

Wires & wire delay

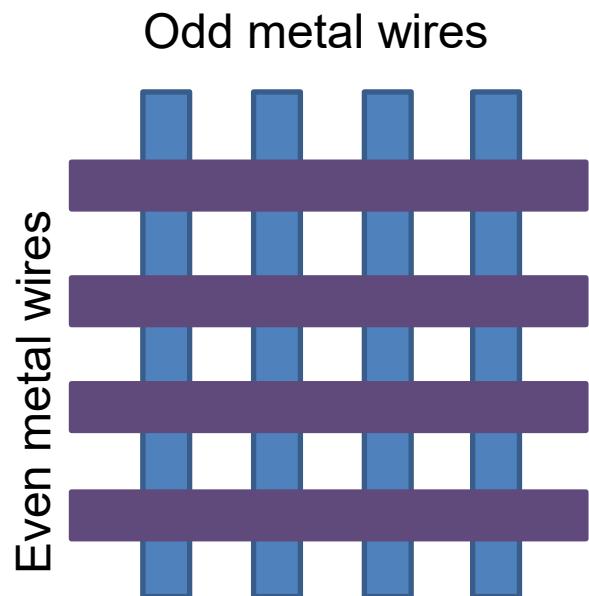
Lecture 9 on Interconnect
Tuesday September 27, 2017

Outline

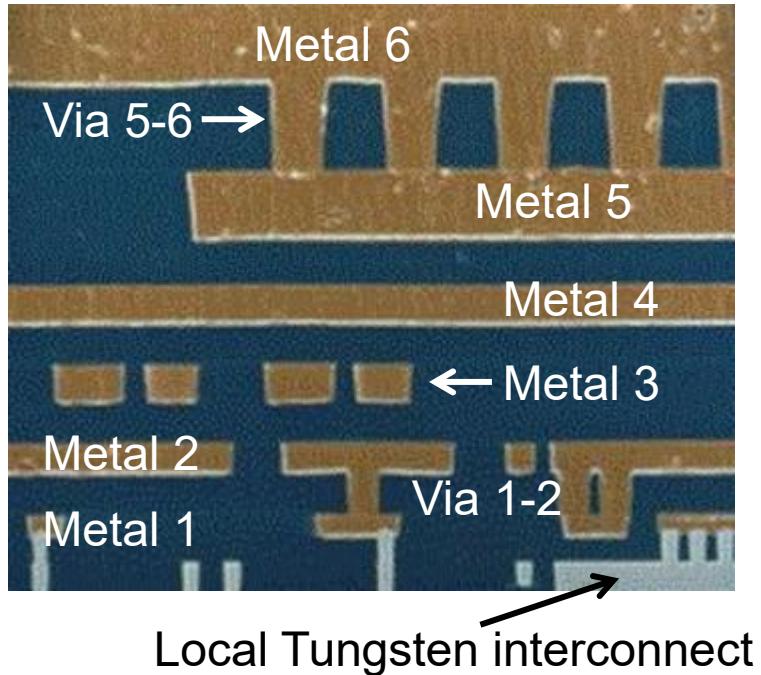
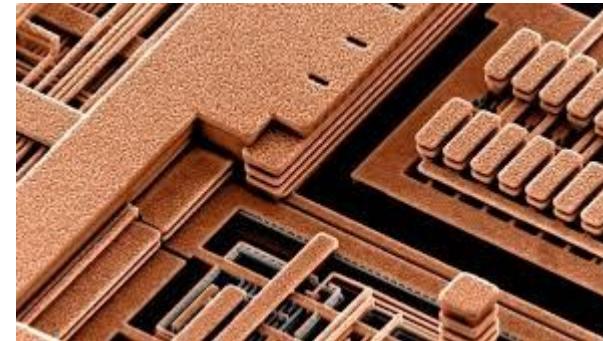
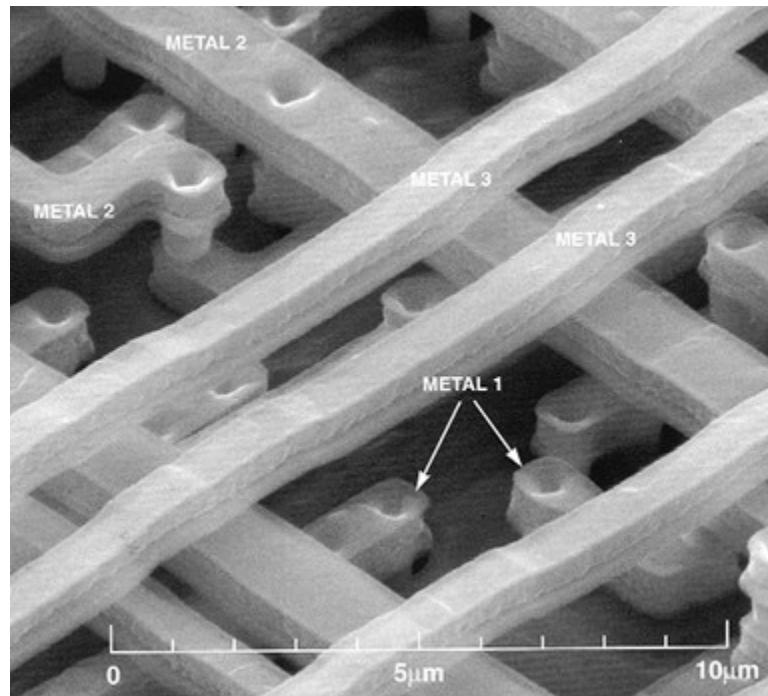
- Introduction
- Interconnect Modeling
 - Wire Resistance [sheet resistance in ohms per square]
 - Wire Capacitance
- Introducing a distributed wire RC π -model
- Estimating wire delay assuming a dominant RC time constant
- Inserting repeaters to keep wire lengths short
- Elmore delay model – a generalized model
- Handling wire branches
- Conclusions

Introduction

- Chips are mostly made of wires called *interconnect*
 - Transistors are little things under the wires
 - Many layers of wires
- Wires are as important as transistors
 - Speed
 - Power
 - Noise
- Alternating layers run orthogonally



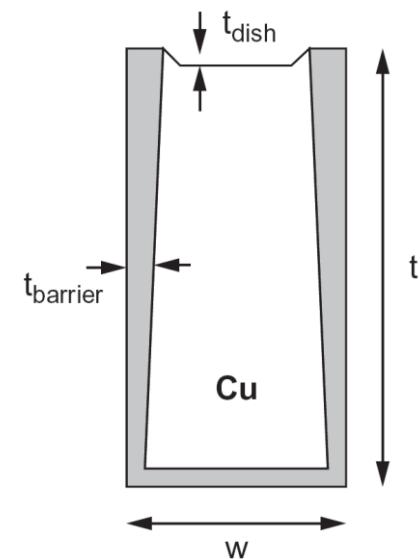
Modern interconnect



Choice of metals

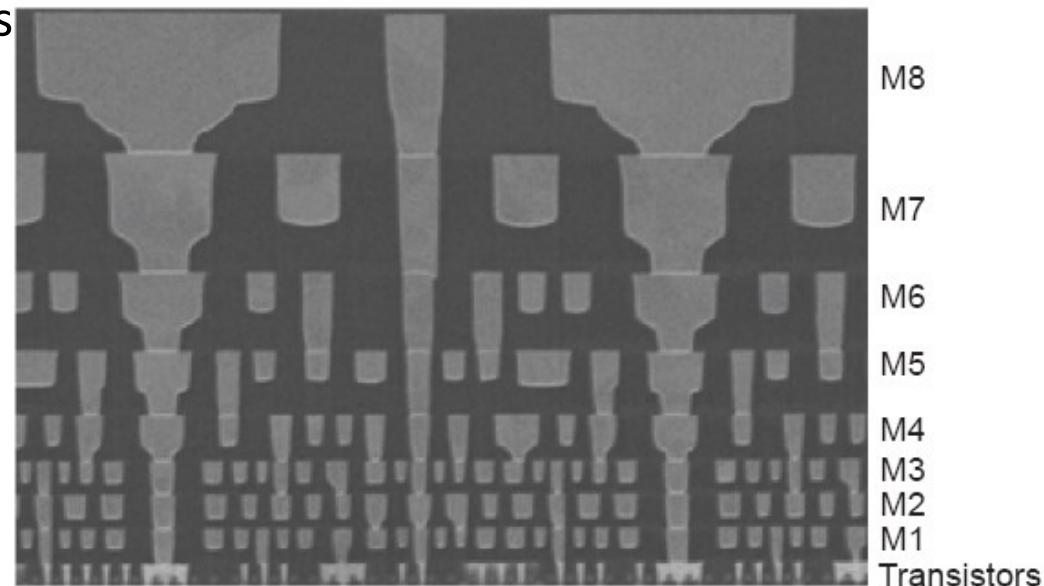
- Until 180 nm generation, most wires were aluminum
- Contemporary processes normally use copper
 - Cu atoms diffuse into silicon and damage FETs
 - Must be surrounded by a diffusion barrier

Metal	Bulk resistivity ($\mu\Omega\cdot\text{cm}$)
Silver (Ag)	1.6
Copper (Cu)	1.7
Gold (Au)	2.2
Aluminum (Al)	2.8
Tungsten (W)	5.3
Titanium (Ti)	43.0



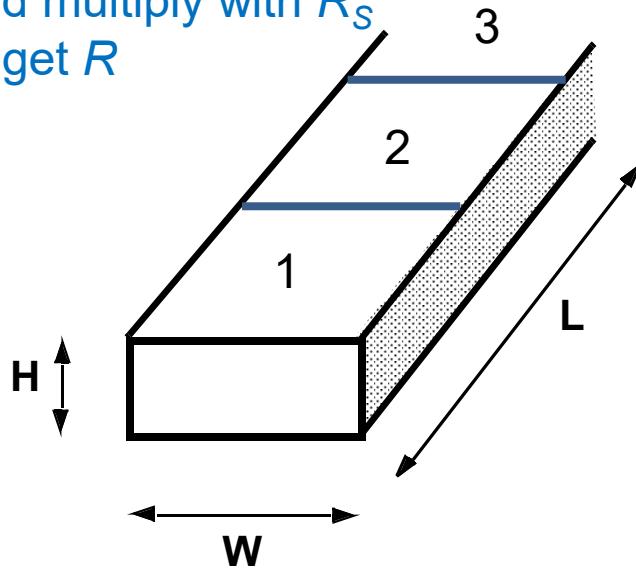
Layer stack

- AMS 0.35 μm process has 3 metal layers
 - M1 for within-cell routing
 - M2/M3 for vertical/horizontal routing between cells
- Modern processes use 6-10+ metal layers
 - M1: thin, narrow (< 1.5*minimum feature size)
 - High density wiring in cells
 - Mid layers: thick, wide
 - Global interconnect
 - Top layers: THICK, WIDE
 - For V_{DD} , GND, clk



Sheet resistance

Just count number of squares along wire and multiply with R_s to get R



All wires in a layer, or sheet, have the same height H , therefore we use "sheet resistance" in Ω/\square (ohms per square)

$$R = \frac{\rho L}{H W}$$

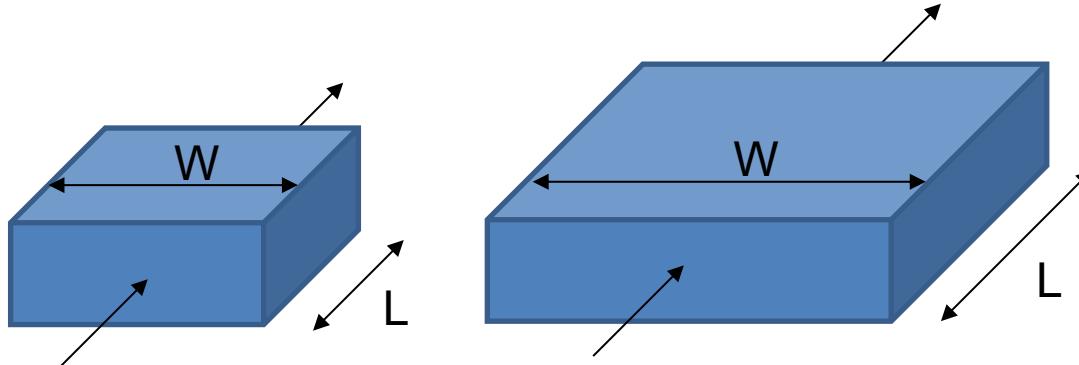
Sheet Resistance

$$R_0 = \rho / H$$

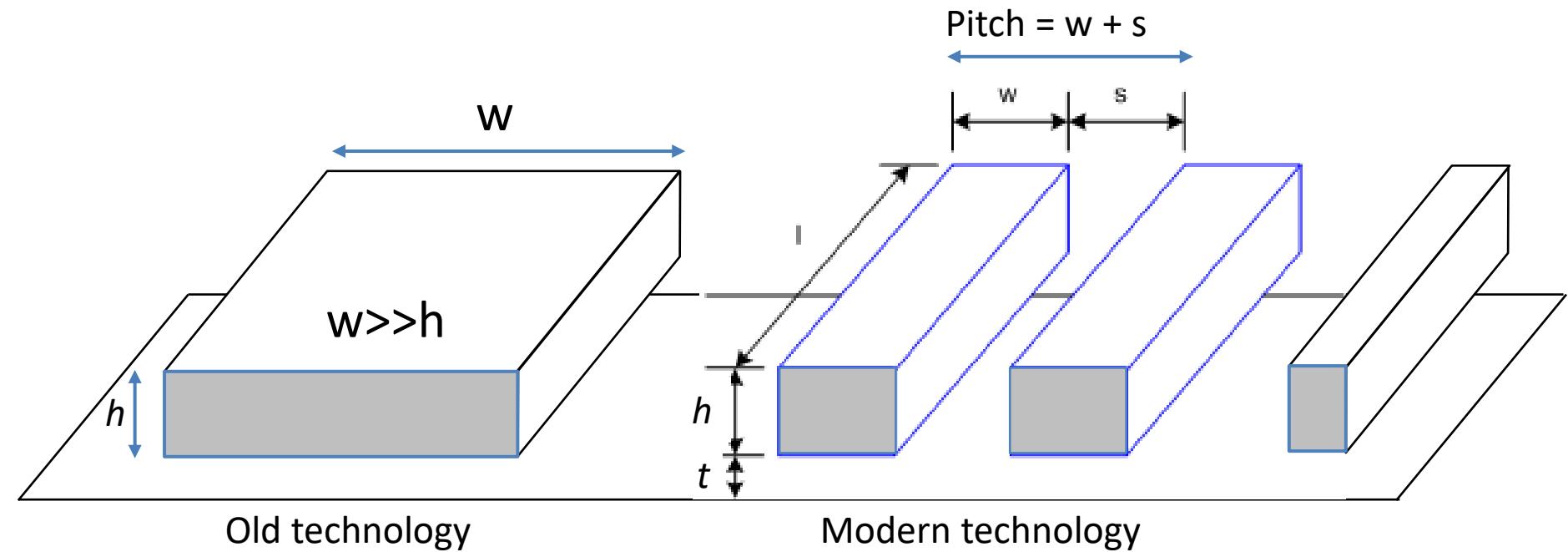
When $W=L$ the resistance is equal to R_0 , the sheet resistance (i.e. the resistance of a square wire)

$$R_1 \equiv R_2$$

Some books use R_s instead of R_0



Wire geometry



Today: pack in many skinny wires!
For long skinny wires resistance cannot be neglected since cross sectional area shrinks with feature size, wire length stays the same or increases. Hence: we need a wire RC model

Example

- Compute the sheet resistance of a $0.22 \mu\text{m}$ thick Cu wire in a 65 nm process.
The resistivity of thin film Cu is $22 \text{ n}\Omega\cdot\text{m}$.
- Find the total resistance if the wire is $0.125 \mu\text{m}$ wide and 1 mm long.

Example

- Compute the sheet resistance of a 0.22 μm thick Cu wire in a 65 nm process.

The resistivity of thin film Cu is 22 $\text{n}\Omega\cdot\text{m}$.

$$R_s = \frac{22 \times 10^{-9} \ \Omega \cdot \text{m}}{0.22 \times 10^{-6} \ \text{m}} = 0.10 \ \Omega/\square$$

- Find the total resistance if the wire is 0.125 μm wide and 1 mm long.

Example

- Compute the sheet resistance of a 0.22 μm thick Cu wire in a 65 nm process.

