Adder design

going further. ..
exploring new design approaches

Purpose of this exercise

Apply our CMOS circuit design skills for designing larger blocks, like adders

Go through a step-by-step process for improving performance wrt timing
constraints

This exercise is a preparation for a larger design task in next quarter:
— A 32 bit "super-fast” prefix binary-tree Sklansky adder

Purpose of this exercise

 Understanding Adder PG networks

(15 4 13 12 11 10 2 B Iy [5 4 3 2 1

L
will
mf

=il

ir&r
=@

|

"-'[16151413121110987654321C|N]

({ ir‘{ ({ f‘f

www il
LLLLLL

16:0 15:0 14:0 13:0 12:011:010:0 9:0 80 7.0 6:0 5:0 4.0 3:0 2:0 1.0 0:0

Sklansky type tree adder PG network

|15'-Cl 14:0 130 12:0 11:0 100 &0 E:0 T:0

&0 &0 40

30 20 1:0 D

Carry-ripple adder group PG network

2018-10-09

Outline

* Interactive lecture where we play around designing adders in Excel
Why Excel?

— Cell based like standard-cell design
— Excel logic functions can be used to validate adder functionality
— Unit delay model can be used to illustrate propagation delay

* Types of adders
— Ripple-carry adder
— Carry generate and propagate prefix setup logic to improve speed
— Carry-skip adders
— Carry-lookahead adders
— Prefix tree adders, like Sklansky adders, Ladner-Fischer, Brent-Kung adders

2018-10-09

Datapath adder word slice

Reguster File Decoder vdd gnd

flop mux adder
wordslice wordslice wordslice

MIPS datapath layout with adder "word slice”

2018-10-09

lterative logic arrays: FULL ADDER

Design adder by using 8 a, b,
instances of bit adder cell ‘ ‘
. ClLKcycletime T
Cout FA C, | |
Sum,
a; b, ag bg ac be a, b, a; b a, b, a; b, ag by
|| || || || || || || ||
Cout | FEAFE FE.FF FEAFF FEAFE FEAFE FEAFE FEAFE FEAFE CLK
FF FF c
Sum, Sumg Sum, Sum, Sum, Sum, Sum; Sum,

2018-10-09

lterative logic arrays: FULL ADDER

Design adder by using 8
instances of bit adder cell

. ClLKcycletime T

g by
FA

CLK

Sum, Sumg Sum, Sum, Sum, Sum, Sum; Sum,

2018-10-09

Boolean truth table

You can check your Boolean expression by inserting it to the Boolean truth table first!
SUM expression already inserted as a hint on how to write logic in Excel!
SUM=0R(AND(A;B;CIN);AND(NOT(COUT);OR(A;B;CIN)))*1
(A, B, CIN, COUT to be replaced by work sheet cell coordinates)

BOOLEAN TRUTH TABLE LOGIC FORMULAS
A B CIN JCOUT SUM COUT SUM
0 0 0 0 0 0 0
0 0 1 0 1 0 1
0 1 0 0 1 0 1
0 1 1 1 0 1 0
1 0 0 0 1 0 1
1 0 1 1 0 1 0
1 1 0 1 0 1 0
1 1 1 1 1 1 1

2018-10-09

Ripple-carry adder design in Excel

This is a geometrical representation of a ripple-carry adder.
Each row in in Excel work sheet corresponds to 2.6 um in ST 65 nm CMQOS cell library.
Next task: implement your carry cell using the adder template where the SUM cell
logic has already been implemented.

