
Mathematical and Computer Modelling 52 (2010) 191–199

Contents lists available at ScienceDirect

Mathematical and Computer Modelling

journal homepage: www.elsevier.com/locate/mcm

Formal proof of prefix adders
Feng Liu a,∗, Qingping Tan a, Gang Chen b
a National Lab of Parallel Distributed Processing, Hunan, China
b Lingcore Lab, Portland, OR, USA

a r t i c l e i n f o

Article history:
Received 12 July 2009
Received in revised form 7 February 2010
Accepted 9 February 2010

Keywords:
Prefix adders
Computer arithmetic
Semi-group
VLSI

a b s t r a c t

The paper presents an algebraic analysis for the correctness of prefix-based adders. In
contrast to using higher-order functions and rewriting systems previously, we harness
first-order recursive equations for correctness proof. A new carry operator is defined in
terms of a semi-group with the set of binary bits. Both sequential and parallel addition
algorithms are formalized and analyzed. The formal analysis on some special prefix adder
circuits demonstrates the effectiveness of our algebraic approach. This study lays an
underpinning for further understanding on computer arithmetic systems.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Binary addition is themost fundamental and frequently used operation. It has the largest impact on the overall computer
performance [1].With the shrinking feature size and the growing density, the costs of VLSI circuitmanufacturing are soaring,
so does the cost of circuit errors. Therefore, the logic correctness of binary addition algorithm becomes extremely important.
In the area of computer arithmetic, a great number of addition algorithms have been proposed. At the meantime, the linear
time adders are too slow for modern systems, the speed of parallel carry propagation adders is required. Classic high-speed
adders include Carry Lookahead Adder (CLA), parallel prefix adders and so on.
It has been well known that the Carry Lookahead Adder plays a key role in the development of different generations of

adders, such as parallel prefix adders. These parallel adders have been extensively studied in the past few years [2–6]. Some
inventors of parallel prefix adder algorithms have presented correctness proofs for their algorithms, for example, Kogge
and Stone [4]. Brent and Kung proved a few useful lemmas in their famous paper [5]. However, most adder algorithms are
based on a few elegant properties, which are often accepted by intuition. Formal analysis on their correctness is limited, or
less well known. The details of their proofs are either incomplete or hard to find. In this paper, we collect existing formal
results and present a set of new properties concerning prefix adders. Based on the traditional notions such as Propagated
Carry and Generated Carry, we present a detailed proof for generic prefix adder. In our approach, the representation of
the algorithm is described in the form of first-order recursive equations, which are widely adopted in computer arithmetic
community. Therefore, our proof is direct andmore accessible to VLSI designers. In particular, we introduce a new definition
of fundamental carry operator, which is given in terms of Boolean operations on bit pairs. Carry propagation functionswhich
can be represented as bit pairs are composed by the fundamental carry operator. This makes it easy to analyze the essential
algebraical properties of fundamental carry operator at a deeper level. This insight is central to the operation of prefix adders.
We also prove that the set of bit pairs and fundamental carry operator constitute a monoid. Using this algebraic structure,
we formalize a special parallel prefix adder Kogge–Stone tree and prove its correctness in a new way. It is our belief that

∗ Corresponding author.
E-mail address: liuprayer@gmail.com (F. Liu).

0895-7177/$ – see front matter© 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.mcm.2010.02.008

http://www.elsevier.com/locate/mcm
http://www.elsevier.com/locate/mcm
mailto:liuprayer@gmail.com
http://dx.doi.org/10.1016/j.mcm.2010.02.008


192 F. Liu et al. / Mathematical and Computer Modelling 52 (2010) 191–199

these proofs would be helpful for people to get a better understanding about the nature of adder algorithms. Another aim
is to make it convenient for further formal investigations.
The rest of this paper is structured as follows. Section 2 reviews some relatedworks. In Section 3, preliminaries and some

existing formal results are introduced. In Section 4, we present the correctness proofs of liner time prefix adders. They are
the base of advanced proofs of parallel prefix adders. In Section 5, we develop some useful theorems and given the proof
framework of parallel prefix adders. Section 6 concludes this paper.

2. Related work

There were some interesting works related to the correctness proofs of adder algorithms. In paper [7], high-order
functional combinators are employed to represent Carry Lookahead Adder and the correctness is established by algebraic
transformations. D. Kapur and M. Subramaniam described adders’ algorithms using the language of RRL and verified the
correctness by term rewriting in a rewrite-rule based theorem prover [8]. Mary Sheeran recently made a profound formal
investigation into parallel prefix computation using the Haskell language [9]. R. Hinze employed the Haskell as the meta
language and introduced an algebra of scans which can be used in formal analysis of parallel prefix circuits [10]. These
works used many jargons of formal verification specialists. Gang Chen et al. [11] proposed a concise presentation for the
proof of correctness and properties of integer adders. In particular, these proofs are based on first-order recursive equations,
which, we believe, is more accessible to VLSI designers than functional and rewriting style proofs. But it doesn’t present any
specific parallel prefix adder which must use some sort of network to perform the group carry computations in parallel.
This paper was primarily inspired by the work [11]and is a fairly natural extension of it. We provide machinery that can be
applied to any adder based on group carry computations. The new contributions in this paper include the new definition
of fundamental carry operator, analysis of its algebraic properties, presentation of the correctness proof of a typical parallel
prefix adder (Kogge–Stone adder) using the algebraic structures we built and so on.
The fundamental carry operator and its associativity is discovered by Brent and Kung [5]. In this paper, we introduced an

