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Sequential Logic

 Combinational logic
— output depends on current inputs

* Sequential logic
— output depends on current and previous inputs
— Requires separating previous, current, future
— Called state or tokens
— Examples: Finite state machine (FSM), pipeline

c,k c,k c!k cI‘k
in —» out
CL > CL CL >
Finite State Machine Pipeline

Figure 1.67 from W&H
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Sequencing

If tokens move through pipeline at constant
speed, no sequencing elements are necessary
Ex: fiber-optic cable

— Light pulses (tokens) are sent down cable

— Next pulse sent before first reaches end of cable
— No need for hardware to separate pulses

— But dispersion sets min time between pulses

This is called wave pipelining in circuits

In most circuits, dispersion is high

— Solution: delay fast tokens so they don’t catch up on
slow ones.



Sequencing overhead

* Solution: Use flip-flops to delay fast tokens so they
move through exactly one stage each cycle.

 Drawback: Adds some delay also to the slow tokens
* Thus, circuit is slower than just logic propagation delay

— Added delay is called sequencing overhead

 Some people call this clocking overhead
— But it applies to asynchronous circuits too
— Inevitable side effect of maintaining sequence
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This lecture

 Compute sequencing overhead with flip-flops
— Compute maximum clock frequency
— Also with clock skew

* Understand causes of delays in flip-flops and
abit about their design tradeoffs

— But not design them

* Synchronization of asynchronous signals
— Metastability



Return to adder example

Register File Decoder

wordslice wordslice wordslice
Figure 1.67 from W&H
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Ripple-carry adder (from postlab 2)
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Sequencing with flip-flops
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Flip-Flops clk |
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Fllip-flop: Edge-triggered (positive edge) holds data until next edge

Goals today:
Given a certain CL determine the minimum possible T_ with

and without clock skew.
Given certain f_, clock skew and flip-flops determine timing

requirements on CL.

Part of Figure 10.2 from W&H
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Characterizing combinational logic

* Propagation delay, t:
— Maximum time until output finally reaches V/2.
— Output is guaranteed not to change after t

* Contamination delay, t_,.
— Minimum time until output initially reaches V,/2.
— Output is guaranteed not to change before t_4

A X
A Comblngtlonal v
Logic
[ P ——ha

Figure 10.4 (a) from W&H
2017-10-03
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Contamination delay
When is delay shorter than t ,?

3-input NAND gate, Example 4.2 from W&H, Figure 4.7
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Flip-flop operation and delays

clk ok tsewp” 7[ 't \
l | W\ ) hoid
LL / /
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Edge-triggered (positive edge) holds data until next positive clock edge.
Input is called D output is called Q.

Input D has to be ready before clock edge happens, so that correct data is read.
Input D has to be stable long enough after clock edge happened to be correctly
locked by flip-flop.

From clock edge happening it takes some time until output Q is available, there is
a maximum and a minimum delay.

Figure 10.4 (b) from W&H
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Flip-flop operation and delays

AN

=
o £ o XL
samplinglwindow, aperture
Abbreviation | Flip-flop delay Setup time is always
tpcq Clk-to-Q propagation delay positive.
t Clk-to-Q contamination delay Hold time can be
ccq _ positive, zero or
tsetup Setup time negative.
toig Hold time

Figure 10.4 (b) from W&H
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What is minimum T_?
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Abbreviation | Flip-flop delay

tpcq Clk-to-Q propagation delay
tecq Clk-to-Q contamination delay
tsetup Setup time

troig Hold time
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What is minimum T_?
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Flip-Flops clk

Flop
Flop
v

Make sure result from CL is always there when next clock edge happens:
Otherwise there is a setup violation.
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Maximum propagation delay
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Figure 10.5 from W&H sequencing overhead
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What is minimum T_with clock skew?

2017-10-03

c!k c,k
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Clock skew = difference in delay (arrival time) for clock signals.
We do not know which way the difference will go.

Make sure result from CL is always there anyways when next clock
edge happens

Figure 10.15 (a) from W&H
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Maximum propagation delay with clock skew

. clk
Q1 L _ D2
—» L —)[ Combinational Logic ]—y N Ly
TC
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= AN R4
tpcq tskew
Q1 tpdq / tsetup
\ /
I
tpd = T'C - (tsetup + tpcq + tskew)

sequencing overhead

Decreases maximum propagation delay
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Another potential problem

c
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Flip-Flops clk clk

Flop

»[\) Combinational Logic J—»

What if result from CL changes before the previous result has been read?
Then tokens are merged and data is lost.
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Minimum contamination celay
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Figure 10.9 from W&H
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Hold violation with clock skew?

c
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clk clk

Flip-Flops

Flop
Flop
v

»[\) Combinational Logic J—»

What if result from CL changes before the previous result has been read
and we have clock skew?
Then tokens are merged and data is lost.
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Minimum contamination delay
with clock skew
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D2 tg Figure 10.15 (b) from W&H
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Is setup or hold violations worse?
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System balancing

* A well-designed system is balanced

* No need to overdesign one part if another
part limits system performance.

