

Noise shaping

DAT116, 20181217

larssv@chalmers.se

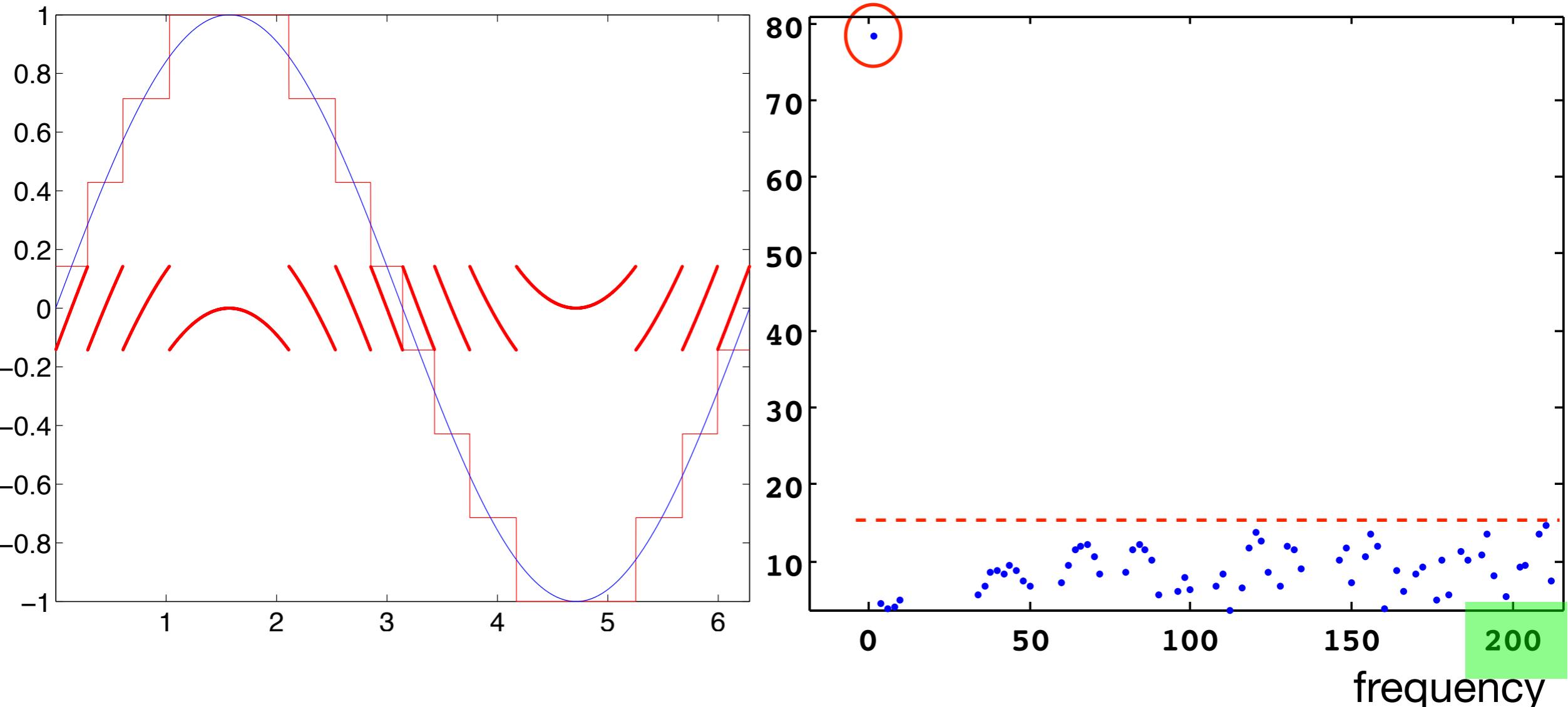
What?

- Improve SNDR beyond $6.02 N + 1.76$ dB

How?

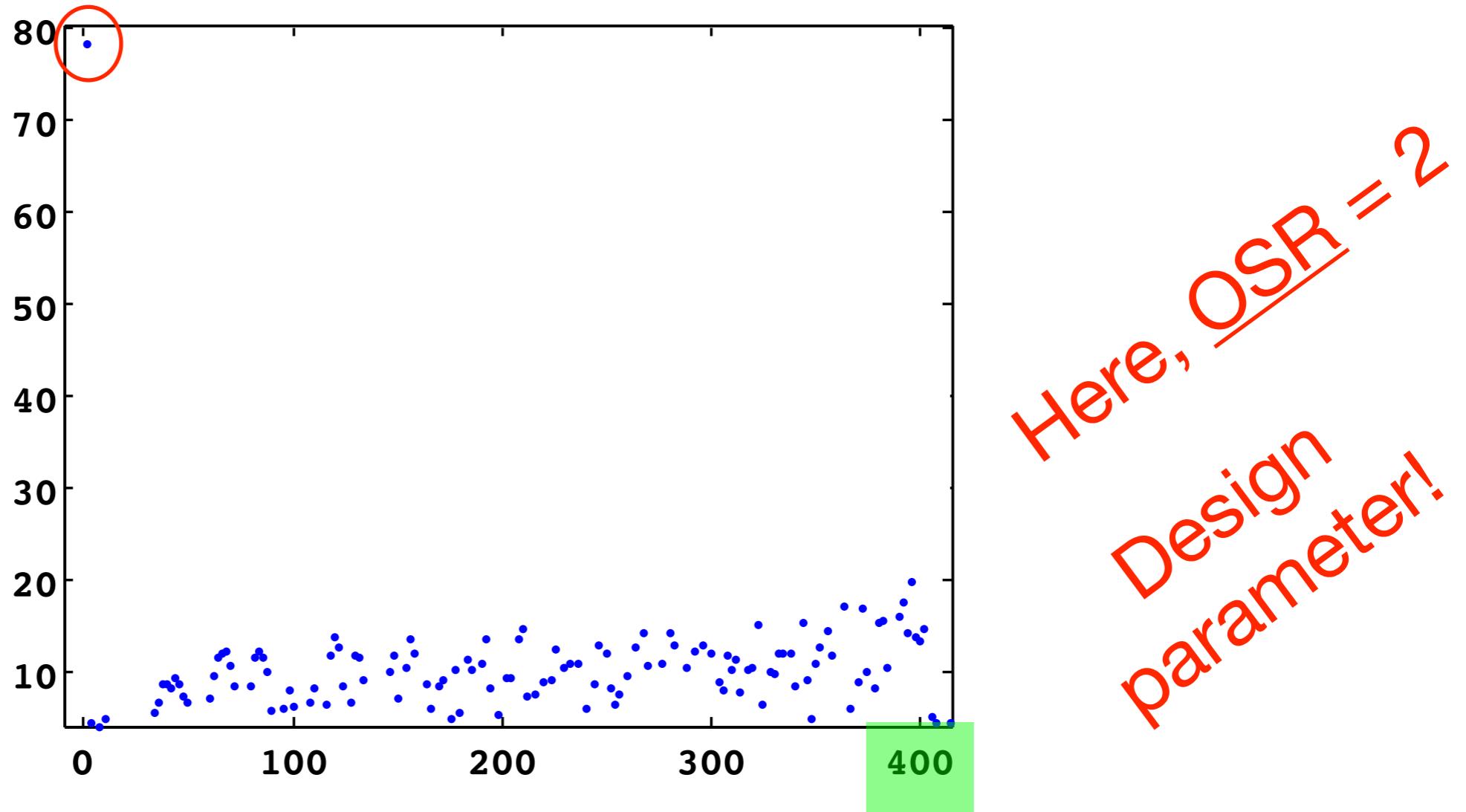
- Force errors out of band-of-interest; filter

Quantization with Nyquist sampling



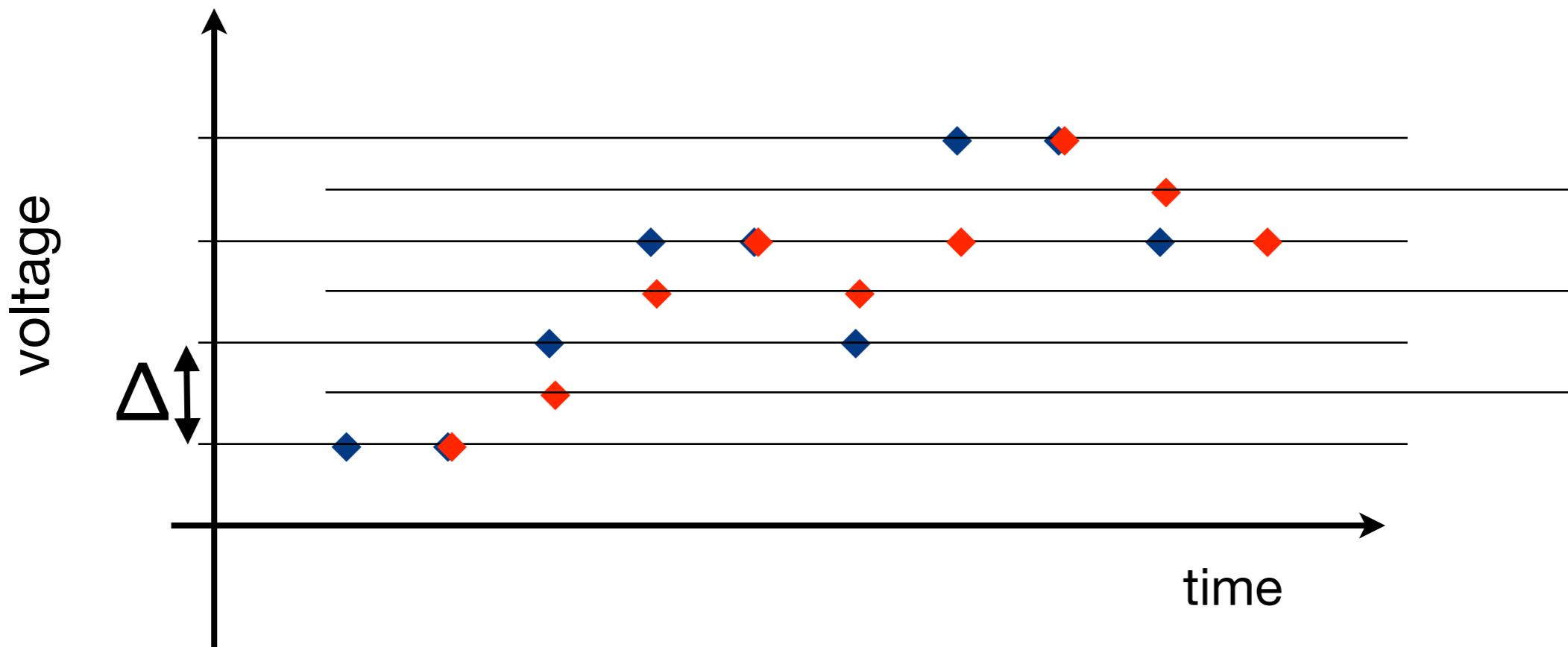
- $\text{SNR} = 6.02 N + 1.76 \text{ dB}$ (full-scale sinewave input)
- Noise power independent of sample rate

Oversample by factor 2



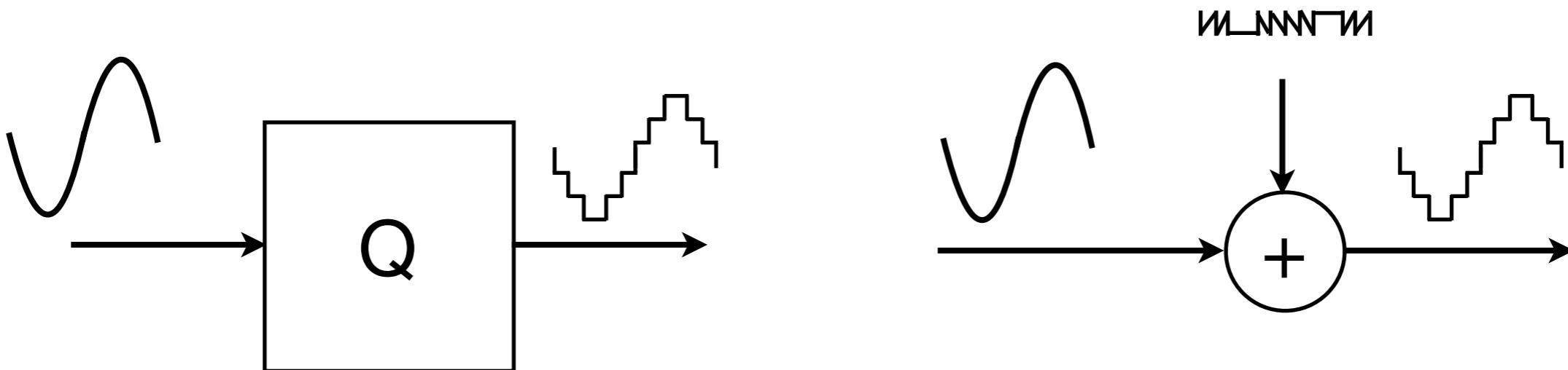
- Same total noise power ($\Delta^2/12$), but twice the frequency bins
- Post-sampling low-pass DT filter; removes half the noise power
- Then downsample by 2x by dropping every other sample
- Improve SNR by 3dB per factor 2 of oversampling! Yay!

