
Adder design

going further . . .

exploring new design approaches

Purpose of this exercise

• Apply our CMOS circuit design skills for designing larger blocks, like adders

• Go through a step-by-step process for improving performance wrt timing
constraints

• This exercise is a preparation for a larger design task in next quarter:
– A 32 bit ”super-fast” prefix binary-tree Sklansky adder

2018-10-09

Purpose of this exercise

• Understanding Adder PG networks

2018-10-09

16:0 15:0 14:0 13:0 12:0 11:0 10:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 CIN

Sklansky type tree adder PG network

Carry-ripple adder group PG network

Outline

• Interactive lecture where we play around designing adders in Excel

• Why Excel?
– Cell based like standard-cell design

– Excel logic functions can be used to validate adder functionality

– Unit delay model can be used to illustrate propagation delay

• Types of adders
– Ripple-carry adder

– Carry generate and propagate prefix setup logic to improve speed

– Carry-skip adders

– Carry-lookahead adders

– Prefix tree adders, like Sklansky adders, Ladner-Fischer, Brent-Kung adders

2018-10-09

Datapath adder word slice

Bitslice 6

Bitslice 5

Bitslice 4

Bitslice 3

Bitslice 2

Bitslice 1

A
d

d
e

r
w

o
rd

 s
lic

e

2018-10-09

MIPS datapath layout with adder ”word slice”

cout

Iterative logic arrays: FULL ADDER

2018-10-09

FA

a0 b0

cincout

Sum0

Design adder by using 8
instances of bit adder cell

CLK cycle time T

a7 b7 a6 b6 a5 b5 a4 b4 a3 b3 a2 b2 a1 b1 a0 b0

Sum0Sum1Sum2Sum3

FA cin
FAFAFA

Sum0Sum1Sum2Sum3Sum4Sum5Sum6Sum7

FAFAFAFA

Sum4Sum5Sum6Sum7

Adder word slice

FFFF FFFF FFFFFFFF FFFF FFFFFFFF FFFF CLK

FFFF

Iterative logic arrays: FULL ADDER

2018-10-09

FA

a0 b0

cincout

Sum0

Design adder by using 8
instances of bit adder cell

CLK cycle time T

cout

a7 b7 a6 b6 a5 b5 a4 b4 a3 b3 a2 b2 a1 b1 a0 b0

Sum0Sum1Sum2Sum3

FA cin
FAFAFA

Sum0Sum1Sum2Sum3Sum4Sum5Sum6Sum7

FAFAFAFA

Sum4Sum5Sum6Sum7

FFFF FFFF FFFFFFFF FFFF FFFFFFFF FFFF CLK

FFFF

Boolean truth table

2018-10-09

You can check your Boolean expression by inserting it to the Boolean truth table first!
SUM expression already inserted as a hint on how to write logic in Excel!

SUM=OR(AND(A;B;CIN);AND(NOT(COUT);OR(A;B;CIN)))*1
(A, B, CIN, COUT to be replaced by work sheet cell coordinates)

BOOLEAN TRUTH TABLE LOGIC FORMULAS

A B CIN COUT SUM COUT SUM

0 0 0 0 0 0 0

0 0 1 0 1 0 1

0 1 0 0 1 0 1

0 1 1 1 0 1 0

1 0 0 0 1 0 1

1 0 1 1 0 1 0

1 1 0 1 0 1 0

1 1 1 1 1 1 1

Text book full adder block solution

SUM LOGIC ”=OR(AND(A;B;C);AND(IN;OR(A;B;C)))*1”

carry cell SUM cell

Ripple-carry adder design in Excel

2018-10-09

This is a geometrical representation of a ripple-carry adder.
Each row in in Excel work sheet corresponds to 2.6 mm in ST 65 nm CMOS cell library.

Next task: implement your carry cell using the adder template where the SUM cell
logic has already been implemented.

YOUR TASK IS
1) TO WRITE CARRY LOGIC EXPRESSION
INTO LSB CARRY CELL USING EXCEL AND/OR/NOT LOGIC FORMULA,
AND
2) CLICK-AND-DRAG TO GET 8 INSTANCES OF CARRY CELL
CARRY LOGIC ”=(LOGIC EXPRESSION)*1”

← FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ← CLK

a8 b8 a7 b7 a6 b6 a5 b5 a4 b4 a3 b3 a2 b2 a1 b1 ↓
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 ↓
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 ↓ ADD/SUB LOGIC

← CIN

SUM LOGIC

← ← CLK

000 0 0 0 0 0 0

0 0 1

SUM3 SUM2 SUM1

FF FF FF

0 0 1 0 0

FF FF FF FF FF

SUM8 SUM7 SUM6 SUM5 SUM4

DATA IN

Ripple-carry adder design in Excel

2018-10-09

Next task: Validate your design by checking its functionality!
Does it work also for subtraction?