& | FF | FF | FF | FF | FFE | FF | FF | FF [FE | FF | FF | FF [FF | FE | FF | FF | FF | & cCLK
a8 | b8 | a7 | b7 | a6 [b6 | a5 | b5 | a4 | b4 | a3 | b3 [a2 [b2 | a1 | bl [

o]l olo]o
ofoJolo|12fo|ofofloJoJolof[o[o]| o] 1] 4 abpsusLoaic

DATAIN

o
o
(@)
(@)
[
o
(@)
o
o
o
o
[

& 0 0 0 0 0 0 0 0 0 CIN
0 0 1 0 0 0 0 1 SUM LOGIC
SUMS8 SUM?7 SUM6 SUM5 SUM4 SUM3 SUM?2 SUM1

FF FF FF FF FF FF FF FF & & oK
YOUR TASK IS Text book full adder block solution
1) TO WRITE CARRY LOGIC EXPRESSION
INTO LSB CARRY CELL USING EXCEL AND/OR/NOT LOGIC FORMULA, SUM LOGIC "=OR(AND(A;B;C);AND(IN:OR(A;B;C)))*1”
AND
2) CLICK-AND-DRAG TO GET 8 INSTANCES OF CARRY CELL A 4
CARRY LOGIC ”=(LOGIC EXPRESSION)*1” i jl

2018-10-09

Ripple-carry adder design in Excel

ADD/SUBTRACT ADD=0 CIN=? A= 32 [<<<<<ENTER TWO NUMBERS
CONTROL SIGNAL| 0 | SUB=1 CIN=? = | 1 [<<<<< -128<NUMBER<128
SUM= 33
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF | & CLK
a8 | b8 | a7 | b7 | a6 | b6 | a5 | b5 | a4 | b4 | a3 | b3 | a2 | b2 | a1l | bl J DATA IN
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 J, ADD/SUB LOGIC
< 0 0 0 0 0 0 0 0 0 CIN
0 0 1 0 0 0 0 1 SUM LOGIC
SUMS8 SUM7 SUM6 SUMS Sum4 SUM3 SUM2 SUM1
FF FF FF FF FF FF FF FF & & CLK
SUM converted back to decimal: 33 Both sums are equal? | YES
OVERFLOW? NO

Next task: Validate your design by checking its functionality!
Does it work also for subtraction?

2018-10-09

Ripple-carry adder design in Excel

Teacher demo: illustrating the carry-ripple delay by introducing a timing axis, and
by letting each cell row height represent a unit delay. CUT-AND-PASTE exercise.
Each row in Excel is a timing representation using unit-delay model.

FE | FF | Fr | FF [FE | FF | FF | FF [FF | FE | FF | FF | FF [FE | FF | FF | FF | & cCIK
a8 | b8 | a7 | b7 [a6 | b6 | a5 | bS [a4 | b4 | a3 [b3 [a2 [b2 | al bl | & .
0o lo [1]oflaJol1lofalol1Jolalo]1]1
oo 1ol alo]l 1ol 2ol 1ol 2 o] 1] 1]y appssusLoaic
1 0
0 CIN
1
1 0
1 0
1 0
1 0
0
sum8 SUM7 SUM6 SUMS SUM4 SUM3 sum2 sum1
FF FF FF FF FF FF FF FF & &K

2018-10-09

Ripple-carry adder design in Excel

Teacher demo: illustrating the carry-ripple delay by introducing a timing axis, and
by letting each cell row height represent a unit delay. CUT-AND-PASTE exercise.
Each row in Excel is a timing representation using unit-delay model.

Bil Position

(15 14 13 12 11 0 8 & 7 & 5 4 3 2 1 0

EH
fewg

=il
]
will

o

|15:D 14:0 1320120 11:0 100 &0 B8:0 T:0 60 5O 40 30 20 1:0 Q0
FIGURE 11.15 Carry-ripple adder group PG network

2018-10-09

Full textbook solution as proposed in chapter 10 on adders

Ripple-carry delay calculations

=4
< o @)

I l
O 1 1
1] e

& 1 Q|
.
ol € > 1
-
8]
ivmp O A1 I
el J
|
|
O A1 [
1 M —
£ =
O T 4 5] I
11 11
=
O i D
i LT 0p] I
O O O B I
—r—r— | /i

couT —O<]7

2018-10-09

Redraw for identifying the critical timing path

Ripple-carry delay calculations

.%b——m -
b 1

cou°T<}

CIN

CIN

!

I

!

I

!
G
SUM |
I

!

I

!

