Chapter 5)
has grown, enabling greater complexity with advanced semiconductor processes through the
reuse of design blocks. Along with the SoC approach, the last decade saw the emergence of
Performance Evaluation Methods for MPSoC Designs (Chapter 6), development of embedded
processors through specialized Processor Modeling and Design Tools (Chapter 8), and grad-
ual and still-forming links to Models and Tools for Complex Embedded Software and Systems
(Chapter 9). The desire to improve HW design productivity has spawned considerable interest
in High-Level Synthesis (Chapter 11) over the years. It is now experiencing a resurgence driven
by C/C++/SystemC as opposed to the first-generation high-level synthesis (HLS) tools driven by
HDLs in the mid-1990s.

After the system level of design, architects need to descend by one level of abstraction to the
microarchitectural level. Here, a variety of tools allow one to look at the three main criteria:
timing or delay (Microarchitectural and System-Level Power Estimation and Optimization),
power (Chapter 13), and area and cost (Chapter 14). Microarchitects need to make trade-ofts
between the timing, power, and cost/area attributes of complex ICs at this level.

The last several years have seen a variety of complementary tools and methods added to con-
ventional design flows. Formal verification of design function is only possible if correct timing
is guaranteed, and by limiting the amount of dynamic simulation required, especially at the
postsynthesis and postlayout gate levels, Static Timing Analysis (Volume 2, Chapter 6) tools
provide the assurance that timing constraints are met. Timing analysis also underlies timing
optimization of circuits and the design of newer mechanisms for manufacturing and yield.
Standard cell-based placement and routing are not appropriate for Structured Digital Design
(Volume 2, Chapter 7) of elements such as memories and register files, and this observation
motivates specialized tools. As design groups began to rely on foundries and application-spe-
cific (ASIC) vendors and as the IC design and manufacturing industry began to “deverticalize,”
design libraries, covered in Chapter 12 of Volume 2, became a domain for special design flows
and tools. Library vendors offered a variety of high-performance and low-power libraries for
optimal design choices and allowed some portability of design across processes and foundries.
Tools for Chip-Package Co-Design (Volume 2, Chapter 14) began to link more closely the design
of IOs on chip, the packages they fit into, and the boards on which they would be placed. For
implementation “fabrics,” such as field-programmable gate arrays (FPGAs), specialized FPGA

8

1.1 Introduction to Electronic Design Automation for Integrated Circuits Handbook, Second Edition

Synthesis and Physical Design Tools (Volume 2, Chapter 16) tools are necessary to ensure good
results. A renewed emphasis on Design Closure (Volume 2, Chapter 13) allows a more holistic
focus on the simultaneous optimization of design timing, power, cost, reliability, and yield
in the design process. Another area of growing but specialized interest in the analog design
domain is the use of new and higher-level modeling methods and languages, which are covered
in Chapter 18 of Volume 2.

Since the first edition of this handbook appeared, several new areas of design have reached
a significant level of maturity. Gate Sizing (Volume 2, Chapter 10) techniques choose the best
widths for transistors in order to optimize performance, both in a continuous setting (full-cus-
tom-like) and in a discrete setting (library based and FinFET based). Clock Design and Synthesis
(Volume 2, Chapter 11) techniques enable the distribution of reliable synchronization to huge
numbers of sequential elements. Finally, three-dimensional (3D) integrated circuits are attempt-
ing to extend the duration of Moore’s law, especially in the elusive domain of improving perfor-
mance, by allowing multiple ICs to be stacked on top of each other.

A much more detailed overview of the history of EDA can be found in Reference 1. A historical
survey of many of the important papers from the International Conference on Computer-Aided
Design (ICCAD) can be found in Reference 2.