ADD/SUBTRACT ADD=0 CIN=? A= 32 <<<<<ENTER TWO NUMBERS

CONTROL SIGNAL: 0 SUB=1 CIN=? B= 1 <<<<< -128<NUMBER<128

SUM= 33

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ← CLK

a8 b8 a7 b7 a6 b6 a5 b5 a4 b4 a3 b3 a2 b2 a1 b1 ↓
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 ↓
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 ↓ ADD/SUB LOGIC

← CIN

SUM LOGIC

← ← CLK

SUM converted back to decimal: 33 Both sums are equal? YES

OVERFLOW? NO

000 0 0 0 0 0 0

0 0 1

SUM3 SUM2 SUM1

FF FF FF

0 0 1 0 0

FF FF FF FF FF

SUM8 SUM7 SUM6 SUM5 SUM4

DATA IN

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ← CLK

a8 b8 a7 b7 a6 b6 a5 b5 a4 b4 a3 b3 a2 b2 a1 b1 ↓
0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 ↓
0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 ↓ ADD/SUB LOGIC

CIN

←

← ← CLK

1

1

1

0

01

1

1

1

0

0

SUM8 SUM7 SUM6 SUM5 SUM4 SUM3 SUM2 SUM1

1

0

0

0

0

0

FF FFFF FF FF FF FF FF

DATA IN

Ripple-carry adder design in Excel

2018-10-09

TI
M

E
A

X
IS

Teacher demo: illustrating the carry-ripple delay by introducing a timing axis, and
by letting each cell row height represent a unit delay. CUT-AND-PASTE exercise.

Each row in Excel is a timing representation using unit-delay model.

Ripple-carry adder design in Excel

2018-10-09

Teacher demo: illustrating the carry-ripple delay by introducing a timing axis, and
by letting each cell row height represent a unit delay. CUT-AND-PASTE exercise.

Each row in Excel is a timing representation using unit-delay model.

TI
M

E
A

X
IS

2018-10-09

Ripple-carry delay calculations
Full textbook solution as proposed in chapter 10 on adders

SUM

SUM cell

CIN

B

A

carry cell

COUT

2018-10-09

Ripple-carry delay calculations
Redraw for identifying the critical timing path

SUM

SUM cell

CIN

B

A

carry cell

B

A

CIN

COUT

2018-10-09

Ripple-carry delay calculations

COUT

SUM

SUM cell

B

A

carry cell

B

A

CIN

CIN COUT

Add next bit cell for identifying the critical timing path

SUM

SUM cell

CIN

B

A

carry cell

B

A

CIN

2018-10-09

Ripple-carry delay calculations
Identifying the critical timing path

SUM

SUM cell

CIN

B

A

carry cell

B

A

CIN

COUT

SUM

SUM cell

B

A

carry cell

B

A

CIN

CIN COUT

Improving the design

2018-10-09

Finding faster carry cells!
Less complicated cell with smaller number of MOSFETs!
We are going to accomplish this by preparing the carry cell input signals!
As an example: SUM=XOR(A;B;CIN),
here P=XOR(A;B) can be prefixed while we are waiting for the carry!

Go back to Boolean truth table

2018-10-09

BOOLEAN TRUTH TABLE

A B CIN COUT SUM COUT

0 0 0 0 0 KILL

0 0 1 0 1 KILL

0 1 0 0 1 PROPAGATE

0 1 1 1 0 PROPAGATE

1 0 0 0 1 PROPAGATE

1 0 1 1 0 PROPAGATE

1 1 0 1 0 GENERATE

1 1 1 1 1 GENERATE

NOTE: COUT=Generate+Propagate*CIN

FA

a0 b0

cincout

Sum0

Divide and conquer: Divide full adder cell into carry and SUM cells!

Design adder by using 8
instances of bit adder cell

G=AND(A;B)
P=XOR(A;B)

SUM=XOR(P;CIN)

cout cinAO21

G P

SUM
XORSUM

Our adder design so far . . .

