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Outline 
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• Introduction 
• Interconnect Modeling 

– Wire Resistance [sheet resistance in ohms per square] 
– Wire Capacitance 

• Introducing a distributed wire RC p-model 
• Estimating wire delay assuming a dominant RC time 

constant 
• Inserting repeaters to keep wire lengths short 
• Elmore delay model – a generalized model 
• Handling wire branches 
• Conclusions 



Introduction 
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• Chips are mostly made of wires called interconnect 
– Transistors are little things under the wires 

– Many layers of wires 

• Wires are as important as transistors 
– Speed 

– Power 

– Noise 

• Alternating layers run orthogonally 

Odd metal wires 
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Modern interconnect 
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Metal 6 

Metal 5 

Metal 4 

Metal 3 

Metal 2 

Via 5-6 

Metal 1 

Local Tungsten interconnect 

Via 1-2 



Choice of metals 
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• Until 180 nm generation, most wires were aluminum 

• Contemporary processes normally use copper 

– Cu atoms diffuse into silicon and damage FETs 

– Must be surrounded by a diffusion barrier 

Metal Bulk resistivity (mW•cm) 

Silver (Ag) 1.6 

Copper (Cu) 1.7 

Gold (Au) 2.2 

Aluminum (Al) 2.8 

Tungsten (W) 5.3 

Titanium (Ti) 43.0 



Layer stack 
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• AMS 0.35 mm process has 3 metal layers 
– M1 for within-cell routing 

– M2/M3 for vertical/horizontal routing between cells 

• Modern processes use 6-10+ metal layers 
– M1: thin, narrow (< 1.5*minimum feature size) 

• High density wiring in cells 

– Mid layers: thick, wide 
• Global interconnect 

– Top layers: THICK, WIDE 
• For VDD, GND, clk 
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Sheet resistance 
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When W=L the 
resistance is equal 
to R0, the sheet 
resistance (i.e. the 
resistance of a 
square wire) 

All wires in a layer, or 
sheet, have the same 
height H, therefore we 
use “sheet resistance” in 
W/□ (ohms per square) 

t 

R0=/H Some books use RS 
instead of R0 
 

H 

Just count number of 

squares along wire 

and multiply with RS 

to get R 
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Wire geometry 
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Old technology Modern technology 

w>>h 

Pitch = w + s 

h 

w 

Today: pack in many skinny wires! 
For long skinny wires resistance cannot be 
neglected since cross sectional area shrinks with 
feature size, wire length stays the same or 
increases. Hence: we need a wire RC model 

h 

t 
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Example 

• Compute the sheet resistance of a 0.22 mm thick Cu wire 
in a 65 nm process.  
The resistivity of thin film Cu is 22 nW.m. 

 

 

 

• Find the total resistance if the wire is 0.125 mm wide and 1 
mm long. 
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Example 

• Compute the sheet resistance of a 0.22 mm thick Cu wire 
in a 65 nm process.  
The resistivity of thin film Cu is 22 nW.m. 

 

 

 

• Find the total resistance if the wire is 0.125 mm wide and 1 
mm long. 
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Example 

• Compute the sheet resistance of a 0.22 mm thick Cu wire 
in a 65 nm process.  
The resistivity of thin film Cu is 22 nW.m. 

 

 

 

• Find the total resistance if the wire is 0.125 mm wide and 1 
mm long. 
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Wire delay scaling – Local wires 

• For local wire crossing the same amount of circuitry 

– Resistance stays roughly constant 
• Length decreases by same amount as width,  

• height stays large and/or change material to copper 

– Capacitance decreases by scaling factor 
• Cap/unit length stays constant, length decreases 

• Conclusion: Local wire delay tracks improvement in gate delay 

since both RC~1/S. 
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From Mark Horowitz at Design Automation Conference 2000 
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Wire delay scaling – Global wires 

• For global wire crossing the whole chip 

– Resistance grows linearly (with scaling factor) 