new definition of fundamental carry operator. We proved that the new fundamental carry operator and the set of bit pairs
constitute a monoid. S. Lakshmivarahan and S.K. Dhall also found that the computation of the lookahead adder’s carry bit
can be reformulated as a semi-group product [12]. But they didn’t give the correctness proof. In this paper, we build the
monoid in different way.

3. Preliminaries

We need some basic notions to introduce our formulations.
In this paper, the symbols 0 and 1 denote Boolean False and True, or digital number Zero and One; the symbol∧ denotes

the Boolean AND; ∨ denotes the Boolean OR;⊕ denotes the Boolean Exclusive OR.
In the following, we describe some useful algebraic structures: semi-group and monoid.

Definition 3.1 (Semi-group [13]). Let A be a nonempty set and � a binary operation over A. (A,�) is a semi-group if it satisfies
the following conditions:
1. (A is closed under �) a, b ∈ A, then a � b ∈ A;
2. (Associativity) For any a, b, c ∈ A, then (a � b) � c = a � (b � c).

Due to the associativity, we may safely write: a � b � c = (a � b) � c = a � (b � c).

Definition 3.2 (Monoid [13]). Let (A,�) be a semi-group. (A,�) is a monoid if there exists an element e of A, let d be any
element of A, then e � d = d = d � e. e is called an identity element of (A,�).

Semi-group has some various properties of interest, we list the idempotent below. It is helpful to analyze the algorithms
of adders. Interested readers can refer to [13] for more details about semi-group.

Property 3.3 (Idempotent). Let a be an element of a semi-group (A,�). If a � a = a2 = a, then a is called an idempotent.

Clearly, for a monoid, the identity is always an idempotent.
The binary number representation system is fundamental to describe the binary addition algorithms. Typically, a binary

number of length n (n ≥ 0) is an ordered sequence of binary bits where each bit can assume one of the values 0 or 1. We use
x = (xn−1xn−2 · · · x0) to denote a N-bit binary number; xi is the binary bits at position i, where 0 ≤ i ≤ n − 1. The integer
value of x = (xn−1xn−2 · · · x0) is defined as:

Int(x) = xn−12n−1 + xn−22n−2 + · · · + x12+ x0 =
n−1∑
i=0

xi2i.

For two N-bits binary numbers x = (xn−1xn−2 · · · x0) and y = (yn−1yn−2 · · · y0), let c = {cn, cn−1, . . . , c0} be the set of
carries where c0 is the initial incoming carry, ci denotes the carry from the bit position i−1, 0 < i ≤ n−1; the conventional



F. Liu et al. / Mathematical and Computer Modelling 52 (2010) 191–199 193

algorithm for binary addition which computes the sum s = (cnsn−1sn−2 · · · s0) is well known and can be formalized as the
following equations:

si = xi ⊕ yi ⊕ ci
ci = (xi ∧ yi) ∨ (xi ∧ ci−1) ∨ (yi ∧ ci−1), for i = 0, . . . , n− 1. (1)

The correctness of these equations can be expressed by
n−1∑
i=0

xi2i +
n−1∑
i=0

yi2i + c0 =
n−1∑
i=0

si2i + cn2n. (2)

The correction of (1) can be intuitively understood. Here, we give the complete proof. This proof depends on properties
relating to binary logical operation and arithmetic computation as shown in Lemmas 3.4 and 3.5. Lemmas 3.4 and 3.5 are
developed in paper [11].

Lemma 3.4 (Bit Addition [11]). Assume a, b are two bits, then a+ b = 2(a ∧ b)+ a⊕ b.

Lemma 3.5. Assume a, b, c are three bits, then a+ (b ∧ c) = a ∨ (b ∧ c).

The idea of our proof is similar to paper [11], but some parts are new.

Theorem 3.6. The adder algorithm expressed by Eq. (1) is correct.
Proof. Induction on n.
Base case. (n = 1). We need to prove that

x0 + y0 + c0 = s0 + 2c1. (3)

By Lemma 3.4, we have:

x0 + y0 + c0 = 2(x0 ∧ y0)+ x0 ⊕ y0 + c0 by Lemma 3.4
= 2(x0 ∧ y0)+ 2[(x0 ⊕ y0) ∧ c0] + x0 ⊕ y0 ⊕ c0 by Lemma 3.4
= 2{(x0 ∧ y0) ∨ [(x0 ⊕ y0) ∧ c0]} + x0 ⊕ y0 ⊕ c0 by Lemma 3.5.

By Exhaustive testing x0, y0, c0, we have:

(x0 ∧ y0) ∨ [(x0 ⊕ y0) ∧ c0] = (x0 ∧ y0) ∨ (x0 ∧ c0) ∨ (y0 ∧ c0).