I

l

2018-10-09

alculations

-Calr

Add next bit cell for identifying the critical timing path

v delay c

=z
< oo O
= e T ESS
< o O | |
I I | |
I) o | _
11
_ HoX | "_ _ Iﬁﬁll_l iks I_
i - [o0) O el 1 O
_—L\ RW I_I J14 C_ | i Imml ol
I > |
| <= o = I ol £ =
I w_ I U L w_
1|2 B l Il o o o I I I |
I I I I | [|— I Y Iy A B B O I
IIIIIIIIIIIII [
T
MMU =
(@) o)
(@] wn
< m Q
Z] e s s o o o e o e o s o
< m O | |
I | |
I o L I
— O 1 I— —I_II_ Iﬁul TH I—
= mm d O I I I 1 d
| 1&1 I_I 14 C_ | mm mm ol
N A > |
I = = W_ I O £ W_
— S — I L1 S—
e_ O O i I l Il o o o I I I |
[I O Iy) AN B S N A D—
Ip ||||||||||||| dW - _-____ I
o s ww
o . =
o 3

2018-10-09

alculations

Identifying the critical timing path
v delay c

-carr

le

O
=

=
< oo O
= e I S
< o O | |
| |
—f = === — - I -y 1 ,
Iy I _LII_ hl_ i :
=l I d NoX Iy B e d
—L\ b I_l J14C_ | i Imml ol
] > |
2 e LA AL e
1
S T ol
O O . 114 & & B S I |
I I I LJ I Y Iy A B B O I
IIIIIIIIIIIII ' N B s el
T
M_.U =
o)
(@] wv
< o (D)
Z] e s s e o o e o e o e o
< m O | |
| |
— e == = = — — I | & 1 ,
1 1 _L||_ L1 " —1
L 1T 81 o | P £1] 3
14C | T mm ol
> |
<+] g o { =
S I T L ol
O O i I l Il o o o N I I |
I Y Iy IS AN B B N
IIIIIIIIIIIII i T o
.VWT
o) >
o)
o wv

2018-10-09

Improving the design

Finding faster carry cells!
Less complicated cell with smaller number of MOSFETs!

We are going to accomplish this by preparing the carry cell input signals!

As an example: SUM=XOR(A;B;CIN),
here P=XOR(A;B) can be prefixed while we are waiting for the carry!

2018-10-09

Go back to Boolean truth table

Design adder by using 8
instances of bit adder cell
ag by

C.. —1 FA I— c

out

Sum,

NOTE: COUT=Generate+Propagate*CIN

BOOLEAN TRUTH TABLE
A B CIN JCOUT SUM
0

R =, O = O O O

R B =k 2 O O O O
R =, O O Fr F»r O O
P O Fr O Fr O -

m O Ok O Fr L O

1

Divide and conquer: Divide full adder cell into carry and SUM cells! G=AND(A;B)

GP

|

2018-10-09

P=XOR(A;B)

HS65_LS_AOI12

Logical Symbol

C

SUM=XOR(P;CIN)

4

1N
-~

Our adder design so far . ..

ag by a; by ag bg as b a, b, a; b, a, b, a,; by
Infludq propagte/generateflogidsetup cglls

Carry Carry Carry Carry Carry Carry Carry Carry
cell cell cell cell cell cell cell cell

| | | | | | | |
SUM SUM SUM SUM SUM SUM SUM SUM
logic logic logic logic logic logic logic logic
Sumg Sum,, Sumg Sumg Sum, Sum, Sum, Sum,

2018-10-09

Using Propagate/Generate setup cells

ag by a; by ag bg as b a, b, a; b a, b, a,; by
HA HA HA HA HA HA HA HA
B[|Ps B[|P7 B[1P B[|Ps B[PaBs[Ps B[P &[P

AO12 AO12 AO12 AO12 AO12 AO12 AO12 AO12

| | | | | | | |
SUM SUM SUM SUM SUM SUM SUM SUM
logic logic logic logic logic logic logic logic
Sumg Sum, Sumg Sumg Sum, Sum, Sum, Sum,

HS65_LS_AOI12

Logical symbol

3

s
-Q\J_E.

