
Lecture 15
Introduction to Integrated Circuit Design

What if . . . optimizations
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Optimization – Introduction
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Inverter pair delay
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Minimum pair delay for:

Question: What if we want to minimize the inverter pair delay, how should

we choose the width of the p-channel device wrt the width of the n-

channel device - considering the difference in electron and hole mobility?

Answer: Assume RP=RN for the same channel widths. Typically =2

VDD

VSS

CN

VIN

N
P

R
R

x


=

NR

VDD

VSS

P NC xC=

VIN



Inverter pair delay
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Optimization – Energy*delay product

Question: What if we want to minimize the energy-delay product. How
should we choose VDD wrt to VT? 

Answer: It should be three times larger, i.e. 
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Optimal tapering factor
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Optimal tapering factor
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TAPERING FACTOR, fParasitic delay, p

Delaye
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• A buffer with N-1 extra inverters consume an area A0 ≈ f + f2 + ... + fN-1

• By choosing a somewhat larger tapering factor we can easily save more than 50% in area 
while only losing 10% in speed!

For typical values of p, the optimum tapering factor is between 3.6 and 5. Typically a FO4! 

[From Hedenstierna & Jeppson 1987]

Area



Optimization – Number of inputs

Question: What if we were to build a 16-bit AND gate using n-input 
NAND/ NOR-gate combinations, what would be the most efficient
number of gate inputs to minimize the delay? (Reminder:                   )
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.ab cd abcd+ =

16-bit AND gate

2-input NAND-NOR gates

16-bit AND gate

4-input NAND-NOR gates

Answer: Is it with 2- or 4-input gates? Or with 8-input gates?
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However, the number of inputs must in this case be a multiple of 2, so our choice is to use 2- or 4-input gates; both 
resulting in about the same delay, with a minor advantage for the 4-input solution. 

The NAND/NOR pair delay can be written dpair=3m+1. 

With a logical depth, N, given by nN=16, 
the total normalized delay can be written
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Answer: Is it with 2- or 4-input gates? Or with 8-input gates?
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Driving long wires
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1. Start by defining wire effort W W
E

R C
W
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2. Replace wire with wire RC p-model!

3. Consider critical wire length for repeater insertion!
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where r and c are wire resistance and capacitance per unit length!



Repeater insertion

2018 Introduction to CMOS Integrated Circuit Design 12

X120

driver inverter receiver inverter 

X120 X120

Rw/m, Cw/m Rw/m, Cw/m

driver model receiver model

CW/2m

RW /m

CW/2m

Wire p-model

CpinvC

R C
driver model receiver model

CW/2m

RW /m

CW/2m

Wire p-model

CpinvC

R C

2 2

/
1

/ 2

WE E
inv

W

R mW WR
d m p

m R m R m

 
= + + + + 

 
Normalized delay m segments

2
0  W WE

W E

R RWd
R

R R R W


= − = → =


Find minimum

( )1
2

W E
inv E

W

R WR
d m p W

R R m
= + + + +

Find minimum ( )
( )

1
22

1 0  
2 2 1

E E
inv E

inv

W Wd
p m W

m m p


= + − = → = 

 +



Repeater insertion

2018 Introduction to CMOS Integrated Circuit Design 13

X120

driver inverter receiver inverter 

X120 X120
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Minimum delay when all four delay terms are equal! 
Minimum normalized delay is d=4√WE.
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32-bit carry skip adder

• Identify worst-case propagation delay for 32-bit adder!

• How to optimize a 32-bit adder built with k n-bit blocks?
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The worst case delay, tskip,  is for calculating the most significant bit sum when a carry is 
generated in the least significant bit. 
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The worst case delay, tskip,  is for calculating the most significant bit sum when a carry is 
generated in the least significant bit. 
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32-bit carry skip adder

• Identify worst-case propagation delay for 32-bit adder!
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If efficient muxes with tMUX=tAO could be used, 4-bit blocks would be most efficient.
If muxes are slow due to their complexity, say tMUX=4tAO, then 8-bit blocks would be most efficient.
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If efficient muxes with tMUX=tAO could be used, 4-bit blocks would be most efficient.
If muxes are slow due to their complexity, say tMUX=4tAO, then 8-bit blocks would be most efficient.
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Optimization – Summary
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End of ”what if” lecture!
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Q & A?