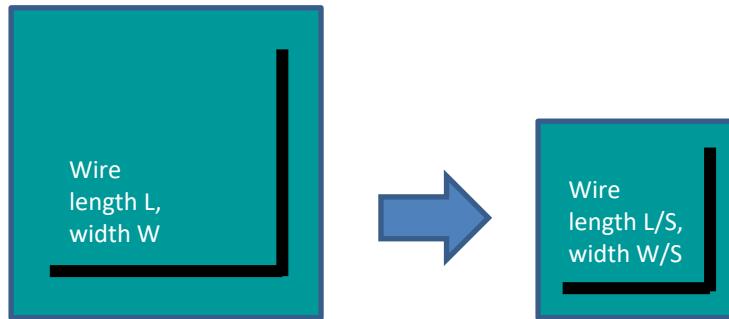
The resistivity of thin film Cu is 22 $\text{n}\Omega\cdot\text{m}$.

$$R_s = \frac{22 \times 10^{-9} \ \Omega \cdot \text{m}}{0.22 \times 10^{-6} \ \text{m}} = 0.10 \ \Omega/\square$$

- Find the total resistance if the wire is 0.125 μm wide and 1 mm long.

$$R = 0.10 \times \frac{1000 \ \mu\text{m}}{0.125 \ \mu\text{m}} = 800 \ \Omega$$

Wire delay scaling – Local wires



- For local wire crossing the same amount of circuitry
 - Resistance stays roughly constant
 - Length decreases by same amount as width,
 - height stays large and/or change material to copper
 - Capacitance decreases by scaling factor
 - Cap/unit length stays constant, length decreases
- Conclusion: Local wire delay tracks improvement in gate delay since both $RC \sim 1/S$.

$$R = \frac{\rho}{h} \frac{L/S}{W/S}$$

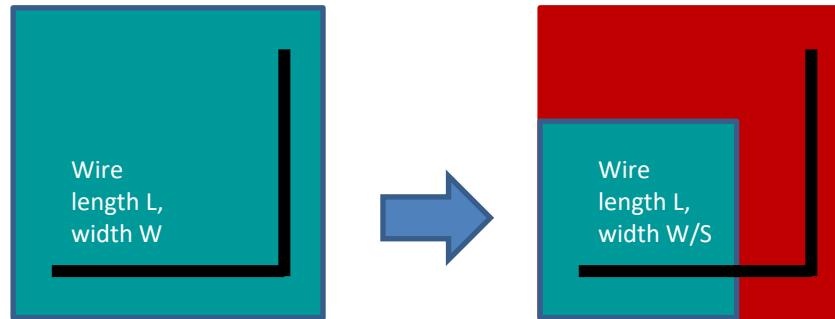
\downarrow
stays constant

$$C = (WC_{ox})L/S$$

\uparrow
stays constant

From Mark Horowitz at Design Automation Conference 2000

Wire delay scaling – Global wires



- For global wire crossing the whole chip
 - Resistance grows linearly (with scaling factor)
 - Capacitance stays fixed
- Conclusion: Global wire delay increases relative to gate delay since wire $RC \sim S$ and gate $RC \sim 1/S$.

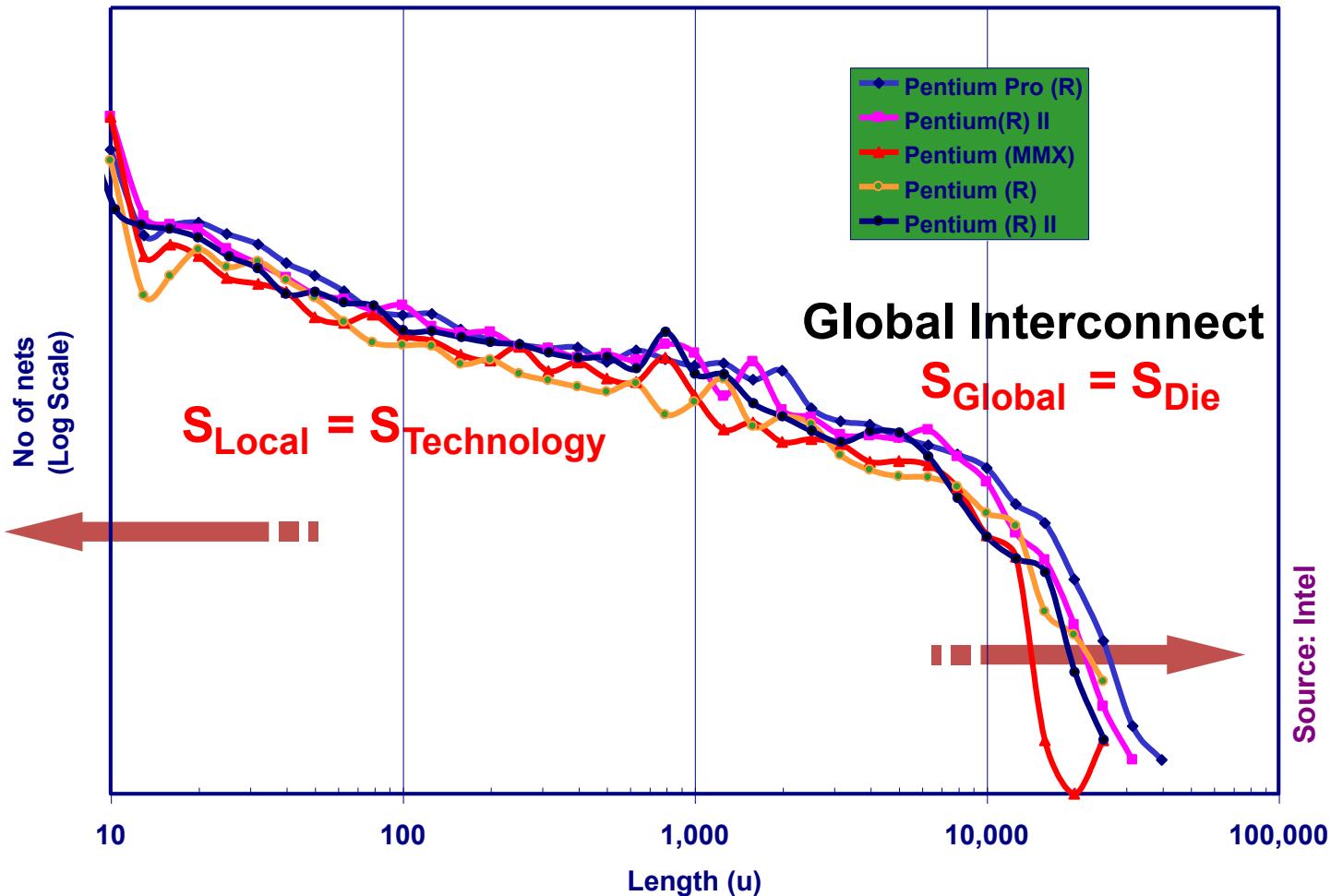
stays constant

$$R = \frac{\rho}{h} \frac{L}{W/S} \sim$$

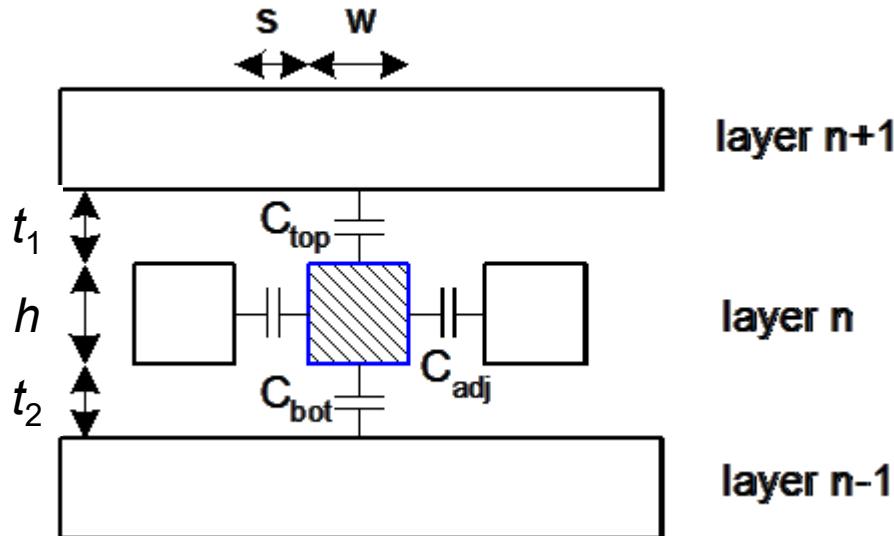
$C = (WC_{ox})L$

stays constant

Modern Interconnect



Wire capacitance



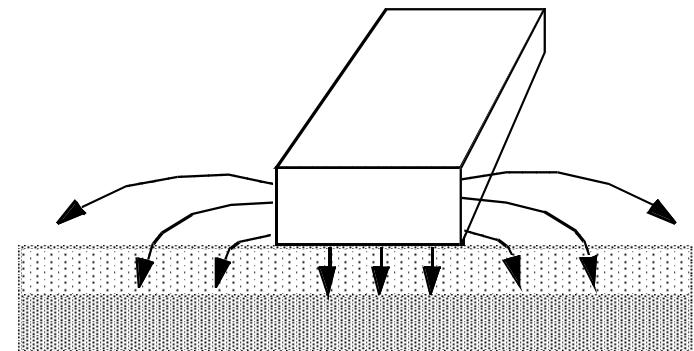
Wire has capacitance c per unit length

- to neighbors
- to layers above and below

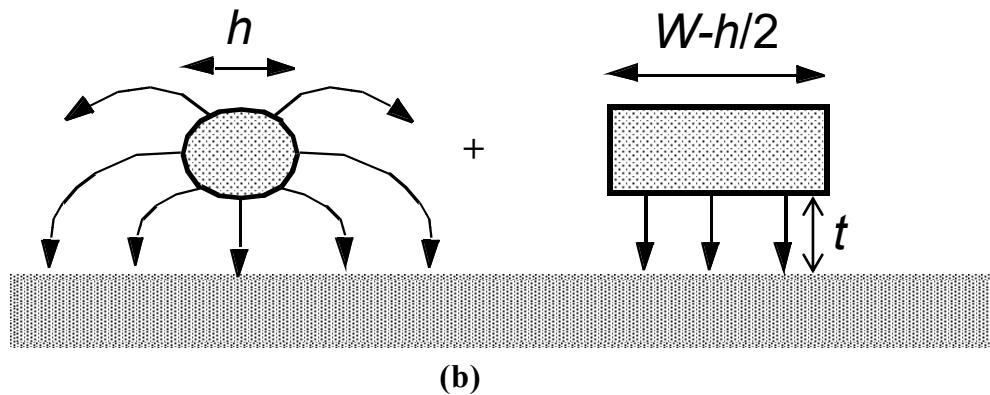
Parallel plate capacitance equation

- $C = WL\epsilon/t$
- $\epsilon_{ox} = \kappa\epsilon_0$, $\kappa \approx 4$ for SiO_2 , low-kappa $\kappa < 3$

Bottom plate and fringe capacitance

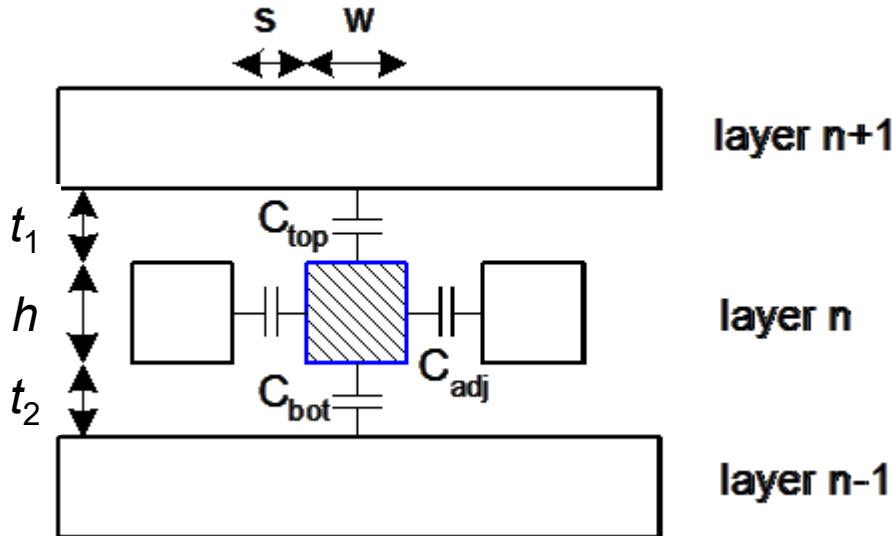


(a)



(b)

Wire capacitance



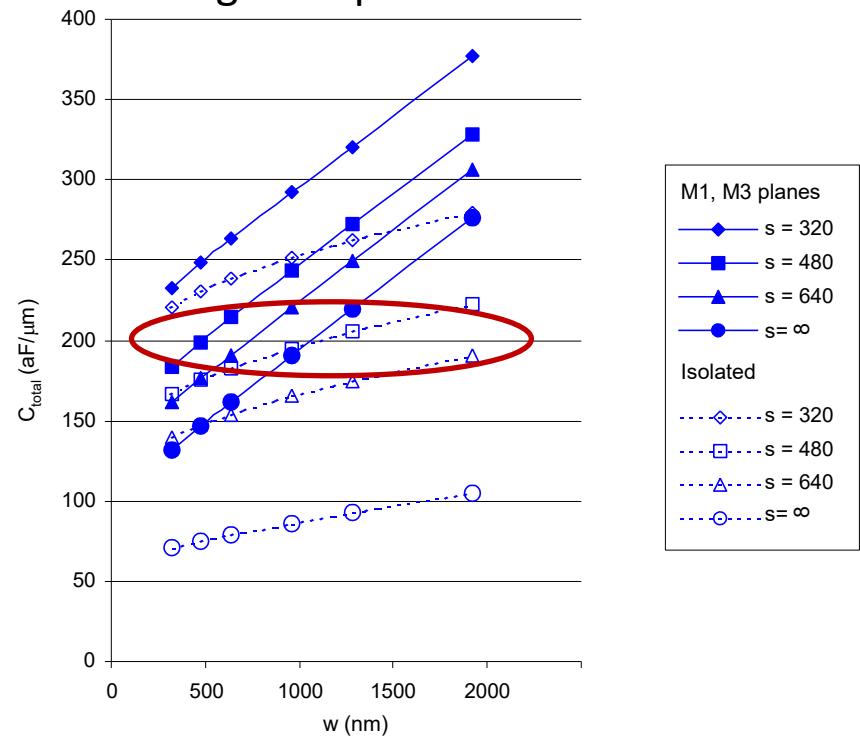
Wire has capacitance c per unit length

- to neighbors
- to layers above and below

Parallel plate capacitance equation

- $C = WL\epsilon/t$
- $\epsilon_{ox} = \kappa\epsilon_0$, $\kappa \approx 4$ for SiO_2 , low-kappa $\kappa < 3$

Typical wires have $\sim 0.2 \text{ fF}/\mu\text{m}$, i.e. $200 \text{ fF}/\text{mm}$. Compare with $1.2 \text{ fF}/\mu\text{m}$ MOSFET gate capacitance