.\H__,a..

2018-10-09

Using Propagate/Generate setup cells

ag by a; by ag bg as b a, b, a; b a, b, a,; by
HA HA HA HA HA HA HA HA
Bs[|Ps B 1P B[—|P6 B[|PsBa[—1PaBs[—|Ps&[1Pz &[P

AO12 AO12 AO12 AO12 AO12 AO12 AO12 AO12

| | | | | | | |
SUM SUM SUM SUM SUM SUM SUM SUM
XOR XOR XOR XOR XOR XOR XOR XOR
Sumg Sum, Sumg Sumg Sum, Sum, Sum, Sum,

HS65_LS_AOI12

Logical symbol

3

s
-Q\J_E.

.\H__,a..

2018-10-09

Using Propagate/Generate setup cells

Fourth task: Enter G and P logic, enter carry AO21 logic and
replace SUM cell logic with XOR logical function!

g, <« | FF | FE| | Frr | FEl FE| FE| Fr | FELFE| Fr|] Rl FE| iF | Fr| FF] ¢« ck
ag | b8 | a7 | b7 [a6 | b6 | a5 | bs | a4 [ba | a3 [b3 | a2 [b2 | d1 | b1 | N
i 1 |11l alal 11l alal1]l1la]a l DATAIN
1]lo|1]o]J1]Jo|1[o0of1f0o|1[o0]| 1[0 HA | | | ADD/SUB LOGIC
68| P8 |G7|pr7|Ge|Ps|Gs|ps|GalPa|aG3|pP3|a@]|pP2| 0|y
0 [1] o[1flofaslo[1folalol1lo]la1 .Carlry. LMl GPLOGIC
Empty row of cells, to be left blank until the next task
« [cso C7:0 C6:0 C5:0 C4:0 C3:0 C2:0 cell |7 1

0 0 0 0 0 0 0 oL llsum Loaic
SUMS SuM?7 SUM6 SUMS5 SUM4 SUM3 SUM2 SUM

FF FF FF FF FF FF FF XOR [T « ¢« cw

|
Sum;,

Note: P and G is never =1 at the same time! It is either propagate or generate, never both!
Therefore the AO logic expression in the C1:0 cells can be written very simple like =G1+P1*CIN!

2018-10-09

Using Propagate/Generate setup cells

Fifth task: Let the combined propagate signal ripple through the
adder array along with the carry signal

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF | & CLK
a8 | b8 | a7 | b7 | a6 | b6 | a5 | b5 [a4 | b4 | a3 | b3 | a2 | b2 | al | bl | CIN
1 1 1 1 1 1 1 1 1 1 1 1 {4 DATAIN
1 0 0 1 0 0 1 0 0 1 0 0 {4 ADD/SUB LOGIC
G8 | PB | G7 | P7 | G6 | P6 | G5 | P5 | G4 | P4 | G3 | P3| G2 | P2 | Gl | P1 | ¢
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 4 G,PLOGIC
P8:1 P7:1 P6:1 P5:1 P4:1 P3:1 P2:1 P1:1 1
C8:0 C7:0 C6:0 C5:0 C4:0 C3:.0 C2:0 C1:0 1
0 0 0 0 0 0 0 0 SUM LOGIC
SUMS8 SumM?7 SUM6 SUM5 Sum4 SUM3 SUM2 sumi
FF FF FF FF FF FF FF FF & & CLK

Note: P and G is never =1 at the same time! It is either propagate or generate, never both!
Therefore the AO logic expression in the C1:0 cells can be written very simple like =G1+P1*CIN!
Next improvement is letting the combined propagate signal ripple along with the carry signal to

the array output.
Why: The carry-skip adder!