1.1.2 MAJOR INDUSTRY CONFERENCES AND PUBLICATIONS

The EDA community formed in the early 1960s from tool developers working for major
electronics design companies such as IBM, AT&T Bell Labs, Burroughs, and Honeywell. It
has long valued workshops, conferences, and symposia, in which practitioners, designers, and
later academic researchers could exchange ideas and practically demonstrate the techniques.
The Design Automation Conference (DAC) grew out of workshops, which started in the early
1960s and, although held in a number of US locations, has in recent years tended to stay on the
west coast of the United States or a bit inland. It is the largest combined EDA trade show and
technical conference held annually anywhere in the world. In Europe, a number of country-
specific conferences held sporadically through the 1980s, and two competing ones, held in
the early 1990s, led to the creation of the consolidated Design Automation and Test in Europe
conference, which started in the mid-1990s and has grown consistently in strength ever since.
Finally, the Asia-South Pacific DAC started in the mid-1990s to late 1990s and completes the
trio of major EDA conferences spanning the most important electronics design communities
in the world.

Large trade shows and technical conferences have been complemented by ICCAD, held in
San Jose for over 20 years. It has provided a more technical conference setting for the latest algo-
rithmic advances, attracting several hundred attendees. Various domain areas of EDA knowl-
edge have sparked a number of other workshops, symposia, and smaller conferences over the last
20 years, including the International Symposium on Physical Design, International Symposium
on Quality in Electronic Design (ISQED), Forum on Design Languages in Europe (FDL), HDL and
Design and Verification conferences (HDLCon, DVCon), High-level Design, Verification and Test
(HLDVT), International Conference on Hardware—Software Codesign and System Synthesis
(CODES+ISSS), and many other gatherings. Of course, the area of Test has its own long-standing
International Test Conference (ITC); similarly, there are specialized conferences for FPGA design
(e.g., Forum on Programmable Logic [FPL]) and a variety of conferences focusing on the most
advanced IC designs such as the International Solid-State Circuits Conference and its European
counterpart the European Solid-State Circuits Conference.

There are several technical societies with strong representation of design automation: one is
the Institute of Electrical and Electronics Engineers (IEEE, pronounced as “eye-triple-ee”) and the
other is the Association for Computing Machinery (ACM). The Electronic Design Automation
Consortium (EDAC) is an industry group that cosponsors major conferences such as DAC with
professional societies.

Various IEEE and ACM transactions publish research on algorithms and design techniques—a
more archival-oriented format than conference proceedings. Among these, the IEEE Transactions

Chapter 1 - Overview

9

on computer-aided design (CAD), the IEEE Transactions on VLSI systems, and the ACM
Transactions on Design Automation of Electronic Systems are notable. A less-technical, broader-
interest magazine is IEEE Design and Test.

As might be expected, the EDA community has a strong online presence. All the conferences
have Web pages describing locations, dates, manuscript submission and registration procedures,
and often detailed descriptions of previous conferences. The journals offer online submission, ref-
ereeing, and publication. Online, the IEEE (http://ieee.org), ACM (http://acm.org), and CiteSeer
(http://citeseer.ist.psu.edu) offer extensive digital libraries, which allow searches through titles,
abstracts, and full texts. Both conference proceedings and journals are available. Most of the
references found in this volume, at least those published after 1988, can be found in at least one
of these libraries.

1.1.3 STRUCTURE OF THE BOOK

In the next chapter, “Integrated Circuit Design Process and Electronic Design Automation,”
Damiano, Camposano, and Martin discuss the IC design process, its major stages and design flow,
and how EDA tools fit into these processes and flows. It particularly covers interfaces between the
major IC design stages based on higher-level abstractions, as well as detailed design and verifica-
tion information. Chapter 2 concludes the introductory section to the Handbook. Beyond that,
Electronic Design Automation for Integrated Circuits Handbook, Second Edition, comprises sev-
eral sections and two volumes. Volume 1 (in your hands) is entitled Electronic Design Automation
for IC System Design, Verification, and Testing). Volume 2 is Electronic Design Automation for
IC Implementation, Circuit Design, and Process Technology. We will now discuss the division of
these two books into sections.