– Capacitance stays fixed 

• Conclusion: Global wire delay increases  
relative to gate delay since wire RC~S and  
gate RC~1/S. 
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From Mark Horowitz at Design Automation Conference 2000 
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Modern Interconnect 
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Wire capacitance 
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Wire has capacitance c per unit length 

• to neighbors 

• to layers above and below 

Parallel plate capacitance equation 

• C = WLe/t 

• eox=ke0, k≈4 for SiO2, low-kappa k<3  

t1 

t2 

h 

W - H/2H

+

(a)

(b)

Bottom plate and fringe capacitance 

t 

h W-h/2 



Wire capacitance 
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Wire has capacitance c per unit length 

• to neighbors 

• to layers above and below 

Parallel plate capacitance equation 

• C = WLe/t 

• eox=ke0, k≈4 for SiO2, low-kappa k<3  
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Typical wires have ~0.2 fF/mm,  
i.e. 200 fF/mm. Compare with 1.2 fF/mm   
MOSFET gate capacitance 



Wire RC delay 
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In any given technology 

• wire RC increases as L2 with wire length L 

• r is wire resistance per unit length 

• c is wire resistance per unit length 

 

2RC = rcL

SR LR rL
W

   oxC WC L cL 
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Step-response voltage along the wire 
as a function of time 
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Wire delay example 
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Assume wire cap c= 200 fF/mm, r=800 W/mm from previous examples  

Without wire, electrical effort is h=1 
Delay becomes 5 ps*(pinv+h)=5*2 = 10 ps 

1 mm  long, 125 nm wide Cu wire 

X 

driver inverter  receiver inverter  

X 

Estimate the delay of an inverter driving an identical inverter 
at the end of the 1 mm wire! WP=2WN. 



Wire delay example 
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Wire RC product is RWCW=160 ps. To be compared with inverter RC=7.2 ps 

Wire effort is WE=160/7.2=22 

Assume wire cap c= 200 fF/mm, r=800 W/mm from previous examples  

Without wire, electrical effort is h=1 
Delay becomes 5 ps*(pinv+h)=5*2 = 10 ps 

X 

driver inverter  receiver inverter  

200 fF 

0.8 kW 

X 

Estimate the delay of an inverter driving an identical inverter 
at the end of the 1 mm wire! WP=2WN. 



 
Wire RC product is 160 ps compared to inverter 7.2 ps 

Wire effort is 160/7.2=22 

Wire delay example 
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Assume wire cap c= 200 fF/mm, r=800 W/mm from previous examples  

Without wire, electrical effort is h=1 
Delay becomes 5 ps*(pinv+h)=5*2 = 10 ps 

X 

driver inverter  receiver inverter  

100 fF 

0.8 kW 

100 fF 

Wire p-model 

X 

Wire capacitance is distributed and must at least be divided into 2 halves 
Wire RC product is RWCW=160 ps. To be compared with inverter RC=7.2 ps 

Wire effort is WE=160/7.2=22 
 

Estimate the delay of an inverter driving an identical inverter 
at the end of the 1 mm wire! WP=2WN. 



Wire delay example 
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1 mm  long, 125 nm wide Cu wire 

Estimate the delay of an inverter driving an identical inverter 
at the end of the 1 mm wire! WP=2WN. 

Wires are distributed systems 
Approximate with lumped element models 

In Spice simulations a 3-segment p-model is accurate to 3% 

X X 

driver inverter  receiver inverter  

Assume wire cap c= 200 fF/mm, r=800 W/mm from previous examples  

Without wire, electrical effort is h=1 
Delay becomes 5 ps*(pinv+h)=5*2 = 10 ps 



Wire delay example 
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1 mm  long, 125 nm wide Cu wire 

Estimate the delay of an inverter driving an identical inverter 
at the end of the 1 mm wire! WP=2WN. 

