MCC092 Integrated Circuit Design: Lab 2
Hierarchical Schematic Design for 8-bit Ripple Carry Circuit

Version 2018-09-24

2012-2018 (65 nm CMOS): Kasyab Subramaniyan, Stavros Giannakopoulos,
Per Larsson-Edefors and Lena Peterson
2008-2011 (130 nm CMOS): Goran Cengié, Lars Svensson,
Simon Kristiansson and Lena Peterson

Chalmers University of Technology

Contents
Lab Purpose

Pre-Lab Assignments

Lab Goal

Introduction

Drawing the Schematic for a Carry Gate

Creating a Symbol for the Carry Gate Cell

Creating a 1-bit Ripple-Carry Cell

Creating a Test Bench for the 1-bit Ripple-Carry Cell
Simulating the 1-bit Ripple-Carry Cell

o R0 N SN AW N =

10 Investigating an 8-bit Ripple-Carry Circuit
11 Extra for Those Who Have Time
12 The End

o N AN RN DD NN

jud
n A -

1 Lab Purpose

The main purpose of this second lab is to reinforce the schematic design phase and to give you
an understanding of how complex circuits can be designed using repeated use of simple leaf
cells (standard cells) in a hierarchical fashion. In the next lab, lab 3, you will carry out layout
work on the cell considered in this second lab.

2 Pre-Lab Assignments

You will find the pre-lab assignment in a separate document available from the course home
page in PingPong. You can find it most easily under the assignment called Pre-lab preparation
for lab 2. This is also where you are to submit your solution to the pre-lab assignment. Note
that even though you work in pairs in the lab you are to submit you own individual solution.

At the beginning of the lab you will get your pre-lab solution back with feedback from the
teachers. Before you go ahead with the in-lab tasks, you should correct any mistakes you have
made in the pre-lab assignment.

3 Lab Goal

During the lab you will carry out the instructions in this memo and show the circuit schematics
(on screen) and simulation results to the lab TA. In case you do not finish on time, you will have
to do the remaining tasks on your own and report your results to the lab TA. You should show
the lab TA these results during, or after, the in-lab session:

e Schematic for both the basic carry gate and the 1-bit ripple-carry cell that you have entered
in Cadence Virtuoso.

e Schematic for the test bench for the 1-bit ripple-carry cell.

e Results from a circuit simulation of the 1-bit ripple-carry cell.

e Schematic for the 8-bit ripple-carry circuit.

e Schematic for the test bench for the 8-bit ripple-carry circuit.

e Results from a circuit simulation of the 8-bit ripple-carry circuit.

e The table on the last page.

4 Introduction

In this lab, you will learn more about how to use the Cadence Virtuoso design platform (CV for
short). The focus of this lab is on hierarchical composition and simulation, creating a complex

2

implementation making use of simple schematic cells that you have developed. The other parts
of the design cycle, consisting of physical layout and verification, will be performed in the next
lab, lab 3.

Figure 1: The 8-bit ripple-carry circuit is constructed from eight 1-bit ripple-carry cells. The figure
shows only four of these 1-bit cells.

You will perform all the steps in the design flow necessary to implement the 8-bit ripple-carry
circuit (see Fig. 1 for an overview) that you have worked on as the preparation assignment. Note
that this is not a complete 8-bit adder since the sum logic is not included. Here, in lab 2, you will
create the schematic for the 1-bit ripple-carry cell, which in turn is made up of the compound
carry gate that you will design as well as some inverter(s). Then, you will create a symbol
representing the 1-bit ripple-carry cell, which will be used to represent this cell at higher levels
of hierarchy. Then, you will create a test bench for your 1-bit ripple-carry cell and investigate its
properties through circuit simulations. In fact, you have encountered these steps in the previous
lab, for the inverter. What makes lab 2 different is that, based on a basic 1-bit ripple-carry cell,
a schematic and a test bench for an 8-bit ripple-carry circuit will be hierarchically created and
simulated.

All actions which you should perform are written in bullets. Since you should have read through
this instruction before the in-lab session, the different tasks should not take too much time. This
requires however that you follow the instructions carefully!