EDA for digital design can be divided into system-level design, microarchitecture design, logic
verification, test, synthesis place and route, and physical verification. System-level design is the
task of determining which components (bought and built, HW and SW) should comprise a sys-
tem that can perform required functions. Microarchitecture design fills out the descriptions of
each of the blocks and sets the main parameters for their implementation. Logic verification
checks that the design does what is intended. Postfabrication test ensures that functional and
nonfunctional chips can be distinguished reliably. It is common to insert dedicated circuitry to
malke test efficient. Synthesis, placement, and routing take the logical design description and map
it into increasingly-detailed physical descriptions, until the design is in a form that can be built
with a given process. Physical verification checks that such a design is manufacturable and will
be reliable. This makes the design flow, or sequence of steps that the users follow to finish their
design, a crucial part of any EDA methodology.

In addition to fully digital chips, analog and mixed-signal chips require their own specialized
tool sets.

All these tools must scale to large designs and do so in a reasonable amount of time. In general,
such scaling cannot be accomplished without behavioral models, that is, simplified descriptions
of the behavior of various chip elements. Creating these models is the province of Technology
CAD (TCAD), which in general treats relatively small problem instances in great physical detail,
starting from very basic physics and building the more efficient models needed by the tools that
must handle higher data volumes.

The division of EDA into these sections is somewhat arbitrary. In the following, we give a brief
description of each book chapter.

1.2 SYSTEM-LEVEL DESIGN
1.2.1 TOOLS AND METHODOLOGIES FOR SYSTEM-LEVEL DESIGN

Chapter 3 by Bhattacharyya and Wolf covers system-level design approaches and associated tools
such as Ptolemy and the MathWorks tools, and illustrates them for video applications.

http://citeseer.ist.psu.edu
http://acm.org
http://ieee.org

10

1.2 System-Level Design

1.2.2 SYSTEM-LEVEL SPECIFICATION AND MODELING LANGUAGES

Chapter 4 by Edwards and Buck discusses major approaches to specifying and modeling sys-
tems, as well as the languages and tools in this domain. It covers heterogeneous specifications,
models of computation and linking multidomain models, requirements on languages, and spe-
cialized tools and flows in this area.

1.2.3 SoC BLOCK-BASED DESIGN AND IP ASSEMBLY

Chapter 5 by Kashai approaches system design with particular emphasis on SoCs via IP-based
reuse and block-based design. Methods of assembly and compositional design of systems are
covered. Issues of IP reuse as they are reflected in system-level design tools are also discussed.

1.2.4 PERFORMANCE EVALUATION METHODS FOR MULTIPROCESSOR
SYSTEMS-ON-CHIP DESIGN

Chapter 6 by Jerraya and Bacivarov surveys the broad field of performance evaluation and sets
it in the context of multiprocessor system on chip (MPSoC). Techniques for various types of
blocks—HW, CPU, SW, and interconnect—are included. A taxonomy of performance evaluation
approaches is used to assess various tools and methodologies.

1.2.5 SYSTEM-LEVEL POWER MANAGEMENT

Chapter 7 by Chang, Macii, Poncino, and Tiwari discusses dynamic power management
approaches, aimed at selectively stopping or slowing down resources, whenever possible while
providing required levels of system performance. The techniques can be applied to reduce both
power consumption and energy consumption, which improves battery life. They are generally
driven by the SW layer, since it has the most precise picture about both the required quality of
service and the global state of the system.

1.2.6 PROCESSOR MODELING AND DESIGN TOOLS

Chapter 8 by Chattopadhyay, Dutt, Leupers, and Mishra covers state-of-the-art specification lan-
guages, tools, and methodologies for processor development used in academia and industry. It
includes specialized architecture description languages and the tools that use them, with a num-
ber of examples.

1.2.7 MODELS AND TOOLS FOR COMPLEX EMBEDDED SOFTWARE AND SYSTEMS

Chapter 9 by Di Natale covers models and tools for embedded SW, including the relevant models
of computation. Practical approaches with languages such as Simulink® and the Unified Modeling
Language are introduced. Embeddings into design flows are discussed.

1.2.8 USING PERFORMANCE METRICS TO SELECT MICROPROCESSOR CORES FOR IC DESIGNS

Chapter 10 by Leibson discusses the use of standard benchmarks and instruction set simula-
tors to evaluate processor cores. These might be useful in nonembedded applications, but are
especially relevant to the design of embedded SoC devices where the processor cores may not
yet be available in HW, or be based on user-specified processor configurations and extensions.