Wires are distributed systems 
Approximate with lumped element models 

In Spice simulations a 3-segment p-model is accurate to 3% 

X X 

driver inverter  receiver inverter  

Assume wire cap c= 200 fF/mm, r=800 W/mm from previous examples  

Without wire, electrical effort is h=1 
Delay becomes 5 ps*(pinv+h)=5*2 = 10 ps 

For analytical solution: 
use single segment p-model  



Wire effort 

• This year I decided to introduce a new concept 

• The wire effort, similar to logical effort 

• The ratio between RC products 

• In our example the wire RC product is RWCW=160 ps compared 
to inverter RC=7.2 ps (t/0.7) 

• Wire effort in our example is 

• Why introduce this new concept? 

• Because minimum normalized wire delay is 

• And the critical wire length is   
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Wire delay example 
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Assume wire cap c= 200 fF/mm, r=800 W/mm from previous examples  

X 

driver inverter  receiver inverter  

100 fF 

0.8 kW 

100 fF 

Wire p-model 

C pinvC 

R 

Without wire, electrical effort is h=1 
Delay becomes 5 ps*(pinv+h)=5*2 = 10 ps 

Introduce electrical inverter models 
What is the delay of this two-stage RC circuit? 

Can be found analytically from second-order differential equation! 

Estimate the delay of an inverter driving an identical inverter 
at the end of the 1 mm wire! WP=2WN. 



Wire delay example 
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Assume wire cap c= 200 fF/mm, r=800 W/mm from previous examples  

sC2 sC1 

V1 V2 R1 R2 

Vin 

 

• Get transfer function! 

 
  2

1 2 1 2 1 1 2 2 2

1

1
H s

s R R C C s R C C R C


   

• For a moment, let us simplify the two-stage RC circuit! 

Estimate the delay of an inverter driving an identical inverter 
at the end of the 1 mm wire! WP=2WN. 

This transfer function 
contains a second-order 
equation with two solutions 
s1 and s2. 

  2

1 2 1 2 1 1 2 2 2 1 0s R R C C s R C C R C    



Wire delay example 
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Assume wire cap c= 200 fF/mm, r=800 W/mm from previous examples  

V1 V2 R1 R2 

Vin 

 

• Get transfer function! This transfer function 
contains a second-order 
equation with two solutions 
s1 and s2. 

Usually, s2>>s1.  
Which indicates a domina-
ting time constant t1=1/s1. 
For a rising input step 
voltage, we get an 
exponentially decreasing 
output voltage 

  1/

2

t

DDV t V e
t



Estimate the delay of an inverter driving an identical inverter 
at the end of the 1 mm wire! WP=2WN. 

sC2 sC1 

 
  2

1 2 1 2 1 1 2 2 2

1

1
H s

s R R C C s R C C R C


   

• For a moment, let us simplify the two-stage RC circuit! 

  2

1 2 1 2 1 1 2 2 2 1 0s R R C C s R C C R C    



Wire delay example 
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Assume wire cap c= 200 fF/mm, r=800 W/mm from previous examples  

V1 V2 R1 R2 

Vin 

 

• Get transfer function! This transfer function 
contains a second-order 
equation with two solutions 
s1 and s2. 

Usually, s2>>s1.  
Which indicates a domina-
ting time constant t1=1/s1. 
For a rising input step 
voltage, we get an 
exponentially decreasing 
output voltage 

  1/

2

t

DDV t V e
t



 1 1 1 2 2 2R C C R Ct   

Neglect s2 term in the transfer function and we  
immediately get  

Estimate the delay of an inverter driving an identical inverter 
at the end of the 1 mm wire! WP=2WN. 

sC2 sC1 

• For a moment, let us simplify the two-stage RC circuit! 

  2

1 2 1 2 1 1 2 2 2 1 0s R R C C s R C C R C    
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Approximative solution 
with dominating time constant 
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September 2017 

One example: 
R1=0.8R2, C1=1.2C2 

t1=2.45, t2=0.31 
Compare exponential two-pole solution with  

exponential decay assuming a dominant time constant t1=2.76  
 



Wire delay example 
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Assume wire cap c= 200 fF/mm, r=800 W/mm from previous examples  

V1 V2 R1 R2 

Vin 

• Now, let us return to the simplified two-stage RC circuit 

• How to remember how to get the dominant time constant? 