2018-10-09

a8 b8 a7 b7 a6 b6 a5 b5 a4 b4 a3 b3 a2 b2 a1 b1

Carry
cell

Sum8

SUM
logic

Carry
cell

Sum7

SUM
logic

Carry
cell

Sum6

SUM
logic

Carry
cell

Sum5

SUM
logic

Carry
cell

Sum4

SUM
logic

Carry
cell

Sum3

SUM
logic

Carry
cell

Sum2

SUM
logic

Carry
cell

Sum1

SUM
logic

Include propagate/generate logic setup cells

Using Propagate/Generate setup cells

2018-10-09

Logical symbol

HS65_LS_AOI12

g8 g7 g6 g5 g4 g3 g2 g1

HA

AO12

Sum8

SUM
logic

p8

HA

AO12

Sum7

SUM
logic

p7

HA

AO12

Sum6

SUM
logic

p6

HA

AO12

Sum5

SUM
logic

p5

HA

AO12

Sum4

SUM
logic

p4

HA

AO12

Sum3

SUM
logic

p3

HA

AO12

Sum2

SUM
logic

p2

HA

AO12

Sum1

SUM
logic

p1

a8 b8 a7 b7 a6 b6 a5 b5 a4 b4 a3 b3 a2 b2 a1 b1

Using Propagate/Generate setup cells

2018-10-09

Logical symbol

HS65_LS_AOI12

g8 g7 g6 g5 g4 g3 g2 g1

HA

AO12

Sum8

SUM
XOR

p8

HA

AO12

Sum7

SUM
XOR

p7

HA

AO12

Sum6

SUM
XOR

p6

HA

AO12

Sum5

SUM
XOR

p5

HA

AO12

Sum4

SUM
XOR

p4

HA

AO12

Sum3

SUM
XOR

p3

HA

AO12

Sum2

SUM
XOR

p2

HA

AO12

Sum1

SUM
XOR

p1

a8 b8 a7 b7 a6 b6 a5 b5 a4 b4 a3 b3 a2 b2 a1 b1

Using Propagate/Generate setup cells

2018-10-09

← FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ← CLK

a8 b8 a7 b7 a6 b6 a5 b5 a4 b4 a3 b3 a2 b2 a1 b1 CIN

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ↓ DATA IN

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 ↓ ADD/SUB LOGIC

G8 P8 G7 P7 G6 P6 G5 P5 G4 P4 G3 P3 G2 P2 G1 P1 ↓

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 ↓ G,P LOGIC

←

SUM LOGIC

← ← CLK

1

FF FF

C3:0

FF FF FF FF FF FF

SUM3

C2:0 C1:0

0 0 0 0 0 0 0 0

C8:0 C7:0 C6:0 C5:0 C4:0

SUM2 SUM1SUM8 SUM7 SUM6 SUM5 SUM4

Empty row of cells, to be left blank until the next task

Fourth task: Enter G and P logic, enter carry AO21 logic and
replace SUM cell logic with XOR logical function!

Note: P and G is never =1 at the same time! It is either propagate or generate, never both!
Therefore the AO logic expression in the C1:0 cells can be written very simple like =G1+P1*CIN!

cin

g1

HA

Carry
cell

Sum1

SUM
XOR

p1

Using Propagate/Generate setup cells

2018-10-09

Note: P and G is never =1 at the same time! It is either propagate or generate, never both!
Therefore the AO logic expression in the C1:0 cells can be written very simple like =G1+P1*CIN!
Next improvement is letting the combined propagate signal ripple along with the carry signal to

the array output.
Why: The carry-skip adder!

← FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ← CLK

a8 b8 a7 b7 a6 b6 a5 b5 a4 b4 a3 b3 a2 b2 a1 b1 CIN

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ↓ DATA IN

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 ↓ ADD/SUB LOGIC

G8 P8 G7 P7 G6 P6 G5 P5 G4 P4 G3 P3 G2 P2 G1 P1 ↓

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 ↓ G,P LOGIC

P8:1 P7:1 P6:1 P5:1 P4:1 P3:1 P2:1 P1:1 1
← 1

SUM LOGIC

← ← CLK

C5:0C6:0C7:0C8:0 C1:0C2:0C3:0C4:0

SUM3 SUM2 SUM1

FF FF FF

SUM8 SUM7 SUM6 SUM5 SUM4

FF FF FF FF FF

0 00 0 0 0 0 0

Fifth task: Let the combined propagate signal ripple through the
adder array along with the carry signal