By Eq. (1), we know

s0 = x0 ⊕ y0 ⊕ c0
c1 = (x0 ∧ y0) ∨ (x0 ∧ c0) ∨ (y0 ∧ c0).

Thus

x0 + y0 + c0 = s0 + 2c1.

Induction case. Assume that Eq. (2) is true for n = k:

k−1∑
i=0

xi2i +
k−1∑
i=0

yi2i + c0 =
k−1∑
i=0

si2i + ck2k. (4)

We need to show that the assertion is valid for n = k+ 1:

k∑
i=0

xi2i +
k∑
i=0

yi2i + c0 =
k∑
i=0

si2i + ck+12k+1. (5)

Due to the induction hypothesis equation (4), the equality equation (5) is equivalent to

xk2k + yk2k = sk2k + ck+12k+1 − ck2k. (6)

Divide 2k at two sides of the equality, we get

xk + yk + ck = sk + 2ck+1. (7)

By Eq. (1) and Lemma 3.4, Lemma 3.5, we have:

xk + yk + ck = xk ⊕ yk ⊕ ck + 2[(xk ∧ yk) ∨ (xk ∧ ck) ∨ (xk ∧ ck)]
= sk + 2ck+1. (8)

So, the induction case is proved. �



194 F. Liu et al. / Mathematical and Computer Modelling 52 (2010) 191–199

4. Sequential prefix adders

The critical path of binary adder is the carry computation. It is clear that the long carry propagation chains must be
dealt with in order to speed up the addition. The commonly used scheme for accelerating carry propagation is the prefix
scheme. The main idea behind prefix addition is rewrite the computation of calculating carries in Eq. (1) as first-order
recurrences. This makes it possible to generate all incoming carries in parallel. To define the first-order recurrences form of
carry computation, some standard notions such as propagation carry and generated carry are introduced as in [14]. For two
binary numbers x = (xn−1xn−2 · · · x0) and y = (yn−1yn−2 · · · y0), the propagation carry and generated carry at the bit location
i are defined as Pi = xi ⊕ yi and Gi = xi ∧ yi separately.
Using propagation carryand generated carry, the carry and sum computations in Eq. (1) can be rewritten as:
ci+1 = Gi ∨ (Pi ∧ ci), si = Pi ⊕ ci. (9)

If the carries in the Eq. (9) are not unfolded, Eq. (9) corresponds to the Ripple Carry Adder, in which the calculation at
bit position i depends on the carry output ci from previous position i − 1. Thanks to the first-order recurrence form, by
substitution, this type of expression allows us to calculate all carries in parallel from the original digits xn−1xn−2 · · · x0,
yn−1yn−2 · · · y0 and the forced carry c0, which corresponds to the scheme of Carry Lookahead Adder. In this case, the
expressions of all ci in Eq. (9) are unfolded. Since unfolding does not change behavior, the correctness of Eq. (9) implies
the correctness of sequential prefix adders schemes including Ripple Carry Adder and Carry Lookahead Adder.

Theorem 4.1. The adder algorithm expressed by Eq. (9) is correct.
Proof. We just need to prove the Eq. (9) is equivalent to the Eq. (1). Since Pi = xi ⊕ yi, it is easy to verify that:

Pi ⊕ ci = xi ⊕ yi ⊕ ci.

Since Gi = xi ∧ yi, we get

ci+1 = Gi ∨ (Pi ∧ ci) = (xi ∧ yi) ∨ [(xi ⊕ yi) ∧ ci].

By exhaustive testing binary bits xi, yi, ci, we have:

(xi ∧ yi) ∨ [(xi ⊕ yi) ∧ ci] = (xi ∧ yi) ∨ (xi ∧ ci) ∨ (yi ∧ ci).

So, the Eq. (9) is equivalent to the Eq. (1). By Theorem 3.6, the correctness of Eq. (9) is proved. �

For a N-bits Carry Lookahead Adder, if the value of n is large, then, an extremely large number of gates is needed and
gates with a very large fan-in are required. One approach is to divide the n stages into groups and have a separate Carry
Lookahead Adder in each group. The groups can then be interconnected by other scheme such as Ripple Carry adder. This
method reduces the span of the Carry Lookahead Adder at the expense of speed. Other better approaches are parallel prefix
adders. To derive the equations for prefix adders in a more general way, we introduce the definition of fundamental carry
operator. Our definition of fundamental carry operator is inspired by the first-order recurrences form of carry computation
discussed above, but it is at a deeper level. It will allow us to consider various implementations of prefix adders rather than
being restricted to a predetermined blocking factor.

Definition 4.2 (Fundamental Carry Operator). Let B be a nonempty set of binary bit pairs. The fundamental carry operator ◦:
B× B→ B is a binary operation such that, for any binary bits a1, a2, b1, b2, the following equation holds:

(a1, b1) ◦ (a2, b2) = (a1 ∨ (b1 ∧ a2), b1 ∧ b2). (10)

The set of bits pairs B and the fundamental carry operator over it constitute a nice algebraic structure. We study its
algebraic properties in the following.