 1 1 1 2 2 2R C C R Ct   

Each resistance is multiplied by its downstream 
capacitance! 

Estimate the delay of an inverter driving an identical inverter 
at the end of the 1 mm wire! WP=2WN. 

C2 C1 



Wire delay example 
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Assume wire cap c= 200 fF/mm, r=800 W/mm from previous examples  

V1 V2 R1 R2 

Vin 

 1 1 1 1 2 2RC R R Ct   

Or: Each capacitance is multiplied by its upstream 
capacitance! 

Estimate the delay of an inverter driving an identical inverter 
at the end of the 1 mm wire! WP=2WN. 

C2 C1 

• Now, let us return to the simplified two-stage RC circuit 

• How to remember how to get the dominant time constant? 



Wire delay example 
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Assume wire cap c= 200 fF/mm, r=800 W/mm from previous examples  

X 

driver inverter  receiver inverter  

CW/2 

RW 

CW/2 

Wire p-model 

C pinvC 

R 

Now, let us apply the dominant time constant model to our example. 

   1 1
2 2

W W W
inv W W inv W W

C R C
R p C C C R C RC p RC R Ct

 
          

 

Without wire, electrical effort is h=1. Delay becomes 5 ps*(pinv+1)=5*2 = 10 ps 

Estimate the delay of an inverter driving an identical inverter 
at the end of the 1 mm wire! WP=2WN. 



Wire delay example 
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Assume wire cap c= 200 fF/mm, r=800 W/mm from previous examples  

X 

driver inverter  receiver inverter  

CW/2 

RW 

CW/2 

Wire p-model 

C pinvC 

R 

Once time constant is known, delay can be normalized wrt ideal FO1 delay, i.e. to tau! 

0.7 1
2

W W W W W
pd inv

W

R C R R CR
t RC p

RC R R RC

 
     

 

Without wire, electrical effort is h=1. Delay becomes 5 ps*(pinv+1)=5*2 = 10 ps 

Estimate the delay of an inverter driving an identical inverter 
at the end of the 1 mm wire! WP=2WN. 



Wire delay example 
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Assume wire cap c= 200 fF/mm, r=800 W/mm from previous examples  

X 

driver inverter  receiver inverter  

CW/2 

RW 

CW/2 

Wire p-model 

C pinvC 

R 

Without wire, electrical effort is h=1. Delay becomes 5 ps*(pinv+1)=5*2 = 10 ps 

In terms of the wire effort WE=RWCW/RC? 

0.7 1
2

W E
pd inv E

W

R WR
t RC p W

R R

 
     

 

Estimate the delay of an inverter driving an identical inverter 
at the end of the 1 mm wire! WP=2WN. 



driver inverter  receiver inverter  

CW/2 

RW 

CW/2 

Wire p-model 

C pinvC 

R 
X 

Wire delay example 
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Assume wire cap c= 200 fF/mm, r=800 W/mm from previous examples  

How should driver resistance be chosen wrt RW for minimum delay? Let derivative wrt R be zero! 

2
0  ;  0.8 kΩ, 22.2  170 ΩW WE

W E

W E

R RWd
R R W R

R R R W


        



Estimate the delay of an inverter driving an identical inverter 
at the end of the 1 mm wire! WP=2WN. 

Without wire, electrical effort is h=1. Delay becomes 5 ps*(pinv+1)=5*2 = 10 ps  
With wire, normalized delay becomes d=2+2√WE+WE/2=22.5 instead of 2!  

More than one order of magnitude longer! 

X120 

receiver inverter  



driver inverter  receiver inverter  

CW/2 

RW 

CW/2 

Wire p-model 

C pinvC 

R 
X 

Wire delay example 

September 2017 Introduction to Integrated Circuit Design 36 

Assume wire cap c= 200 fF/mm, r=800 W/mm from previous examples  

How should driver resistance be chosen wrt RW for minimum delay? Let derivative wrt R be zero! 