Relation with resolution



- Intuitively:
 - Filter by $(1 + z^{-1}) / 2$ [simplest LP]
 - “New” “levels” introduced
 - Reduced Δ , so reduced noise!

Linear converter model

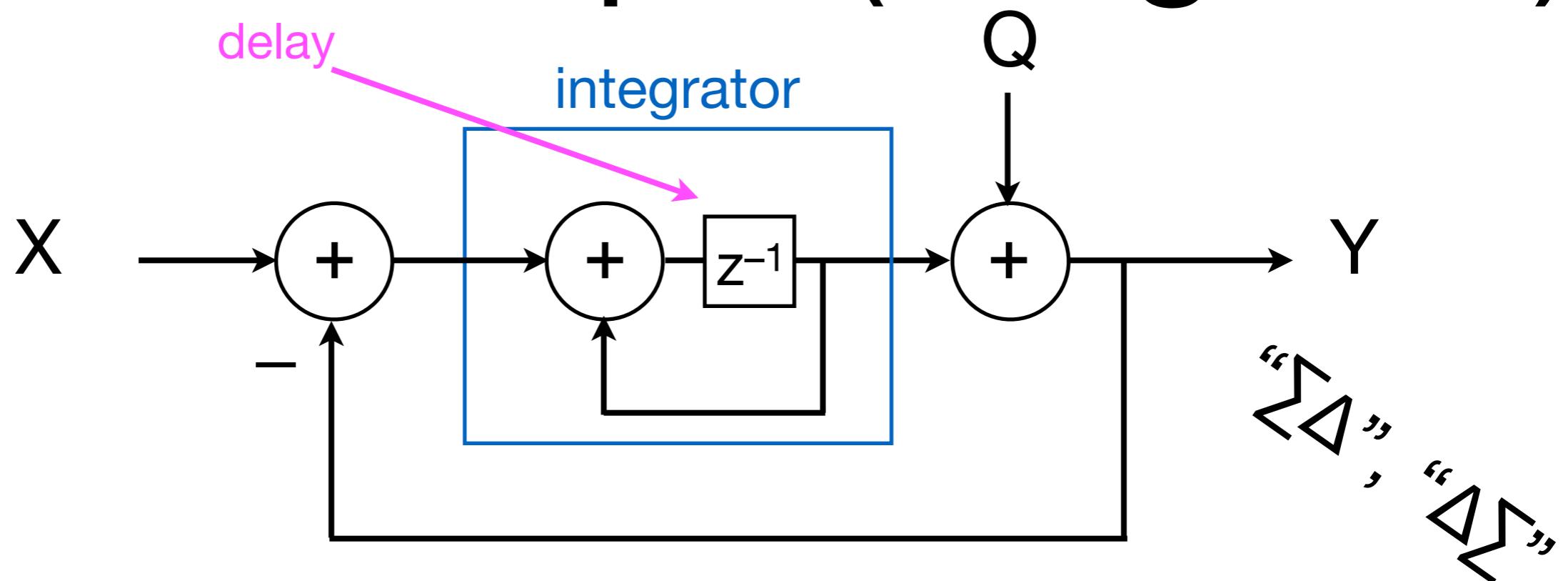


- Quantization is a non-linear process
- May be modelled as noise addition
 - Linear system!
- Assume added noise is white and uncorrelated with signal
 - OK if resolution is high

Noise shaping

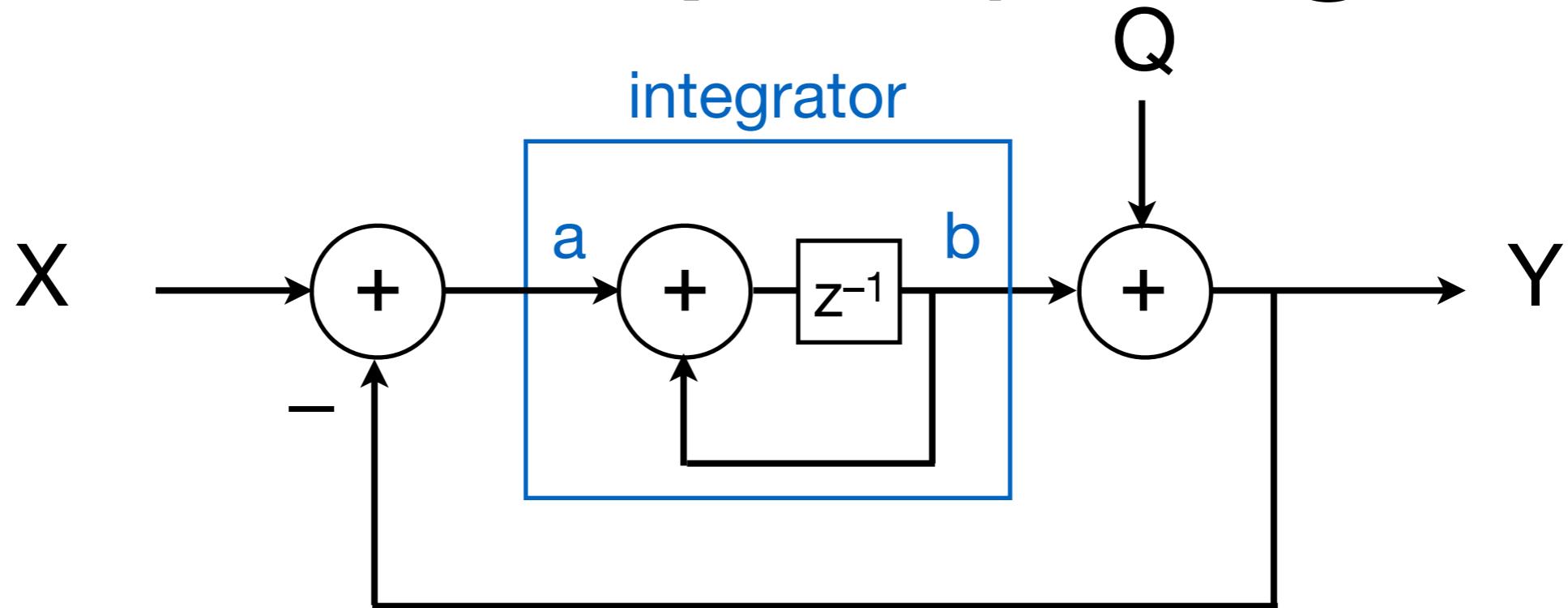
- Idea: use oversampling and push more of the noise out of signal band!
 - Feedback loop w/ linear filter
 - Use digital post-filter (DT!) to suppress out-of-band noise
 - More noise removed than with “straight” oversampling
 - SNR improves more than 3dB per x2 !
 - More effective for larger oversampling ratios

Simple example (integrator)



- Linear model: superposition, transfer functions
 - X to Y (Signal Transfer Function, STF)
 - Q to Y (Noise Transfer Function, NTF)
- Use z transform

Simple example (integrator)