Carry-Skip Adder

• Carry-ripple is slow through all N stages

• Carry-skip allows carry to skip over groups of n bits

– Decision based on n-bit propagate signal

2018-10-09

n-bit blocks

k=N/n number of n-bit blocks

Cin

+

S7:0

P7:0

a7:0 b7:0

+

S15:8

P15:8

a15:8 b15:8

+

S23:16

P23:16

a23:16 b23:16

+

S31:24

P31:24

a31:24 b31:24

Cout
C7 1

0

C15 1

0

C23 1

0

1

0

N-bit adder

() ()2 1 1skip pg AO mux XORt t n t k t t= + − + − +Verify the delay model given in eq. 10.13:

Carry-Skip Adder

• Carry-ripple is slow through all N stages

• Carry-skip allows carry to skip over groups of n bits

– Decision based on n-bit propagate signal

2018-10-09

n-bit blocks

k=N/n number of n-bit blocks

Cin

+

S7:0

P7:0

a7:0 b7:0

+

S15:8

P15:8

a15:8 b15:8

+

S23:16

P23:16

a23:16 b23:16

+

S31:24

P31:24

a31:24 b31:24

Cout
C7 1

0

C15 1

0

C23 1

0

1

0

N-bit adder

For 32-bit adder we had 31*tAO; Now only tPG+14tAO + 3tMUX

Delay is cut in half!

Using Propagate/Generate setup cells

2018-10-09

Once we realize that the carry arriving at the adder block output is actually a block
generate signal, we are ready for the next improvement step!

THE CARRY-LOOKAHEAD ADDER
Why is that so? Because if G8:1=1, a carry has been generated within the block!

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ← CLK

a8 b8 a7 b7 a6 b6 a5 b5 a4 b4 a3 b3 a2 b2 a1 b1 CIN

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ↓ DATA IN

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 ↓ ADD/SUB LOGIC

G8 P8 G7 P7 G6 P6 G5 P5 G4 P4 G3 P3 G2 P2 G1 P1 ↓

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 ↓ G,P LOGIC

G8:1 P8:1 G7:1 P7:1 G6:1 P6:1 G5:1 P5:1 G4:1 P4:1 G3:1 P3:1 G2:1 P2:1 G1:1 P1:1 ↓
←

SUM LOGIC

← ← CLK

C3:0C4:0C7:0 C6:0 C5:0 1C1:0C2:0

FF FFFF FF FF FF FF FF

0 0

SUM8 SUM7 SUM6 SUM5 SUM4 SUM3 SUM2 SUM1

0 0 0 0 0 0

Carry-Lookahead Adder

• Carry generate allows us to replace MUX with
another AO21 gate.

2018-10-09

”MUX”
Cin+

S7:0

G7:0

P7:0

b7:0 b7:0

+

S15:8

G15:8

P15:8

a15:8 b15:8

+

S23:16

G23:16

P23:16

a23:16 b23:16

+

S31:24

G31:24

P31:24

a31:24 b31:24

C8C16C24Cout

k=N/n groups of n-bit blocks

n-bit blocksN-bit adder

Verify the delay model given in eq. 10.14: () ()2 1 1CLA pg AO AO XORt t n t k t t= + − + − +

a7:0

Summary

We have

• introduced Microsoft Excel as a tool for studying adder designs

• introduced Excel timing graphs

• identified the generate/propagate behaviour of the addition

• built a new G and P based adder using AO21 cells for the carry

• built a 32-bit carry-skip adder with reduced propagation delay
compared with the ripple-carry solution

• introduced the carry–lookahead concept using block G and P

• used a binary tree design to form the block P and G outputs

Next week: a close look at our G/P cell design name it the ”dot
operator” and, see how it can be used to build pre-fix tree adders

2018-10-09

To think about until next Tuesday

• Task 1: Try to appreciate the Excel adder design approach ☺

• Task 2: Verify the carry-skip propagation delay formula given
in textbook equation 10.13.

• Task 3: Verify the carry-lookahead propagation delay formula
given in textbook equation 10.14.

• Task 4: Use the “dot operator” to show that the binary prefix-
tree carry output is equal to the carry output from a ripple-
carry array!

2018-10-09

() ()2 1 1skip pg AO mux XORt t n t k t t= + − + − +

() ()() 1 1CLA pg pg n AO AO XORt t t n t k t t= + + − + − +

Example:
synthesized 32-bit ALU/adder layout

2018-10-09