* Tradeoff between:
— CL: delays, area, power
— Flip-flop design: delays, area, power, metastability

— Clock generation and distribution: detay-clock
skew, area, power



How design a flip-flop?

* Important requirements:
— Data is always maintained and restored
— Short delays
— Low capacitive load on clocks signals
— Small

— Enable
— Reset/set (synchronous or asynchronous)
— Scan chain
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D-Latch Example

A MUX on the input allows us Two C-switches make a simple MUX
to either load new data or
keep old data

DATA —{1
——Q  DATA—C DO——Q'
0
CLK
Q <‘ AKX Ta <‘
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Using tri-state inverters

However, an inverter and a C-switch can be replaced by tri-state
inverter

-

o ¢

Voo Voo

Hf —
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D-Latch Design

 Tristate feedback o y .
+ Static D A= DQi

— Backdriving risk

e Static latches are essential so that data
does not disappear because of leakage
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D-Latch Design

e Buffered input

e
+ Fixes diffusion input D —%

+ Makes latch noninverting

2017-10-03
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D-Latch Design
e Buffered output HLEN
+ No backdriving D *DQ
g

* Widely used in standard cells

LYY

+ Very robust (most important)
- Rather large
- Rather slow (1.5 — 2 FO4 delays)

- High clock loading
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D-type Flip-Flop Design

* Flip-flop is built as pair of back-to-back latches

%a
P
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circuit design
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>
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D-type Flip-Flop Design

(J Datais transferred from master to slave when CLK=1
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O New data is received by master when CLK=0, while slave stores previous data
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Enable

* Enable: ignore clock whenen =0
— Mux: increase latch D-Q delay
— Clock Gating: increase en setup time, skew

Symbol Multiplexer Design Clock Gating Design
X' en
X
|
X D—1 o
| O Q
0 L
o Q
D— © —Q D— © —Q
T en T
|
en
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Enable circuit implementation
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Reset

* Force output low when reset asserted

# >o0——Q
e

X
%é reset
<
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e Synchronous vs. asynchronous
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Set/Reset

* Set forces output high when enabled
* Flip-flop with asynchronous set and reset

(I) -
D[ i set

¢

v

¢
% reset Q
= P
¢

——— set
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HS65 LS DFPRQ

HS65_LS DFPRQ

Cell Description
D-Type Flipflop; 1 Phase Positive Edge Triggered;

Logical Symbol Active Low Reset; Q Output Only
The cell has "dont_use" attribute set in the Syn-
opsys STF.
RN
—0D Qr——mna
cp Functions
l D cP RN Q IQ
- - 0 - 0
D / 1 - D
- - 1 IQ IQ
Cell Size
Drive Strength Height (um) Width (um) Area (um2)
X4 26 4.00 10.4000
X9 26 4.00 10.4000
X18 26 420 10.9200
xX27 26 460 11.9600
X35 26 4.80 12.4800
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7 Virtuoso® Schematic Reading: CORE6SLPSVT HS65_LS_DFPRQXA cmos_sch 1 R —— {5 S

Cmd: Sel: 0 9
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5 Virtuoso® Schematic Reading: CORE65LPSVT HS65_LS_DFPRQX9 cmos_sch
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Master latch 2.6 um x 2.8 um
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Slave latch 2.6um x 3.2um
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DFF layout in cell library

4.0 um

2.6 um

v
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Summary

* We took a step from combinatorial logic to sequential logic:
— CL delays
— FF delays

* Setup and hold violations:
— Constraints on CL delays from f_, flip-flop delays and clock skew
e System tradeoffs — don’t overdesign any part!
* Edge-triggered flip-flop from two back-to-back latches: one master, one slave
— Enable
— Set/Reset
— Scan chains
 Had alook at a D-type FF in STMicroelectronics cell library
 Compared to a master/slave design using our design template.
— Results: 6.0 um wide compared with ST 4.0 um
* Next up: synchronization and metastability
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