integrator: $b = z^{-1} (a + b)$; $b (1 - z^{-1}) = a z^{-1}$

$$H(z) = b / a = z^{-1} / (1 - z^{-1})$$

$$Y = Q + (X - Y) z^{-1} / (1 - z^{-1})$$

$$Y = Q + X z^{-1} / (1 - z^{-1}) - Y z^{-1} / (1 - z^{-1})$$

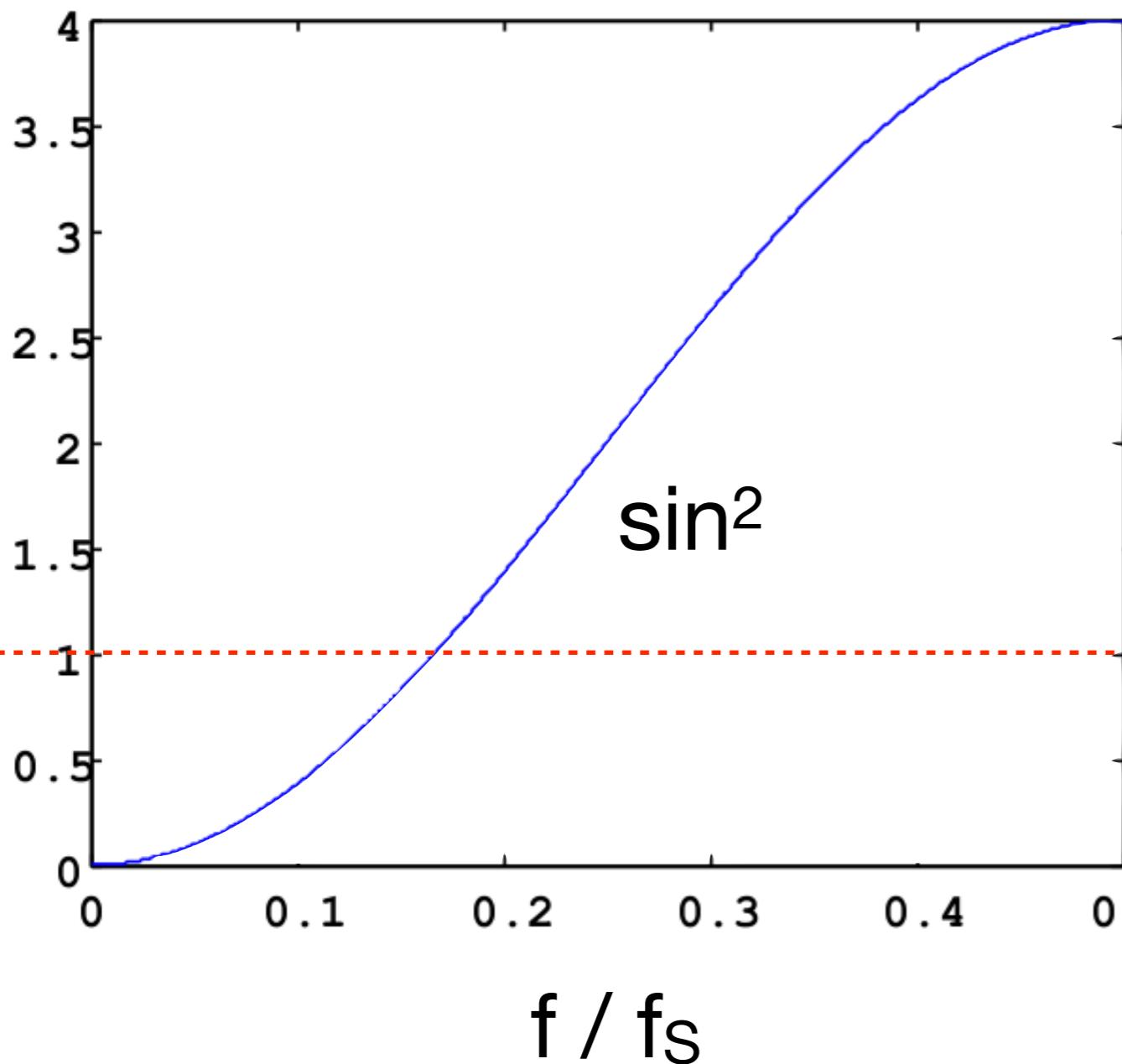
$$Y = (1 - z^{-1}) Q + z^{-1} X$$

STF: z^{-1}
delay

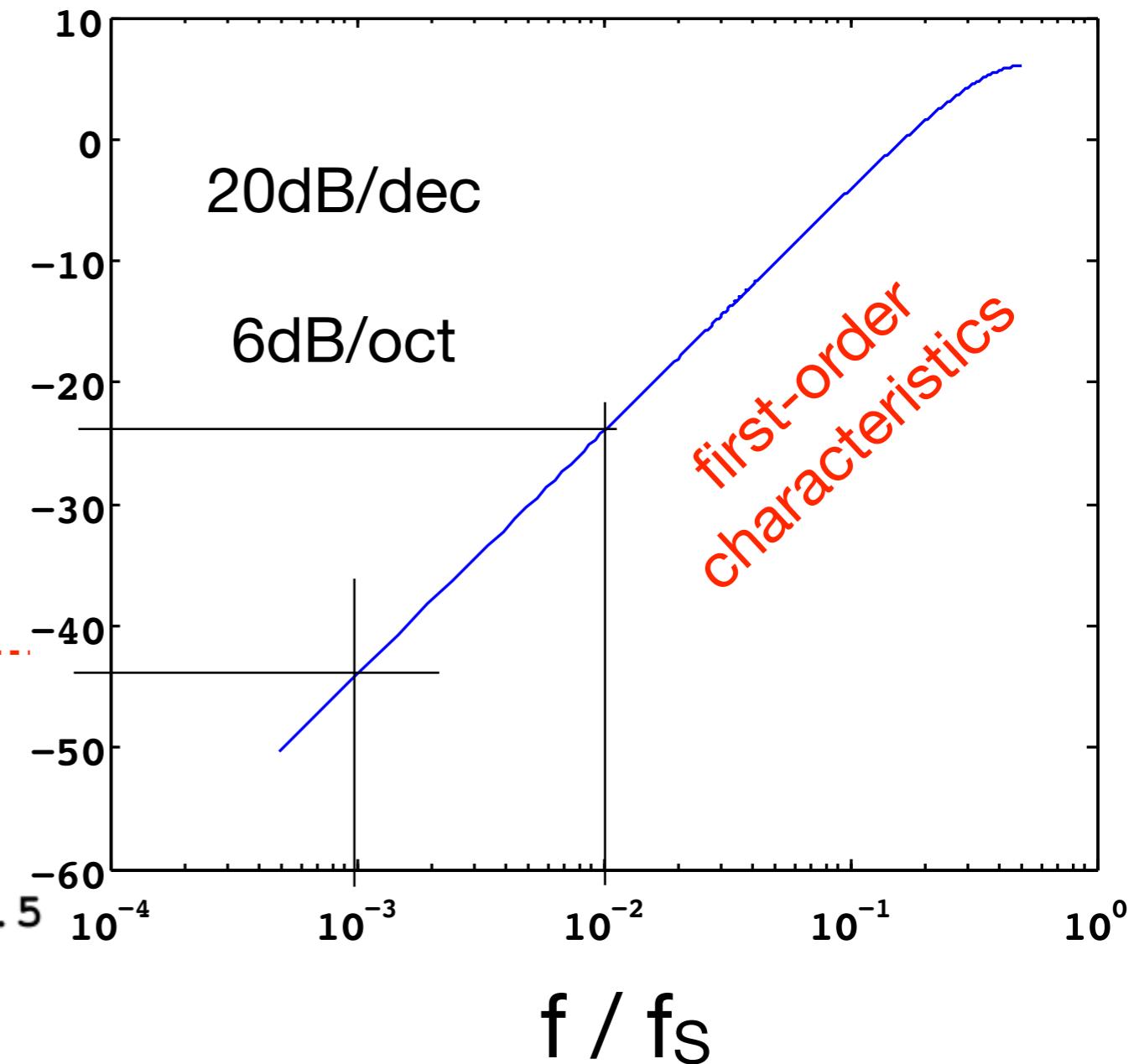
NTF: $(1 - z^{-1})$
highpass

NTF plots

mag(NTF)^2

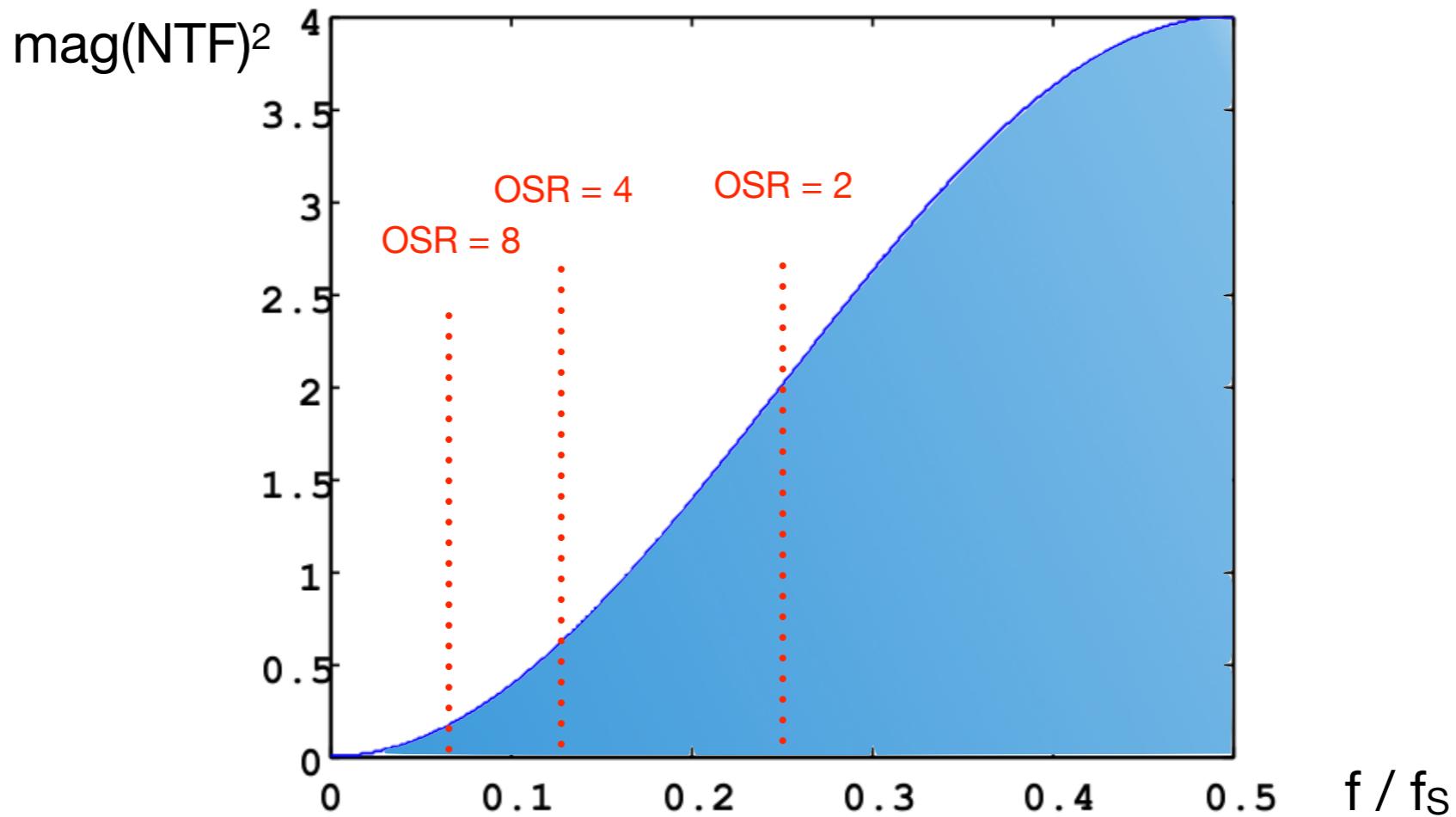


$\text{mag(NTF)}[\text{dB}]$



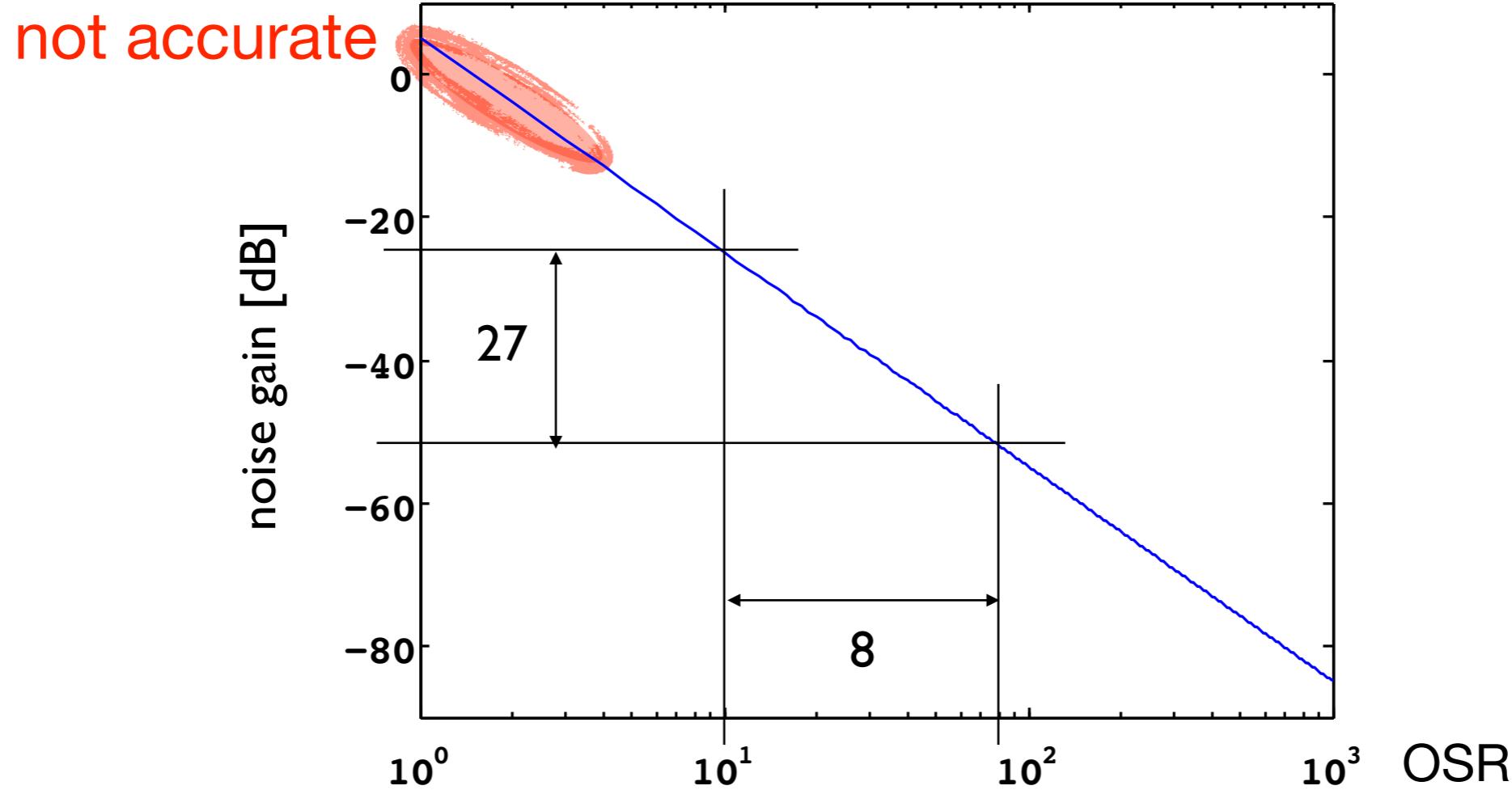
Total noise power is increased!

