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Why? 
• Implementation insight helps understand 

limitations


• True for all technologies, not only 
electronic circuits!   


• Switched-capacitor circuits and dual-rail 
signalling are ubiquitous in integrated 
filters 


• … and in ADCs, DACs  


• Learn to recognize some simple forms
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Outline

• Basic switched-capacitor (SC) circuits 


• Some sources of performance 
limitations 


• A few examples


• Dual-rail signalling: benefits + drawbacks
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Discrete-time signals
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y = sin(2π· t), 0 < t ≤ 1
y = sin(2π· tk), tk = (k / fs) 

fs = 32

Recap 

slide
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A switched capacitor 

∆Q = (V1 – V0) Cs

V1

Cs

V0V1

∆Q
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“Resistor”
fs

V0 V1

• ∆Q = (V0 – V1)· Cs


• I = ∆Q· fs = (V0 – V1)· fsCs


• … so, a “resistor” from V0 to V1;  R = 1 / fsCs


• Note:  R controlled by fs !

Cs
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HISTORY

[James Clerk Maxwell. A Treatise on Electricity and Magnetism. 1873.]  

IC applications came later. 
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Simple low-pass link

• Time constant given by R · Ci = Ci / (fs· Cs)

• Depends on

• capacitance ratio (accurate)

• frequency (accurate and controllable)

fs
V0

Cs Ci
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Opamp circuits  

• Integrator: Vout = – (Ci / Cfb ) · ∫ Vin dt 

• Inverting amplifier

• Reset integrator after each cycle! 

• Gain: – Ci / Cfb 

+ +Ci Ci

CfbCfb∆Q = Vin Ci

Vin

 9
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Comparator

• Phase 1: switches 1 and 3 closed, switch 2 open 


• Vout, Vin– close to 0 


• ~ VA across Ci 


• Phase 2: switches 1 and 3 open, switch 2 closed


• Still ~ VA across Ci


• Vin– ≈ VB – VA 


• Vout swings to maximum or minimum voltage 
 10
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Non-idealities
• Significant sources of deviations from 

ideal behavior: 


• Stray capacitances


• Charge injection


• Offset voltages


• Limited gain 


• Settling time
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Stray caps 

• Integrated capacitors suffer from stray capacitances 

• Asymmetrical (most from bottom plate)


• Simple SC R still sensitive to top-plate stray capacitances!

• Standard circuit solution exists


• Bonus: switch control allows “free” signal inversion

fs
V0 V1

Cs
R = 1 / (fs Cs) 

[Maloberti, fig 6.28]
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Charge injection

• Non-linear Cstray couples edge from Vø to Vsamp


• Non-linear → step depends on Vsamp: distortion!


• Introduce bottom-plate sampling 


• Isolate charge on CS with Vø’ (no voltage 
dependence); then disconnect from Vin with Vø

 13
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Offset voltage

• Offset: voltage difference at inputs for Vout = 0 

• Conventionally represented as voltage source in 

series with positive input

• Small value (ideally =0), but worse with 

increasing circuit variations (theme 2!)

• Reset phase sets output, negative input to ≈ Voff !


• O/w, Voff would be amplified at output…

+Ci

Cfb

v
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Limited gain

• Negative input not pulled all the way to ground 


• Charge transfer incomplete


• Output settles to “wrong” value 


• Worse with lower gain


• Compare with CT case: discrepancy D =  Aß / (1 + Aß) 

+Ci

Cfb
∆Q = Vin Ci

Vin
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Linear settling

• OP-amp with one dominant pole is first-order system


• Step response is a damped exponential 


• Feedback moves pole! 


• Time constant tau determines settling speed 


• 3 · tau to 95%; 5 · tau to 99%; 9 · tau to 99.9%; etc


• Select GBW for desired accuracy (tradeoff: $, W)
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Nonlinear settling (slewing)

• Ideally, settling error shrinks exponentially with time

• Remaining final error (%) at time tx depends only on 

amplifier gain and on time spent vs pole position

• If limited max current Iout, error also depends on level 


• Worse at high amplitudes!  Non-linear!  Distortion!

t

Vout

+
Vout

Iout

 17
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How size capacitances?
• Small C brings high speed 


• Small C brings low power 


• Small C brings matching problems


• Best matching for small-integer ratios (2, 3, 4, 5, 
etc)


• Does not fit Butterworth etc. poles :-(


• Small C brings fundamental noise problems 


• Noise power: kT / C 
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SC drawbacks 
• Sampling brings aliasing problems


• Will need CT anti-alias pre-sampling 
filter 


• Need a GBW ~5x the clock frequency, so 
10x highest signal frequency


• Worse than BW margin for continuous-
time implementations


• High GBW costs power!  

