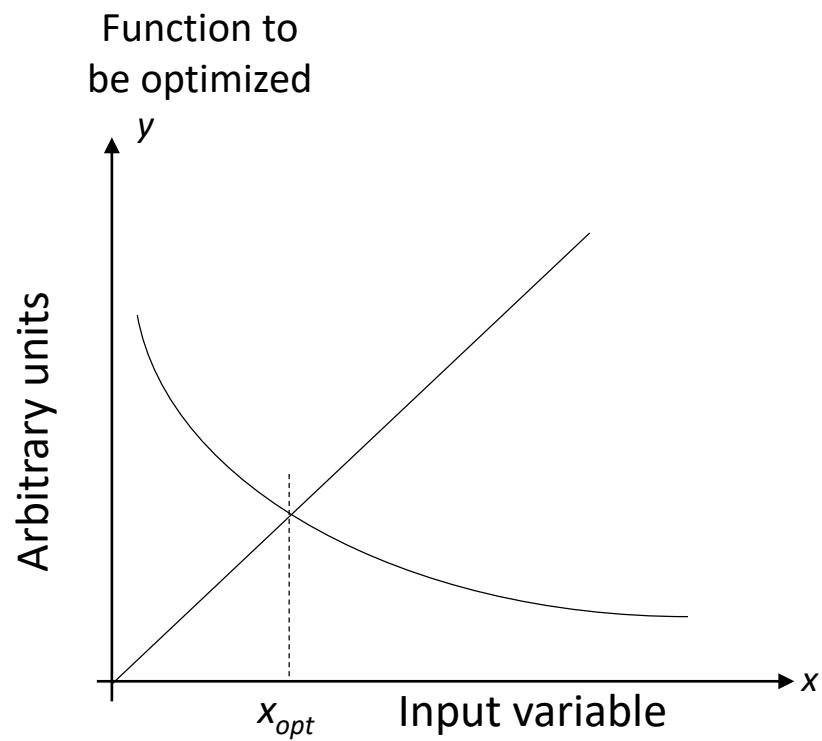


Lecture 15

Introduction to Integrated Circuit Design

What if . . . optimizations

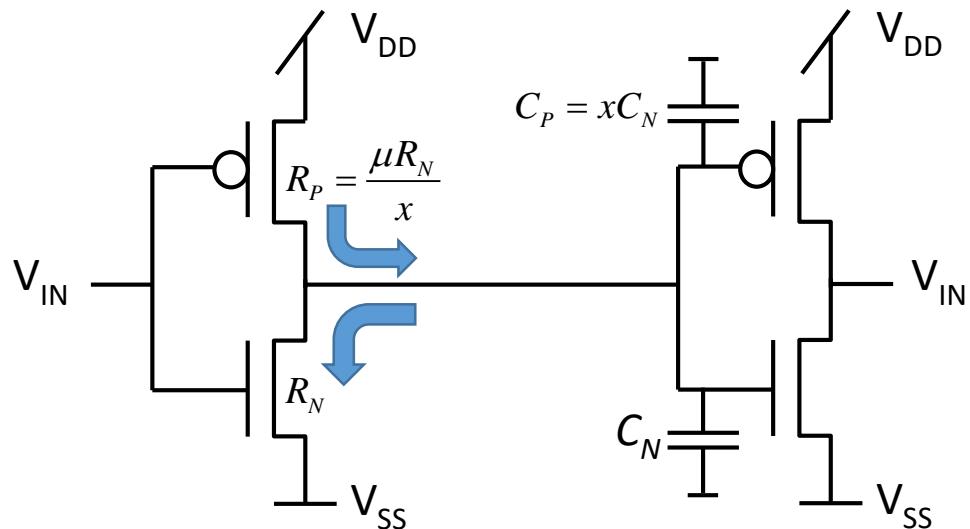
Optimization – Introduction



Inverter pair delay

Question: What if we want to minimize the inverter pair delay, how should we choose the width of the p-channel device wrt the width of the n-channel device - considering the difference in electron and hole mobility?