...but filtering saves us



- Small x : $\sin x \approx x$; $\sin^2 x \approx x^2$
- $\int x^2 dx \sim x^3$; remaining noise $\sim \text{OSR}^{-3}$

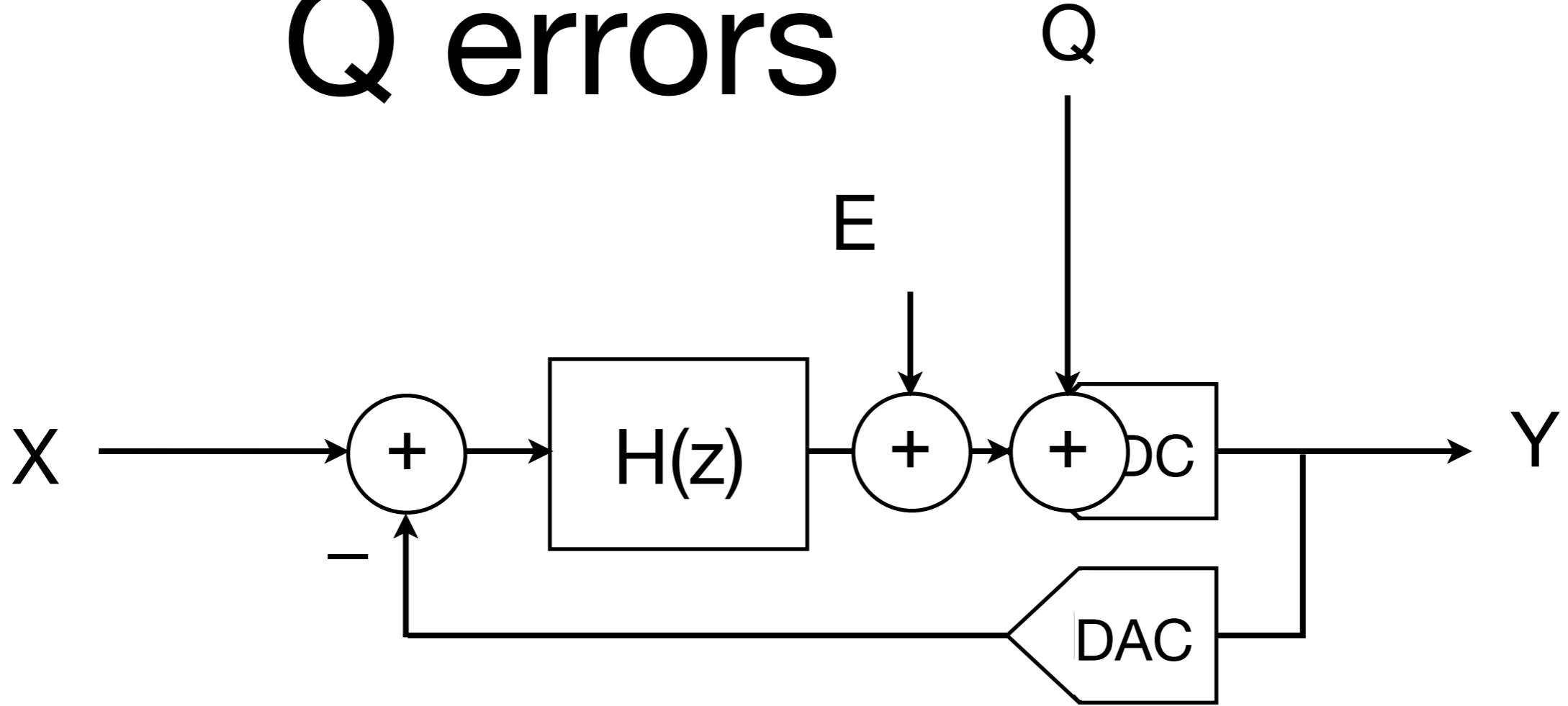
SNR vs oversampling ratio?



- Assume OSR is M (reasonably large)
- Then part of noise which falls in passband is $(\pi^2 / 3) M^{-3}$
- **9 dB** SNR improvement for each doubling of OSR

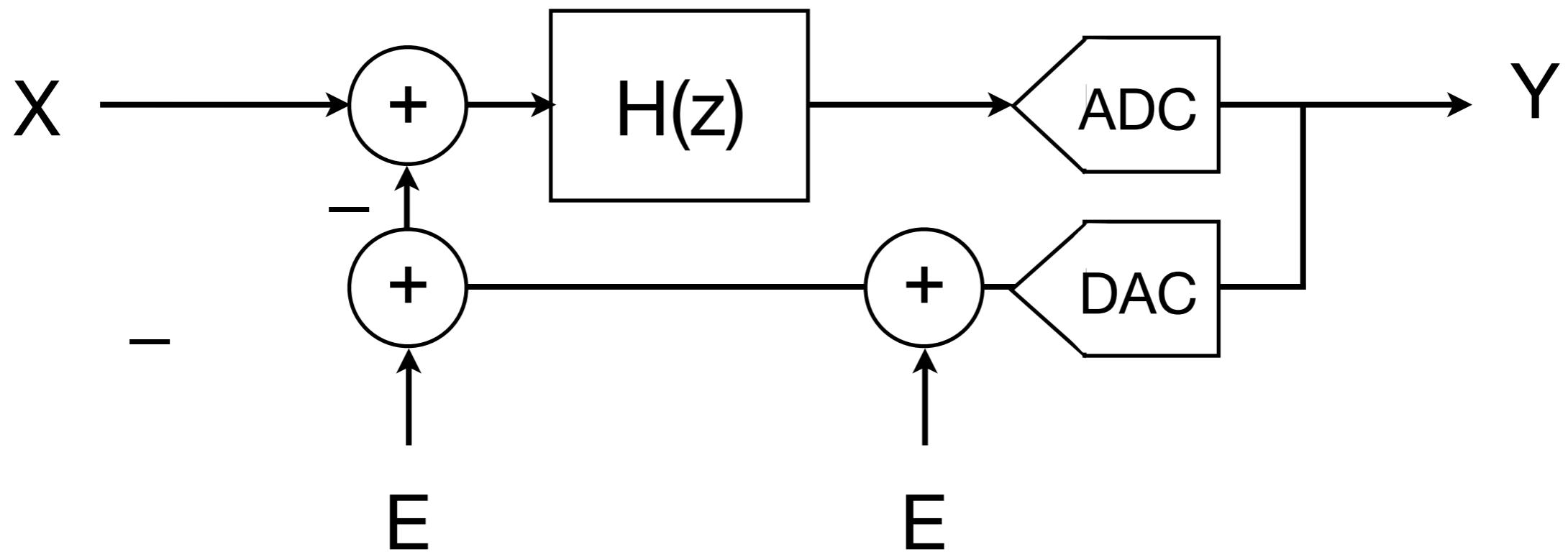
3dB w/o feedback

Q errors



- Additional quantizer errors (INL, DNL) indistinguishable from “ideal” quantization noise
 - Will be shaped out of band of interest
- Low-precision quantizer usable!

DAC errors



- DAC errors indistinguishable from input
 - DAC precision critical!

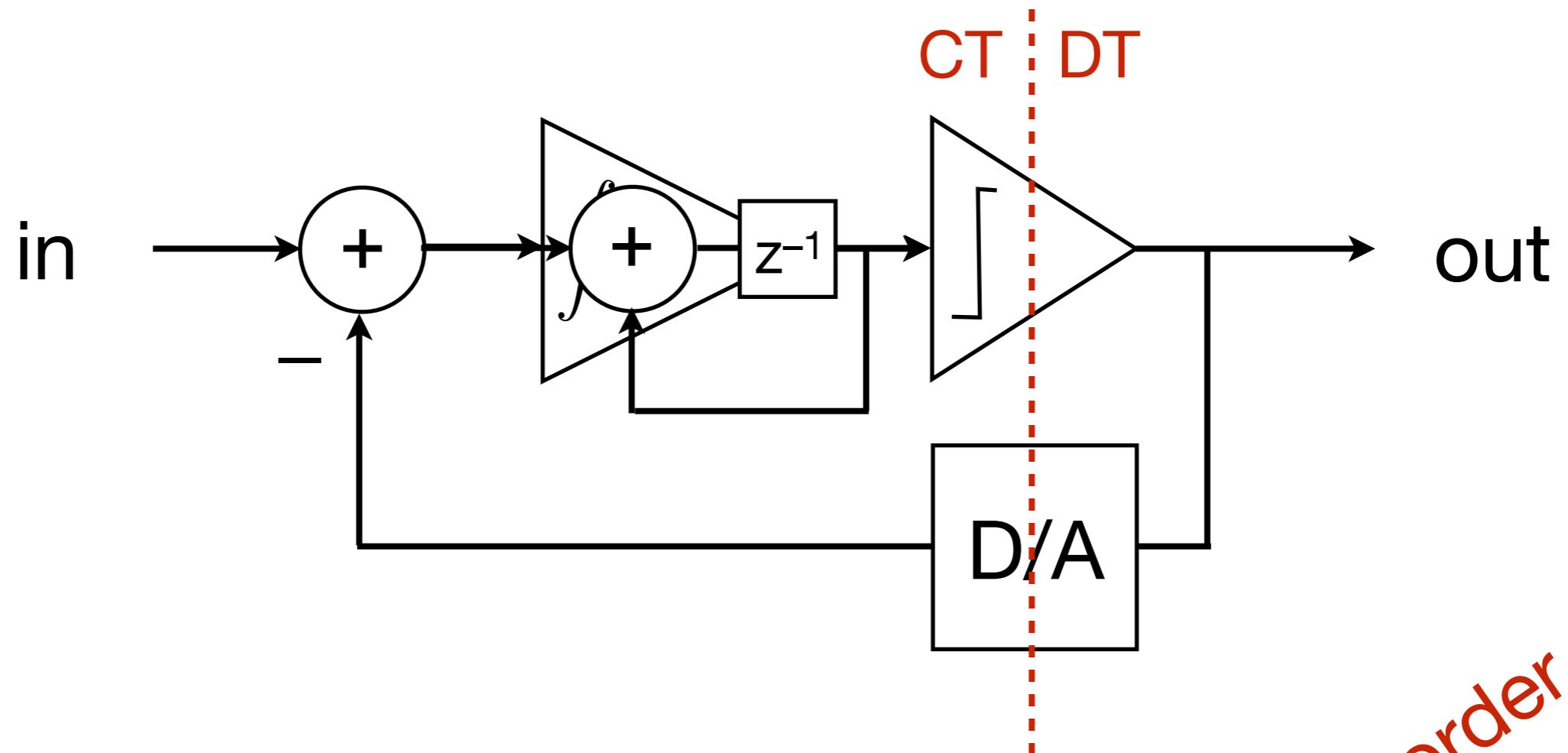
$\Sigma\Delta$ features

- + Possible to improve SNR beyond quantizer capabilities
 - Get away with lower-precision quantizer for given SNR
 - Easy to implement in standard CMOS
- Low signal bandwidth
- High-speed circuits needed
- Higher latency due to feedback loop
- ± No direct relation between input and output

Extreme $\sum\Delta$: 1-bit quantizer

- Logical extreme 😊
- No DAC, ADC nonlinearity to worry about
- Needs large OSR for useful performance
 - “Base” SNR is less than 8dB!
- Some assumptions violated!
- Linear model not dependable