Lemma 4.3. (B, ◦) is a semi-group.
Proof. By the Definition 3.1, we prove that (B, ◦) satisfies its two conditions.
1. For any (a1, b1), (a2, b2) ∈ B, where a1, b1, a2, b2 are any binary bits, we have:

(a1, b1) ◦ (a2, b2) = (a1 ∨ (b1 ∧ a2), b1 ∧ b2).

It is easy to verify that a1 ∨ (b1 ∧ a2) and b1 ∧ b2 are also binary bits, so, we get (a1 ∨ (b1 ∧ a2), b1 ∧ b2) ∈ B, which
means B is closed under ◦.
2. We need to prove that ◦ enjoys associativity. For any (a1, b1), (a2, b2), (a3, b3) ∈ B, we have

[(a3, b3) ◦ (a2, b2)] ◦ (a1, b1) = (a3 ∨ (b3, a2), b3 ∧ b2) ◦ (a1, b1)
= (a3 ∨ (b3 ∧ a2) ∨ (b3 ∧ b2 ∧ a1), b3 ∧ b2 ∧ b1)
= (a3 ∨ (b3 ∧ (a2 ∨ (b2 ∧ a1))), b3 ∧ b2 ∧ b1)
= (a3, b3) ◦ (a2 ∨ (b2 ∧ a1), b2 ∧ b1)
= (a3, b3) ◦ [(a2, b2) ◦ (a1, b1)].

So, (B, ◦) is a semi-group. �



F. Liu et al. / Mathematical and Computer Modelling 52 (2010) 191–199 195

Lemma 4.4. (B, ◦) is a monoid.
Proof. It is known that (B, ◦) is a semi-group. We need to prove that it has an identity element.
Because (0, 1) ∈ B, for any (a, b) ∈ B, we have

(a, b) ◦ (0, 1) = (a ∨ (b ∧ 0), b ∧ 1) = (a, b)
(0, 1) ◦ (a, b) = (0 ∨ (1 ∧ a), 1 ∧ b) = (a, b).

So, (0, 1) is an identity element. (B, ◦) is a monoid. �

Lemma 4.5. Every element of (B, ◦) is an idempotent.
Proof. It is known that (B, ◦) is a semi-group. So, for any element (a, b) ∈ B, we just need to prove that (a, b)◦(a, b) = (a, b).
Because a, b are binary bits, we have

(a, b) ◦ (a, b) = (a ∨ (b ∧ a), b ∧ b) = (a, b).

So, (a, b) is an idempotent. Without loss of generality, every element of (B, ◦) is an idempotent. �

The fundamental carry operator which composes two carry propagation functions (propagation carry and generated carry)
is discovered by Brent and Kung [5]. In this paper, the definition of fundamental carry operator is given in terms of Boolean
operations on bit pairs. We developed some general algebraic properties of our new fundamental carry operator. Since carry
propagation functions such as propagation carry and generated carry can be represented as bit pairs, our fundamental carry
operator can be used to compose them and the algebraic properties are also satisfied. In fact, any functions whose domain
an range are both binary bit can be composed by our new fundamental carry operator. This is also a good reason for using ◦,
the standard symbol for function composition, to represent the fundamental symbol for function composition, to represent
the fundamental carry operator. We believe this insight is central to the operation of prefix adders.
Let fst be the function which returns the first element of a pair. Using the definition of ◦, the calculation of carries in

Eq. (9) can be rewritten as
ci+1 = fst((Gi, Pi) ◦ (ci, 1)).

An important special case is that, for Carry Lookahead Adder, any ci+1 which is computed using initial arguments,
corresponding to the unfolded form of Eq. (9), can be represented as follows

ci+1 = fst((Gi, Pi) ◦ (Gi−1, Pi−1) ◦ · · · (G0, P0) ◦ (c0, 1)). (11)
Real designs of adder circuits, specially the parallel prefix adders, are often started from the above formula. Because

propagation carry and generated carry are functions on binary bits, the algebraic structures we introduced above (semi-
group and monoid) and the corresponding algebraic properties such as associativity and idempotent are going to be used
to allow the linear carry propagation to be reorganized into group-carry propagation. The full algebraic structure isn’t
actually needed for the sequential prefix adders. However, it is essential for a general framework that allows a family of
parallel prefix adders to be defined. Furthermore, since we have proved the correctness of Carry Lookahead Adder, for more
complex parallel prefix adders, if their formulas of calculating carries can be proved to be equivalent to the Eq. (11), then
the correctness of their algorithms can be proved effectively.

5. Parallel prefix adders

For sophisticated parallel prefix adders, groups of bits are computed together. To characterize such adders, the notions
of group-propagated carry and group-generated carry have been introduced in the literature, for example [14].