Wire RC delay

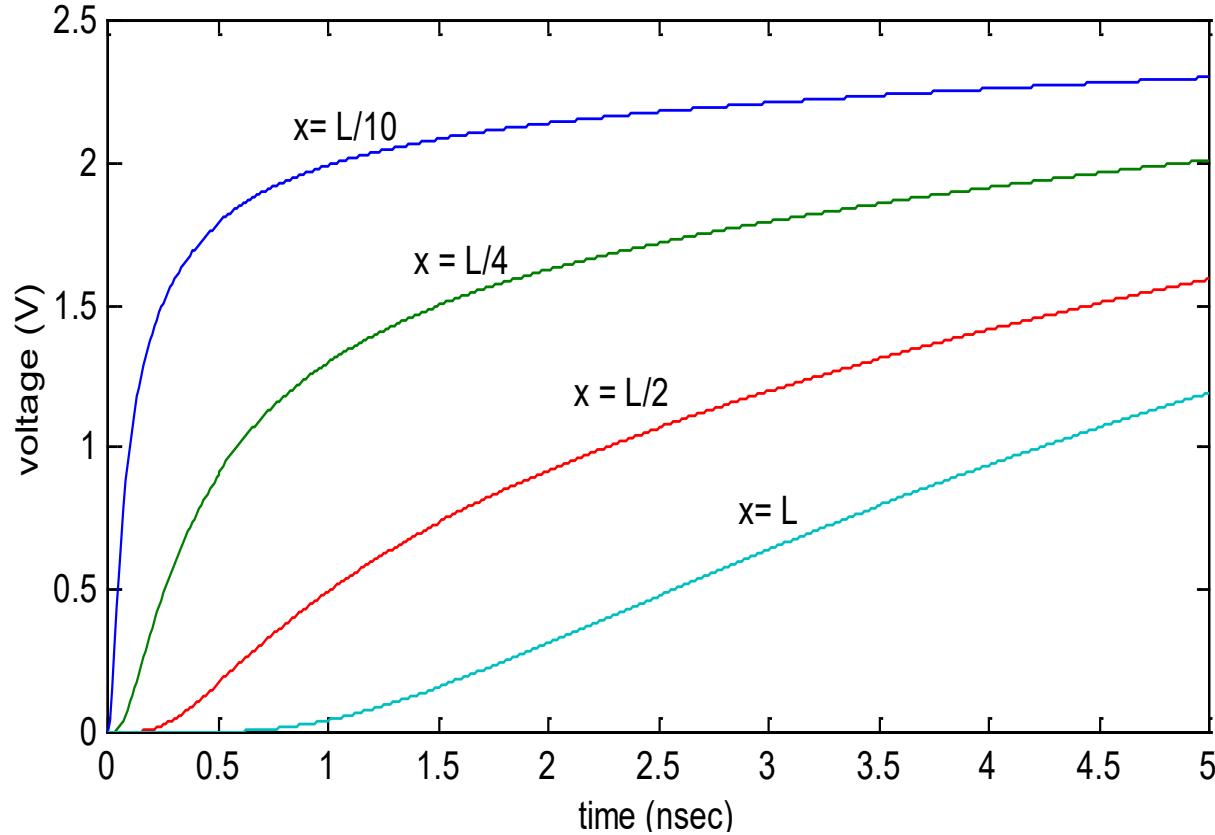
In any given technology

- wire RC increases as L^2 with wire length L
- r is wire resistance per unit length
- c is wire capacitance per unit length

$$R = \frac{R_s L}{W} = rL \quad C = (WC_{ox})L = cL$$

$$RC = rCL^2$$

Step-response voltage along the wire as a function of time



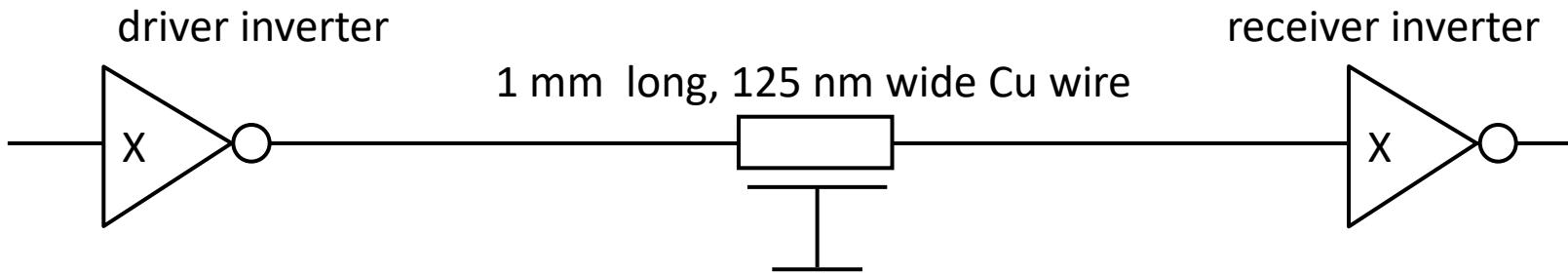
Wire delay example

Estimate the delay of an inverter driving an identical inverter at the end of the 1 mm wire! $W_P=2W_N$.

Assume wire cap $c=200 \text{ fF/mm}$, $r=800 \Omega/\text{mm}$ from previous examples

Without wire, electrical effort is $h=1$

Delay becomes $5 \text{ ps} * (p_{inv} + h) = 5 * 2 = 10 \text{ ps}$



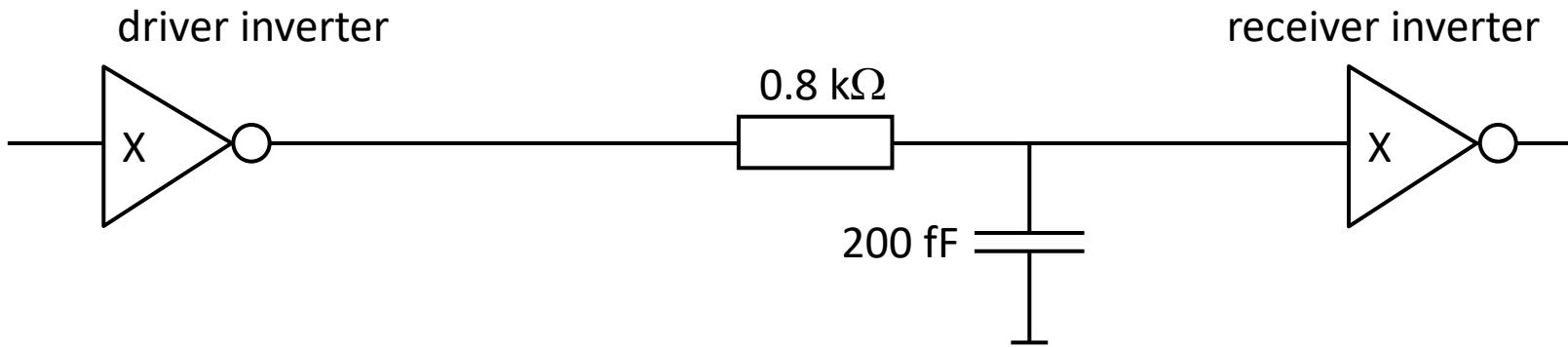
Wire delay example

Estimate the delay of an inverter driving an identical inverter at the end of the 1 mm wire! $W_P=2W_N$.

Assume wire cap $c=200 \text{ fF/mm}$, $r=800 \Omega/\text{mm}$ from previous examples

Without wire, electrical effort is $h=1$

Delay becomes $5 \text{ ps} * (p_{inv} + h) = 5 * 2 = 10 \text{ ps}$



Wire RC product is $R_W C_W = 160 \text{ ps}$. To be compared with inverter $RC = 7.2 \text{ ps}$

Wire effort is $W_E = 160 / 7.2 = 22$

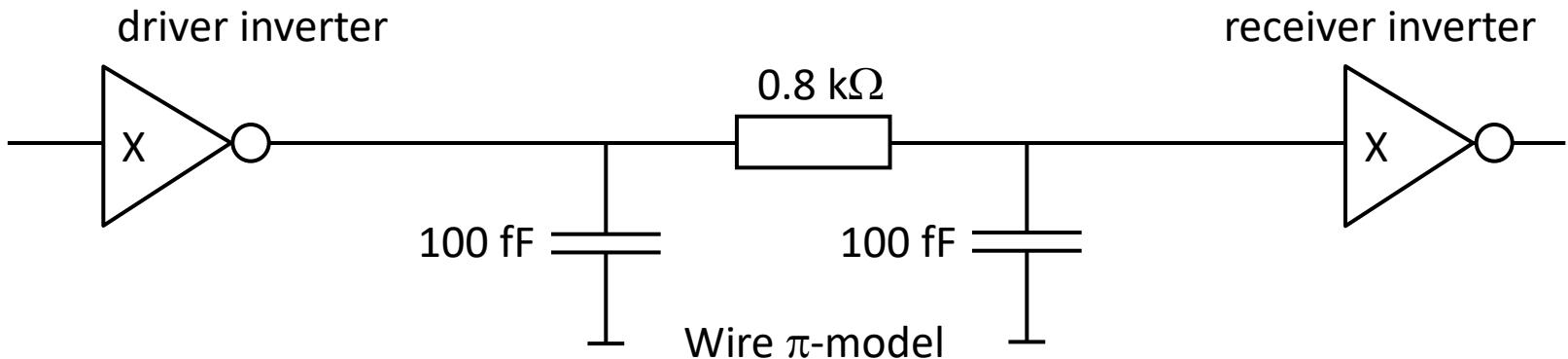
Wire delay example

Estimate the delay of an inverter driving an identical inverter at the end of the 1 mm wire! $W_P=2W_N$.

Assume wire cap $c=200 \text{ fF/mm}$, $r=800 \Omega/\text{mm}$ from previous examples

Without wire, electrical effort is $h=1$

Delay becomes $5 \text{ ps} * (p_{inv} + h) = 5 * 2 = 10 \text{ ps}$



Wire capacitance is distributed and must at least be divided into 2 halves

Wire RC product is $R_W C_W = 160 \text{ ps}$. To be compared with inverter $RC = 7.2 \text{ ps}$

Wire effort is $W_E = 160 / 7.2 = 22$

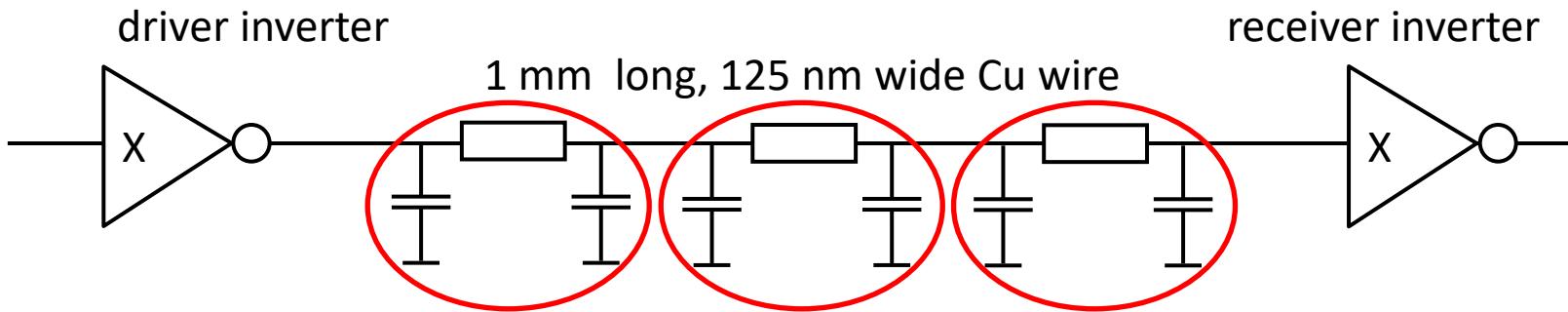
Wire delay example

Estimate the delay of an inverter driving an identical inverter at the end of the 1 mm wire! $W_p=2W_n$.

Assume wire cap $c=200 \text{ fF/mm}$, $r=800 \Omega/\text{mm}$ from previous examples

Without wire, electrical effort is $h=1$

Delay becomes $5 \text{ ps} * (p_{inv} + h) = 5 * 2 = 10 \text{ ps}$



Wires are distributed systems

Approximate with lumped element models

In Spice simulations a 3-segment π -model is accurate to 3%

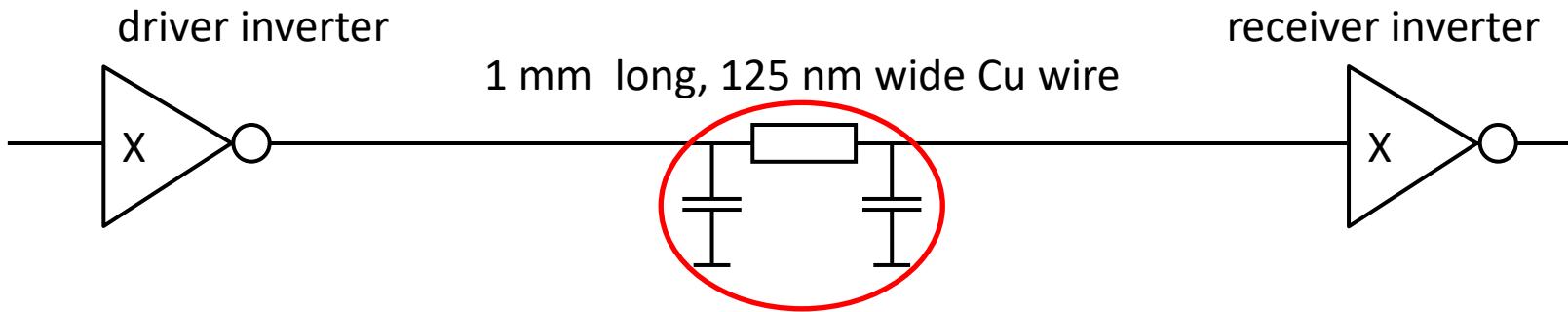
Wire delay example

Estimate the delay of an inverter driving an identical inverter at the end of the 1 mm wire! $W_P=2W_N$.

Assume wire cap $c=200 \text{ fF/mm}$, $r=800 \Omega/\text{mm}$ from previous examples

Without wire, electrical effort is $h=1$

Delay becomes $5 \text{ ps} * (p_{inv} + h) = 5 * 2 = 10 \text{ ps}$



Wires are distributed systems
For analytical solution:
use single segment π -model

Wire effort

- This year I decided to introduce a new concept
- The wire effort, similar to logical effort
- The ratio between RC products
- In our example the wire RC product is $R_W C_W = 160$ ps compared to inverter $RC = 7.2$ ps ($\tau/0.7$)
- Wire effort in our example is $W_E = \frac{R_W C_W}{RC} = \frac{160}{7.2} = 22.2$
- Why introduce this new concept?
- Because minimum normalized wire delay is $T_E = 4\sqrt{\frac{R_W C_W}{RC}} = 18.9$
- And the critical wire length is $L_{crit} = \frac{2L}{\sqrt{W_E}} = 0.42$ mm

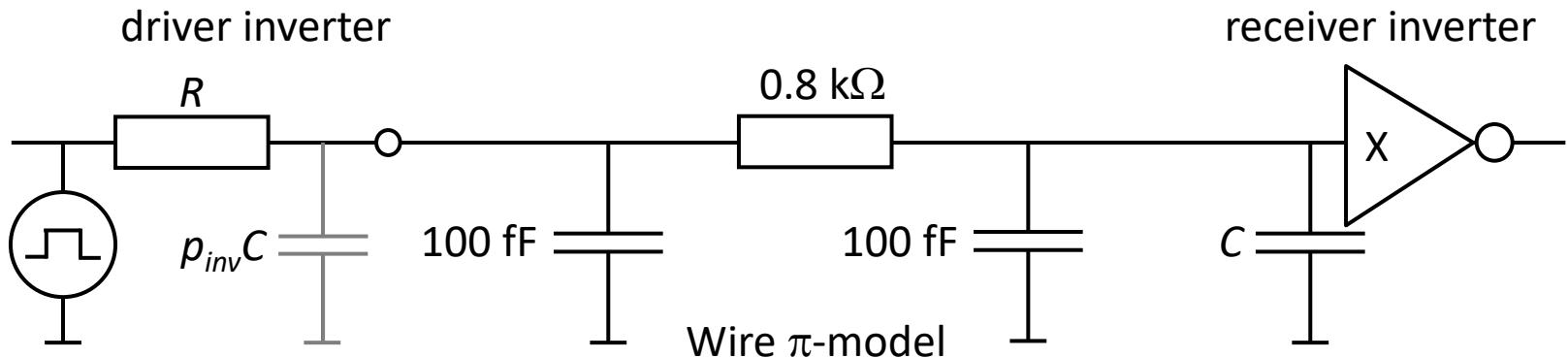
Wire delay example

Estimate the delay of an inverter driving an identical inverter at the end of the 1 mm wire! $W_P=2W_N$.

Assume wire cap $c=200 \text{ fF/mm}$, $r=800 \Omega/\text{mm}$ from previous examples

Without wire, electrical effort is $h=1$

Delay becomes $5 \text{ ps} * (p_{inv} + h) = 5 * 2 = 10 \text{ ps}$



Introduce electrical inverter models

What is the delay of this two-stage RC circuit?

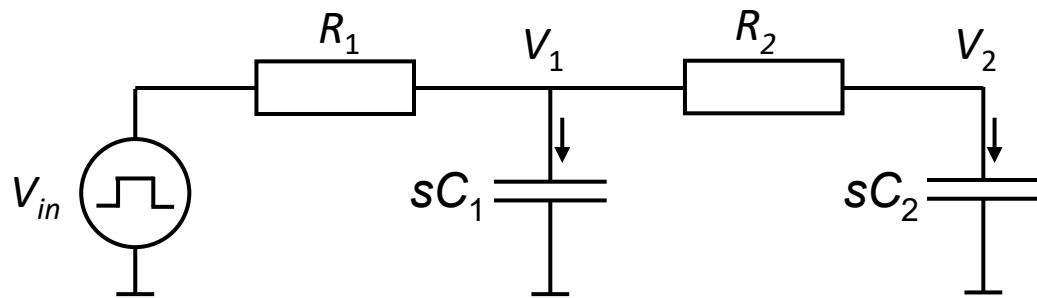
Can be found analytically from second-order differential equation!