2
0  ;  0.8 kΩ, 22.2  170 ΩW WE

W E

W E

R RWd
R R W R

R R R W


        



Estimate the delay of an inverter driving an identical inverter 
at the end of the 1 mm wire! WP=2WN. 

Without wire, electrical effort is h=1. Delay becomes 5 ps*(pinv+1)=5*2 = 10 ps  
With wire, normalized delay becomes d=2+2√WE+WE/2=22.5 instead of 2!  

More than one order of magnitude longer! But quite close to minimum delay d=4√WE=18.9  

X120 

receiver inverter  



Wire delay example 
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Assume wire cap c= 200 fF/mm, r=800 W/mm from previous examples  

X120 

X12 driver inverter  X12 receiver inverter  

CW/2 

RW 

CW/2 

Wire p-model 

C pinvC 

R 

The wire effort is proportional to wire length squared! 

Estimate the delay of an inverter driving an identical inverter 
at the end of the 1 mm wire! WP=2WN. 

receiver inverter  

Without wire, electrical effort is h=1. Delay becomes 5 ps*(pinv+1)=5*2 = 10 ps  
With wire, normalized delay becomes d=2+2√WE+WE/2=22.5 instead of 2!  

More than one order of magnitude longer! But quite close to minimum delay d=4√WE=18.9  
receiver inverter  

2
2

E

rcL
W L

RC
  Therefore, keep wires short! 



Keeping wires short using repeaters 
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Divide wire into 2 segments driven by repeaters. 
A repeater is just an identical inverter called repeater! 

To estimate the propagation delay, just add the two segment delays! 

X120 

driver inverter  receiver inverter  

X120 X120 
RW/2, CW/2 RW/2, CW/2 

Eq. from slide 30 2 1
2 2 8

WE E
inv

W

RW WR
d p

R R

 
     

 

 2 1 2 2 2.35 2.35 2.8 19
2 2 8

E E E
inv

W W W
d p

 
          

 
 

Quite close to minimum delay d=4√WE=18.8 



Keeping wires short using repeaters 
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The general case: finding the optimal number of segments 
Divide wire into m segments driven by repeaters. 

A repeater is just an identical inverter called repeater! 
To estimate the propagation delay, just add the segment delays! 

X120 

driver inverter  receiver inverter  

X120 X120 
RW/m, CW/m RW/m, CW/m 

2

1
1

2

WE E
inv

W

RW WR
d m p

m R m R m

 
     

 
Eq. from slide 30 
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The general case: finding the optimal number of segments 
Divide wire into m segments driven by repeaters. 

A repeater is just an identical inverter called repeater! 
To estimate the propagation delay, just add the segment delays! 

X120 

driver inverter  receiver inverter  

X120 X120 
RW/m, CW/m RW/m, CW/m 

2

1
1

2

WE E
inv

W

RW WR
d m p

m R m R m

 
     

 
Eq. from slide 30 

Minimum delay for ∂d/ ∂m=0, i.e. for                                which means that the minimum  
normalized delay is d=4√WE, and for WE =22.5 we have dmin≈18.9 assuming pinv=1. 

1
2

2.35Em W 



Keeping wires short using repeaters 
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We had d=22.4 without repeaters, so obviously there was not 
much to gain by sectioning wires 1 mm long into segments.  

Then, for what wire length does it start to pay off? 

Well, the critical wire length is  2crit

L RC
L

m rc
 

7.2
2 2 0.4 mm

160
crit

RC
L

rc
  

X120 

driver inverter  receiver inverter  

X120 X120 
RW/m, CW/m RW/m, CW/m 

Minimum delay for ∂d/ ∂m=0, i.e. for                                which means that the minimum  
normalized delay is d=4√WE, and for WE =22.5 we have dmin≈18.9 assuming pinv=1. 

2

1
1

2

WE E
inv

W

RW WR
d m p

m R m R m

 
     

 

1
2

2.35Em W 



Keeping wires short using repeaters 
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For what wire length does it start to pay off inserting repeaters? 
Let´s have a look at a 10 mm wire.  