Definition 5.1 (Group-generated Carry). LetGi is the generated carry at bit location i, the group-generated carryGi:j is defined
as

Gi:j =
{
Gi i = j
Gi ∨ (Pi ∧ Gi−1:j) i > j. (12)

Definition 5.2 (Group-propagated Carry). Let Pi is the propagated carry at bit location i, the group-propagated carry Pi:j is
defined as

Pi:j =
{
Pi i = j
Pi ∧ Pi−1:j i > j. (13)

Form the definition of group-generated carry, it is easy to find that the group-generated carry has the first-order
recurrences form similar to Eq. (9). Therefore, it is possible to use group-generated carry to describe computation of carries
and use fundamental carry operator to represent it. In the following, we give some properties about group-generated carry
and group-propagated carry.

Lemma 5.3. Gi:j ∧ Pi:j = 0.



196 F. Liu et al. / Mathematical and Computer Modelling 52 (2010) 191–199

Proof. We need only to consider the case where i ≥ j. Let k = i− j, the proof proceeds by induction on k.
Base case. k = 0. Gi:j = Gi:i = xi ∧ yi, Pi:j = Pi = xi ⊕ yi. So, we have Gi:j ∧ Pi:j = Gi ∧ Pi = 0.
Induction case. Assume that k = m,m ≥ 0, we have Gj+m:j ∧ Pj+m:j = 0, we need to prove Gj+m+1:j ∧ Pj+m+1:j = 0. By

Definitions 5.1 and 5.2, we get Gj+m+1:j = Gj+m+1 ∨ (Pj+m+1 ∧ Gj+m:j), Pj+m+1:j = Pj+m+1 ∧ Pj+m:j.
Proof by contradiction. Assume Gj+m+1:j ∧ Pj+m+1 = 1, then we have Pj+m+1 = 1, Pj+m:j = 1. By induction assumption

Gj+m:j∧Pj+m:j = 0, we have Gj+m:j = 0. Because Gj+m+1:j = Gj+m+1∨(Pj+m+1∧Gj+m:j) = 1, we have Gj+m+1 = 1. So, we have
Pj+m+1 = 1, Gj+m+1 = 1. Pj+m+1∧Gj+m+1 = 1. By Definition, we know Gj+m+1 = xj+m+1∧yj+m+1, Pj+m+1 = xj+m+1⊕yj+m+1,
we have Pj+m+1 ∧ Gj+m+1 = 0, Contradiction!
So, we get Gj+m+1:j ∧ Pj+m+1:j = 0. The induction case is proved. �

Lemma 5.4. With fundamental carry operator, group-generated carry and group-propagated carry can be composed as follows:

(Gi:j, Pi:j) =
{
(Gi, Pi) i = j
(Gi, Pi) ◦ (Gi−1:j, Pi−1:j) i > j. (14)

Proof. By Definitions 4.2, 5.1 and 5.2, it can be proved immediately. �

The Eq. (14) is a recursive equation. So, it has a flatten representation.

Lemma 5.5 (group Carry Flatten [11]).

(Gi:j, Pi:j) = (Gi, Pi) ◦ (Gi−1, Pi−1) ◦ · · · ◦ (Gj, Pj). (15)

Since group-generated carry and group-propagated carry are also functions on binary bit, therefore, the fundamental carry
operator on pairs of them also enjoys associativity and idempotent. By associativity, the Eq. (14) can be further generalized
to

(Gi:j, Pi:j) = (Gi:m, Pi:m) ◦ (Gm−1:j, Pm−1:j), where i ≥ m ≥ j+ 1. (16)
By idempotent, the most general form of Eq. (16) is

(Gi:j, Pi:j) = (Gi:m, Pi:m) ◦ (Gv:j, Pv:j), where i ≥ v ≥ m− 1 ≥ j ≥ 0. (17)
Due to idempotent, the computation of the left side of the Eq. (17) can be divided into overlapping subgroups which

are independent and can be computed in parallel. This gives the possibility to design different implementations of parallel
prefix adders.
We have studied some properties about group-generated carry and group-propagated carry above. In the following, we

study how to use them to formalize the the algorithms of parallel prefix adders and to prove the correctness. We firstly
describe the general algorithm of parallel prefix adders and prove its correctness. It studies the relationship between group-
generated carry, group-propagated carry functions and the carries. It is the basis for all parallel prefix adders.

Definition 5.6 (General Parallel Prefix Adder). The general parallel prefix adder’s algorithms can be presented as follows:

ci = Gi−1:j ∨ (Pi−1:j ∧ cj), si = Pi ⊕ ci, 0 ≤ j ≤ i− 1 ≤ n− 1. (18)

Lemma 5.7. The general parallel prefix adder’s algorithm is correct.
Proof. To prove the correctness of the Eq. (18), we just need to prove it is equivalent to Eq. (9). Since the main difference of
them is the computation of carries, let c ′i = Gi−1:j ∨ (Pi−1:j ∧ c ′j ) and ci = Gi−1 ∨ (Pi−1 ∧ ci−1), we should to prove that

c ′i = ci.