Chapter 1 - Overview

n

Benchmarks drawn from relevant application domains have become essential to core evaluation,
and their advantages greatly exceed those of the general-purpose benchmarks used in the past.

1.2.9 HIGH-LEVEL SYNTHESIS
Chapter 11 by Balarin, Kondratyev, and Watanabe describes the main steps taken by a HLS tool

to synthesize a C/C++/SystemC model into register transfer level (RTL). Both algorithmic tech-
niques and user-level decisions are surveyed.

1.3 MICROARCHITECTURE DESIGN
1.3.1 BACK-ANNOTATING SYSTEM-LEVEL MODELS
Chapter 12 by Grammatikakis, Papagrigoriou, Petrakis, and Coppola discusses how to use sys-

tem-level modeling approaches at the cycle-accurate microarchitectural level to perform final
design architecture iterations and ensure conformance to timing and performance specifications.

1.3.2 MICROARCHITECTURAL POWER ESTIMATION AND OPTIMIZATION

Chapter 13 by Macii, Mehra, Poncino, and Dick discusses power estimation at the microarchi-
tectural level in terms of data paths, memories, and interconnect. Ad hoc solutions for optimizing
both specific components and entire designs are surveyed, with a particular emphasis on SoCs
for mobile applications.

1.3.3 DESIGN PLANNING AND CLOSURE
Chapter 14 by Otten discusses the topics of physical floor planning and its evolution over the
years, from dealing with rectangular blocks in slicing structures to more general mathematical

techniques for optimizing physical layout while meeting a variety of criteria, especially timing
and other constraints.

1.4 LOGIC VERIFICATION

1.4.1 DESIGN AND VERIFICATION LANGUAGES

Chapter 15 by Edwards discusses the two main HDLs in use—VHDL and Verilog—and how they
meet the requirements for design and verification flows. More recent evolutions in languages,
such as SystemC, SystemVerilog, and verification languages (i.e., OpenVera, e, and PSL), are also
described.

1.4.2 DIGITAL SIMULATION

Chapter16 by Sanguinetti discusses logic simulation algorithms and tools, as these are still the
primary tools used to verify the logical or functional correctness of a design.

1.4.3 LEVERAGING TRANSACTIONAL-LEVEL MODELS IN A SoC DESIGN FLOW

In Chapter 17, Maillet-Contoz, Cornet, Clouard, Paire, Perrin, and Strassen focus on an industry
design flow at a major IC design company to illustrate the construction, deployment, and use

12

1.5 Test

of transactional-level models to simulate systems at a higher level of abstraction, with much
greater performance than at RTL, and to verify functional correctness and validate system
performance characteristics.

1.4.4 ASSERTION-BASED VERIFICATION

Chapter 18 by Foster and Marschner introduces the topic of assertion-based verification, which
is useful for capturing design intent and reusing it in both dynamic and static verification meth-
ods. Assertion libraries such as OVL and languages including PSL and SystemVerilog assertions
are used for illustrating the concepts.

1.4.5 HARDWARE-ASSISTED VERIFICATION AND SOFTWARE DEVELOPMENT

Chapter 19 by Schirrmeister, Bershteyn, and Turner discusses HW-based systems including
FPGA, processor-based accelerators/emulators, and FPGA prototypes for accelerated verifica-
tion. It compares the characteristics of each type of system and typical use models.

1.4.6 FORMAL PROPERTY VERIFICATION

In Chapter 20, Fix, McMillan, Ip, and Haller discuss the concepts and theory behind formal prop-
erty checking, including an overview of property specification and a discussion of formal verifica-
tion technologies and engines.

1.5 TEST
1.5.1 DESIGN-FOR-TEST

Chapter 21 by Koenemann and Keller discusses the wide variety of methods, techniques, and
tools available to solve design-for-test (DFT) problems. This is a sizable area with an enormous
variety of techniques, many of which are implemented in tools that dovetail with the capabilities
of the physical test equipment. This chapter surveys the specialized techniques required for effec-
tive DFT with special blocks such as memories, as well as general logic cores.