Answer: Assume $R_P = \mu R_N$ for the same channel widths. Typically $\mu=2$



Rise delay:

$$R_P (C_N + C_P) = R_N C_N (1+x) \frac{\mu}{x}$$

Fall delay:

$$R_N (C_N + C_P) = R_N C_N (1+x)$$

Normalized pair delay :

$$d = \left(1 + \frac{\mu}{x}\right)(1+x) = 1 + \mu + x + \frac{\mu}{x}$$

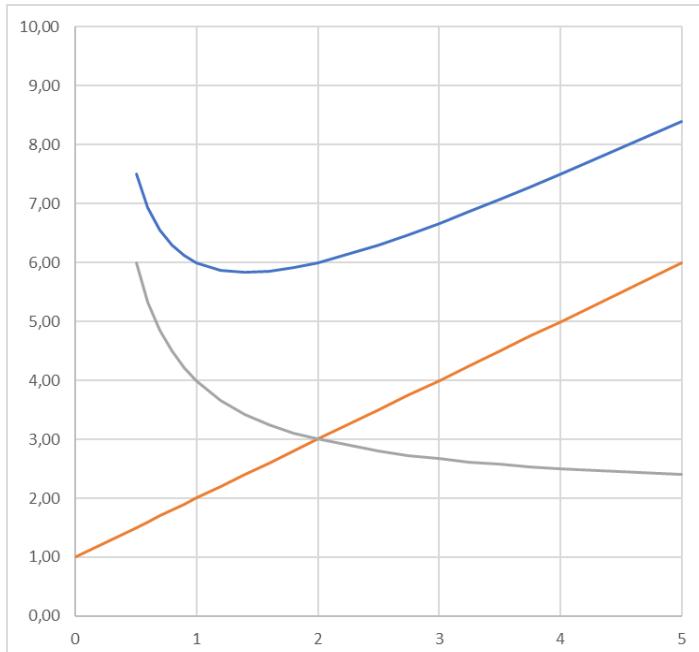
Minimum pair delay for:

$$x = \sqrt{\mu} = \sqrt{2}$$

Inverter pair delay

Question: What if we want to minimize the inverter pair delay, how should we choose the width of the p-channel device wrt the width of the n-channel device - considering the difference in electron and hole mobility?

Answer: Assume $R_p = \mu R_n$ for the same channel widths. Typically $\mu=2$



Rise delay:

$$R_p (C_N + C_P) = R_N C_N (1+x) \frac{\mu}{x}$$

Fall delay:

$$R_N (C_N + C_P) = R_N C_N (1+x)$$

Normalized pair delay :

$$d = \left(1 + \frac{\mu}{x}\right)(1+x) = 1 + \mu + x + \frac{\mu}{x}$$

Minimum pair delay for:

$$x = \sqrt{\mu} = \sqrt{2}$$

Optimization – Energy*delay product

Question: What if we want to minimize the energy-delay product. How should we choose V_{DD} wrt to V_T ?