 19
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474 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. CAS-27, NO. 6, JUNEZ 1980 
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Fig. 9. An expanded view of the measured passband response of the 
circuit in Fig. 7. 

V. CONCLUSIONS 

.A I 
V, VO 

The method presented enables the exact design of’ 

Fig. 7. Complete circuit of the switched-capacitor filter realization of 
switched-capacitor bandpass filters using low-sensitivity 

the eighth-order bandpass filter given in Fig. 6. Values for all capaci- coupled-biquad structures. Since the method is based on 
tor ratios are given in Table I. the bilinear z-transform, the resulting filters meet their 

specifications irrespective of how close the clocking 
frequency is relative to the signal frequencies. The circuits 
presented are completely insensitive to stray capacitances, 
allowing the designer to use small capacitors and hence a 

. 

small IC chip area. 
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Example: SC ladder filter

• CT filter design styles re-usable in DT!
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Performance 
example

• 6-order filter, 176 MHz clock, < 100 mW, 
0.35um CMOS

[Ng et al, IEEE Journal of Solid-State Circuits, March 2005]
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Other SC circuits: DAC

–
…

Vref

C2C2N–1C

• 2 clock phases


• Offset cancellation


• Good for ~7 bits 
(cap ratios)


• Similar to R-based 
DAC!

2NC

 22
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Dual-rail signalling

 23
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Dual-rail signalling
• Almost universal in on-chip analog 

circuits 


• Not only in DT filters 


• CT filters from theme 4!  


• Increased complexity 


• Benefits outweigh costs 


• Often ignored for simpler drawings :-/

 24
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What?

• Signals maintained as voltage differences 


• Symmetrical circuits 

+
Vout +

Vout
+ +

 25
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Dual-rail + and – 
1. Twice the swing 


2. Improved SNR 


3. Common-mode 
coupled noise 
eliminated 


4. Even-order 
harmonics cancel 
out 


1. Twice the 
hardware 


2. Twice the power 


3. Relies on 
symmetry 


4. CMFB circuitry 
needed 

 26
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1. Twice the swing

• If single-rail swing from –1 to +1, then 
dual-rail swing is from (–1) – (+1) = –2 to 
(+1) – (–1) = 2 


• Important at low supply voltages in 
modern processes

 27
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2. Improved SNR  

• Signal voltage amplitude doubled


• Signal power up by 4x (6dB)


• Uncorrelated random noise at both rails 
adds as powers 


• Noise power up by 2x (3dB) 


• 3dB SNR improvement!

 28
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3. Coupled-noise reduction

• Externally-generated noise (from 
supplies, substrate, capacitive coupling) 
tends to be highly correlated 


• If identical (ideal case), does not affect 
output at all! 


• Even better SNR improvement 

 29
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4. Harmonic reduction
• Even-order nonlinearities are cancelled 


• Consider DR circuit with slight nonlinearity h


• Inputs: x+ = a sin (wt) ; x– = – a sin (wt) 


• Outputs: y+ = h(a sin (wt)) ; y– = h(– a sin (wt)) 


• Taylor expansion: h(x) = h0 + h1 x + h2 x2 + …


• But x2n = (–x)2n, so no even harmonics in (y+ – y–)

 30
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1. Twice the hardware
• Twice as many capacitors 


• Twice as many switches 


• Twice as many wires 


• …


• Affordable with present-day 
miniaturization

 31
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2. Twice the power 

• Twice the capacitive load driven to the 
same swing as before


• Twice the number of switches to control 


• May be traded for the 3dB SNR 
improvement…

 32
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3. Relies on symmetry
• Benefits assume that all paths are 

symmetrical!  


• Example: harmonics won’t cancel 
perfectly if one capacitive load is larger!


• Symmetry is never perfect 


• Layouts 


• Variability 

 33
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4. CMFB circuits needed

• Common-mode feedback circuits needed to 
control average output voltages


• Extra input (here) or added to both DM inputs 


• Extra feedback loop!  Stability issue!

+

+
+

 34
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schematic symbol
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Two combined 
examples 

 35
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Successive approximation

• Simple Finite State Machine sets bits in sequence from 
MSB downwards, depending on previous decisions

• Search by interval halving / bisection


• One full conversion in N cycles 

+ No subtractions or other analog processing

– DAC needs to be good to N bits!

DACFSM +
–

Vin
time

vo
lta

ge
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DAC + comparator

• DAC capacitors also work as ADC sample cap!

• Capture value on caps, then switch back plates 

to zero out difference by binary scaling 

• Principle used for lowest-FoM ADCs today!

• Also for high speed (next week!)

