Wire delay optimization with wire effort (extra section until chapter 5 is updated)

The Elmore delay model is a useful tool not only for estimating wire delays, but also for
optimizing the driving capability of the driver and for optimizing the wire length with respect
to the technology at hand. If we return to the situation in Fig. 6.3 where an inverter with an
effective resistance R.; and an input capacitance Cg is driving another identical inverter
across a wire with resistance Ry and capacitance Cy, and apply the Elmore delay model, we

obtain the following dominant time constant
T, =R, (C,+C,/2)+(R, +R, )(C, +Cy 12). (6.10)
This dominating Elmore time constant 7 can be rewritten on the following form
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where the first and last terms can be identified as the RC constants of the technology and the
wire, respectively. The wire delay can now be written
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where the relative delay, after introduction of the wire effort
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a concept similar to that of the logical effort, can be rewritten on the following simple form

d= pmv+1+R—wE+II§—W+%. (6.14)
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Having found this expression for the relative wire delay, we next use it to determine the
optimal inverter driving capability that yields the smallest delay. By taking the derivative with
respect to R.;, we find that the optimal driving capability minimizing the wire delay is
obtained when the two terms involving the effective resistance of the inverter, i.e. when
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The relative wire delay using an optimized driver inverter now becomes

d=p, +1+2 wE+%. (6.16)

Repeater insertion

Having learnt how to match the effective resistance of the driver to the resistance of the wire
for minimum wire delay, the time has come to discuss what would be the optimal length L,
of a wire. Since both the wire resistance and the wire capacitance are proportional to the wire
length L,



R, =rL, and C;, =cL, (6.17)

where r and ¢ are the wire resistance and capacitance per unit length, respectively, the RC
product of a wire is proportional to the wire length L squared,

R,C, =rcl’. (6.18)

Thus, a 4 mm wire has an RC product sixteen times that of a 1 mm wire. Therefore, the wire
RyCy product would be negligible for short wires (L<<L,,), but dominating the delay for
long wires (L>>L,,). Wires should therefore be kept short. One way to keep wires short, if
the blocks to be connected cannot be placed close to each other on the chip, is to split long

wires into wire segments driven by repeaters identical to the driver inverter, shown in Fig. 6.3.
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Fig. 6.4. Splitting wires into segments and inserting repeaters.

For finding the optimal number of segments m, the normalized wire delay is rewritten to
account for the delay of the m wire segments
Ry Ry, We

d=m|2+——w, + + , (6.19)
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where we, for simplicity, we have assumed p;,,=1. In this equation, the two middle terms that
we used to determine the optimal driving capability of the driver inverter have no dependence
on the number of segments. By taking the derivatives with respect to m, we find that
minimum delay is again obtained when the two terms depending on m are equal. This
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function has a minimum for

Again, we find that the optimal number of segments depends on the square root of the wire
effort. Hence, minimum delay is obtained when the wire is divided into the optimal number
of segments driven by optimized repeaters. The minimum relative delay is given by

d =dw, . 6.21)

The optimal wire length that we set out to find is then given by the wire length L divided by

the optimal number of wire segments, m1,,,,

L =L ok (6.22)
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