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What?
• Improve SNDR beyond 6.02 N + 1.76 dB 

• Force errors out of band-of-interest; filter

How?
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Quantization with Nyquist sampling

• SNR = 6.02 N + 1.76 dB (full-scale sinewave input)


• Noise power independent of sample rate

1 2 3 4 5 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

frequency
0 50 100 150 200

10

20

30

40

50

60

70

80

 3



181217 LJS

Oversample by factor 2

• Same total noise power (∆2/12), but twice the frequency bins 

• Post-sampling low-pass DT filter; removes half the noise power

• Then downsample by 2x by dropping every other sample 

• Improve SNR by 3dB per factor 2 of oversampling!  Yay!
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Relation with resolution

• Intuitively: 


• Filter by (1 + z–1) / 2 [simplest LP]


• “New” “levels” introduced


• Reduced ∆, so reduced noise!
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Linear converter model

• Quantization is a non-linear process 

• May be modelled as noise addition

• Linear system!


• Assume added noise is white and 
uncorrelated with signal

• OK if resolution is high

Q +
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Noise shaping
• Idea: use oversampling and push more of the 

noise out of signal band!

• Feedback loop w/ linear filter


• Use digital post-filter (DT!) to suppress out-of-
band noise

• More noise removed than with “straight” 

oversampling

• SNR improves more than 3dB per x2 !

• More effective for larger oversampling ratios
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Simple example (integrator)

• Linear model: superposition, transfer functions


• X to Y (Signal Transfer Function, STF)


• Q to Y  (Noise Transfer Function, NTF)


• Use z transform 

+

Q
integrator

+
–

X Y+ z–1

delay

“∑∆”, “∆∑”
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Simple example (integrator)

integrator:  b = z–1 (a + b) ; b (1 – z–1) = a z–1

H(z) = b / a = z–1 / (1 – z–1)


Y = Q + (X – Y) z–1 / (1 – z–1)

Y = Q + X z–1 / (1 – z–1) – Y z–1 / (1 – z–1)

Y = (1 – z–1) Q + z–1 X 

+

Q
integrator

a b
+

–

X Y

highpass

+ z–1

STF:   z–1

NTF: (1 – z–1) 
delay
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NTF plots

f / fS

mag(NTF)2
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…but filtering saves us

• Small x: sin x ≈ x; sin2 x ≈ x2


• ∫ x2 dx ~ x3 ; remaining noise ~ OSR–3
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not accurate

SNR vs oversampling ratio?

• Assume OSR is M (reasonably large)

• Then part of noise which falls in passband is (π2 / 3) M–3


• 9 dB SNR improvement for each doubling of OSR  
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Q errors

• Additional quantizer errors (INL, DNL) 
indistinguishable from “ideal” quantization 
noise 


• Will be shaped out of band of interest 


• Low-precision quantizer usable!

+
–

X YH(z) ADC

DAC

+

Q

+

E
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DAC errors 

• DAC errors indistinguishable from input


• DAC precision critical! 

+
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X YH(z) ADC

DAC+
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∑∆ features
+ Possible to improve SNR beyond quantizer capabilities


• Get away with lower-precision quantizer for given SNR


• Easy to implement in standard CMOS


– Low signal bandwidth


– High-speed circuits needed


– Higher latency due to feedback loop


± No direct relation between input and output
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Extreme ∑∆: 1-bit quantizer
• Logical extreme 😀 


• No DAC, ADC nonlinearity to worry about


• Needs large OSR for useful performance


• “Base” SNR is less than 8dB!


• Some assumptions violated! 


• Linear model not dependable 
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One-bit block diagram

• Integrator, comparator, 1-bit D/A


• Error is integrated, compensated for 


• Very simple hardware!
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–

∫
ooo

D/A
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Time-domain behavior
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Frequency-domain behavior

• Obvious high-pass noise character!


• Approximates first-order characteristics

100 101 102
−10

0

10

20

30

40

dB

 19

20 dB/dec



181217 LJS

S, N, SNR vs input level

• Here, OSR = 16 = 24


• Theoretically 6 + 2 – 5 + 4 · 9 dB  = 39 dB

• Worse in practice
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Artifacts

• SNR starts falling before input reaches full scale 

• Extra noise at low input levels 


• Limit-cycle “tones” (as will be seen in lab)
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Higher loop orders

• Integrator = first order H(z) 


• Possible to use higher-order H(z) 


• Push out more of the noise! 

+

Q

+
–

X YH(z)
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• Y = X· z–2 + Q (1–z–1)2


• Note squares!


• Simple loop structure; many alternatives exist

2nd-order ∑∆ loop

+
–

Y++
–

X
+ z–10.5 0.5
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• Better suppression of in-band noise, steeper rise 


• Higher total noise gain than for 1st order


• 15dB SNR improvement per doubling of OSR
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Digital-filter steepness?

• Noise rises by 20 dB / decade per loop order

• Filter must suppress noise at least as steeply!

• ≥1st order filter for 1st order loop, etc
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Sample rate reduction
• After low-pass filtering, typically reduce 

sample rate to Nyquist rate


• For OSR = N, drop N–1 out of N samples 


• … or rather: don’t even compute them in 
filter …


• Word length increase in filter 


• Averaging!


• Longer words needed to support SNR 
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∑∆ design space
• Three ways to increase SNR: 


• Higher “core quantizer" resolution 


• Higher OSR


• Better loop filter (higher order, better 
pole/zero placement)


• Stability issues for filter orders > 2 


• Possible to manage 
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When useful?

• Magenta dots for oversampled ADCs 


• High SNDRs, not the very best FoMs


• … and obviously not the highest signal bandwidths…
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∑∆ DAC 

• In ADC, green parts analog 


• What if digital (high-resolution) instead? 


• Loop still works!


• Full theory still applicable!  

+

Q

+
–

X Y+ z–1
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∑∆ DAC 

+

Q

+
–

X
Y

+ z–1

• Pre-processing for lower-precision DAC

• X higher resolution than Y

• Y at higher sample rate


• Quantization now corresponds to rounding / truncation

• Y may be a 1-bit signal (much upsampling needed)

 30
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Summary
• Noise shaping + filtering enables higher SNR 

than quantizer alone could give


• High-pass noise filter not the only option!


• Simpler analog at cost of higher sample rate 


• Feedback loop neutralizes (most…) errors 


• DT lowpass filter (digital) for downsampling / 
reconstruction 


• Also useful as pre-processing for low-resolution 
DACs 
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