Wire delay example

Estimate the delay of an inverter driving an identical inverter at the end of the 1 mm wire! $W_P=2W_N$.

Assume wire cap $c= 200 \text{ fF/mm}$, $r=800 \Omega/\text{mm}$ from previous examples

- For a moment, let us simplify the two-stage RC circuit!
- Get transfer function!



This transfer function contains a second-order equation with two solutions s_1 and s_2 .

$$H(s) = \frac{1}{s^2 R_1 R_2 C_1 C_2 + s(R_1(C_1 + C_2) + R_2 C_2) + 1}$$

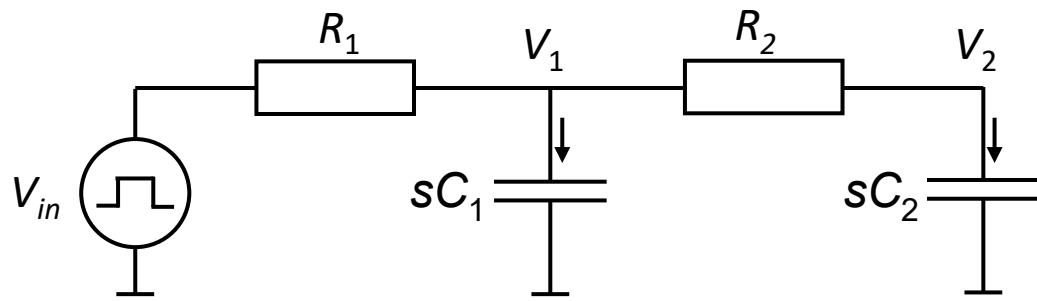
$$s^2 R_1 R_2 C_1 C_2 + s(R_1(C_1 + C_2) + R_2 C_2) + 1 = 0$$

Wire delay example

Estimate the delay of an inverter driving an identical inverter at the end of the 1 mm wire! $W_P=2W_N$.

Assume wire cap $c=200 \text{ fF/mm}$, $r=800 \Omega/\text{mm}$ from previous examples

- For a moment, let us simplify the two-stage RC circuit!
- Get transfer function!



$$H(s) = \frac{1}{s^2 R_1 R_2 C_1 C_2 + s(R_1(C_1 + C_2) + R_2 C_2) + 1}$$
$$s^2 R_1 R_2 C_1 C_2 + s(R_1(C_1 + C_2) + R_2 C_2) + 1 = 0$$

This transfer function contains a second-order equation with two solutions s_1 and s_2 . Usually, $s_2 \gg s_1$. Which indicates a dominating time constant $\tau_1 = 1/s_1$. For a rising input step voltage, we get an exponentially decreasing output voltage

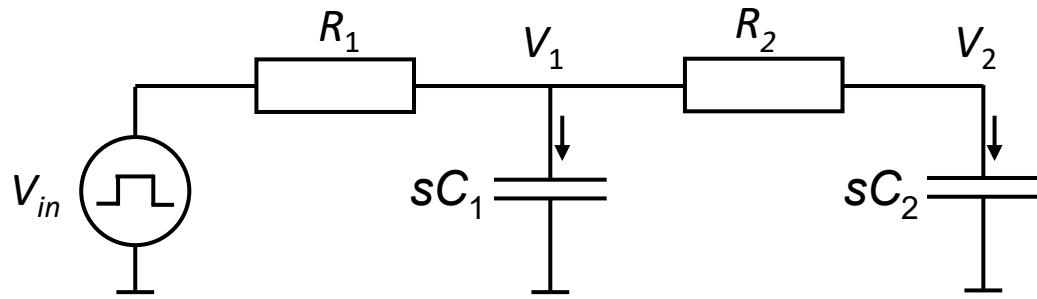
$$V_2(t) = V_{DD} e^{-t/\tau_1}$$

Wire delay example

Estimate the delay of an inverter driving an identical inverter at the end of the 1 mm wire! $W_P=2W_N$.

Assume wire cap $c= 200 \text{ fF/mm}$, $r=800 \Omega/\text{mm}$ from previous examples

- For a moment, let us simplify the two-stage RC circuit!
- Get transfer function!



Neglect s^2 term in the transfer function and we immediately get $\tau_1 = R_1(C_1 + C_2) + R_2 C_2$

$$s^2 R_1 R_2 C_1 C_2 + s(R_1(C_1 + C_2) + R_2 C_2) + 1 = 0$$

This transfer function contains a second-order equation with two solutions s_1 and s_2 . Usually, $s_2 \gg s_1$. Which indicates a dominating time constant $\tau_1 = 1/s_1$. For a rising input step voltage, we get an exponentially decreasing output voltage

$$V_2(t) = V_{DD} e^{-t/\tau_1}$$

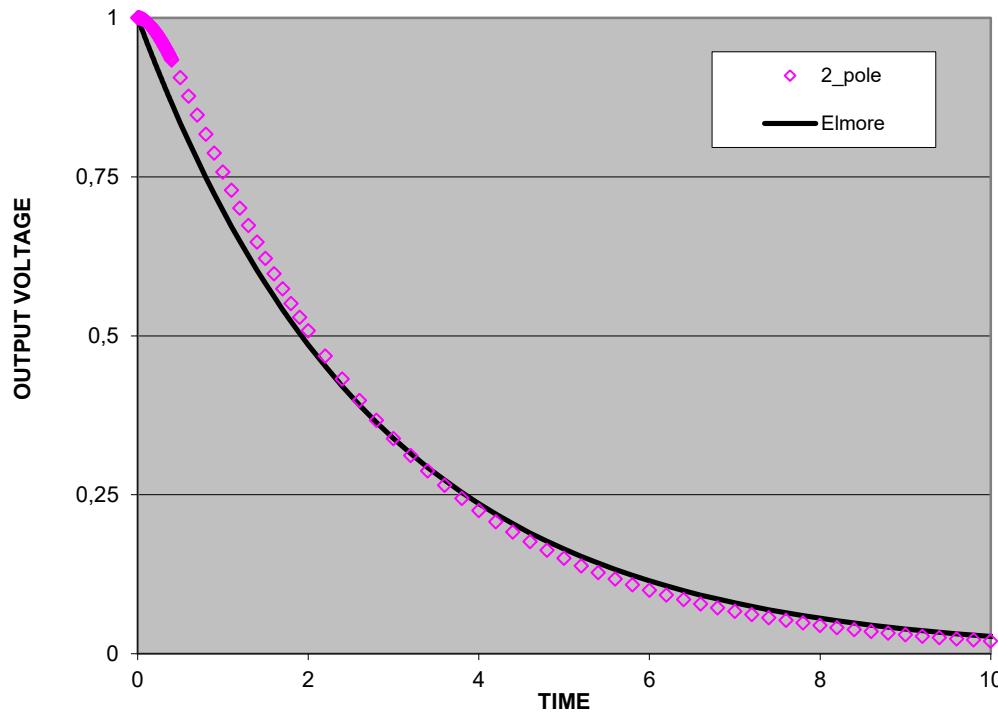
Approximative solution

with dominating time constant

One example:

$$R_1=0.8R_2, C_1=1.2C_2$$
$$t_1=2.45, t_2=0.31$$

Compare exponential two-pole solution with exponential decay assuming a dominant time constant $t_1=2.76$

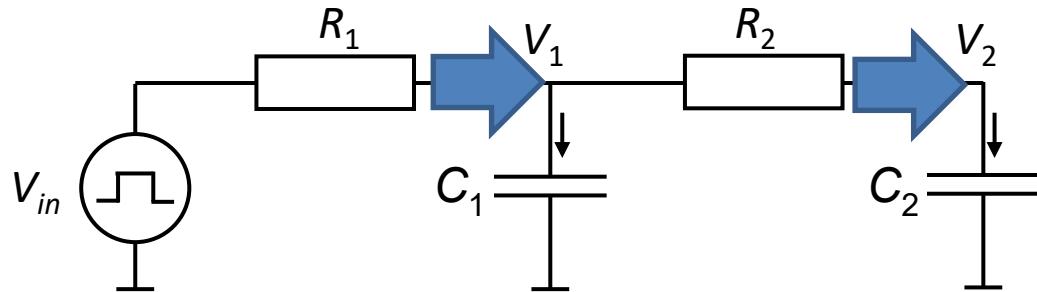


Wire delay example

Estimate the delay of an inverter driving an identical inverter at the end of the 1 mm wire! $W_P=2W_N$.

Assume wire cap $c= 200 \text{ fF/mm}$, $r=800 \Omega/\text{mm}$ from previous examples

- Now, let us return to the simplified two-stage RC circuit
- How to remember how to get the dominant time constant?



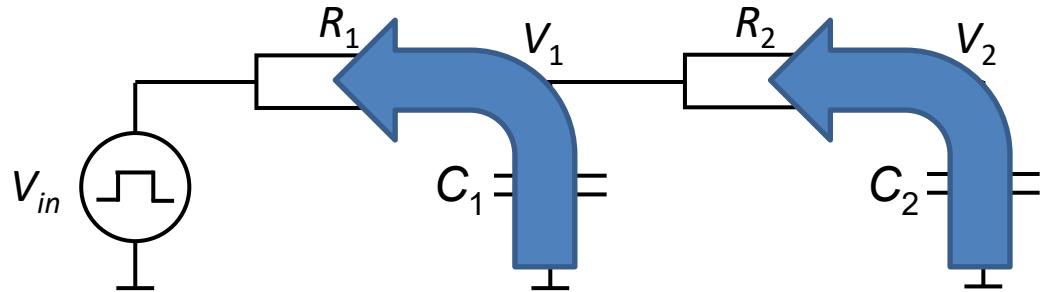
Each resistance is multiplied by its downstream capacitance!
$$\tau_1 = R_1(C_1 + C_2) + R_2C_2$$

Wire delay example

Estimate the delay of an inverter driving an identical inverter at the end of the 1 mm wire! $W_P=2W_N$.

Assume wire cap $c= 200 \text{ fF/mm}$, $r=800 \Omega/\text{mm}$ from previous examples

- Now, let us return to the simplified two-stage RC circuit
- How to remember how to get the dominant time constant?



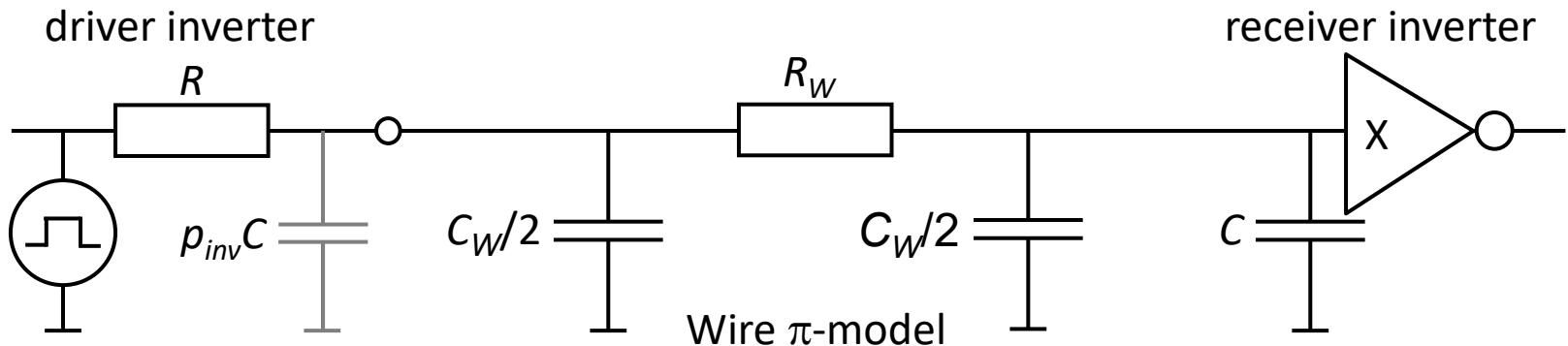
Or: Each capacitance is multiplied by its upstream capacitance!
$$\tau_1 = R_1 C_1 + (R_1 + R_2) C_2$$

Wire delay example

Estimate the delay of an inverter driving an identical inverter at the end of the 1 mm wire! $W_P=2W_N$.

Assume wire cap $c=200 \text{ fF/mm}$, $r=800 \Omega/\text{mm}$ from previous examples

Without wire, electrical effort is $h=1$. Delay becomes $5 \text{ ps} * (p_{inv}+1) = 5 * 2 = 10 \text{ ps}$



Now, let us apply the dominant time constant model to our example.

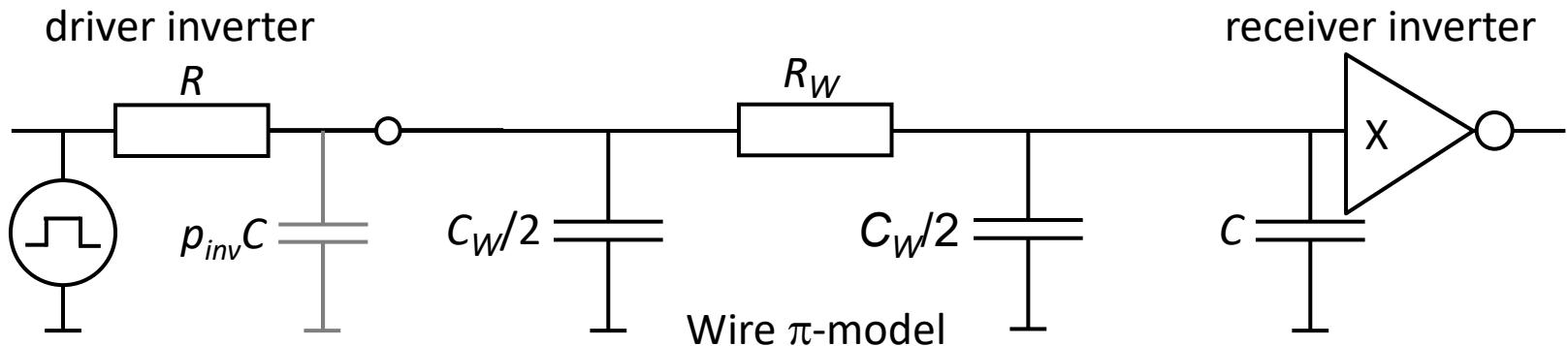
$$\tau_1 = R(p_{inv}C + C + C_W) + R_W \left(C + \frac{C_W}{2} \right) = RC(p_{inv} + 1) + RC_W + R_W C + \frac{R_W C_W}{2}$$

Wire delay example

Estimate the delay of an inverter driving an identical inverter at the end of the 1 mm wire! $W_P=2W_N$.

Assume wire cap $c=200 \text{ fF/mm}$, $r=800 \Omega/\text{mm}$ from previous examples

Without wire, electrical effort is $h=1$. Delay becomes $5 \text{ ps} * (p_{inv}+1) = 5 * 2 = 10 \text{ ps}$



Once time constant is known, delay can be normalized wrt ideal FO1 delay, i.e. to tau!

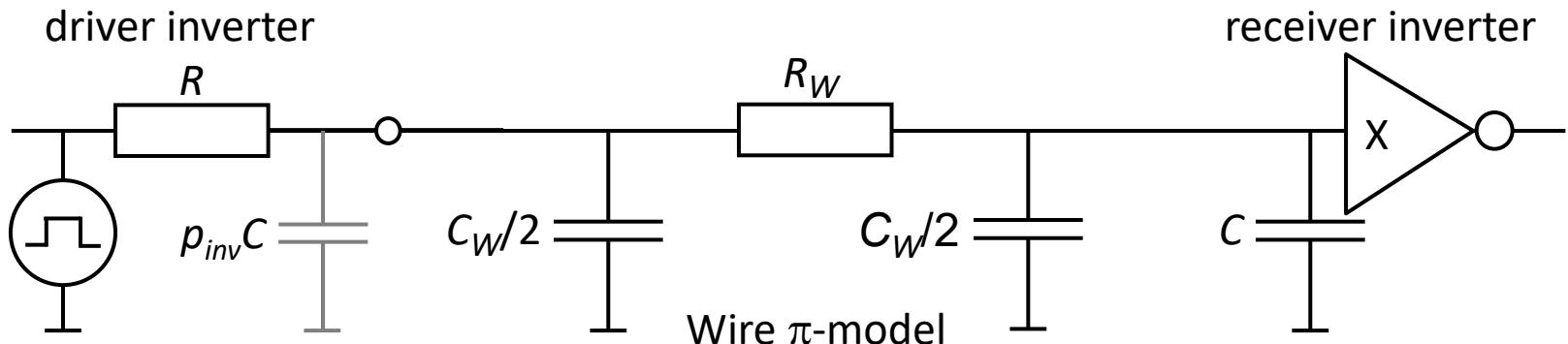
$$t_{pd} = 0.7RC \left(p_{inv} + 1 + \frac{R_W C_W}{RC} \frac{R}{R_W} + \frac{R_W}{R} + \frac{R_W C_W}{2RC} \right)$$

Wire delay example

Estimate the delay of an inverter driving an identical inverter at the end of the 1 mm wire! $W_P=2W_N$.