1.5.2 AUTOMATIC TEST PATTERN GENERATION

Chapter 22 by Cheng, Wang, Li, and Li starts with the fundamentals of fault modeling and com-
binational ATPG concepts. It moves on to gate-level sequential ATPG and discusses satisfiability
(SAT) methods for circuits. Moving on beyond traditional fault modeling, it covers ATPG for
cross-talk faults, power supply noise, and applications beyond manufacturing test.

1.5.3 ANALOG AND MIXED-SIGNAL TEST

In Chapter 23, Stratigopoulos and Kaminska first overview the concepts behind analog test-
ing, which include many characteristics of circuits that must be examined. The nature of analog
faults is discussed and a variety of analog test equipment and measurement techniques sur-
veyed. The concepts behind analog built-in self-test are reviewed and compared with the digital
test. This chapter concludes Volume 1 of Electronic Design Automation for Integrated Circuits
Handbook, Second Edition.

Chapter 1 - Overview

13

1.6 RTL TO GDSII OR SYNTHESIS, PLACE, AND ROUTE
1.6.1 DESIGN FLOWS

The second volume, Electronic Design Automation for IC Implementation, Circuit Design, and
Process Technology begins with Chapter 1 by Chinnery, Stok, Hathaway, and Keutzer. The RTL
to GDSII flow has evolved considerably over the years, from point tools bundled loosely together
to a more integrated set of tools for design closure. This chapter addresses the design-flow chal-
lenges based on the rising interconnect delays and new challenges to achieve closure.

1.6.2 LOGIC SYNTHESIS

Chapter 2 by Khatri, Shenoy, Giomi, and Khouja provides an overview and survey of logic syn-
thesis, which has, since the early 1980s, grown to be the vital center of the RTL to GDSII design
flow for digital design.

1.6.3 POWER ANALYSIS AND OPTIMIZATION FROM CIRCUIT TO REGISTER-TRANSFER LEVELS

Power has become one of the major challenges in modern IC design. Chapter 3 by Monteiro,
Patel, and Tiwari provides an overview of the most significant CAD techniques for low power, at
several levels of abstraction.

1.6.4 EQUIVALENCE CHECKING

Equivalence checking can formally verify whether two design specifications are functionally
equivalent. Chapter 4 by Kuehlmann, Somenzi, Hsu, and Bustan defines the equivalence-checking
problem, discusses the foundation for the technology, and then discusses the algorithms for combi-
national and sequential equivalence checking.

1.6.5 DIGITAL LAYOUT: PLACEMENT

Placement is one of the fundamental problems in automating digital IC layout. Chapter 5 by
Kahng and Reda reviews the history of placement algorithms, the criteria used to evaluate
quality of results, many of the detailed algorithms and approaches, and recent advances in
the field.

1.6.6 STATIC TIMING ANALYSIS

Chapter 6 by Cortadella and Sapatnekar overviews the most prominent techniques for static
timing analysis. It then outlines issues relating to statistical timing analysis, which is becoming
increasingly important to handle process variations in advanced IC technologies.

1.6.7 STRUCTURED DIGITAL DESIGN

In Chapter 7, Cho, Choudhury, Puri, Ren, Xiang, Nam, Mo, and Brayton cover the tech-
niques for designing regular structures, including data paths, programmable logic arrays, and
memories. It extends the discussion to include regular chip architectures such as gate arrays
and structured ASICs.

14

1.6 RTL to GDSII or Synthesis, Place, and Route

1.6.8 ROUTING

Routing continues from automatic placement as a key step in IC design. Routing creates
the wire traces necessary to connect all the placed components while obeying the process
design rules. Chapter 8 by Téllez, Hu, and Wei discusses various types of routers and the key
algorithms.

1.6.9 PHYSICAL DESIGN FOR 3D ICs

Chapter 9 by Lim illustrates, with concrete examples, how partitioning the blocks of an IC into
multiple chips, connected by through-silicon vias (TSVs), can significantly improve wire length
and thus both performance and power. This chapter explores trade-offs between different design
options for TSV-based 3D IC integration. It also summarizes several research results in this
emerging area.