First, start CV in the same directory that you used in the inverter lab.

e Log in on one of the designated computers and start a terminal window.

e Move to the working directory you used last time and initiate and start CV:

> cd $HOME/MCC092/cadence
> /usr/local/cad/course/MCC092/Y2018/stm®65

Open the library you created in the inverter lab using the Library Manager and create your
basic carry gate. This is the compound carry-generating gate, without any inverters, that you
prepared in the pre-lab assignment. You will add the inverters later, to create the 1-bit ripple-
carry cell which should have a non-inverting output.

e In Library Manager, select the name of your library in the list of libraries below the
field ‘Library’.

e Choose File—New—Cell View... so the form Create New File appears.

e Type in a cell name, e.g., carry_gate, in field ‘Cell’. Make sure that field ‘View’ is
schematic. We will next create the circuit schematic of the carry gate.

e Click on OK.

5 Drawing the Schematic for a Carry Gate

As for the inverter in lab 1, we will implement a carry gate using transistors from the library
cmos065 and ideal components from the library analogLib. This phase, the schematic phase,
is very similar to the work done in lab 1. The only difference is that here you are to use the X2
widths: 0.2 ym for nMOS transistors and 0.4 um for pMOS transistors.

First place the transistors needed for the carry gate in the schematic editing window.

e Press [i] so the form Create Instance appears.

e Place all nsvtlp transistors first:

‘Library’ c<mos065
‘Cell’ nsvtlp
‘View’ symbol
‘Width’ 0.2
‘Length’ 0.06

Click in the workspace and place the transistors according to the schematic you drew as
preparation for the lab. Leave plenty of space between the transistors.

e Place all the psvtlp transistors and set the widths to 0. 4.

e Finish with [ESC] (with the mouse pointer in the schematic window).

As in lab 1, symbols for supply and ground are available in the library analogLib; look for
vdd and gnd.

e Insert vdd and gnd at appropriate places in your schematic.

Now we will connect the different transistors together and with the supply voltages. You can
use the command Create— Wire(narrow) or, rather, use a shortcut:

e Press [w].

e Connect the different components according to your sketch. Do not forget to connect the
bulk nodes of the transistors to vdd or gnd.

Assign some appropriate names for the signals in your schematic.

e Choose Create—Wire Name... or press [1].

4

e Give names to the signals in your schematic. You may want to, in one form, give several
signal names separated by spaces to speed up this process.

Now when the schematic is done we add pins to the schematic, to allow the carry gate to
interface to the outside world.

e Press [p]. The form Add Pin is shown.
e Make sure that ‘Attach Net Expression’ is selected as No.

e Write the pin names for all inputs, select ‘Direction’ to be input and place the pins
in the schematic. Do not forget that at this level some of the inputs are inverted and the
names should reflect that.

e Open the form again, write the pin name for the output, select ‘Direction’ to be output
and place the pin in the schematic.

e Connect the pins to the rest of the schematic with wires.
Save the schematic and correct any errors.
e Save the schematic with File—Check and Save or press [shift-X].

The schematic capture for the 1-bit carry gate is now finished and it is now time to export the
schematic.

e In the schematic window, select File—Export Image

e In the new window that appears type in the name that you want of the image and select
the appropriate file type. It is strongly suggested to select . png as they have good quality
and are easy to view in other operating systems.

e Click the folder button and navigate to the directory where the image will be stored and
press Open.

e [t is also suggested you swap the background colors to make the image more clearly
readable. White is more readable than black.

e Select any other options as appropriate and press Save.

At the moment it is unfortunately not possible to print or export files from heffalump. To
view the file you just saved, use the utility program gthumb to view the resulting png file. Run
the command in the terminal window on heffalump to view your saved file, here assumed to
called cell.png:

> gthumb cell.png

A screen shot can of course save the image to your lab PC if you want to keep it for later. But
it is better to take a screen shot of the image shown in gthump than of the schematic inside
Cadence, due to the black background used in Cadence. You can use the Windows 10 Snipping
tool to take a screen shot of a rectangular area on the screen.

5

6 Creating a Symbol for the Carry Gate Cell

Similar to the procedure for the inverter in lab 1, we will soon use our carry-gate schematic
design as a building block in other designs. We thus will create a symbol that represents our
new gate as it becomes available as a cell.

e Choose Create—Cellview—From Cellview... in the schematic editing window. The
form Cellview From Cellview appears. Here you specify the type of cell view to create.
Make sure that ‘To View Name’ is specified to symbol.

e Click on OK.