Induction on j.
Base case. j = 0. Since both c ′0 and c0 denote the incoming carry into the adder, therefore, we have c

′

0 = c0. Then for any i,
where j ≤ i − 1 ≤ n − 1, we prove that c ′i = ci by induction on k = i − 1 − j. For the base case k = 0, we have i = j + 1,
c ′i = c

′

j+1 = Gj:j ∨ (Pj:j ∧ c ′j ) = Gj ∨ (Pj ∧ c ′0). We also know that ci = cj+1 = Gj ∨ (Pj ∧ cj) = Gj ∨ (Pj ∧ c0). Therefore,
c ′i = ci. Now, consider the induction case. Assume that c

′

i = ci is true for k = m,m ≥ 1, we want to show that it is true for
k = m+1.When k = m+1, we have c ′i = c

′

m+1+j+1 = Gm+j+1:j∨(Pm+j+1:j∧c ′j ), ci = cm+1+j+1 = Gm+j+1∨(Pm+j+1∧cm+j+1).
By the definition of group-generated carry, group-propagated carry and induction hypothesis, we get

c ′m+1+j+1 = Gm+j+1:j ∨ (Pm+j+1:j ∧ c ′j )

= Gm+j+1 ∨ (Pm+j+1 ∧ Gm+j:j) ∨ (Pm+j+1 ∧ Pm+j:j ∧ c ′j )

= Gm+j+1 ∨ (Pm+j+1 ∧ (Gm+j:j ∨ (Pm+j:j ∧ c ′j )))
= Gm+j+1 ∨ (Pm+j+1 ∧ cm+j+1)
= cm+1+j+1.

So, c ′i = ci is true for j = 0.
Induction case. Assume c ′i = ci is true for j < p, p ≥ 0, we need to prove that it is also true for j = p.



F. Liu et al. / Mathematical and Computer Modelling 52 (2010) 191–199 197

When j = p, induction on k = i − 1 − j. For the base case k = 0, we have i = j + 1, c ′i = c
′

j+1 = Gj:j ∨ (Pj:j ∧ c ′j ) =
Gj ∨ (Pj ∧ c ′j ) = Gp ∨ (Pp ∧ c ′p).
We also know that ci = cj+1 = Gj ∨ (Pj ∧ cj) = Gj ∨ (Pj ∧ cj) = Gp ∨ (Pp ∧ cp). By Eq. (18), we know that c ′p can only be
computed by equation c ′p = Gp:q ∨ (Pp:q ∧ c ′q), where 0 ≤ q < p. By induction assumption, we know that c ′p = cp. So, the
base case is proved. Now, consider the induction case. Assume that c ′i = ci is true for k = m,m ≥ 1. We want to show that
it is true for k = m+ 1. The prove process is similar to the base case (j = 0). By the definition of group carry and induction
hypothesis, we get

c ′m+1+j+1 = Gm+j+1:j ∨ (Pm+j+1:j ∧ c ′p)

= Gm+j+1 ∨ (Pm+j+1 ∧ Gm+j:j) ∨ (Pm+j+1 ∧ Pm+j:j ∧ c ′p)

= Gm+j+1 ∨ (Pm+j+1 ∧ (Gm+j:j ∨ (Pm+j:j ∧ c ′p)))
= Gm+j+1 ∨ (Pm+j+1 ∧ cm+j+1)
= cm+1+j+1.

So, the induction case is proved. �

Fundamental carry operator can be used to rewrite the computation of carry in Eq. (18) as follows:

ci+1 = fst((Gi:j, Pi:j) ◦ (cj, 1)). (19)

According to Eq. (15), we can give the flatten representation of Eq. (19) as follows:

ci+1 = fst((Gi, Pi) ◦ (Gi−1, Pi−1) ◦ · · · ◦ (Gj, Pj) ◦ (cj, 1)). (20)

Since the incoming carry c0 is always known at the beginning, any carry can be computed using the initial arguments in
parallel. Therefore, the Eq. (20) can be rewritten as:

ci+1 = fst((Gi, Pi) ◦ (Gi−1, Pi−1) ◦ · · · ◦ (G0, P0) ◦ (c0, 1)).

The above formula is same to Eq. (11). Therefore, we say it is the base for design and correctness proof of prefix adders.
At last, we give a correctness proof of a special parallel prefix adder named Kogge–Stone tree to show the effectiveness

of our approach. Using the notions of fundamental carry operator, group-generated carry and group-propagated carry,
we formalized the algorithm of Kogge–Stone tree in a new way. Then, we developed a new proof for the correctness of
Kogge–Stone tree. The algebraic properties we developed above are helpful for our proof. Compared to the related works,
our concise proof is shorter and easy to read.