1.6.10 GATE SIZING

Determining the best width for the transistors is essential to optimize the performance of an
IC. This can be done both in a continuous setting, oriented toward full-custom or liquid library
approaches, and in a discrete setting, for library-based layout and FinFET circuits. In Chapter 10,
Held and Hu emphasize that sizing individual transistors is not very relevant today; the entire
gates must be sized.

1.6.117 CLOCK DESIGN AND SYNTHESIS

Chapter 11 by Guthaus discusses the task of distributing one or more clock signals throughout an
entire chip, while minimizing power, variation, skew, jitter, and resource usage.

1.6.12 EXPLORING CHALLENGES OF LIBRARIES FOR ELECTRONIC DESIGN

Chapter 12 by Hogan, Becker, and Carney discusses the factors that are most important and
relevant for the design of libraries and IP, including standard cell libraries; cores, both hard and
soft; and the design and user requirements for the same. It also places these factors in the overall
design chain context.

1.6.13 DESIGN CLOSURE

Chapter 13 by Osler, Cohn, and Chinnery describes the common constraints in VLSI design
and how they are enforced through the steps of a design flow that emphasizes design closure.
A reference flow for ASICs is used and illustrated. Finally, issues such as power-limited design
and variability are discussed.

1.6.14 TOOLS FOR CHIP-PACKAGE CO-DESIGN

Chip-package co-design refers to design scenarios, in which the design of the chip impacts the
package design or vice versa. In Chapter 14, Franzon and Swaminathan discuss the drivers for
new tools; the major issues, including mixed-signal needs; and the major design and modeling
approaches.

Chapter 1 - Overview

15

1.6.15 DESIGN DATABASES

The design database is at the core of any EDA system. While it is possible to build a mediocre
EDA tool or flow on any database, efficient and versatile EDA tools require more than a primitive
database. Chapter 15 by Bales describes the place of a design database in an integrated design
system. It discusses databases used in the past, those currently in use as well as emerging future
databases.

1.6.16 FPGA SYNTHESIS AND PHYSICAL DESIGN

Programmable logic devices, and FPGAs, have evolved from implementing small glue-logic
designs to large complete systems. The increased use of such devices—they now are the major-
ity of design starts—has resulted in significant research in CAD algorithms and tools targeting
programmable logic. Chapter 16 by Hutton, Betz, and Anderson gives an overview of relevant
architectures, CAD flows, and research.

1.7 ANALOG AND MIXED-SIGNAL DESIGN
1.7.1 SIMULATION OF ANALOG AND RF CIRCUITS AND SYSTEMS

Circuit simulation has always been a crucial component of analog system design and is becom-
ing even more so today. In Chapter 17, Roychowdhury and Mantooth provide a quick tour of
modern circuit simulation. This includes circuit equations, device models, circuit analysis, more
advanced analysis techniques motivated by RF circuits, new advances in circuit simulation using
multitime techniques, and statistical noise analysis.

1.7.2 SIMULATION AND MODELING FOR ANALOG AND MIXED-SIGNAL INTEGRATED CIRCUITS

Chapter 18 by Gielen and Phillips provides an overview of the modeling and simulation methods
that are needed to design and embed analog and RF blocks in mixed-signal integrated systems
(ASICs, SoCs, and SiPs). The role of behavioral models and mixed-signal methods involving mod-
els at multiple hierarchical levels is covered. The generation of performance models for analog
circuit synthesis is also discussed.

1.7.3 LAYOUT TOOLS FOR ANALOG ICs AND MIXED-SIGNAL SoCs: A SURVEY

Layout for analog circuits has historically been a time-consuming, manual, trial-and-error task.
In Chapter 19, Rutenbar, Cohn, Lin, and Baskaya cover the basic problems faced by those who
need to create analog and mixed-signal layout and survey the evolution of design tools and
geometric/electrical optimization algorithms that have been directed at these problems.

1.8 PHYSICAL VERIFICATION
1.8.1 DESIGN RULE CHECKING

After the physical mask layout is created for a circuit for a specific design process, the layout is
measured by a set of geometric constraints or rules for that process. The main objective of design
rule checking (DRC) is to achieve high overall yield and reliability. Chapter 20 by Todd, Grodd,
Tomblin, Fetty, and Liddell gives an overview of DRC concepts and then discusses the basic veri-
fication algorithms and approaches.