Still Lcrit=0.4 mm for this technology! 
What if we divide the wire into 20 segments, each 0.5 mm long? 
What would be our speed gain? Wire effort is now 100x larger!  

X120 

driver inverter  receiver inverter  

X120 X120 

1 2
2

E
inv E

W
d p W    

2222
2 + 2 × 47 + = 1200

2

RW/m, CW/m RW/m, CW/m 

Without repeaters:  

With 20 repeaters:  
2

2
20 1

20 2 20

E E
inv

W W
d p

 
     

  

40 + 2 × 47 + 56 = 190

Minimum normalized delay is d=4√WE=188.6. Quite close! 



H-tree clock distribution 
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Identify the time critical path 
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RW 

8CW 8CW 
R 

CD 

2
R

W
 

4
C

W
 

4
C

W
 

2RW 

CW CW C 

Find the equivalent RC circuit describing the wire and its segments along 
the time critical path neglecting branches! 

x2   

x1     

R, C, CD 

  

RW, 16CW 

2RW, 8CW 

2RW, 8CW 

4RW, 4CW 

4RW, 4CW 

x2 

x2 x2 

R, C, CD R, C, CD 

R, C, CD R, C, CD 

Identify the time critical path 
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R 

CD 

2RW 

CW CW C 

2RW 

4CW 4CW 

RW 

8CW 8CW 

x2   

x1     

R, C, CD 

  

RW, 16CW 

2RW, 8CW 

4RW, 4CW 

4RW, 4CW 

x2 

x2 x2 

R, C, CD R, C, CD 

R, C, CD R, C, CD W.C. Elmore. The Transient Analysis of Damped Linear Networks with 
Particular Regard to Wideband Amplifiers, J. Applied Physics, vol. 19(1), 1948 

RW 

8CW 8CW 
R 

CD 

2
R

W
 

4
C

W
 

4
C

W
 

2RW 

CW CW C 

2RW, 8CW 
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R 

CD 

2RW 

CW CW C 

2RW 

4CW 4CW 

RW 

8CW 8CW 

x2   

x1     

R, C, CD 

  

RW, 16CW 

2RW, 8CW 

4RW, 4CW 

4RW, 4CW 

x2 

x2 x2 

R, C, CD R, C, CD 

R, C, CD R, C, CD 

This is a four-stage RC ladder, and its four time constants cannot be found analytically. 
However, William C. Elmore analyzed the transfer functions of n-stage RC-ladders and 

found that the sum of the time constants could be easily found as for n=2.  

W.C. Elmore. The Transient Analysis of Damped Linear Networks with 
Particular Regard to Wideband Amplifiers, J. Applied Physics, vol. 19(1), 1948 

2RW, 8CW 
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R 

CD 

2RW 

CW CW C 

2RW 

4CW 4CW 

RW 

8CW 8CW 

x2   

x1     

R, C, CD 

  

RW, 16CW 

2RW, 8CW 

4RW, 4CW 

4RW, 4CW 

x2 

x2 x2 

R, C, CD R, C, CD 

R, C, CD R, C, CD 

Knowing the sum of the time constants, and assuming the existence a dominant time 
constant, the exponential growth/decay of the output voltage can be easily found 

 /

/

1
( )

E

E

t T

DD

out
t T

DD

V e
V t

V e





 
 



2RW, 8CW 
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R 

CD 

2RW 

CW CW C 

2RW 

4CW 4CW 

RW 

8CW 8CW 

x2   

x1     

R, C, CD 

  

RW, 16CW 

2RW, 8CW 

4RW, 4CW 

4RW, 4CW 

x2 

x2 x2 

R, C, CD R, C, CD 

R, C, CD R, C, CD 

The Elmore time constant TE is found by multiplying each R with its downstream C 

 /

/

1
( )

E

E

t T

DD

out
t T

DD

V e
V t

V e





 
 



     1 1 2 3 4 2 2 3 4 3 3 4 4 4ET R C C C C R C C C R C C R C         

C1 C2 C3 C4 

R1 R2 R3 R4 

2RW, 8CW 
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R 

CD 

2RW 

CW CW C 

2RW 

4CW 4CW 

RW 

8CW 8CW 

x2   

x1     

R, C, CD 

  