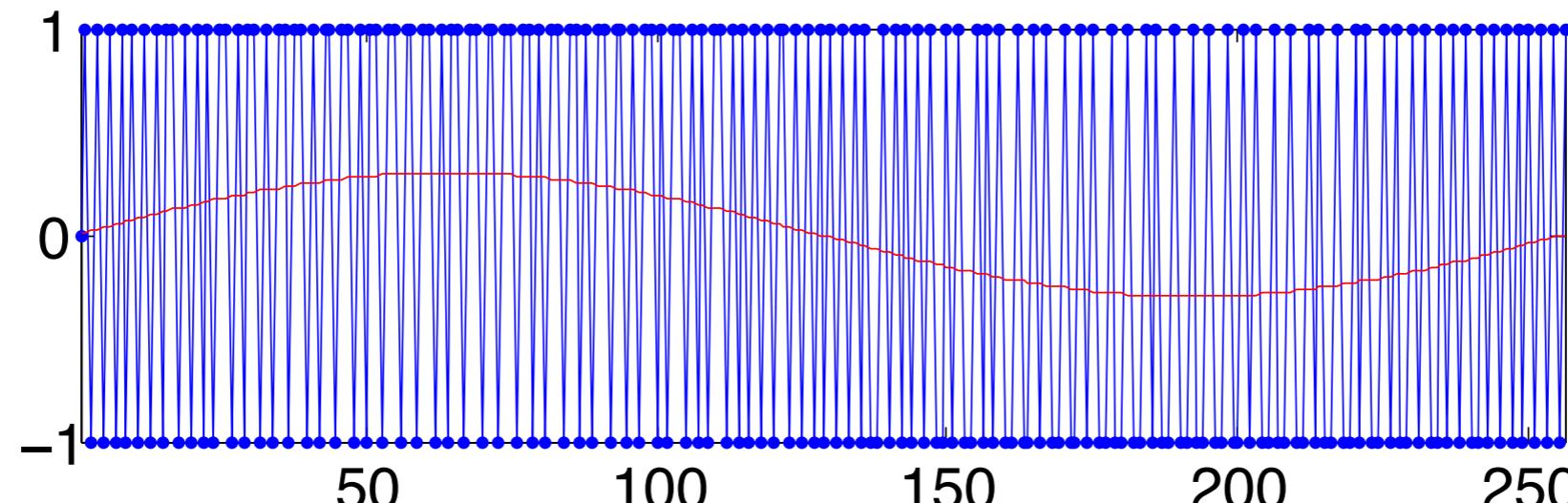
One-bit block diagram



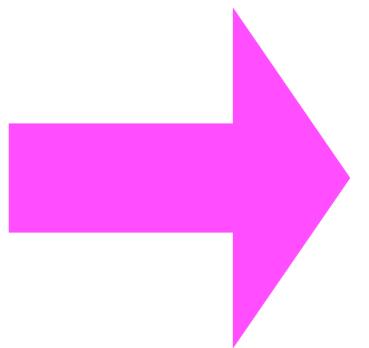
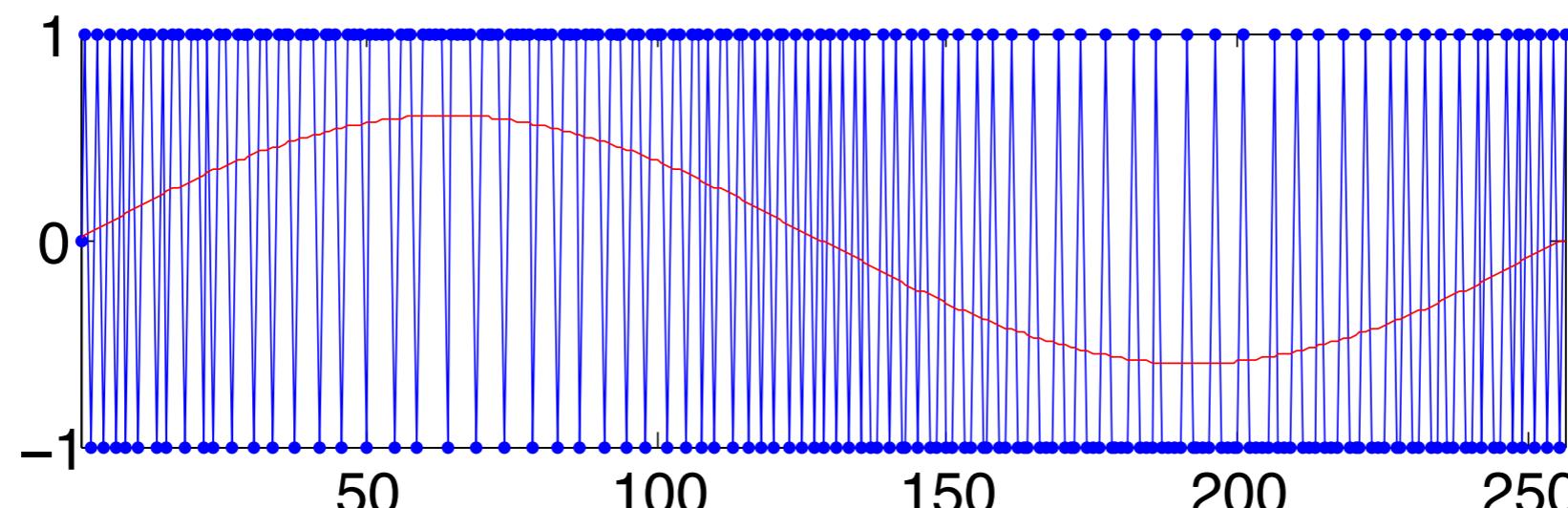
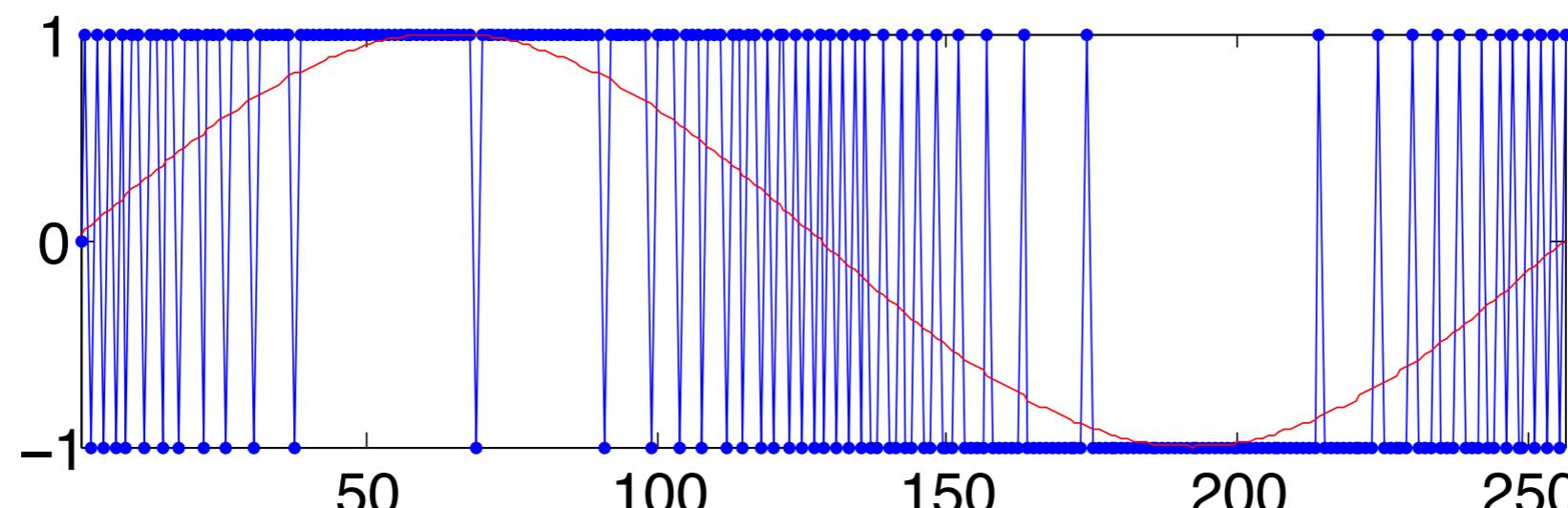
- Integrator, comparator, 1-bit D/A
- Error is integrated, compensated for
- Very simple hardware!