The form Symbol Generation Options appears next. Here we specify how the pins should be
placed along the perimeter of the symbol. The symbol that is created will be rectangular with
the pins placed as we have specified. We choose to place the pins for the input signals, A and
B, on the top side. The third input CIn is placed on the left-hand side, and the output on the
right-hand side.

e Give the positions of the pins as specified above.

e Click on OK.

Now a new Schematic window appears showing the newly created symbol. One can change
the graphical representation of the symbol if one so desires. We will leave it as it is and carry
on with the lab. We can now close the window with the symbol, and the window with the
schematic.

7 Creating a 1-bit Ripple-Carry Cell

To prepare the construction of the 8-bit ripple-carry circuit, you now have to create a non-
inverting 1-bit carry cell, called ripplel, that includes your compound carry gate carry _gate
and one or several instances of the inverter cell which you added to your library in lab 1. Again,
open the library you created in the inverter lab using the Library Manager and now create your
1-bit ripple-carry cell.

¢ In Library Manager, select the name of your library in the list of libraries below the
field ‘Library’.
e Choose File—New—Cell View... so the form Create New File appears.

e Type in a cell name, e.g., ripplel, in field ‘Cell’. Make sure that field ‘View’ is
schematic.

e Click on OK.

e Place one instance of carry gate and the instances of inverter you need. Connect
them as needed using wires and add pins so that all the pins are non-inverted signals, e.g.,
CIn, COut, A, and B.

e Save your 1-bit ripple-carry cell by pressing [shift-X].
Finally, we have to create a symbol for this cell.

e [ike we have done several times before, choose Create— Cellview—From Cellview...
in the schematic editing window. Ensure that ‘To View Name’ is specified to symbol.

e Click on OK.

e In the Symbol Generation Options window, arrange the signals so that A and B are at
the top, CIn on the left, and COut on the right.

8 Creating a Test Bench for the 1-bit Ripple-Carry Cell

We will now create a test bench to be used when investigating the properties of the 1-bit ripple-
carry cell. The test bench will contain one instance of the 1-bit ripple-carry cell, i.e., ripplel,
a few voltage sources for the signals and the power supplies, and a load capacitor connected to
the output.

o After choosing File—=New—Cell View... in the Library Manager, type in a name for
the new cell, e.g., ripplel_tb.

e Click on OK.
In the schematic window that appears, we first place one instance of our ripple-carry cell.

e Press [i] or use the command Add—Instance... to place the ripple-carry cell ripplel
into the schematic.

For power supplies, we use the DC source called vdc which is available in the library analogLib.

e Place an instance each of vdc, vdd, and gnd in the schematic.

e Connect the vdd component and the gnd component to the vdc source’s positive and
negative pin, respectively.

We will later perform a transient simulation of a digital circuit. For this purpose, the input
signals are most easily generated with vpulse voltage sources.

e Add three vpulse sources to the schematic.

e Connect the positive pin of each vpulse source to one input each on the ripple-carry cell.

e Connect the negative pins of the sources to ground, either with the ground component
already placed in the schematic, or through additional grounds.

The output of the ripple-carry cell will be loaded by a capacitor. The capacitor is called cap
and can be found in the analogLib library.

e Add a capacitor into your schematic.

e Connect the capacitor between the output of the ripple-carry cell and ground.

It will be easier to identify the different simulation curves in the simulated results if the signal
wires are given appropriate names.

e Assign some appropriate names for the input and output wires of the ripple-carry cell, by
pressing [1] and attach the signal names to the wires.

Check and save as before, and correct any errors. Save the schematic image and show it to the
lab TA.

We will now assign values to the different parameters in the schematic. We begin with the
vpulse components, which are very common in a test bench. As in the inverter lab, we will
choose parameters such that all possible input combinations are tested in the simulation. Since
our ripple-carry cell has three input signals, this means that we have eight different binary
combinations. We also want to be able to measure the propagation delay from CIn to COut for
different combinations of A and B.

e Open the form Edit Object Properties by pressing [q].

e Select one vpulse component at a time. Type in the parameter values and press Apply.
For all these sources we have:
‘Voltage 1’ O V
‘Voltage 2’ 1.2V
‘Rise time’ 20p s
‘Fall time’ 20p s

However, the width of the pulses and the period of the signals differ:

CIn A B
‘Period’ 8n s 4n s 2n s
‘Delay time’ 4dn s 2ns 1n s

‘Pulse width’ 4n s 2ns 1n s
What remains is to give a value of the supply voltage and a parameter name for the capacitor.

e Select the vdc component and set ‘DC voltage’ to 1.2 V.

