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Complete ADC energy per conversion (in 2008) vs energy
of one NAND-gate logic transition in 90-nm CMOS

Digital logic more “affordable” for higher resolutions!
« Even more in newer technologies

Increasingly attractive to use digital methods to improve
performance!

[Murmann, CICC 2008]



Assist? Enhancement?

Techniques that rely on more-or-less complex digital
techniques to improve converter performance

» Every sample and/or on average
Calibration
Redundant pipelined ADCs
* Interleaved ADCs

Dynamic element balancing in DACs
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Improving every sample



Calibration

» Adjust “translation table” from analog to
digital data (or conversely) to reduce errors

- Main focus typically on INL errors

- Large-scale errors cancelled using a
few polynomial coefficients

» Two main categories of calibration:
» Foreground / offline

- Background / online
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Foreground calibration

Calibration
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Figure 8.6. Conceptual scheme of a foreground calibrated DAC.

*  Apply known calibration signal as input
«  Observe output, compare with expected value

« Adjust “on digital side”
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Background ADC calibration

f
¢ s _ ouT

V. n-bit
o4 SH ADC1 Addition [ >

< :Vr\‘ DIGITAL :r\l/‘ |
* M ADC2 LOGIC Memory
p)-bit f

(n+ M

S

Figure 8.8. Calibration with a slow high-resolution converter.

 Auxiliary converter (ADC2) for calibration only
- Higher accuracy, but slower

*  An example; other methods possible
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181220 LJS

1-bit pipelined ADC

» Repeat for next bit, etc.
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Redundant pipeline

code: code:
|dea: postpone bit

decision if value close 1 - 10
to border! ,,' -

4

10

If so, don’t subtract

anything, just expand _, X 01 01
Now value farther '
from border! R
Look again after next Tl B
gain stage 0 00 00
Smart codes make
calculation of final 0 1
value trivial 10 Addition!

100
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Redundant pipeline

Redundancy: two decisions, eventually one bit
Two comparators / decision levels per stage
Still no nonlinearity!
Gain, offset errors
“1.5 bits”
Between 1 bit and 2 bits :-/
No redundancy In last stage
Cannot be corrected since no next stage!
Typically 1 or 2 bits in last stage
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Limits?

« Delay decision for all
values less than half
of full swing!

- Allows very large
decision errors
(+VFrs/4)

* \Very simple
comparator
sufficient

«  2nd delayed
decision means 2-
step carry in
addition (etc)
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Benefits/drawbacks

+ One bit per stage, so #stages ~ N

+ Very insensitive to offsets
+ High sample rates

+ Simple digital parts

— Still depends on accurate x2 amplifier

— Latency
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Time-interleaved ADC

N (here: 4) parallel ADCs, each at fs
Round-robin sampling @ N times fs
Problem: ADCs not identical in practice

Systematic errors of several kinds
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Analog signal
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Example: offsets
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-  Offset of each ADC path affects sampled and
converted values

« Repeating sequence of offset values added to signal
* ...01 03 O1
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Offsets in spectrum

4 ADCs Offset mismatch[1-1 3 4]
0.
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* |n spectral domain, will show as spur components at

n-fs/N,n=0... N-1

* Note: spur frequencies unrelated to signal frequency!

» Occur also with no input signal!
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Example: gain error

» Two paths:
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When useful?
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- Magenta dots for time-interleaved converters

| 4

- High sample rates regardless of SNDF
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Why use interleaving?

Increase sample rate!

» Possibly by factor N with N converter
paths

» |Improve speed/power relation

» Choose more frugal architecture for
substituent path converters

Hope for less than N - (1/N) overall power

Digital correction circuitry is “free” &
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Poulton 2003
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» 80 interleaved 12-stage pipelined ADCs

- 1.5 bits / stage, reduced to 8 bits w/
corrections

« 8 bits @ 20 GS/s, <6.5 ENOB
« 1 W (buffer) + 9 W (ADC) =10 W

181220 LJS 22



Draxelmayr 2004
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* 06b, 8-way Iinterleaved

« SAR sub-converters

« 10 mW @ fs = 600 MHz
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Figure 14.7.6: SINAD vs. fin at fc=600MHz (offset corrected).




Kull 2014
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« 90 GS/s, 8b, 667 MW
« 64 SAR sub-converters

«  Current world record for ADC sample rate

[L. Kull et al. A90GS/s 8b 667mW 64x Interleaved
181220 LJS 24 SAR ADC in 32nm Digital SOl CMOS. ISSCC 2014.]



Improving on average



D/A converter errors

» Thermometer-coded, unary-scaling current-
source D/As very popular

» Large number of sources (2N)
» Large area
» Mfg gradient errors cause harmonics
* Improve matching with common-centroid layouts

 Split sources in groups with common center
* More switches, etc

[Van der Plas 1999]

(2) (b) ©
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Errors vs distortion

Remaining INL/DNL will cause harmonic
distortion of sinewave input

» Spurious tones in output
- Often undesirable (depends on application)

INL/DNL diagrams show the error at each output
value

Error is well-defined since always the same set
of current sources (with same set of deviations)
for same converted value
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Randomization

 |dea: use different set of
sources for each
conversion!

- Select e.g. by pseudo-
random sequence

*  “Dynamic element
matching”

 Distortion -> noise

« Better SFDR!

»  Esp. useful for feedback
DACs in )A ADCs

[L. R. Carley. Noise-shaping coder topology for 15+ bit converters.
IEEE Journal of Solid-State Circuits, April 1989]
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SFDR
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Fig. 6 SFDR over Nyquist vs clock rate for this DAC and other
. 1 4b, 7.2 3S/s DACSs (published papers and datasheets)
- Unary scaling for 4 MSBs, binary scaling for the rest
- MSBs randomized
«  SFDR ~10 dB better than comparable DACs
4.6 W (ugh)
[K. Poulton et al. A 7.2-GSa/s, 14-bit or 12-GSa/s, 12-
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“De-randomization”
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duly-cydie

« Rather than random combination, select best combo

- Several dimensions (amplitude, delay, duty cycle)

[Van de Vel et al. A 240mW 16b 3.2GS/s DAC in 65nm CMOS
181220 LJS 30 with <-80dBc IM3 up to 600MHz. ISSCC2014]



Summary

Digital techniques highly useful to compensate
for many kinds of conversion errors

Per sample and/or on average

Performance far beyond what is possible
with “ordinary” techniques

Digital gets cheaper over time (Moore!)

» Suggests trend towards simpler analog and
more sophisticated digital processing (cf.
Murmann)
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