Assume wire cap $c=200 \text{ fF/mm}$, $r=800 \Omega/\text{mm}$ from previous examples

Without wire, electrical effort is $h=1$. Delay becomes $5 \text{ ps} * (p_{inv}+1)=5*2 = 10 \text{ ps}$



In terms of the wire effort $W_E=R_W C_W/RC$?

$$t_{pd} = 0.7RC \left(p_{inv} + 1 + W_E \frac{R}{R_W} + \frac{R_W}{R} + \frac{W_E}{2} \right)$$

Wire delay example

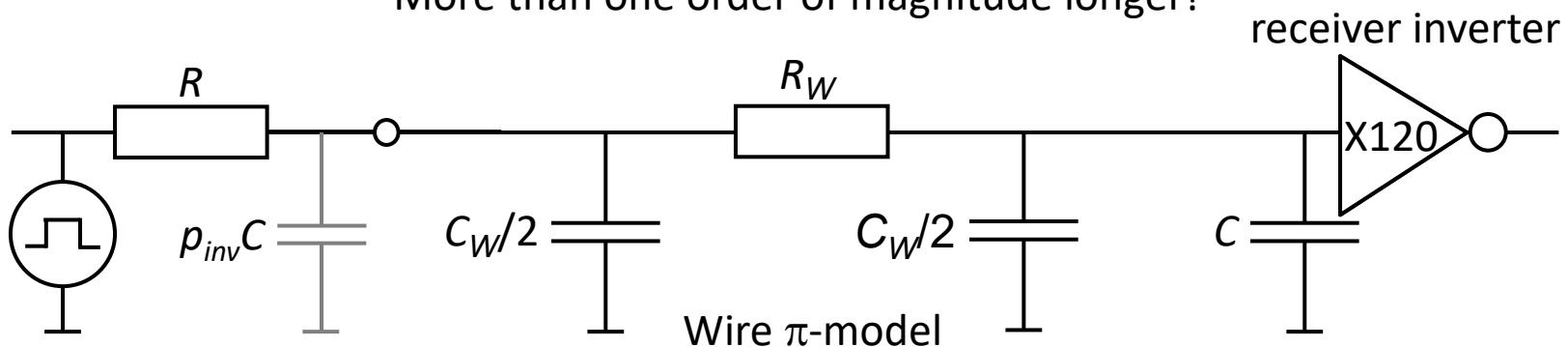
Estimate the delay of an inverter driving an identical inverter at the end of the 1 mm wire! $W_P=2W_N$.

Assume wire cap $c=200 \text{ fF/mm}$, $r=800 \Omega/\text{mm}$ from previous examples

Without wire, electrical effort is $h=1$. Delay becomes $5 \text{ ps} * (p_{inv}+1)=5*2 = 10 \text{ ps}$

With wire, normalized delay becomes $d=2+2\sqrt{W_E}+W_E/2=22.5$ instead of 2!

More than one order of magnitude longer!



How should driver resistance be chosen wrt R_W for minimum delay? Let derivative wrt R be zero!

$$\frac{\partial d}{\partial R} = \frac{W_E}{R_W} - \frac{R_W}{R^2} = 0 \rightarrow R = \frac{R_W}{\sqrt{W_E}}; R_W = 0.8 \text{ k}\Omega, W_E = 22.2 \rightarrow R = 170 \Omega$$

Wire delay example

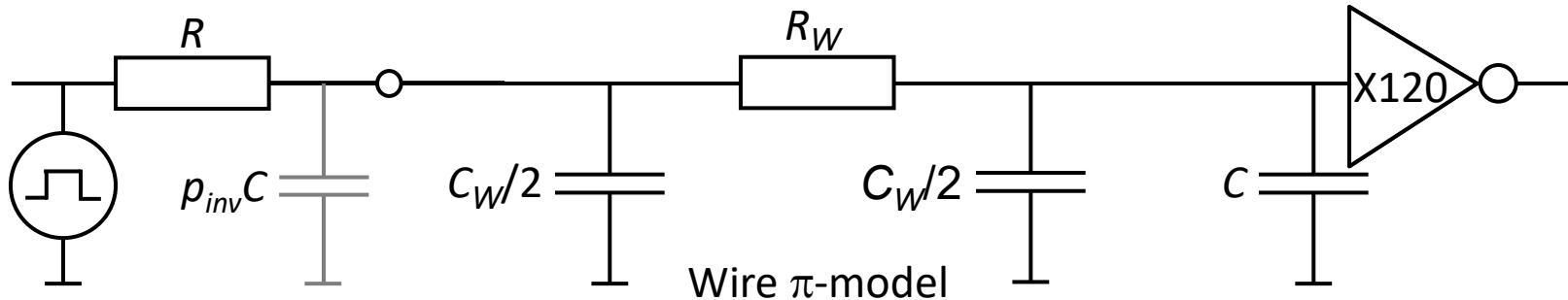
Estimate the delay of an inverter driving an identical inverter at the end of the 1 mm wire! $W_P=2W_N$.

Assume wire cap $c=200 \text{ fF/mm}$, $r=800 \Omega/\text{mm}$ from previous examples

Without wire, electrical effort is $h=1$. Delay becomes $5 \text{ ps} * (p_{inv}+1)=5*2 = 10 \text{ ps}$

With wire, normalized delay becomes $d=2+2\sqrt{W_E}+W_E/2=22.5$ instead of 2!

More than one order of magnitude longer! But quite close to minimum delay $d=4\sqrt{W_E}=18.9$
receiver inverter



How should driver resistance be chosen wrt R_W for minimum delay? Let derivative wrt R be zero!

$$\frac{\partial d}{\partial R} = \frac{W_E}{R_W} - \frac{R_W}{R^2} = 0 \rightarrow R = \frac{R_W}{\sqrt{W_E}}; R_W = 0.8 \text{ k}\Omega, W_E = 22.2 \rightarrow R = 170 \Omega$$

Wire delay example

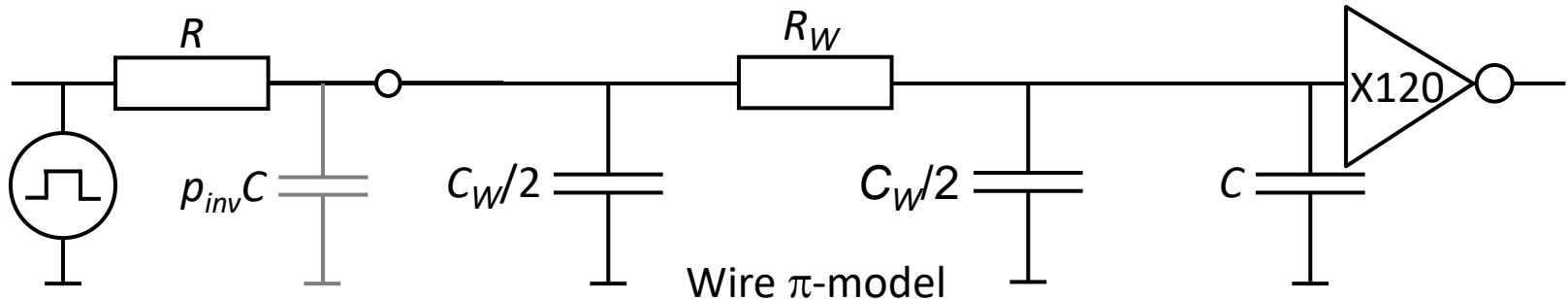
Estimate the delay of an inverter driving an identical inverter at the end of the 1 mm wire! $W_P=2W_N$.

Assume wire cap $c=200 \text{ fF/mm}$, $r=800 \Omega/\text{mm}$ from previous examples

Without wire, electrical effort is $h=1$. Delay becomes $5 \text{ ps} * (p_{inv}+1)=5*2 = 10 \text{ ps}$

With wire, normalized delay becomes $d=2+2\sqrt{W_E}+W_E/2=22.5$ instead of 2!

More than one order of magnitude longer! But quite close to minimum delay $d=4\sqrt{W_E}=18.9$
receiver inverter



The wire effort is proportional to wire length squared!

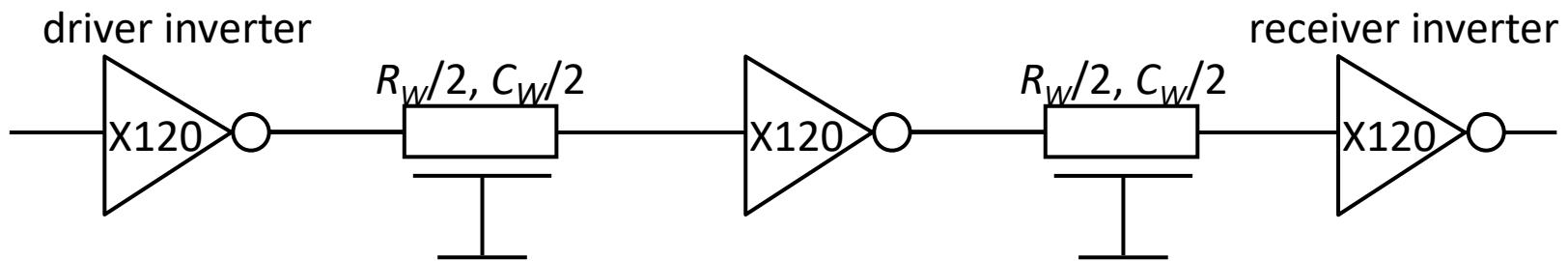
$$W_E = \frac{rcL^2}{RC} \sim L^2 \quad \text{Therefore, keep wires short!}$$

Keeping wires short using repeaters

Divide wire into 2 segments driven by repeaters.

A repeater is just an identical inverter called repeater!

To estimate the propagation delay, just add the two segment delays!



$$d = 2 \left(p_{inv} + 1 + \frac{W_E}{2} \frac{R}{R_W} + \frac{R_W}{2R} + \frac{W_E}{8} \right)$$

Eq. from slide 30

$$d = 2 \left(p_{inv} + 1 + \frac{\sqrt{W_E}}{2} + \frac{\sqrt{W_E}}{2} + \frac{W_E}{8} \right) = 2(2 + 2.35 + 2.35 + 2.8) = 19$$

Quite close to minimum delay $d=4\sqrt{W_E}=18.8$

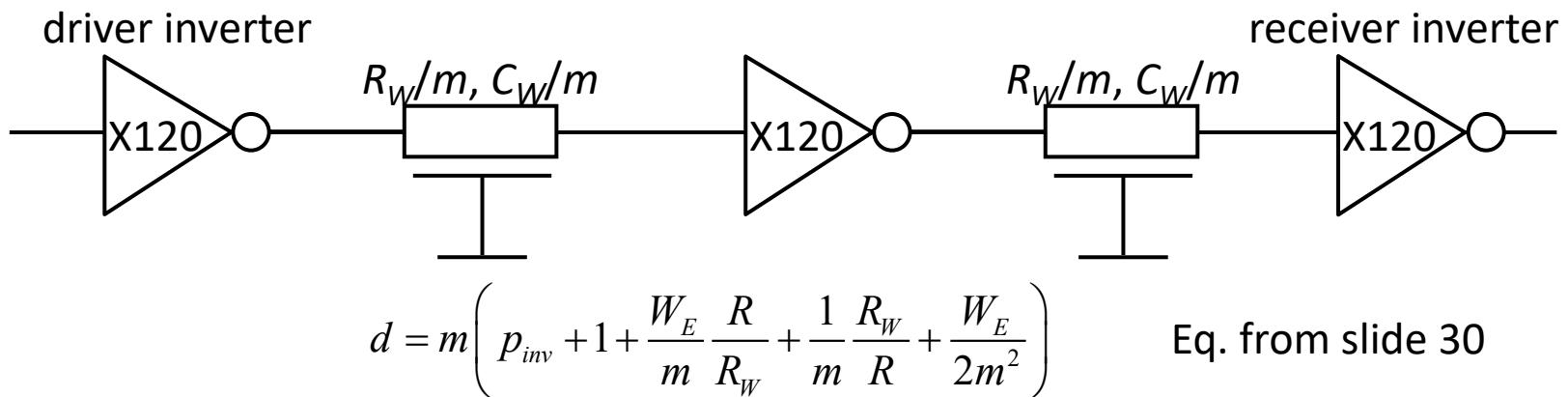
Keeping wires short using repeaters

The general case: finding the optimal number of segments

Divide wire into m segments driven by repeaters.

A repeater is just an identical inverter called repeater!

To estimate the propagation delay, just add the segment delays!



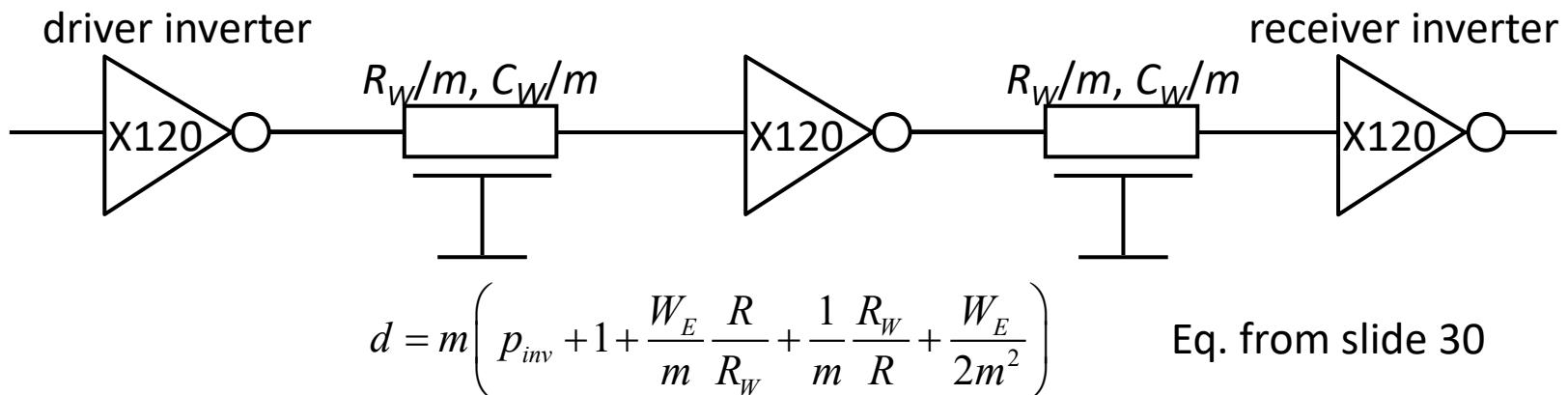
Keeping wires short using repeaters

The general case: finding the optimal number of segments

Divide wire into m segments driven by repeaters.

A repeater is just an identical inverter called repeater!

To estimate the propagation delay, just add the segment delays!



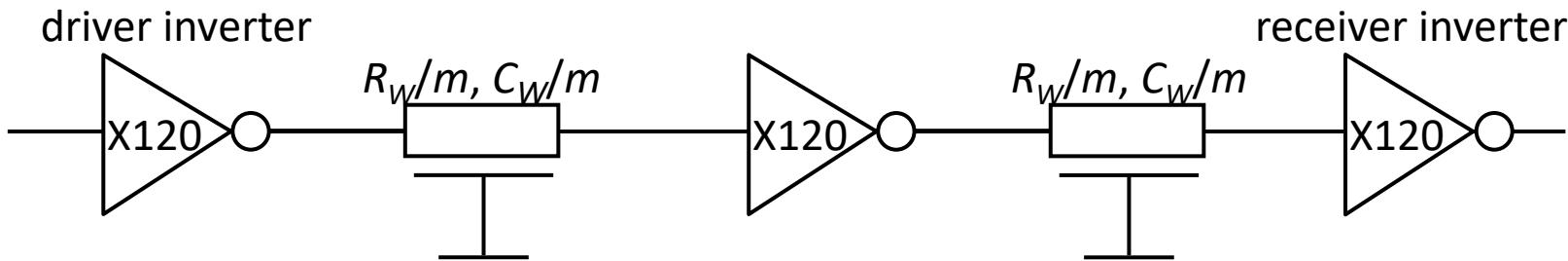
Minimum delay for $\partial d / \partial m = 0$, i.e. for $m = \frac{1}{2} \sqrt{W_E} = 2.35$ which means that the minimum normalized delay is $d=4\sqrt{W_E}$, and for $W_E=22.5$ we have $d_{min} \approx 18.9$ assuming $p_{inv}=1$.