8

e Select the capacitor and write for ‘Capacitance’ a symbolic value, e.g., Cload.

e Save with [shift-X].

The value Cload for the capacitor is a simulation parameter which we will give a numeric
value before we simulate the ripple-carry cell. The name for the parameter is arbitrary. (In a
succeeding lab, we will vary the value of the load capacitor; if not we could have just as well
given a fixed value.)

9 Simulating the 1-bit Ripple-Carry Cell

In order to investigate the performance of our ripple-carry design, we will now perform circuit
simulations. Commence circuit simulation as in lab 1:

e Choose Launch—ADE-L in the schematic editing window.

Then we select transient simulation mode and define a stop time.

Issue Analyses— Choose... in the Virtuoso Analog Design Environment (ADE-L) win-
dow. The form Choosing Analyses appears.

Choose tran.

As ‘Stop Time’, type in 9n.

Click on OK.

Any symbolic circuit parameters in the schematic must be assigned numerical values. In our
case, there is only one such parameter, namely the load capacitor. A value of 1-2 {F is com-
parable to the input capacitance of a small gate in the 65-nm process technology that we use
here.

e Choose Variables—Copy From Cellview in the ADE-L window. The capacitor param-
eter should appear in the field ‘Design Variables’.

e Double click on the capacitor parameter in the field ‘Design Variables’. The form
Editing Design Variables appears.

e Type 1.5f in the field ‘Value (Expr)’
e Click on OK. Make sure that the capacitance value has appeared in the field ‘Design

Variables’.

Now, you have to specify the signals you want to view after the simulation. Like for the inverter
in lab 1, you want to study the input and output voltages of the ripple-carry cell, and the current
drawn by this cell. We select these in the circuit schematic:

9

Choose Outputs—To Be Plotted—Select On Design in the ADE-L window.

In the schematic, select the wires corresponding to the voltages you are interested in.

In the schematic, also select the positive pin on the supply voltage source to monitor the
current flowing.

Press [ESC] when finished.

The selected signals are shown in the field ‘Outputs’ in ADE-L.
Finally, you must select the corner to use. If this is not done, no simulation models are loaded
since there is no default value and the simulation will abort.

e Issue ArtistKit—Setup Corners... in the ADE-L window. A form called Setup Corners

appears.

e Under Scenario, select TT (the top option) for GLOBAL VARIATIONS.

e Click on Save Model File (Do not confuse it with Save Scenario!)

e Close the window by selecting Session— Close
Before we move on to the simulation, it is wise to save the information entered so far. This way,
we can save some time if later on we want to perform the same or similar simulations.

e Choose Session—Save State... in the ADE-L window.

e select Cellview as the Save State Option at the top. With this option the state will
be saved inside your testbench schematic rather than in an arbitrary folder somewhere.

e Click on OK to save.

Finally, we can start the simulation.

e Choose Simulation—Netlist and Run or the corresponding short cut button in ADE-L.

The simulation starts and a separate window appears showing the simulation progresses.

When the simulation has completed a graph window appears, containing the signals we chose
to display. Now there are a number of in-lab tasks that you need to perform and later show to
the lab TA:

e Verify that the ripple-carry cell implements the correct logic function.

e Measure the largest current drawn by the ripple-carry cell.

e Measure the propagation delay for the ripple-carry cell. The propagation delay will vary
with what inputs are changing. Which number should one use?

10

e Measure the rise and fall times of COut in a few cases.

Save an image of the result as you did in the inverter lab. Then show your results to the lab TA.

Before we move on to the next task, it is good to close all simulation windows to avoid unnec-
essary confusion.

10 Investigating an 8-bit Ripple-Carry Circuit

As promised, we will now use our 1-bit ripple-carry cell as the building block in an 8-bit ripple-
carry circuit. Since we have designed our 1-bit ripple-carry cell with hierarchy in mind, this
design will be easy: Eight instances of ripplel will be connected in series, and the remaining
input and output signals will be connected to pins to make an interface to the outside.

First, create a new schematic cell in the labs library for the 8-bit ripple-carry circuit and add
some instances.

Choose File—New—Cell View... in the Library Manager.