2018-10-09

Carry-Skip Adder

e Carry-ripple is slow through all N stages

e Carry-skip allows carry to skip over groups of n bits
— Decision based on n-bit propagate signal

N-bit adder n-bit blocks
as124 D314 Az3:16 D236 aiss Diss aro b7o
P31:24 P23:.16 Pis:s P70
Cout 1 | | Cxul 1 | | Cis| 1 | | C- 1 | | c.
0 0 0 0
Ss1:24 S2316 Siss S70

k=N/n number of n-bit blocks

Verify the delay model given in eq. 10.13: tys, =t +2(n—=1)t,, +(k —1)t,, +tyor

2018-10-09

Carry-Skip Adder

e Carry-ripple is slow through all N stages

e Carry-skip allows carry to skip over groups of n bits
— Decision based on n-bit propagate signal

N-bit adder n-bit blocks
as124 D314 Az3:16 D236 aiss Diss aro b7o
P31:24 P23:.16 Pis:s P70
Cout 1 | | Cxul 1 | | Cis| 1 | | C- 1 | | c.
0 0 0 0
Ss1:24 S2316 Siss S70

k=N/n number of n-bit blocks

For 32-bit adder we had 31*t,,; Now only t,-+14t,, + 3t,,,x
Delay is cut in half!

2018-10-09

Using Propagate/Generate setup cells

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF | & CLK
a8 | b8 | a7 | b7 | a6 | b6 | a5 | b5 [a4 | b4 | a3 | b3 | a2 | b2 | al | bl | CIN
1 1 1 1 1 1 1 1 1 1 1 1 {4 DATAIN
1 0 0 1 0 0 1 0 0 1 0 0 {4 ADD/SUB LOGIC
G8 | PB | G7 | P7 | G6 | P6 | G5 | P5 | G4 | P4 | G3 | P3| G2 | P2 | Gl | P1 | ¢
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 4 G,PLOGIC
G8:1 P8:1|G7:1 P7:1|G6:1 P6:1[G5:1 P5:1|G4:1 P4:1[G3:1 P3:1|G2:1 P2:1|G1:1 PL:1| ¢
< C7:0 C6:0 C5:0 C4:0 C3:.0 C2:0 C1:.0 1
0 0 0 0 0 0 0 0 SUM LOGIC
SUMS8 SumM?7 SUM6 SUM5 Sum4 SUM3 SUM2 sumi
FF FF FF FF FF FF FF FF & & CLK

Once we realize that the carry arriving at the adder block output is actually a block
generate signal, we are ready for the next improvement step!
THE CARRY-LOOKAHEAD ADDER
Why is that so? Because if Gg.;=1, a carry has been generated within the block!

2018-10-09

Carry-Lookahead Adder

* Carry generate allows us to replace MUX with
another AO21 gate.

N-bit adder | | n-bit blocks
Azi2a D31.24 a3:16 D236 aisg Diss a7-19.0 b7.0
Cout Ga1:24 C G23.16 C Giss 8 Gro

P31:24 P23.16 Pis:s = P70
\ B
+ Cin

”MUX”
S3:|.:24 S23:16 S15:8 S7:0

k=N/n groups of n-bit blocks

Verify the delay model given in eq. 10.14: lep =t + 2(” —1)tAo +(k _1)tAO +lyor

2018-10-09

Summary

We have

introduced Microsoft Excel as a tool for studying adder designs
introduced Excel timing graphs

identified the generate/propagate behaviour of the addition
built a new G and P based adder using AO21 cells for the carry

built a 32-bit carry-skip adder with reduced propagation delay
compared with the ripple-carry solution

introduced the carry—lookahead concept using block G and P
used a binary tree design to form the block P and G outputs

Next week: a close look at our G/P cell design name it the “dot
operator” and, see how it can be used to build pre-fix tree adders

To think about until next Tuesday

Task 1: Try to appreciate the Excel adder design approach ©

Task 2: Verify the carry-skip propagation delay formula given
in textbook equation 10.13.

tyip =Log +2(N=1)tao + (K =)ty +tyor

Task 3: Verify the carry-lookahead propagation delay formula
given in textbook equation 10.14.

toa =tog oy +(N—1)tyo +(k—1)tyo +1yor

mux

Task 4: Use the “dot operator” to show that the binary prefix-
tree carry output is equal to the carry output from a ripple-
carry array!

2018-10-09

Example
synthesized 32-bit ALU/adder layout