Keeping wires short using repeaters

We had $d=22.4$ without repeaters, so obviously there was not much to gain by sectioning wires 1 mm long into segments.

Then, for what wire length does it start to pay off?

Well, the critical wire length is $L_{crit} = \frac{L}{m} = 2\sqrt{\frac{RC}{rc}}$



$$d = m \left(p_{inv} + 1 + \frac{W_E}{m} \frac{R}{R_W} + \frac{1}{m} \frac{R_W}{R} + \frac{W_E}{2m^2} \right) \quad L_{crit} = 2\sqrt{\frac{RC}{rc}} = 2\sqrt{\frac{7.2}{160}} = 0.4 \text{ mm}$$

Minimum delay for $\frac{\partial d}{\partial m} = 0$, i.e. for $m = \frac{1}{2} \sqrt{W_E} = 2.35$ which means that the minimum normalized delay is $d=4\sqrt{W_E}$, and for $W_E=22.5$ we have $d_{min} \approx 18.9$ assuming $p_{inv}=1$.

Keeping wires short using repeaters

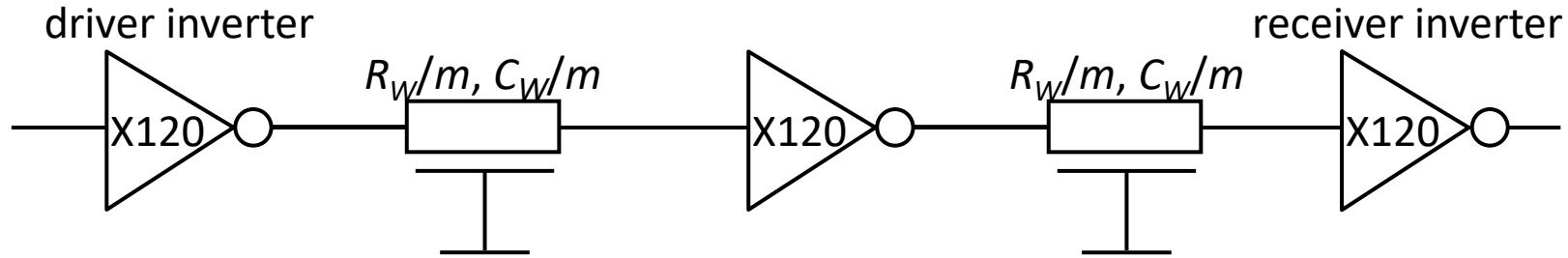
For what wire length does it start to pay off inserting repeaters?

Let's have a look at a 10 mm wire.

Still $L_{crit}=0.4$ mm for this technology!

What if we divide the wire into 20 segments, each 0.5 mm long?

What would be our speed gain? Wire effort is now 100x larger!

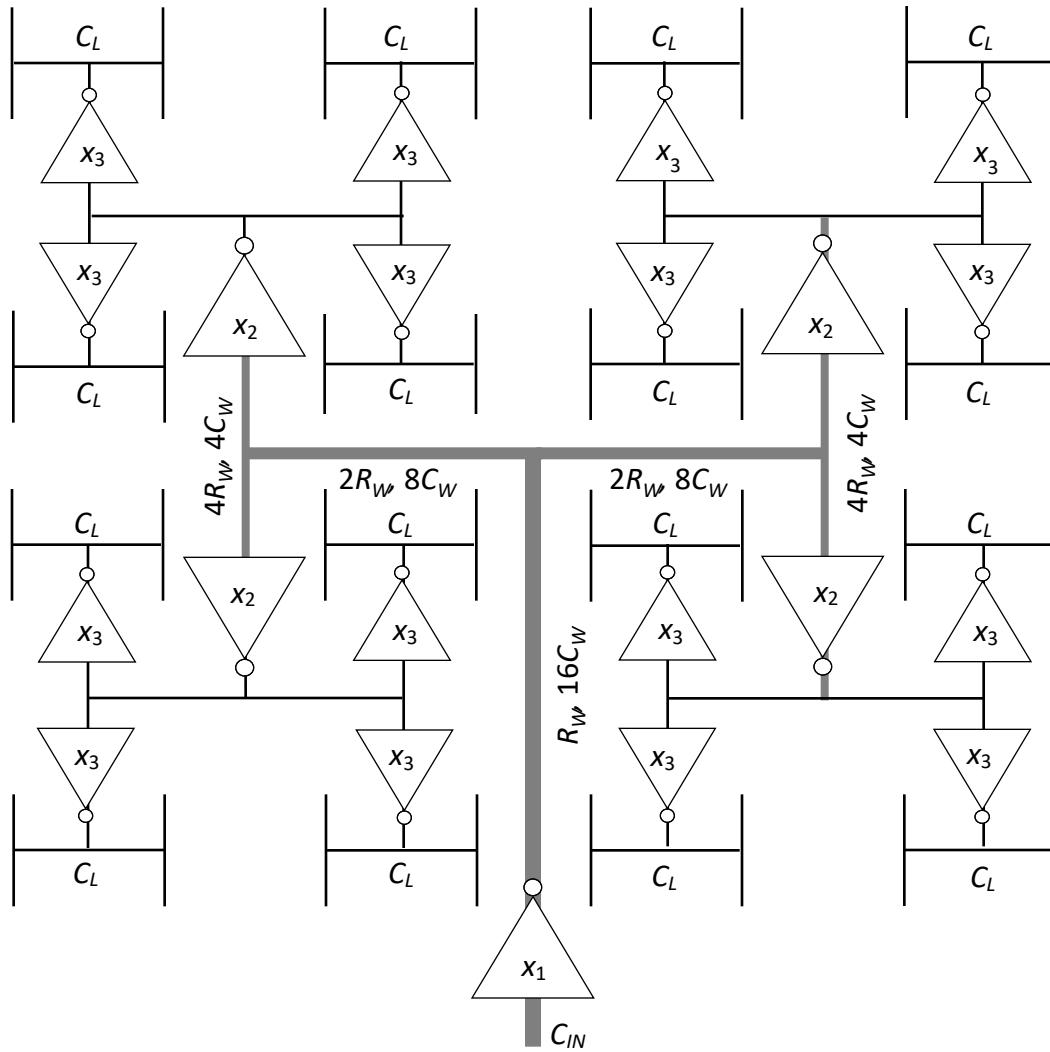


$$\text{Without repeaters: } d = p_{inv} + 1 + 2\sqrt{W_E} + \frac{W_E}{2} = 2 + 2 \times 47 + \frac{2222}{2} = 1200$$

$$\text{With 20 repeaters: } d = 20 \left(p_{inv} + 1 + \frac{2\sqrt{W_E}}{20} + \frac{W_E}{2 \times 20^2} \right) \approx 40 + 2 \times 47 + 56 = 190$$

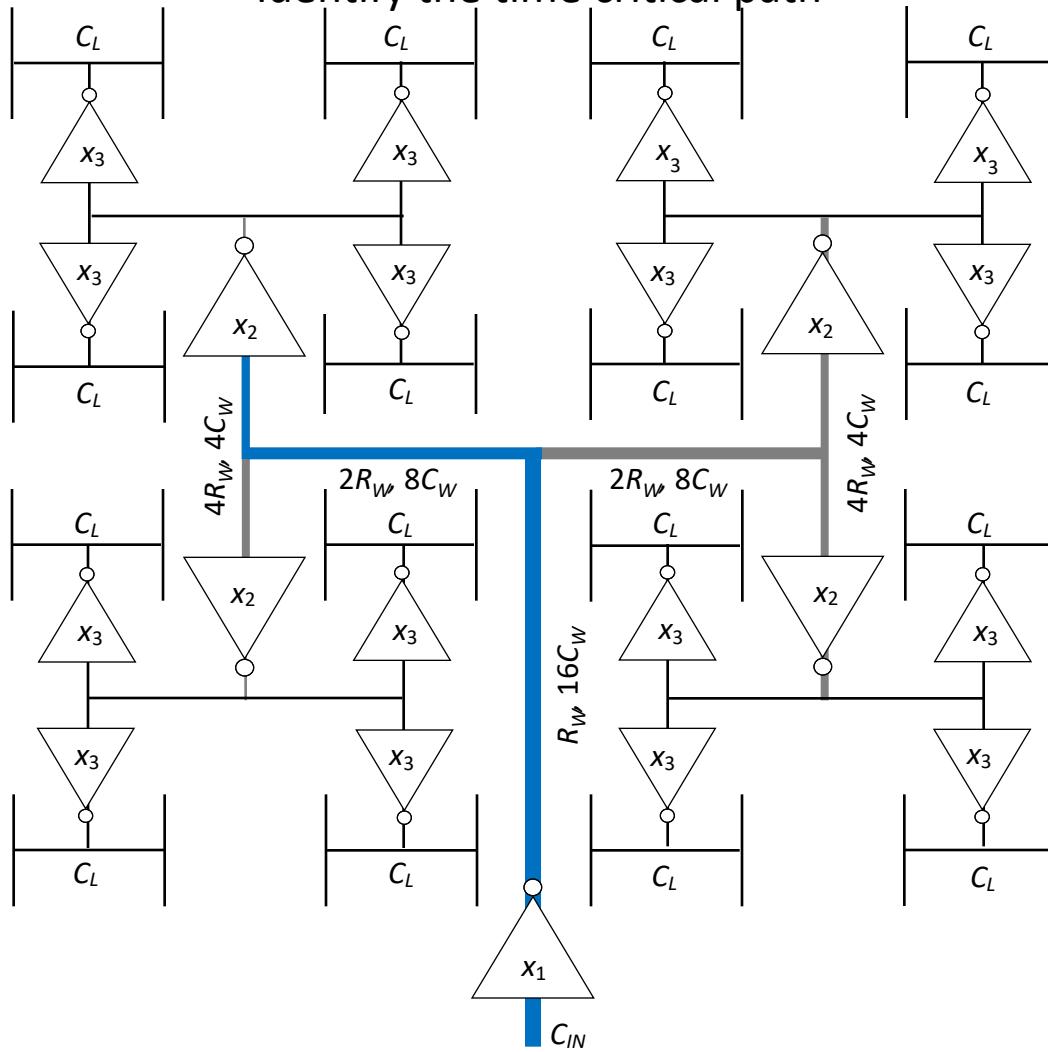
Minimum normalized delay is $d=4\sqrt{W_E}=188.6$. Quite close!

H-tree clock distribution



H-tree clock distribution

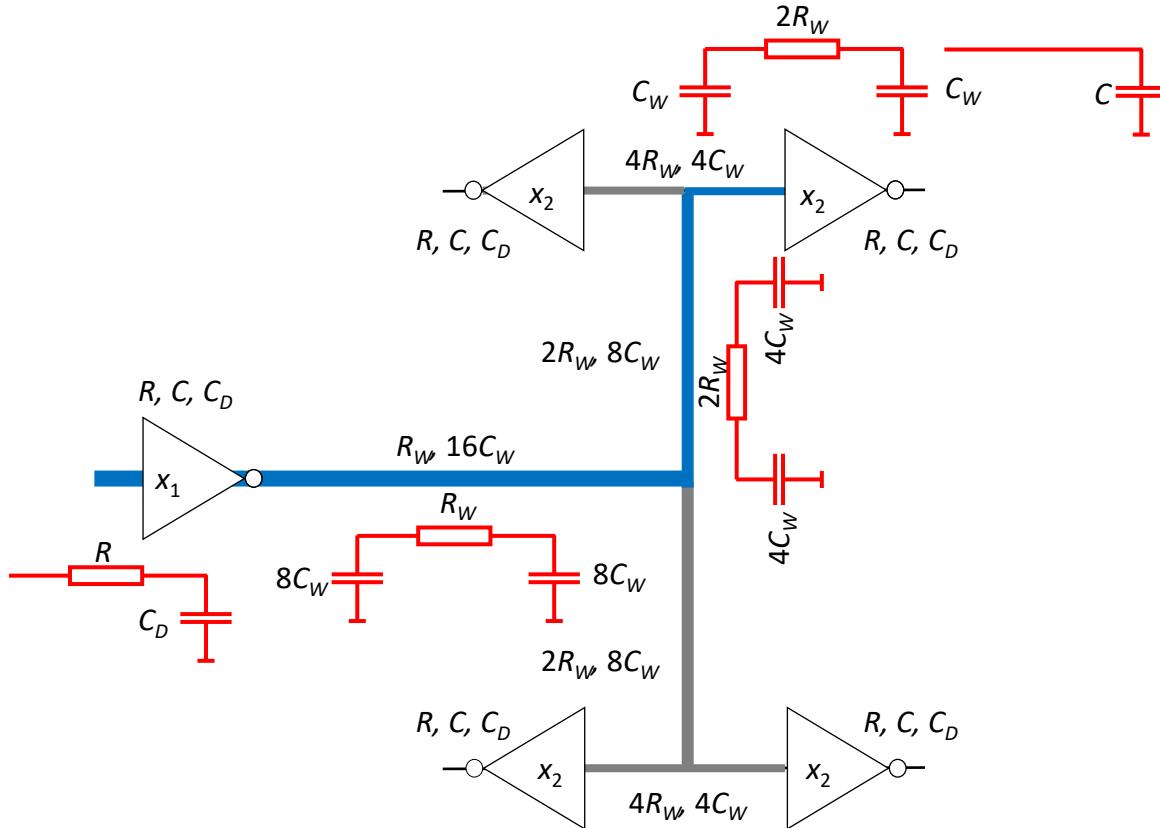
Identify the time critical path



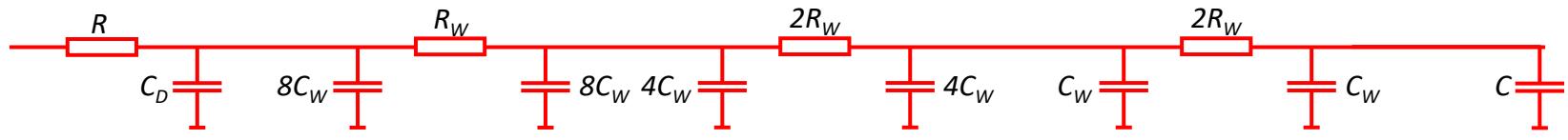
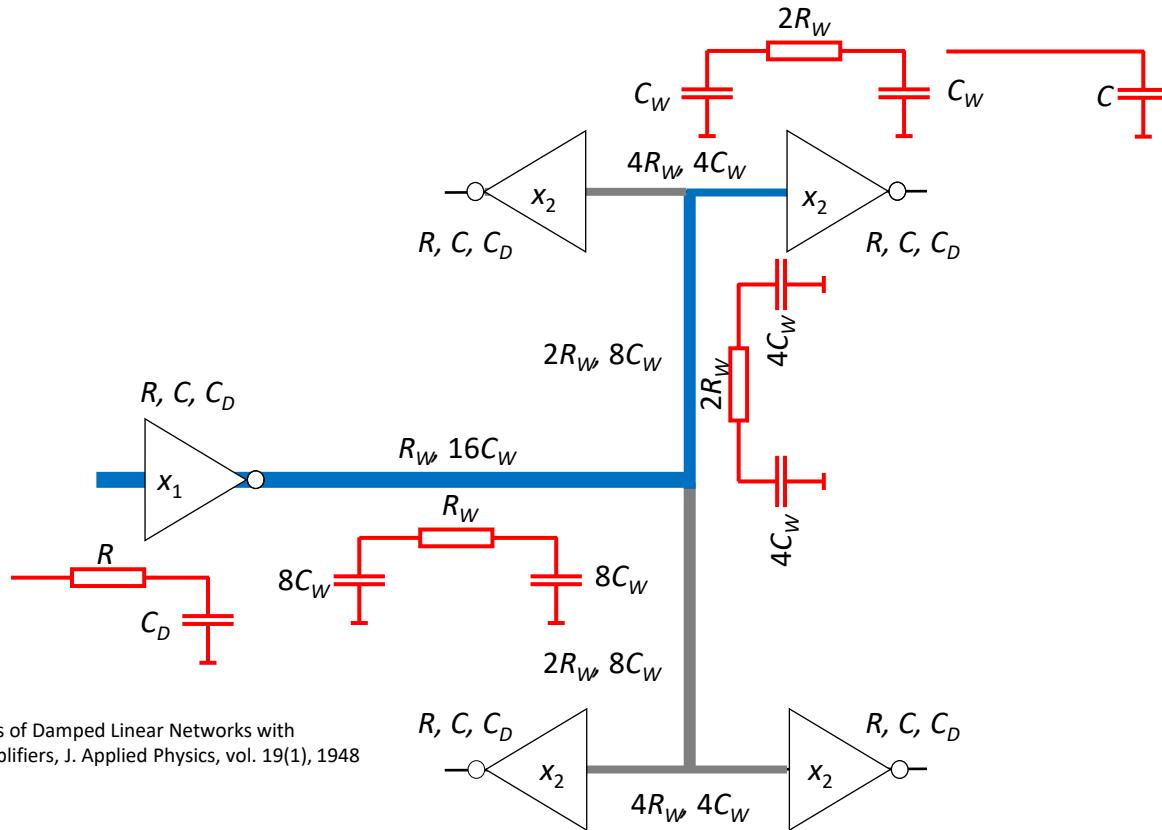
Analyzing the time critical path