 37

2. Technical background

2n≠1Cu 2n≠2Cu 2Cu Cu

2n≠1Cu 2n≠2Cu 2Cu Cu

sw1,t sw2,t swn≠1,t swn,t

sw1,b sw2,b swn≠1,b swn,b

+
≠

Vrefp
Vrefn

VrefnVrefp

Vp
Vn

To SAR logic

Figure 2.14: Example of a charge redistribution network.

scaling may not be suitable for implementation due to the radixes required. Compensation
on the other hand is limited in where redundancy may be added, making some stages have
unnecessarily large redundancy to provide the required redundancy at earlier stages. The
benefit with the compensation method is that is builds on the binary scaling using a radix
of 2 at all stages which are not compensating stages. Since all stages has a size of a power
of two, implementations of all possible compensation schemes are possible since there will
be no case where the component values will be troublesome.

2.7 Charge redistribution

There are several methods to generate the reference voltage used in SAR converters. The
simplest one is to use a resistive network. However, this will only work for single ended
input signals. Another method that works both in the single ended and di�erential case
is charge redistribution [10]. The principle builds on splitting the sampling capacitor into
an array with di�erent stages typically binary scaled. However other scaling methods are
possible, such as the ones mentioned in section 2.6.

An example of a charge distribution network for di�erential operation is shown in
fig. 2.14. It works by first having the capacitors in each leg pre-charged to one of the
reference levels, in this case Vrefn. Then the input will be sampled onto the capacitors
through the sampling switches. After each decision, one of the switches at this stage,
top or bottom switch, will switch over to the other reference voltage, in this case Vrefp,
depending on the result of the previous decision.

Starting with switching sw1,t to Vrefp results in adding charge to the capacitive array.
The added charge can be split into two parts, charge added to the capacitor at which the
switch is changed and charge added to the rest of the capacitors. The amount of charge
that will be added to each part depends on the relationship between the capacitive sizes
which is defined by the scaling of the array. In the case of binary scaling, a switch at
the first stage results in that half the charge becomes added to the first stage capacitance
and the rest becomes split among the other capacitors in the array. This will result in an
increase of the voltage at the shared node corresponding to half of the change in reference
voltage. A switch at the second or nth stage, switch sw2,t or swn,t, would result in a
change corresponding to 1/4 or 1/2n of the reference voltage change respectively.

If the capacitors were pre-charged to Vrefp instead of Vrefn, the operation would still
be the same. The only di�erence would be that charge will be removed instead of added.
The removed charge will still be split in the same way as when charge where added.

26
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Forward-looking example

• Two-integrator filter 


• Part of Sigma-Delta ADC (also next week!)

 38

176 CIRCUIT DESIGN FOR DISCRETE-TIME DELTA-SIGMA ADCS

C4 = 10e-15;
C5 = C4 * Vref / a(2);
C3 = C5 * c(1);
% Yields C1=410f, C2=6.49p, C3=44f, C4=10f, C5=98f

7.5 Initial Verification

SCMOD2

Figure 7.15 MOD2 schematic.

Having manually verified the viability of the chosen topology, we need to simulate
our schematic (Figure 7.15) to ensure that it implements the desired difference equations.
Since a modulator can be difficult to debug with closed-loop simulations, it is wise to
do open-loop simulations before closing the loop and verifying the modulator as a whole.

To verify the loop filter, we recommend checking that its impulse response matches
the expected response, which can be computed using the toolbox function impL1. To
perform this check on our circuit, we need to replace the quantizer with a block that sup-
plies an impulse 1 0 0 to the feedback path. Unfortunately, a single-bit DAC can
only accept values of 1. To overcome this limitation, we instead simulate the loop
filter twice, first with the DAC input sequence

1 1 1 1 1 1 1 (7.13)

and then with
2 1 1 1 1 1 1 (7.14)

Since the loop filter is linear, its response to an impulse ( ( 2 1) 2) is given by
subtracting the response due to 1 from the response due to 2 and then dividing by two.
Figure 7.16 compares the predicted responses with the results from this check. Since the
simulation results (solid lines) pass through the predicted points (marked by ), we can be
confident that the loop filter and feedback DAC are operating properly.

The first closed-loop check we recommend is a short transient simulation with a dc
input. Figure 7.17 shows the simulated input, output and internal signals over 40 clock

[Pavan, Schreier, Temes: Understanding Delta-Sigma Data Converters, 2017]
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Summary
• SC circuits allow high-performance 

analog circuits on silicon


• Good accuracy 


• Controllability 


• Dual-rail signalling ubiquitous in on-chip 
analog and mixed-signal circuits 


• May be used even if not shown in 
schematics!  
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