Type in a name, e.g., ripple8.

Click on OK.

Add eight instances of your ripple-carry cell in the schematic. Place them in one row with
some space between, so you can easily connect each cell output to the next input, using

[w].

We must also add pins for the ripple8 circuit, reflecting the carry signal from less significant
ripple-carry circuits and two 8-bit buses for A and B. For the bus signals we will use pin names
with a bus syntax (xxx<m:n>) in order to decrease the number of pins. Bus syntax is briefly
discussed in Section 7.5 of the Cadence Crib Sheet.

e Add one input pin, preferably close to the input of the left-most ripple-carry cell. Name
it CIn.

e Add one output pin, preferably close to the output of the right-most ripple-carry cell.
Name it COut.

e Add two input pins with names in bus syntax: A<7:0> and B<7:0>. Make sure that bus
expansion is set to off for the pins to work as intended.

The connection of the components is simplified by the naming convention which states that nets
with the same name are assumed to be connected, even if they are not connected explicitly using
wires in the schematic. Consequently, a large net does not have to be drawn completely; it is
sufficient to draw a short wire to each component pin and to let the other end, so to speak “hang
in the air” (which is accomplished by a double click). The wires are then connected through the
naming of the wires.

11

e Press [w] and add short wires to each of the bus pins and to each of the A and B inputs of
the ripple-carry cells. Double click to end a wire “in the air”.

e Name the input signals of the ripple-carry cells A<@>, A<1>, A<2>, etc. You can do that
easily by putting A<7: 0> as the wire name and then checking the box Bus expansion.
That will allow you to click multiple times (8) and name each wire in order. When you
name the wires make sure the least significant bit (LSB) is numbered O and the most
significant bit (MSB) is numbered 7.

e Save the schematic with File—Check and Save. Correct any errors before continuing.

e Save the image of the schematic as before. Show it to the TA.
Next we will create a symbol for the 8-bit ripple-carry circuit.

e Choose Create—Cellview—From Cellview... in the schematic editing window.

Accept the library name, cell name, and the view name as before.

Move A<7:0> and B<7:0>to ‘Top Pins’ in the Symbol Generation Options form.

Click on OK.

Inspect the symbol and then close the window.

In addition, close the window with the 8-bit ripple-carry circuit schematic.
Now, we will create a test bench for the 8-bit ripple-carry circuit.

e Choose File—New—Cell View... in the Library Manager.
e Give a name for the test bench, e.g., ripple8_tb.

e Click on OK.
Add components to the test bench the same way as before.

e Add one instance of the 8-bit ripple-carry circuit.
e Add one vdc, one vdd, and one gnd to the schematic and connect them as before.
e Add three vpulse sources and connect their negative pins to ground.

e Connect the positive pin of one of the vpulse sources to CIn of the 8-bit ripple-carry
circuit. Give the signal the name CIn.

e Add a load capacitor (cap) and connect it between ground and COut of the 8-bit ripple-

carry circuit. Name the signal COut.

The connections from the pulse sources to the ripple-carry cell inputs A and B are a little bit
different in this case, since these input signals are buses. We again exploit that signals can be
connected by giving them the same name in the schematic.

12

e Connect short wires to the positive terminals of the two remaining vpulse sources and
the A<7:0> and B<7:0> inputs of the ripple-carry cells.

e Choose Create— Wire Name... to name the wires connected to the vpulse sources. Use

the names In® and In7, where O and 7 refer to the bit positions in the ripple-carry cells.

The bus signals connected to the inputs of the ripple-carry cells are given names that are /ists of
simple signal names.

e Name the B input bus vdd! ,vdd!,vdd!,vdd!,vdd!,vdd!,vdd!,vdd! (no spaces!).

e Name the A input bus In7,gnd!,gnd!,gnd!,gnd!,gnd!,gnd!, In® (no spaces!).

The most significant and the least significant bits of the A input have in this way been connected
to one vpulse source each. The remaining bits are connected to the global signal gnd!. (Read
more about global signals in the Cadence Crib Sheet, Section 7.5.)

Finally, we assign parameter values to the load capacitor and the sources and save our work.

e Select the load capacitor, open Object Properties (with [q]), and name it Cload.

e Set the vdc source voltage to 1.2 V.