CT/DT border
chosen per
application

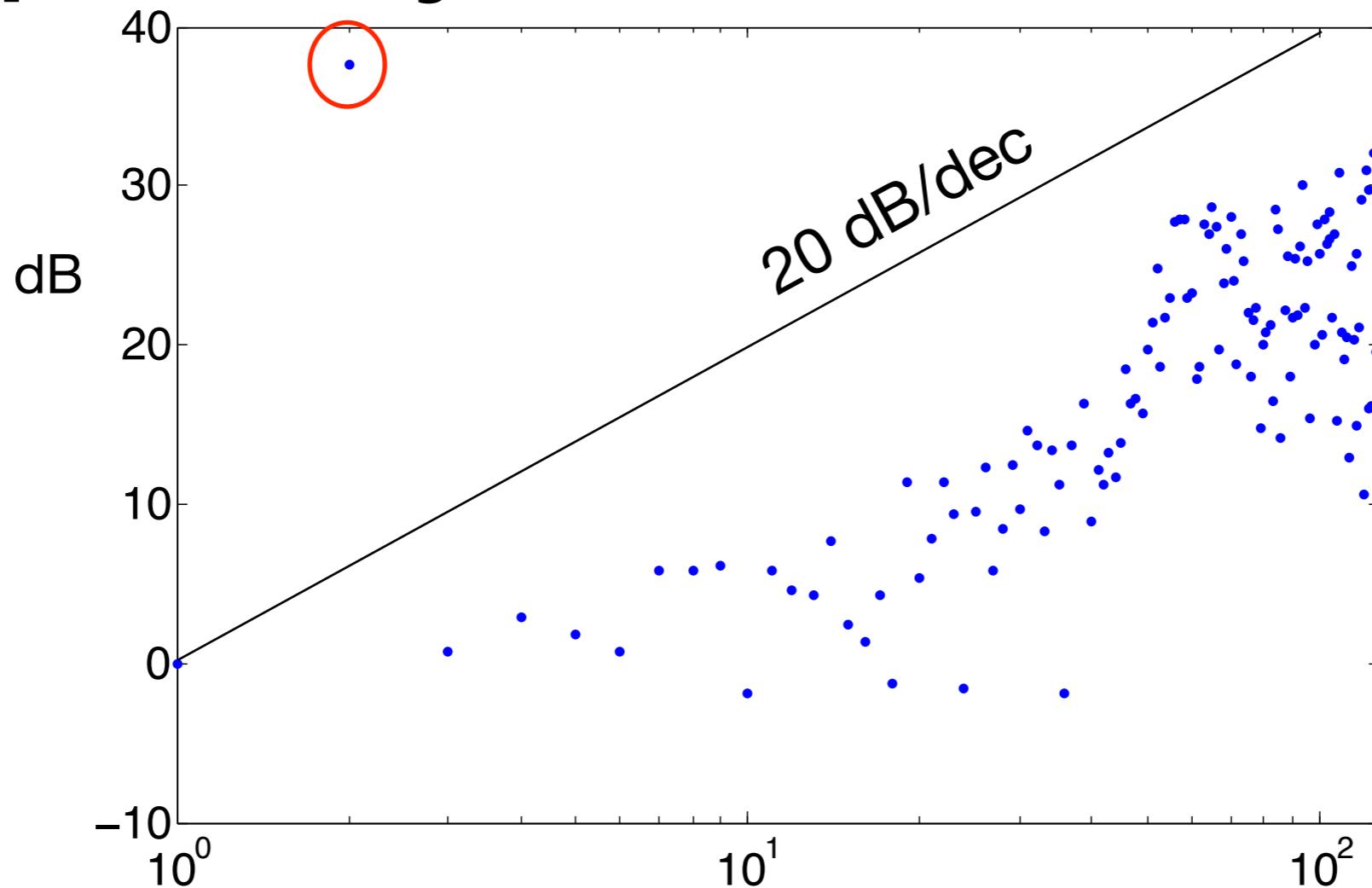
Time-domain behavior



Simulated
behavior

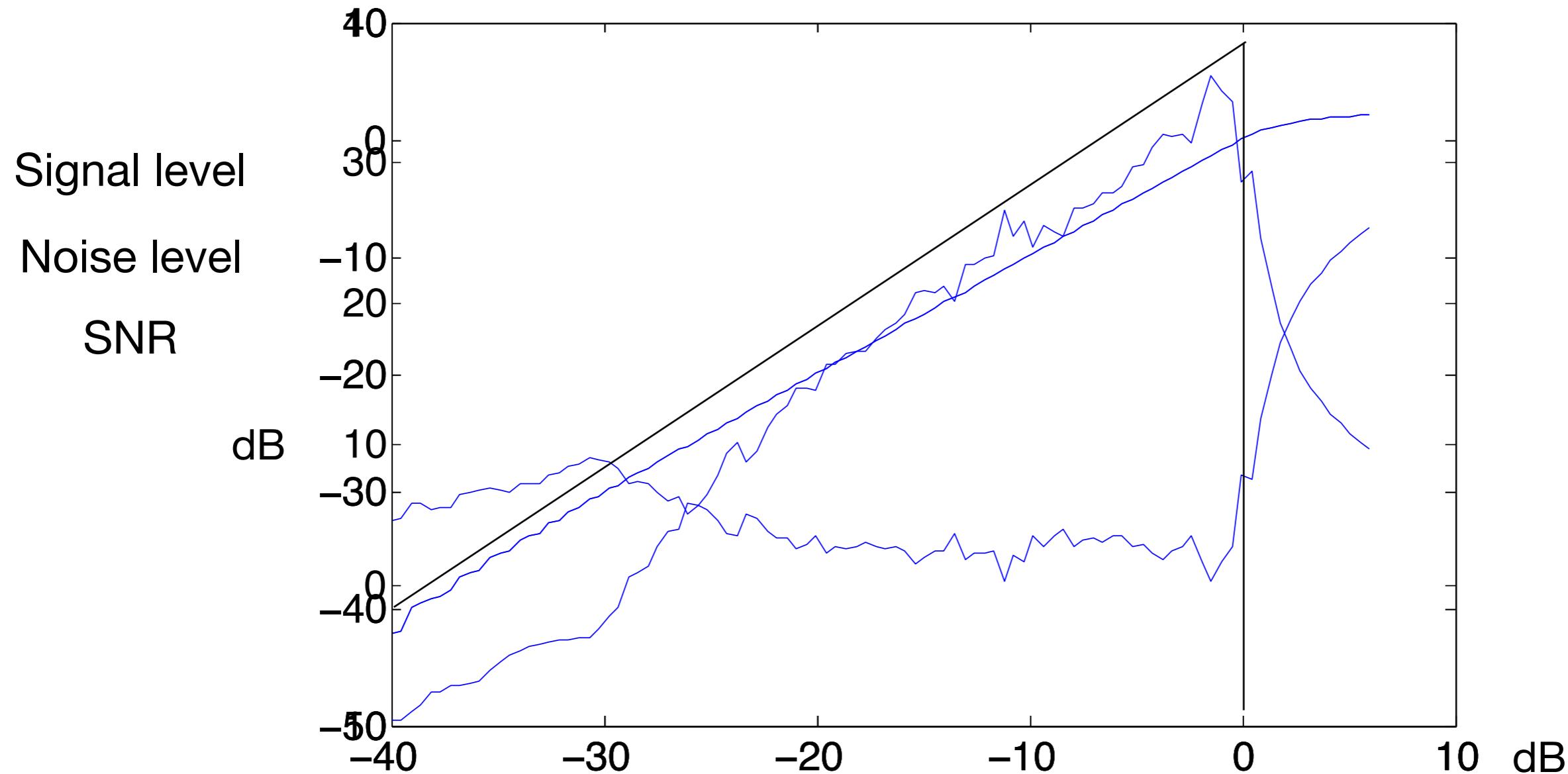


Frequency-domain behavior



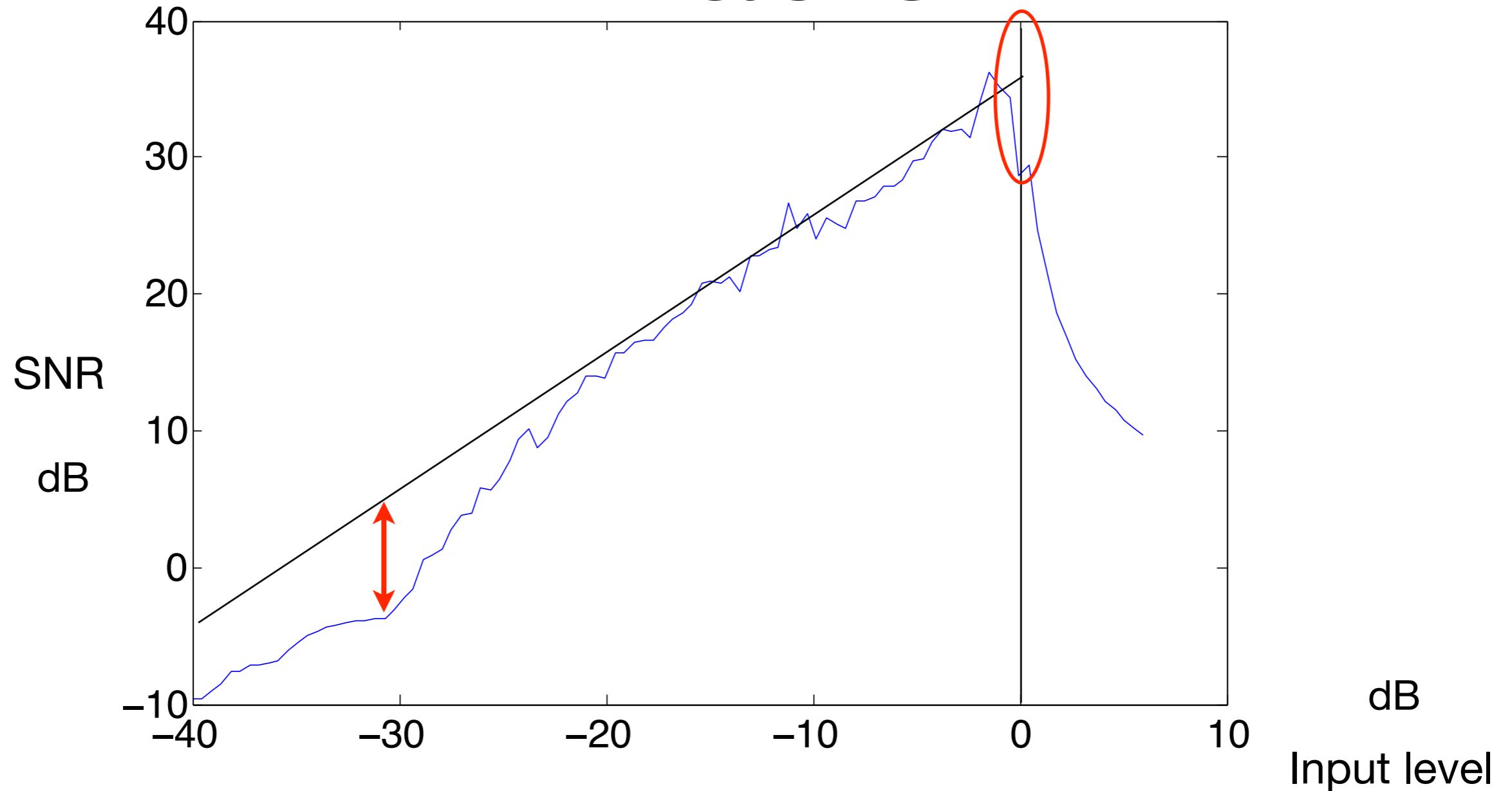
- Obvious high-pass noise character!
 - Approximates first-order characteristics

S, N, SNR vs input level



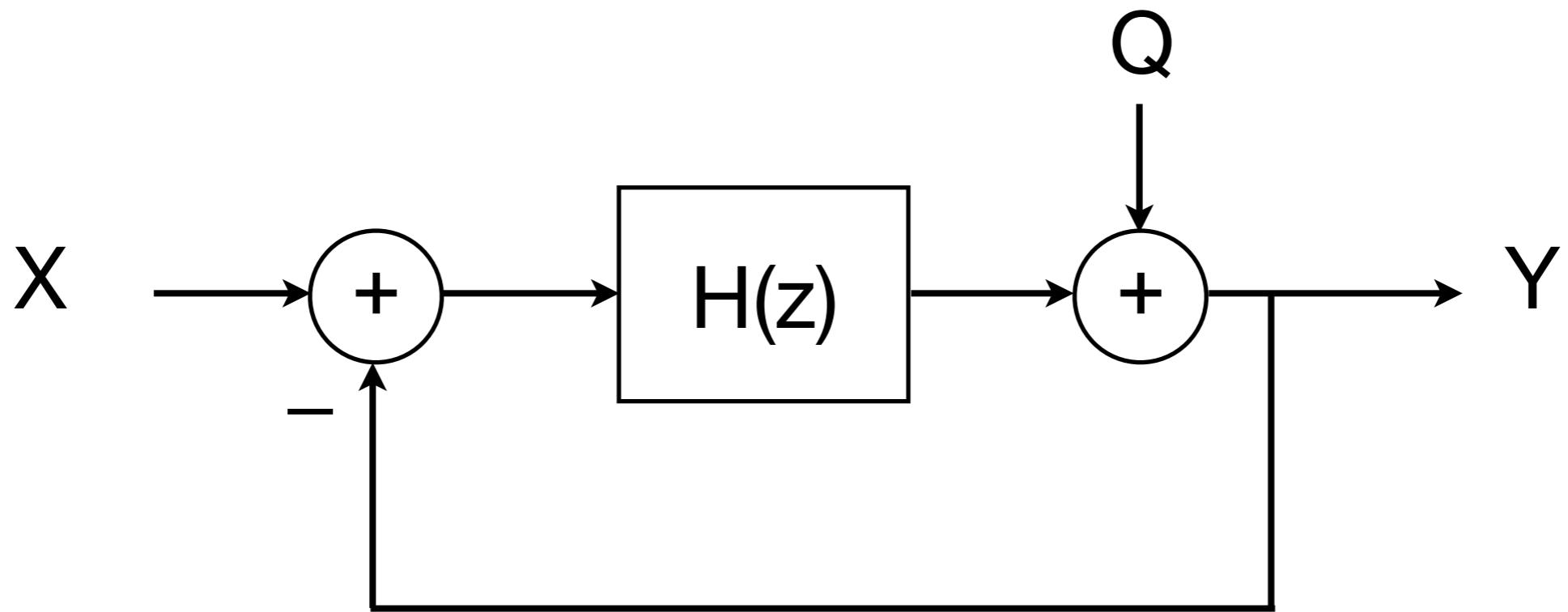
- Here, OSR = 16 = 2^4
 - Theoretically $6 + 2 - 5 + 4 \cdot 9 \text{ dB} = 39 \text{ dB}$
 - Worse in practice

Artifacts



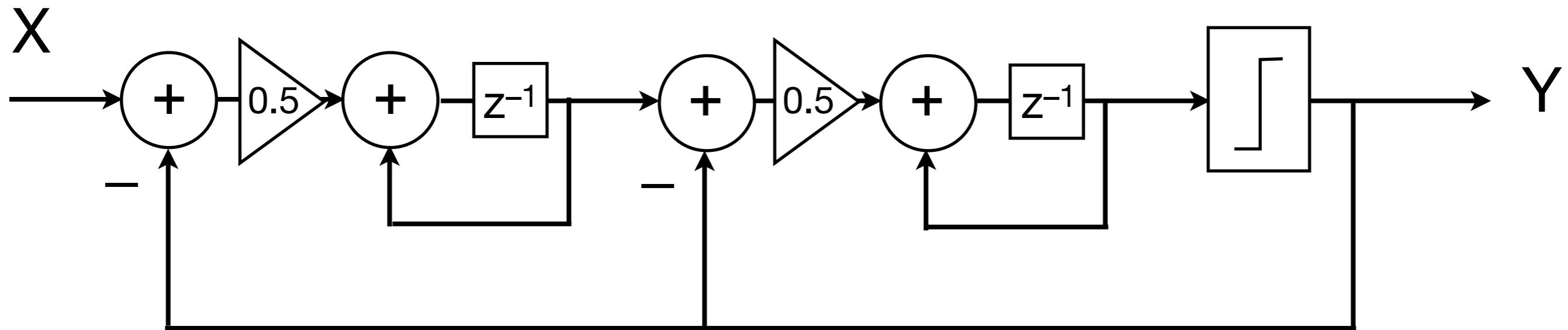
- SNR starts falling before input reaches full scale
- Extra noise at low input levels
 - Limit-cycle “tones” (as will be seen in lab)