Definition 5.8. Let ci denote the carry from the i− 1 bit position. To compute ci, Kogge–Stone tree needs log2(i+ 1) steps
to calculate the corresponding group-generated carry and group-propagated carry. Let (Gki , P

k
i ) represent respectively, the

group-generated carry and group-propagated carry after the kth step of the following algorithm.
Initialization Step (k = 0):

G0i = Gi, P0i = Pi. (21)

Recursion steps: For k = 1, 2, . . . , dlog2(i+ 1)e do each of the following assignment statements:

(Gki , P
k
i ) = (Gk−1i , Pk−1i ) ◦ (Gk−1

i−2k−1
, Pk−1
i−2k−1

)

(Gmi , Pmi ) = (Gdlog2(i+1)ei , Pdlog2(i+1)ei ) dlog2(i+ 1)e < m.
(22)

Lemma 5.9. For any i and 1 ≤ k, if k ≤ dlog2(i+ 1)e, then

(Gki , P
k
i ) = (Gi, Pi) ◦ (Gi−1, Pi−1) ◦ · · · ◦ (Gi−(2k−1), Pi−(2k−1)). (23)

Proof. Because ◦ is associative, we give our proof by induction on k.
Base case. k = 1, for any i ≥ 1, since log2(i+ 1) ≥ log2 2 = 1, by Eq. (22), we have:

(G1i , P
1
i ) = (G0i , P

0
i ) ◦ (G0i−20 , P

0
i−20)

= (G0i , P
0
i ) ◦ (G0i−(2k−1), P

0
i−(2k−1)).

By Eq. (21), we get:

(G1i , P
1
i ) = (Gi, Pi) ◦ (Gi−1, Pi−1).

Induction case. Assume that (23) is true for k < p, we need to show that the assertion is valid for k = p, where
p ≤ dlog2(i+ 1)e.



198 F. Liu et al. / Mathematical and Computer Modelling 52 (2010) 191–199

By Eq. (22), we have:

(Gpi , P
p
i ) = (Gp−1i , Pp−1i ) ◦ (Gp−1

i−2p−1
, Pp−1
i−2p−1

).

By induction hypothesis, we get:

(Gp−1i , Pp−1i ) = (Gi, Pi) ◦ (Gi−1, Pi−1) ◦ · · · ◦ (Gi−(2p−1−1), Pi−(2p−1−1)). (24)

(1) If p− 1 ≤ dlog2(i− 2p−1 + 1)e, by induction hypothesis, we have

(Gp−1
i−2p−1

, Pp−1
i−2p−1

) = (Gi−2p−1 , Pi−2p−1) ◦ · · · ◦ (Gi−2p−1−(2p−1−1), Pi−2p−1−(2p−1−1)).

So, we get

(Gpi , P
p
i ) = (Gi, Pi) ◦ (Gi−1, Pi−1) ◦ · · · ◦ (Gi−(2p−1), Pi−(2p−1)).

(2) If p− 1 > dlog2(i− 2p−1 + 1)e, by Eq. (22), we have:

(Gp−1i−2p−1 , P
p−1
i−2p−1) = (Gdlog2(i−2

p−1
+1)e

i−2p−1 , Pdlog2(i−2
p−1
+1)e

i−2p−1 ).

By induction hypothesis, we have

(Gdlog2(i−2
p−1
+1)e

i−2p−1
, Pdlog2(i−2

p−1
+1)e

i−2p−1
) = (Gi−2p−1 , Pi−2p−1) ◦ · · · ◦ (Gi−2p−1−(2p−1−1), Pi−2p−1−(2p−1−1)).

So, we get

(Gpi , P
p
i ) = (Gi, Pi) ◦ (Gi−1, Pi−1) ◦ · · · ◦ (Gi−(2p−1), Pi−(2p−1)).

The induction case is proved. �

Theorem 5.10. The algorithm of Kogge–Stone tree described in Definition 5.8 is correct.

Proof. We just need to prove

(Gdlog2(i+1)ei , Pdlog2(i+1)ei ) = (Gi, Pi) ◦ (Gi−1, Pi−1) ◦ · · · ◦ (G0, P0). (25)

Because ◦ is associative, we give our proof by induction on i.
Base case. i = 1, dlog2(i+ 1)e = dlog2 2e = 1. We get

(Gdlog2(i+1)ei , Pdlog2(i+1)ei ) = (Gdlog2(2)e1 , Pdlog2(2)e1 )

= (G11, P
1
1 )

= (G01, P
0
1 ) ◦ (G00, P

0
0 ) by Eq. (22)

= (G1, P1) ◦ (G0, P0) by Eq. (21). (26)

Induction case.
Assume that Eq. (25) is true for i < m,m > 1. We need to show that the assertion is valid for i = m:

(Gdlog2(m+1)em , Pdlog2(m+1)em ) = (Gm, Pm) ◦ (Gm−1, Pm−1) ◦ · · · ◦ (G0, P0). (27)

Let k = dlog2(m + 1)e, because m > 1, we know that k > 1. We have: (Gdlog2(m+1)em , Pdlog2(m+1)em ) = (Gkm, Pkm). By Eq. (22),
we get:

(Gkm, Pkm) = (Gk−1m , Pk−1m ) ◦ (Gk−1
m−2k−1

, Pk−1
m−2k−1

).

By Lemma 5.9, we have:

(Gk−1m , Pk−1m ) = (Gm, Pm) ◦ (Gm−1, Pm−1) ◦ · · · ◦ (Gm−(2k−1−1), Pm−(2k−1−1)). (28)

Since log2(m− 2k−1 + 1) = log2(m+ 1)− (k− 1), we have

dlog2(m− 2
k−1
+ 1)e = dlog2(m+ 1)e − (k− 1) = 1.