Identify the time critical path

Find the equivalent RC circuit describing the wire and its segments along the time critical path **neglecting branches!**

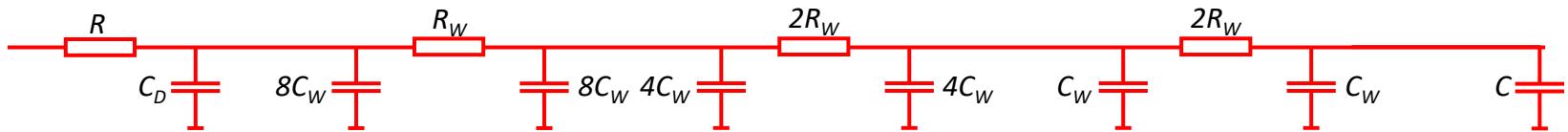


Analyzing the time critical path

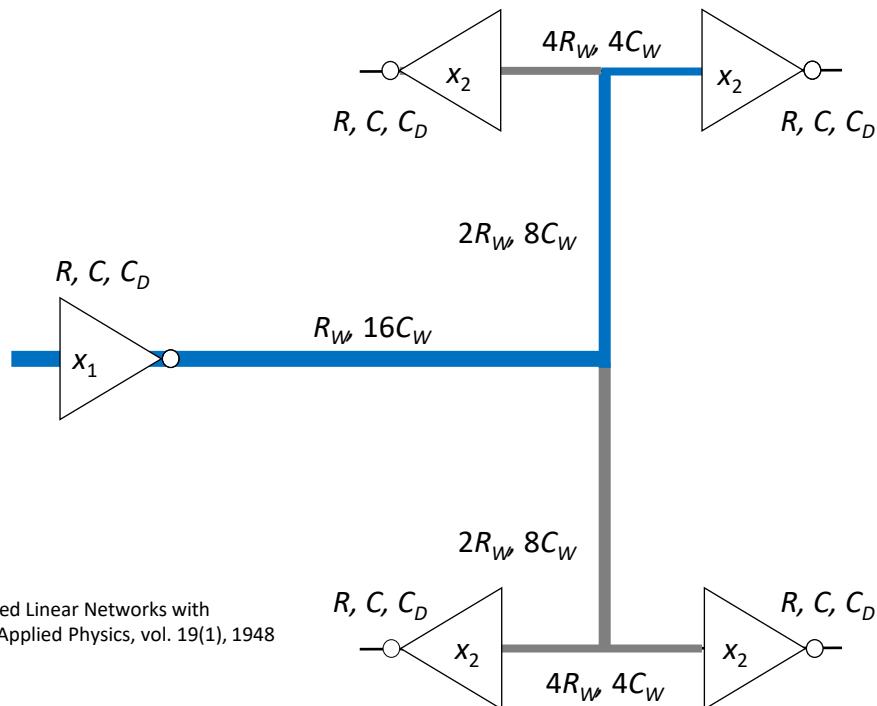


W.C. Elmore. The Transient Analysis of Damped Linear Networks with Particular Regard to Wideband Amplifiers, J. Applied Physics, vol. 19(1), 1948

Analyzing the time critical path

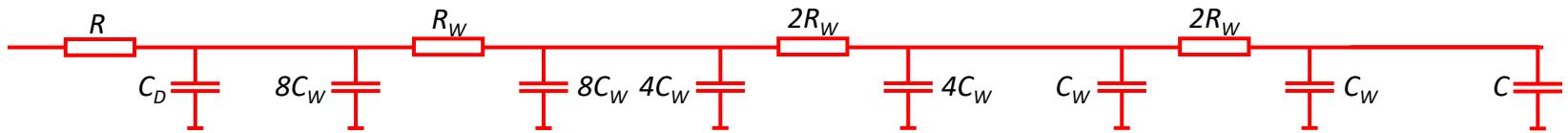


This is a four-stage RC ladder, and its four time constants cannot be found analytically. However, William C. Elmore analyzed the transfer functions of n -stage RC-ladders and found that the sum of the time constants could be easily found as for $n=2$.

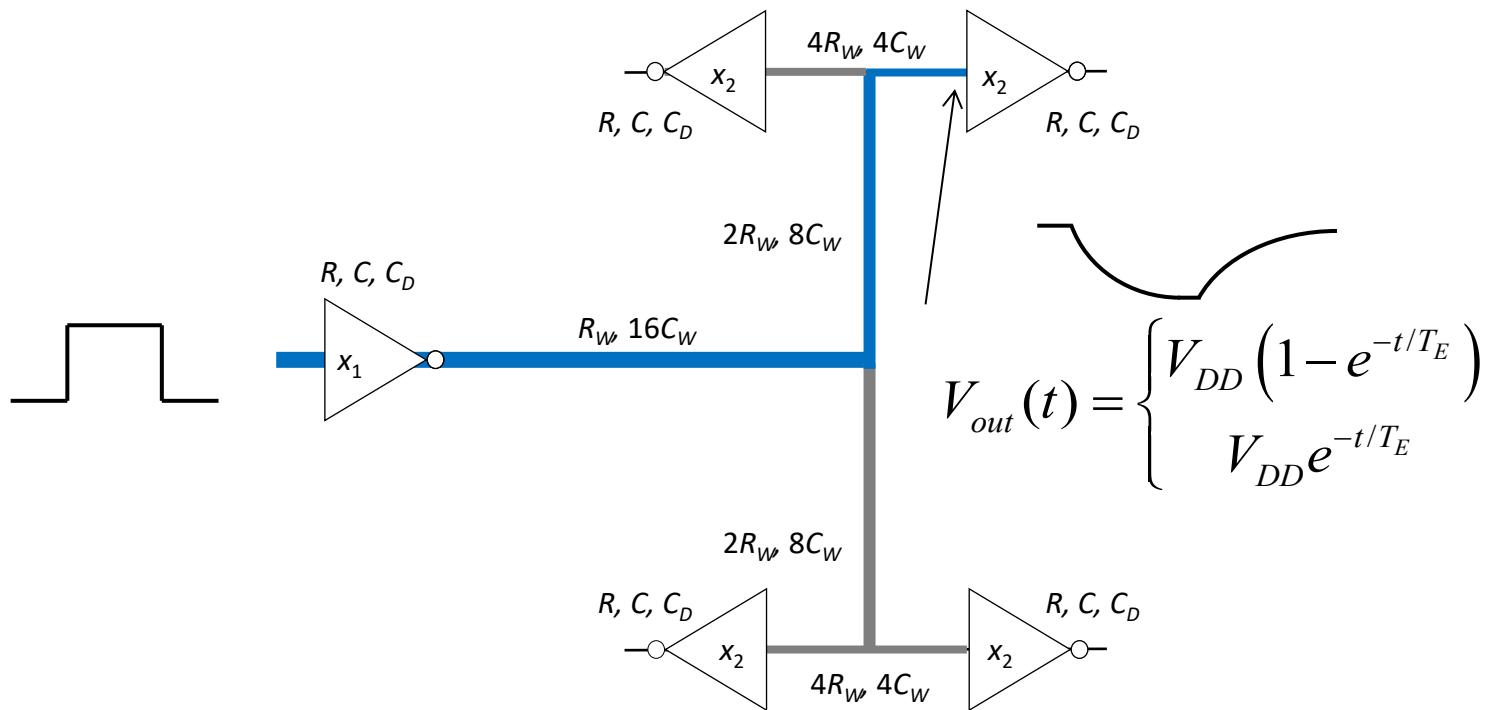


W.C. Elmore. The Transient Analysis of Damped Linear Networks with Particular Regard to Wideband Amplifiers, *J. Applied Physics*, vol. 19(1), 1948

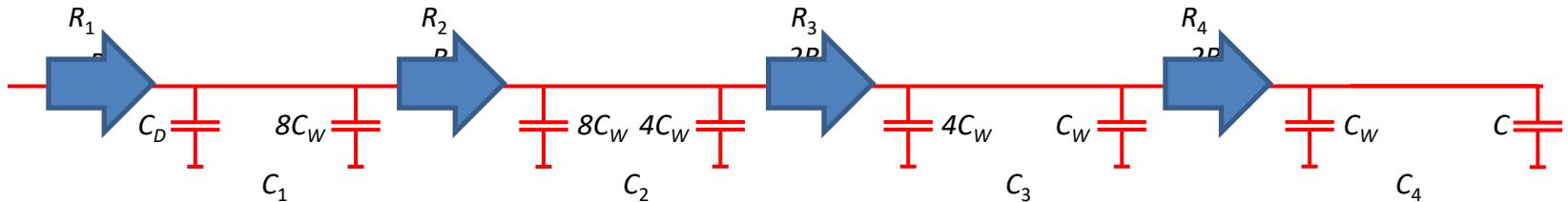
Main path Elmore time constant



Knowing the sum of the time constants, and assuming the existence a dominant time constant, the exponential growth/decay of the output voltage can be easily found

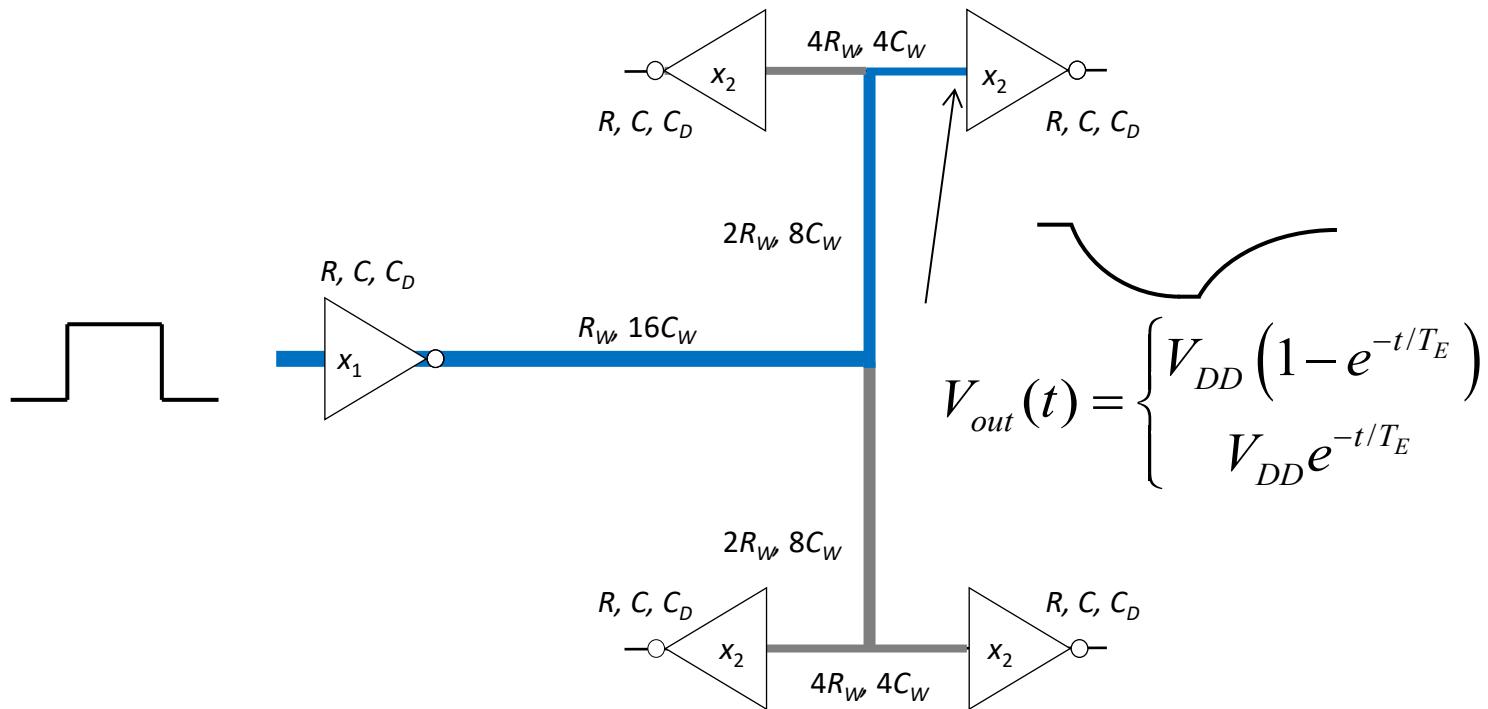


Main path Elmore time constant

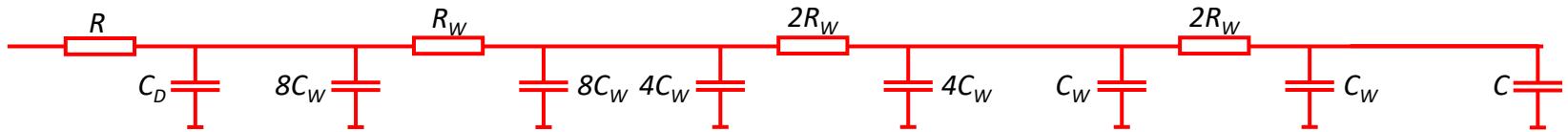


The Elmore time constant T_E is found by multiplying each R with its downstream C

$$T_E = R_1(C_1 + C_2 + C_3 + C_4) + R_2(C_2 + C_3 + C_4) + R_3(C_3 + C_4) + R_4C_4$$

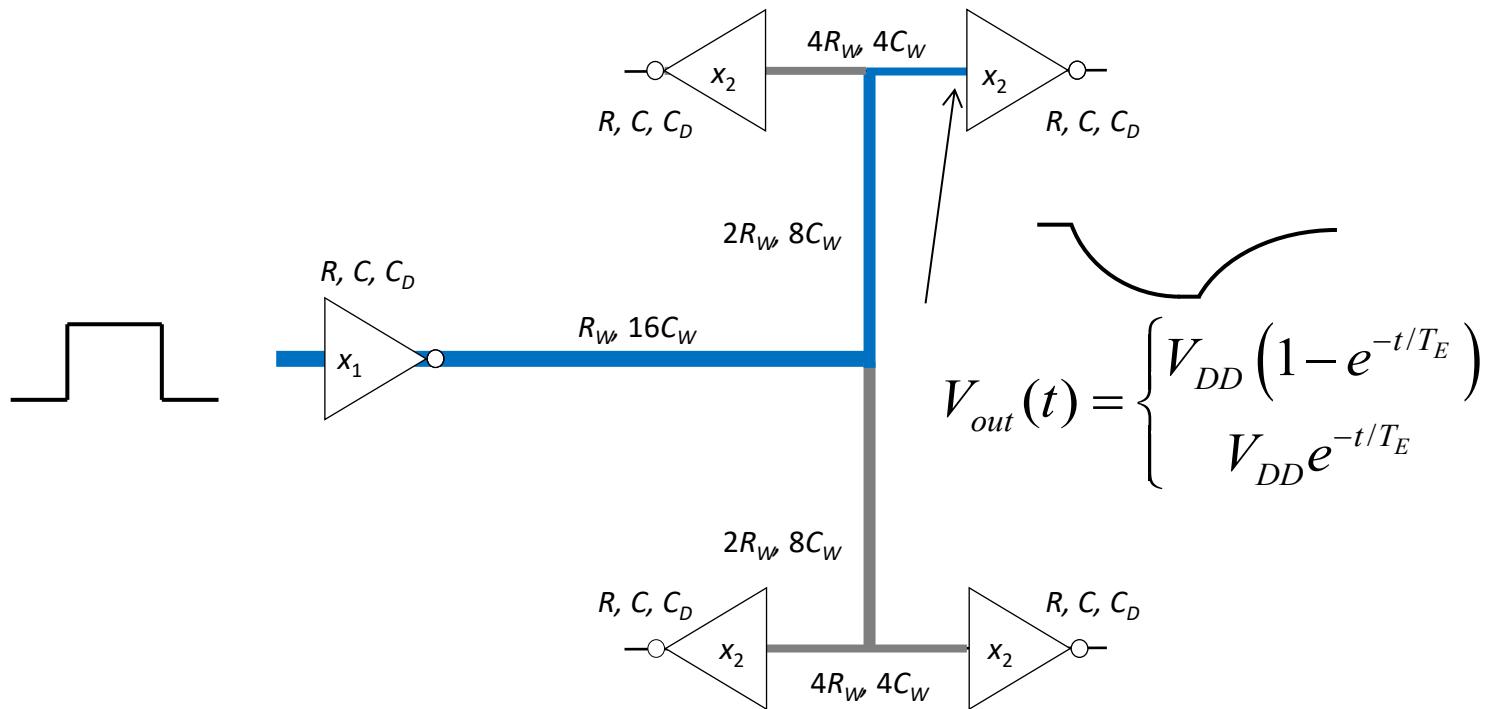


Main path Elmore time constant

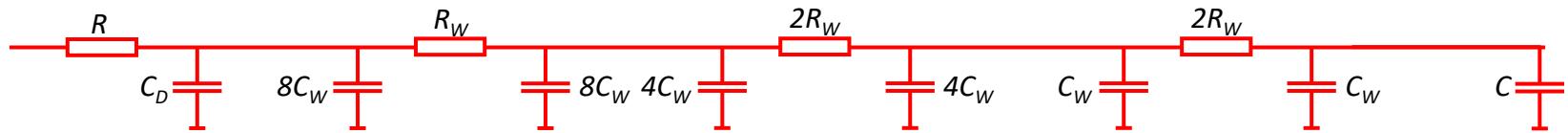


The Elmore time constant T_E is found by multiplying each R with its downstream C