Higher loop orders



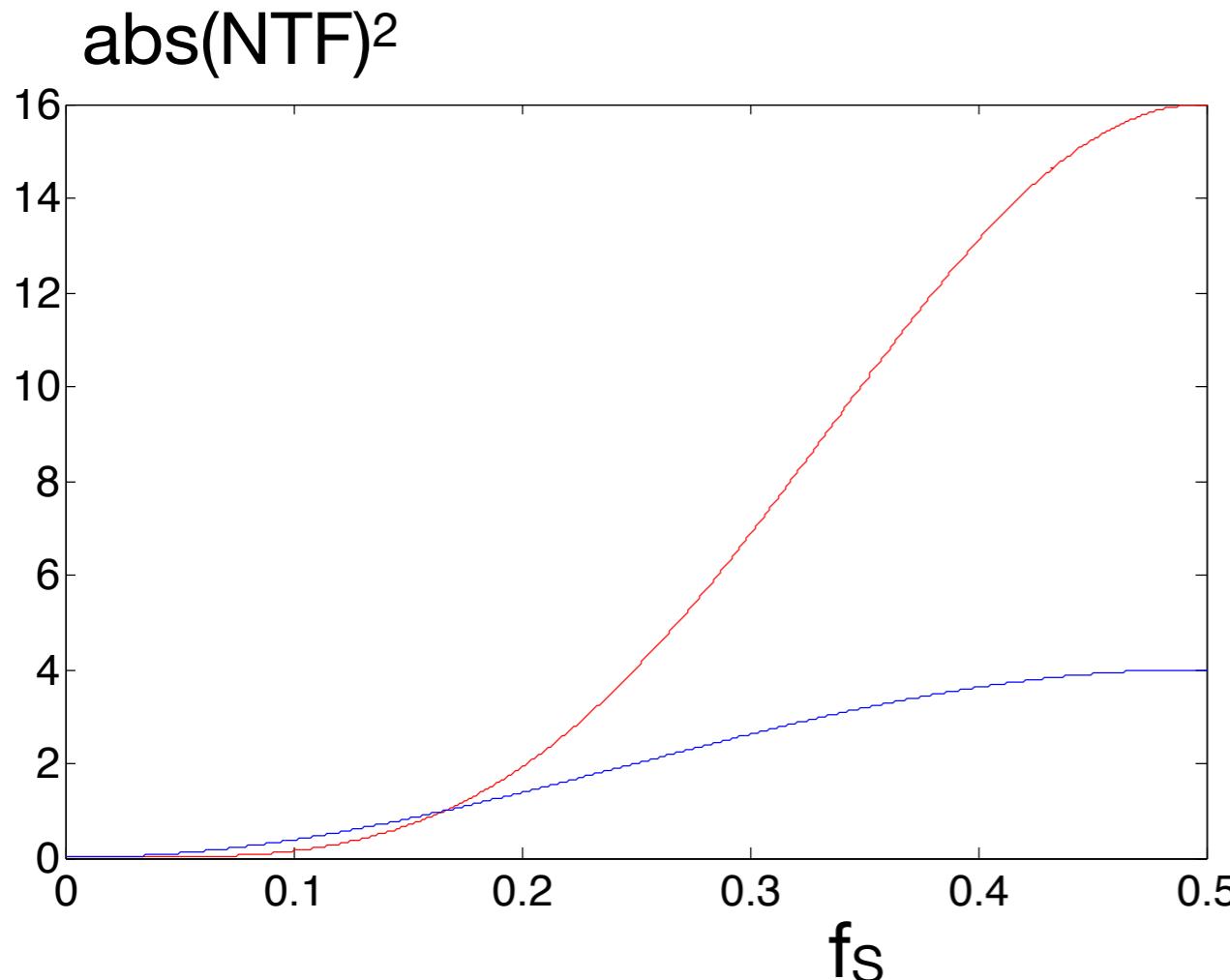
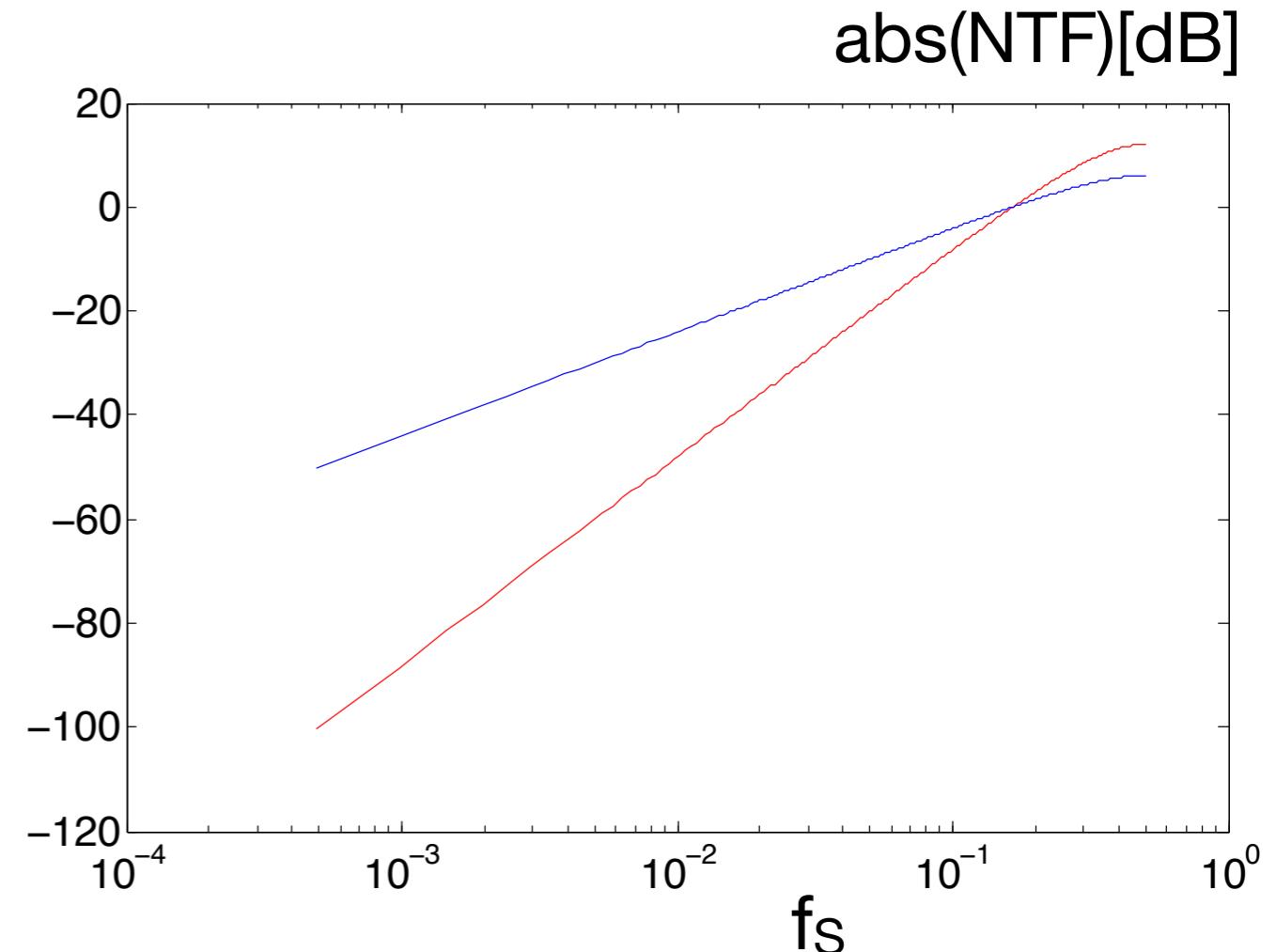
- Integrator = first order $H(z)$
- Possible to use higher-order $H(z)$
 - Push out more of the noise!

2nd-order $\Sigma\Delta$ loop



- $Y = X \cdot z^{-2} + Q (1 - z^{-1})^2$
- Note squares!
- Simple loop structure; many alternatives exist

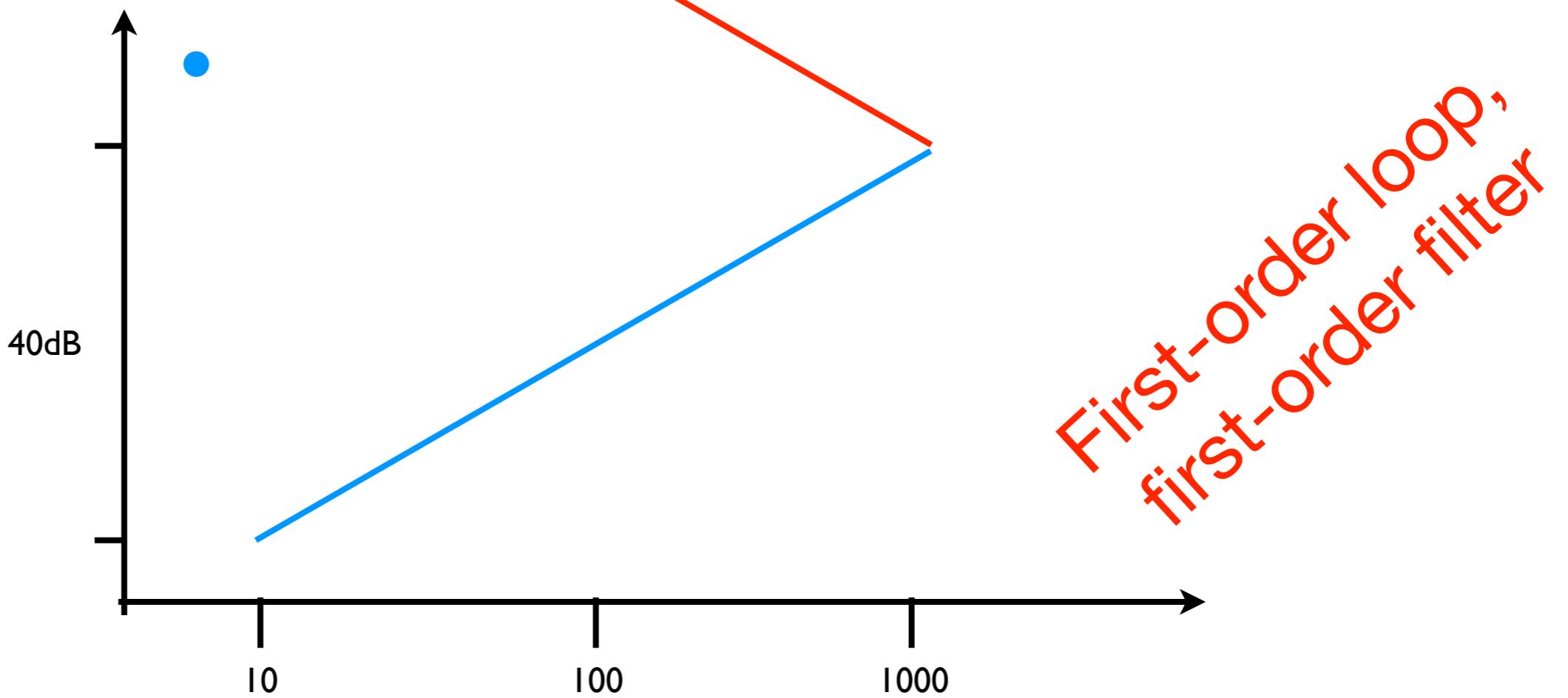
Ideal noise shaping



- Better suppression of in-band noise, steeper rise
- Higher total noise gain than for 1st order
- 15dB SNR improvement per doubling of OSR

Higher orders possible!