16

1.8 Physical Verification

1.8.2 RESOLUTION ENHANCEMENT TECHNIQUES AND MASK DATA PREPARATION

With more advanced IC fabrication processes, new physical effects, negligible in the past, are
being found to have a strong impact on the formation of features on the actual silicon wafer. It
is now essential to transform the final layout via new tools in order to allow the manufacturing
equipment to deliver the new devices with sufficient yield and reliability to be cost-effective. In
Chapter 21, Schellenberg discusses the compensation schemes and mask data conversion tech-
nologies now available to accomplish the new design for manufacturability (DFM) goals.

1.8.3 DESIGN FOR MANUFACTURABILITY IN THE NANOMETER ERA

Achieving high-yielding designs in state-of-the-art IC process technology has become an
extremely challenging task. DFM includes many techniques to modify the design of ICs in order
to improve functional and parametric yield and reliability. Chapter 22 by Dragone, Guardiani,
and Strojwas discusses yield loss mechanisms and fundamental yield modeling approaches. It
then discusses techniques for functional yield maximization and parametric yield optimization.
Finally, DFM-aware design flows and the outlook for future DEM techniques are discussed.

1.8.4 DESIGN AND ANALYSIS OF POWER SUPPLY NETWORKS

Chapter 23 by Panda, Pant, Blaauw, and Chaudhry covers design methods, algorithms, tools for
designing on-chip power grids, and networks. It includes the analysis and optimization of effects
such as voltage drop and electromigration.

1.8.5 NOISE IN DIGITAL ICs

On-chip noise issues and their impact on signal integrity and reliability are becoming a major
source of problems for deep submicron ICs. Thus, the methods and tools for analyzing and coping
with them, which are discussed by Keller and Kariat in Chapter 24, gained in recent years.

1.8.6 LAYOUT EXTRACTION

Layout extraction is the translation of the topological layout back into the electrical circuit it
is intended to represent. In Chapter 25, Kao, Lo, Basel, Singh, Spink, and Scheffer discuss the
distinction between designed and parasitic devices and also the three major parts of extraction:
designed device extraction, interconnect extraction, and parasitic device extraction.

1.8.7 MIXED-SIGNAL NOISE COUPLING IN SYSTEM-ON-CHIP DESIGN:
MODELING, ANALYSIS, AND VALIDATION

Chapter 26 by Verghese and Nagata describes the impact of noise coupling in mixed-signal ICs
and reviews techniques to model, analyze, and validate it. Different modeling approaches and
computer simulation methods are presented, along with measurement techniques. Finally, the
chapter reviews the application of substrate noise analysis to placement and power distribution
synthesis.

Chapter 1 - Overview

17

1.9 TECHNOLOGY COMPUTER-AIDED DESIGN
1.9.1 PROCESS SIMULATION

Process simulation is the modeling of the fabrication of semiconductor devices such as transis-
tors. The ultimate goal is an accurate prediction of the active dopant distribution, the stress dis-
tribution, and the device geometry. In Chapter 27, Johnson discusses the history, requirements,
and development of process simulators.

1.9.2 DEVICE MODELING: FROM PHYSICS TO ELECTRICAL PARAMETER EXTRACTION

Technology files and design rules are essential building blocks of the IC design process.
Development of these files and rules involves an iterative process that crosses the boundaries
of technology and device development, product design, and quality assurance. Chapter 28 by
Dutton, Choi, and Kan starts with the physical description of IC devices and describes the evolu-
tion of TCAD tools.

1.9.3 HIGH-ACCURACY PARASITIC EXTRACTION

Chapter 29 by Kamon and Iverson describes high-accuracy parasitic extraction methods using
fast integral equation and random walk-based approaches.

REFERENCES

1. A. Sangiovanni-Vincentelli, The tides of EDA, IEEE Des. Test Comput., 20, 59-75, 2003.
2. A. Kuelhmann, Ed., 20 Years of ICCAD, Kluwer Academic Publishers (Springer), Dordrecht, the
Netherlands, 2002.