Since k ≥ 2, we get k− 1 ≥ dlog2(m− 2k−1 + 1)e
By Eq. (22), we get

(Gk−1
m−2k−1

, Pk−1
m−2k−1

) = (Gdlog2(m−2
k−1
+1)e

m−2k−1
, Pdlog2(m−2

k−1
+1)e

m−2k−1
).



F. Liu et al. / Mathematical and Computer Modelling 52 (2010) 191–199 199

By induction hypothesis, we have

(Gdlog2(m−2
k−1
+1)e

m−2k−1
, Pdlog2(m−2

k−1
+1)e

m−2k−1
) = (Gm−2k−1 , Pm−2k−1) ◦ (Gm−2k−1−1, Pm−2k−1−1) ◦ · · · ◦ (G0, P0). (29)

By Eq. (28) and Eq. (29), we get

(Gkm, Pkm) = (Gk−1m , Pk−1m ) ◦ (Gk−1
m−2k−1

, Pk−1
m−2k−1

)

= (Gm, Pm) ◦ · · · ◦ (Gm−(2k−1−1), Pm−(2k−1−1)) ◦ (Gm−2k−1 , Pm−2k−1) ◦ (Gm−2k−1−1, Pm−2k−1−1) · · · ◦ (G0, P0)

= (Gm, Pm) ◦ (Gm−1, Pm−1) ◦ · · · ◦ (G0, P0). (30)

The induction case is proved. �

Group carry functions can be represented as bit pairs, which compose semi-group with fundamental carry operator.
Our proof is benefit from properties of these algebraic structures. For Kogge–Stone tree, the most important property is
associativity. Other parallel prefix trees will need other properties such as idempotency. The fundamental carry operator,
standard carry functions and the algebraic structures developed here can be used as a general proof framework for parallel
prefix adders. In this paper, we focus on the correctness proof of prefix adders. Lakshmivarahan and Dhall [12] built a semi-
group for carry computation of prefix adders in a different way. They analyzed other formal properties of prefix adders
with the help of algebraic properties of semi-group. For example, group-free semi-groups play a vital role in the design of
unbounded fan-in, constant depth and polynomial size prefix circuits [5]. Likewise, the size of circuit depends on whether
or not the underlying semi-group is cycle-free [5]. For our further work, we will focus on analyzing other formal properties
of prefix adders based on our mathematical machinery.

6. Conclusion

In this paper, we present a formal method to represent prefix adders in terms of first-order recursive equations used in
standard computer arithmetic community.We integrate somewell known formal properties of prefix adders and introduce a
newdefinition fundamental carry operator.We also prove that the new fundamental carry operator and the set of binary bits
compose semi-group, which is helpful to characterize the adder algorithms.With these algebraic structures, both sequential
and parallel computations are formalized and proved. This correctness study provides the underpinnings and insights for
devising more efficient adders.

References

[1] M.J. Flynn, S.F. Oberman, Modern research in computer arithmetic, Class notes, Stanford Univ. Stanford, CA, Autumn quarter, 1998–1999.
[2] T. Lynch, J. Earl, E. Swartzlander, A spanning tree carry lookahead adder, IEEE Trans. Comput. 41 (8) (1992) 931–939.
[3] R. Ladner, M. Fischer, Parallel prefix computation, J. ACM 27 (4) (1980) 831–838.
[4] P.M. Kogge, H.S. Stone, A parallel algorithm for the efficient solution of a general class of recurrence equations, IEEE Trans. Comput. C-22 (8) (1973)
786–793.

[5] R.P. Brent, H.T. Kung, A regular layout for parallel adders, IEEE Trans. Comput. C-31 (2) (1982) 260–264.
[6] S. Knowles, A family of adders, in: 15th IEEE Symposium on Computer Arithmetic, 2001, pp. 277–281.
[7] J. O’Donnell, G. Rnger, Derivation of a carry lookahead addition circuit, J. Funct. Programming 14 (6) (2004) 127–158.
[8] D. Kapur, M. Subramaniam, Mechanical verification of adder circuits using rewrite rulelaboratory, Form. Methods Syst. Des. 13 (2) (1998) 127–158.
[9] M. Sheeran, Hardware design and functional programming: A perfect match, J. UCS 11 (7) (2005) 1135–1158.
[10] R. Hinze, An algebra of scans, in: Dexter Kozen (Ed.), Proceedings of the Seventh International Conference on Mathematics of Program Construction,

MPC 2004, 2004, pp. 186–210.
[11] Gang Chen, Feng Liu, Proofs of correctness and properties of integer adder circuits, IEEE Trans. Comput. 59 (1) (2010) 134–136.
[12] S. Lakshmivarahan, S.K. Dhall, Parallel Computing Using the Prefix Problem, Oxford University Press, USA, 1994.
[13] J.M. Howie, Fundamentals of Semigroup Theory, Oxford University Press, USA, 1996.
[14] I. Koren, Computer Arithmetic Algorithms, 2nd edition, A.K.Peters, Natick, MA, 2002.


	Formal proof of prefix adders
	Introduction
	Related work
	Preliminaries
	Sequential prefix adders
	Parallel prefix adders
	Conclusion
	References