Digital-filter steepness?



- **Noise** rises by 20 dB / decade per loop order
- **Filter** must suppress noise at least as steeply!
 - \geq 1st order filter for 1st order loop, etc

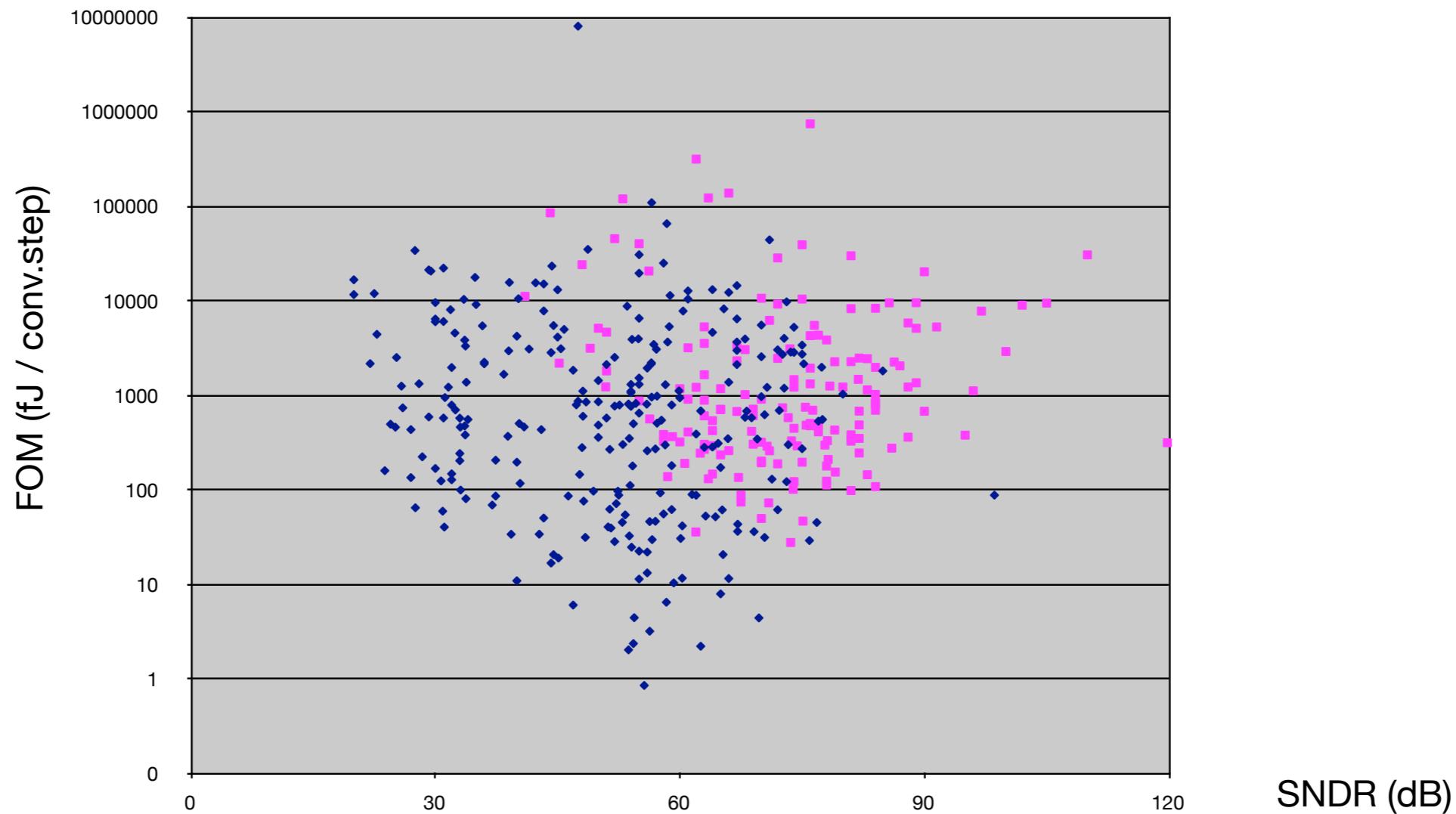
Sample rate reduction

- After low-pass filtering, typically reduce sample rate to Nyquist rate
 - For OSR = N, drop N-1 out of N samples
 - ... or rather: don't even compute them in filter ...
 - Word length increase in filter
 - Averaging!
 - Longer words needed to support SNR

$\Sigma\Delta$ design space

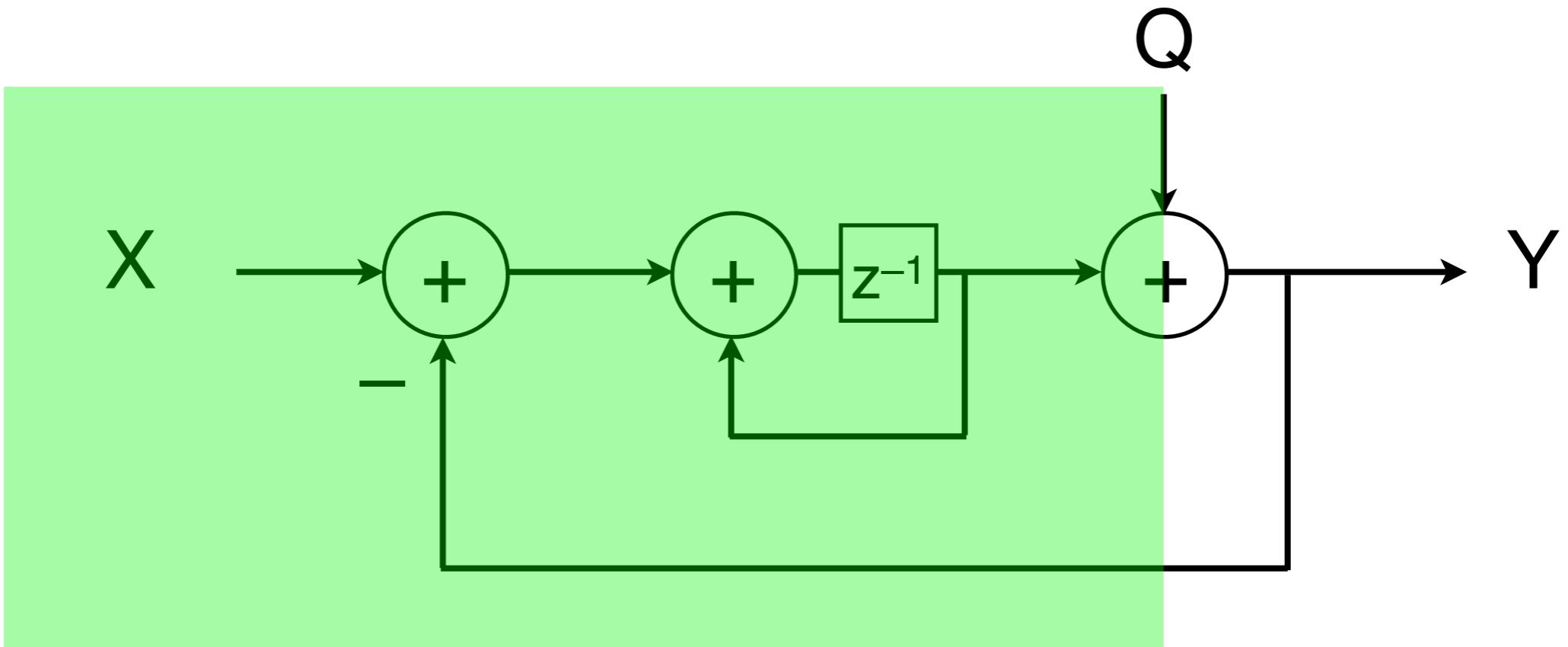
- Three ways to increase SNR:
 - Higher “core quantizer” resolution
 - Higher OSR
 - Better loop filter (higher order, better pole/zero placement)
- Stability issues for filter orders > 2
 - Possible to manage

When useful?



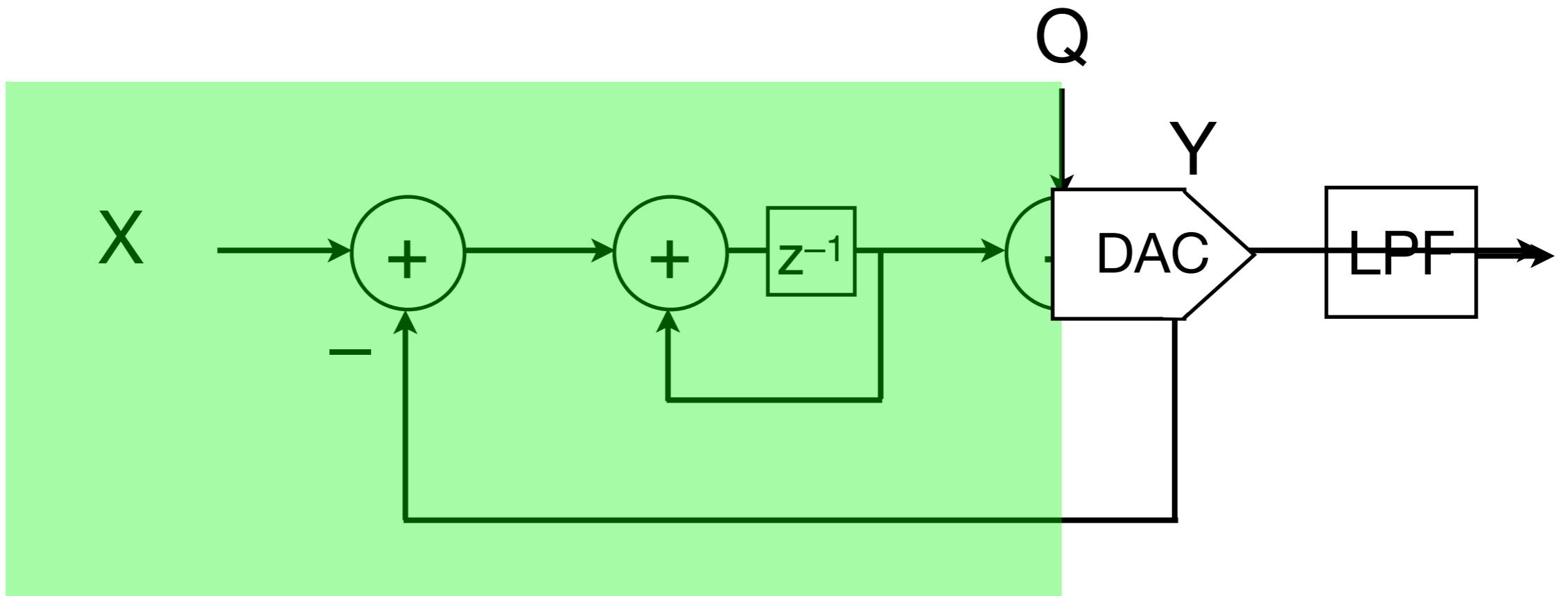
- Magenta dots for oversampled ADCs
 - High SNDRs, not the very best FoMs
 - ... and obviously not the highest signal bandwidths...

$\Sigma\Delta$ DAC



- In ADC, green parts analog
- What if digital (high-resolution) instead?
 - Loop still works!
 - Full theory still applicable!

$\Sigma\Delta$ DAC



- Pre-processing for lower-precision DAC
 - X higher resolution than Y
 - Y at higher sample rate
- Quantization now corresponds to rounding / truncation
- Y may be a 1-bit signal (much upsampling needed)

Summary

- Noise shaping + filtering enables higher SNR than quantizer alone could give
 - High-pass noise filter not the only option!
 - Simpler analog at cost of higher sample rate
 - Feedback loop neutralizes (most...) errors
 - DT lowpass filter (digital) for downsampling / reconstruction
 - Also useful as pre-processing for low-resolution DACs