Using our three vpulse sources, we want to achieve that the signal is propagated from the
different inputs to the output.

o Assign the following parameter values to the sources:

‘Voltage 1° (VY

‘Voltage 2’ 1.2V
‘Period’ 60n s
‘Rise time’ 40p s
‘Fall time’ 40p s
‘Pulse width’ 10n s

‘Delay time’ 10n s (in7)
30n s (in0)
50n s (cin)

e Save the cell with [X]. Correct any errors and save again.

e Save the image of the schematic and show it to the lab TA.

The test-bench design is now ready for simulation. Basically the same way as for the 1-bit
ripple-carry cell test bench, we outline the procedure below:

e Open the window Virtuoso Analog Design Environment with Launch—ADE-L.

e Issue Analyses— Choose... and choose tran. Set the stop time to 100n.

13

e Issue Variables— Copy From Cellview. Set the parameter value for the load capacitance
to 1.5f as before. (Make sure there is no space between 1.5 and f).

o Issue Outputs—To Be Plotted—Select On Design. Choose to plot the three inputs and
the single output of the ripple-carry cell, and the current going through the DC supply
source.

e Select the TT corner for the analysis.
e Using a descriptive name for this state, issue Session—Save State.
e Start the simulation with Simulation—Netlist and Run.

e Take a look at the power supply current and how it varies over time. Zoom in (press [z])
so you can study the current profile in detail. If the profile varies with the input that is
switching, what is the relation between input transition and current profile?

e Measure the propagation delay (#,;) from the inputs to the output and fill in the table
below. How does the propagation delays from the different inputs relate to each other?
Can you explain the differences in propagation delays? Compare your measured data with
your delay calculations from the pre-lab. Do they match? If there is a large difference try
to figure out why.

Rising inputs Falling inputs
At time | Input signal | Propagation delay 7,; | At time | Input signal | Propagation Delay 7,4
10 ns 20 ns
30 ns 40 ns
50 ns 60 ns

Save an image of the simulation result and show to the lab TA.

e Save the simulation results with Results—Save... in the ADE-L window. Make sure you
choose an appropriate name here; the result will be used in a later lab.

You are now finished and can close down CV, unless you want to continue to do some of the
extra experiments listed in section 11.

e Choose File—Exit ... in the CIW.

e Save the simulation state for future use.

11 Extra for Those Who Have Time

The 1-bit ripple-carry cell that you designed is not speed optimal, since there is an unnecessary
inverter inserted between the carry generation gates. (We used this scheme because it makes
all ripple-carry cells and their connections identical.) You can try a couple of things to see how
much you can improve the delay.

14

First, you have not optimized the size of the inverter w.r.t the Cin input. Calculate the optimal
inverter size, change the sizes in your X4 inverter to this size and rerun the delay measurement
for the 8-bit carry cell. Does the improvement match your calculation? Change the size of the
X4 inverter back to what it should be after this experiment.

Another possibility is to use the speed-optimal full-adder cell from Weste and Harris. That
schematic, shown in Figure 11.4(c) of Weste and Harris (red book), is available for you to copy.
See instructions on the course PingPong page for how to do this. The only difference in our
schematic from the one in the book, is that we have included the inverters for the carry output
so that one does not have to invert the A and B inputs in every other cell. We have used the size
(1) in the figure to mean 0.2 pum.

Repeat the experiments above but instead use the speed-optimal carry circuit in Figure 11.4(c)
of Weste and Harris. Fill in the table below for this design. How do the delays compare with
the ones for your ripple-carry cell?

Rising inputs Falling inputs
At time | Input signal | Propagation delay 7,; | At time | Input signal | Propagation Delay 7,4
10 ns 20 ns
30 ns 40 ns
50 ns 60 ns

Another experiment you can try is to use the slow (SS) and fast (FF) corners instead of the
typical model values (TT) and see how much the delay for the 8-bit carry chain changes.

Finally, you can change the order of the transistors in the n- and p-nets that are in the critical
path in your compound gate to see how much the delay for the 8-bit carry chain changes.

12 The End

We have now completed the schematic design and simulation cycle for a hierarchical design.
We have investigated the performance of our hierarchical design using circuit simulations at
several levels. There is some overhead in handling all these small cells for a limited design
like a 8-bit ripple-carry circuit. However, for larger designs, this hierarchical way of working is
indispensable.

In the next lab you will learn to make the physical layout and how to convince yourself that the
layout matches the circuit schematic.

15