RW, 16CW 

2RW, 8CW 

4RW, 4CW 

4RW, 4CW 

x2 

x2 x2 

R, C, CD R, C, CD 

R, C, CD R, C, CD 

 /

/

1
( )

E

E

t T

DD

out
t T

DD

V e
V t

V e





 
 



 26 18 2 6 2 5E D W W W W W W W WT R C C C R C R C R C R C      

The Elmore time constant TE is found by multiplying each R with its downstream C 

2RW, 8CW 
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R 

CD 

2RW 

CW CW C 

2RW 

4CW 4CW 

RW 

8CW 8CW 

x2   

x1     

R, C, CD 

  

RW, 16CW 

2RW, 8CW 

4RW, 4CW 

4RW, 4CW 

x2 

x2 x2 

R, C, CD R, C, CD 

R, C, CD R, C, CD 

 /

/

1
( )

E

E

t T

DD

out
t T

DD

V e
V t

V e





 
 



  26 5 32E D W W W WT R C C RC R C R C    

The Elmore time constant TE is found by multiplying each R with its downstream C 

Simplify: 

2RW, 8CW 



12CW 2C 

  12 2E W WT R R C C  

How about influence of branches? 
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x2   

x1     

R, C, CD 

  

RW, 16CW 

2RW, 8CW 

4RW, 4CW 

4RW, 4CW 

x2 

x2 x2 

R, C, CD R, C, CD 

R, C, CD R, C, CD 

How about the branches, 
what is their influence on 
the Elmore time 
constant? 2CW C 

  2 3 2EB W WT R R C C  

Branch #1 

Branch #2 

R 

CD 

2RW 

CW CW C 

2RW 

4CW 4CW 

RW 

8CW 8CW 

  26 5 32E D W W W WT R C C RC R C R C    

The Elmore time constant TE is found by multiplying each R with its downstream C 

Simplify: 

2RW, 8CW 



12CW 2C 
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x2   

x1     

R, C, CD 

  

RW, 16CW 

2RW, 8CW 

4RW, 4CW 

4RW, 4CW 

x2 

x2 x2 

R, C, CD R, C, CD 

R, C, CD R, C, CD 

 4 40 10 40E D W W W WT R C C RC R C R C    

2CW C 

Branch #1 

Branch #2 

  26 5 32E D W W W WT R C C RC R C R C    

R 

CD 

2RW 

CW CW C 

2RW 

4CW 4CW 

RW 

8CW 8CW 

w/o branches 

w branches 

Branch resistances are neglected! 
Only branch capacitances matter! 

2RW, 8CW 



H-tree clock distribution 

September 2017 Introduction to Integrated Circuit Design 54   

  

x2   

x1     

R, C, CD 

  

RW, 16CW 

2RW, 8CW 

4RW, 4CW 

4RW, 4CW 

x2 

x2 x2 

R, C, CD R, C, CD 

R, C, CD R, C, CD 

4 40 10 40W W W W W
E inv

W

R C R R CR
T RC p

RC R R RC

 
      

 

How to size driver inverter to minimize the time constant, and hence the wire delay? 
Rewrite Elmore time constant: 

1610 10
4 10  using 

4 4

W W W
inv E E E

W

R R CR
RC p W W W

R R RC

 
      

 

,min

2
 for W

E

E

R
T R

W


2

10
Minimum when = -10 =0

4

WE E

W

RT W

R R R





16 W W
E

R C
W

RC


2RW, 8CW 



Conclusion 

• Introduction to interconnect 

• Defining the sheet resistance [in ohms per square, W/□] 

• Discussing the importance of interconnect 

• Introduced a distributed wire RC model, the p-model 

• Discussed the relevance of a delay model assuming the 
existence of a dominant time constant 

• Minimizing wire delay by repeater insertion 

• The Elmore model – a generalized delay model 

• How to handle the influence on delay of branches 

• Questions and answer session 
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