$$T_E = R(C_D + 26C_W + C) + 18R_WC_W + 2R_W6C_W + 2R_WC_W + 5R_WC$$

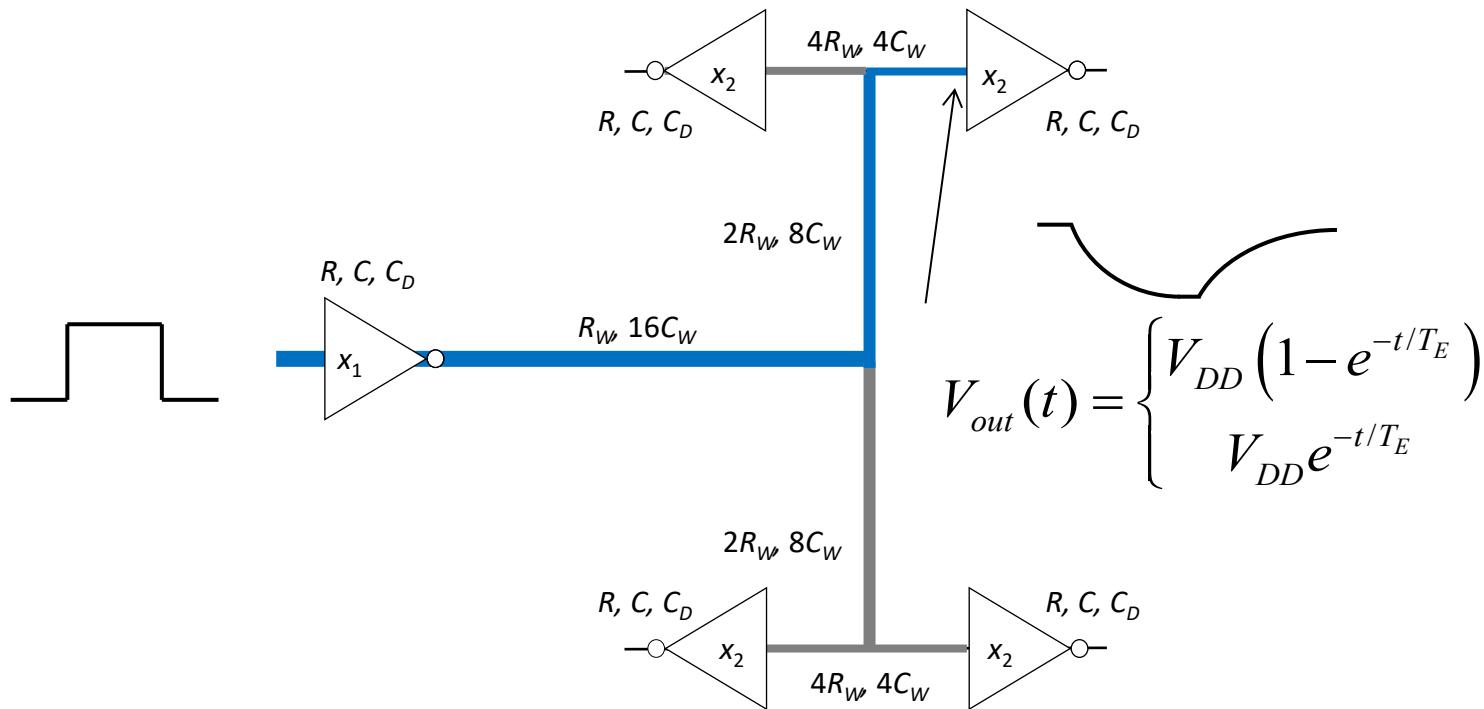


Main path Elmore time constant

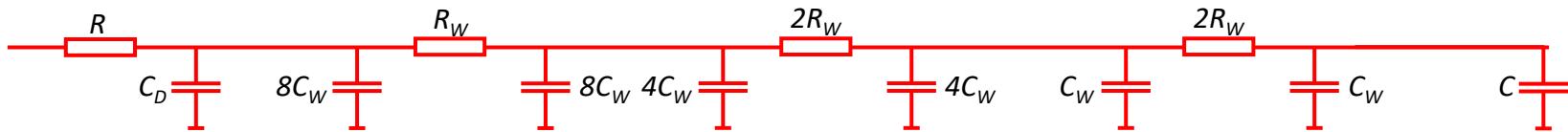


The Elmore time constant T_E is found by multiplying each R with its downstream C

Simplify:
$$T_E = R(C_D + C) + 26RC_W + 5R_W C + 32R_W C_W$$

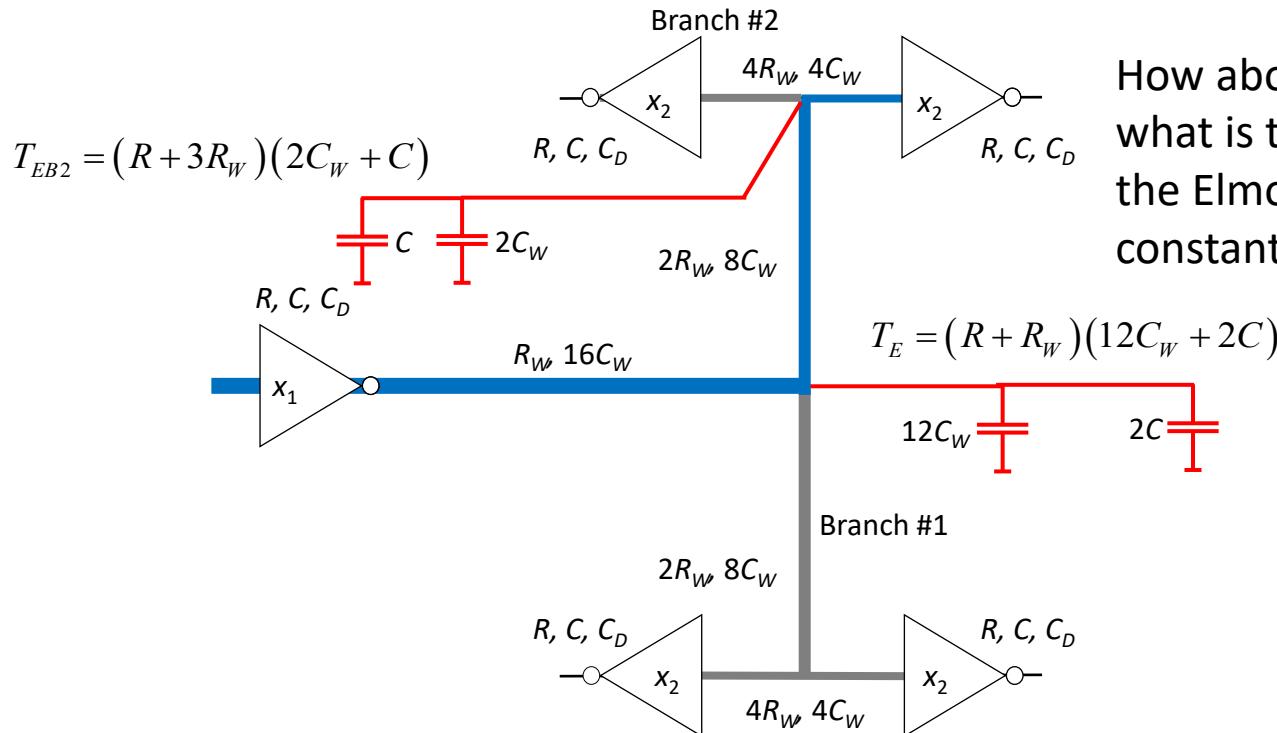


How about influence of branches?



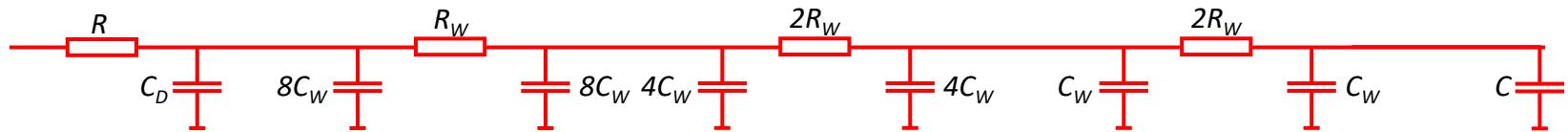
The Elmore time constant T_E is found by multiplying each R with its downstream C

Simplify:
$$T_E = R(C_D + C) + 26RC_W + 5R_W C + 32R_W C_W$$



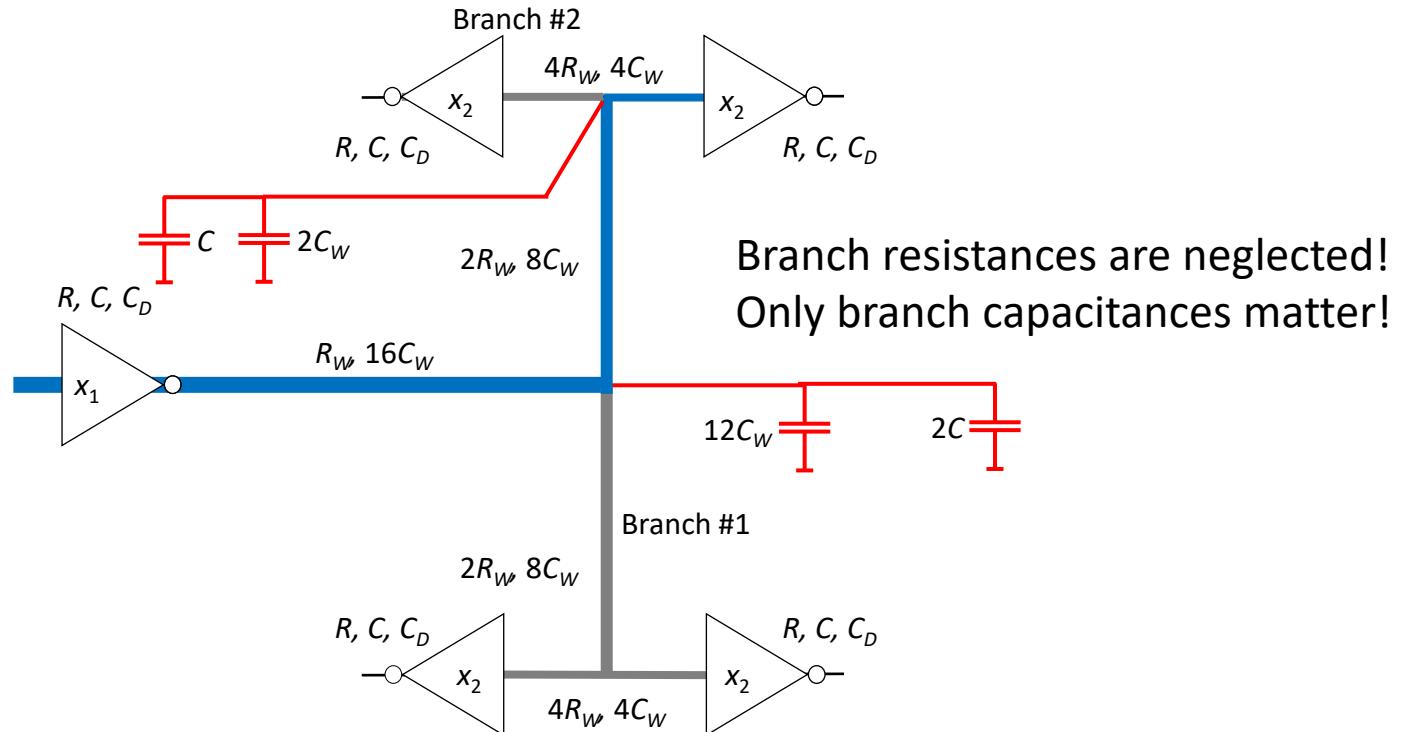
How about the branches,
what is their influence on
the Elmore time
constant?

Adding the influence of branches



$$T_E = R(C_D + C) + 26RC_W + 5R_W C + 32R_W C_W \quad \text{w/o branches}$$

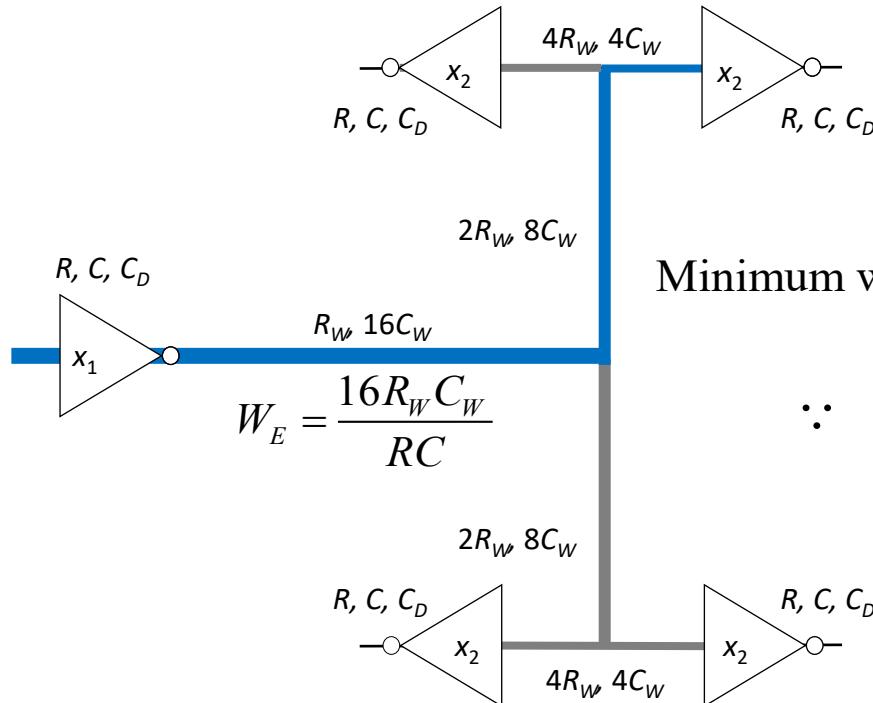
$$T_E = R(C_D + 4C) + 40RC_W + 10R_W C + 40R_W C_W \quad \text{w branches}$$



H-tree clock distribution

How to size driver inverter to minimize the time constant, and hence the wire delay?
 Rewrite Elmore time constant:

$$\begin{aligned}
 T_E &= RC \left(p_{inv} + 4 + 40 \frac{R_W C_W}{RC} \frac{R}{R_W} + 10 \frac{R_W}{R} + 40 \frac{R_W C_W}{RC} \right) = \\
 &= RC \left(p_{inv} + 4 + \frac{10}{4} W_E \frac{R}{R_W} + 10 \frac{R_W}{R} + \frac{10}{4} W_E \right) \text{ using } W_E = \frac{16R_W C_W}{RC}
 \end{aligned}$$



Minimum when $\frac{\partial T_E}{\partial R} = \frac{10}{4} \frac{W_E}{R_W} - 10 \frac{R_W}{R^2} = 0$

∴

$$R = \frac{2R_W}{\sqrt{W_E}}$$

Conclusion

- Introduction to interconnect
- Defining the sheet resistance [in ohms per square, Ω/\square]
- Discussing the importance of interconnect
- Introduced a distributed wire RC model, the π -model
- Discussed the relevance of a delay model assuming the existence of a dominant time constant
- Minimizing wire delay by repeater insertion
- The Elmore model – a generalized delay model
- How to handle the influence on delay of branches
- Questions and answer session