Answer: It should be three times larger, i.e. $V_{DD} = 3V_T$

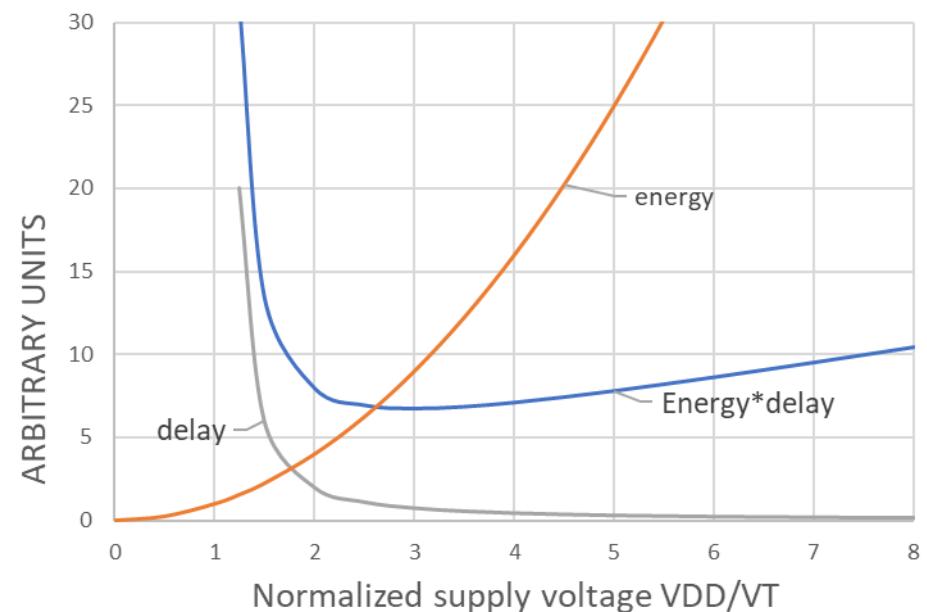
Energy: $E = CV_{DD}^2$

Delay: $t_{pd} \sim \frac{Q}{I_{DSAT}} \sim \frac{V_{DD}}{(V_{DD} - V_T)^2}$

Energy*delay product

$$Et_{pd} \sim \frac{V_{DD}^3}{(V_{DD} - V_T)^2}$$

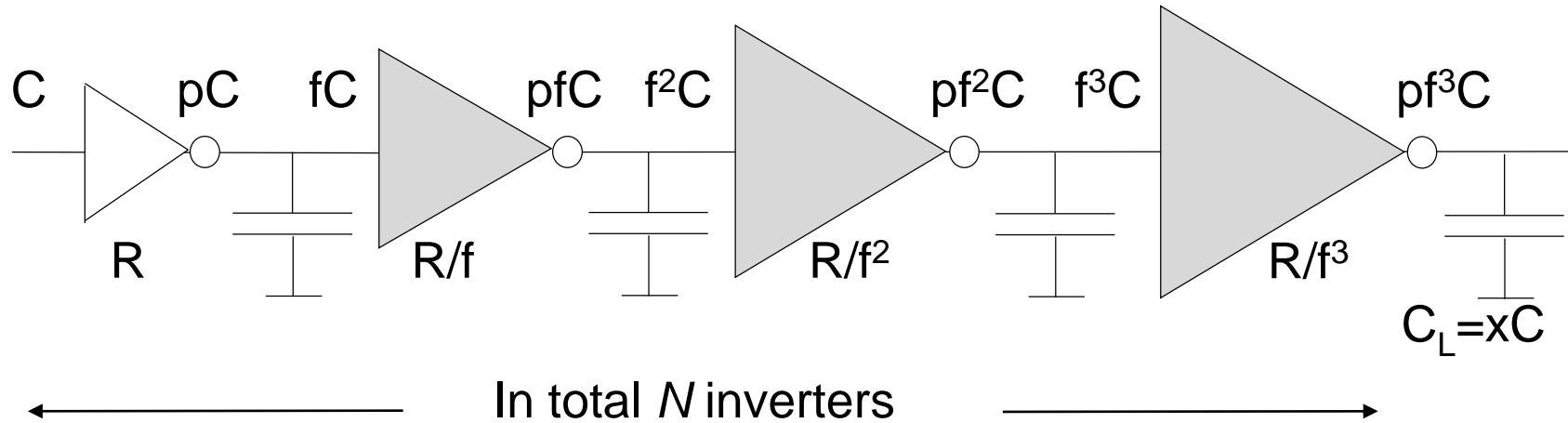
has a minimum for $V_{DD} = 3V_T$



Optimal tapering factor

Standard inverter

$N - 1$ inverters in buffer



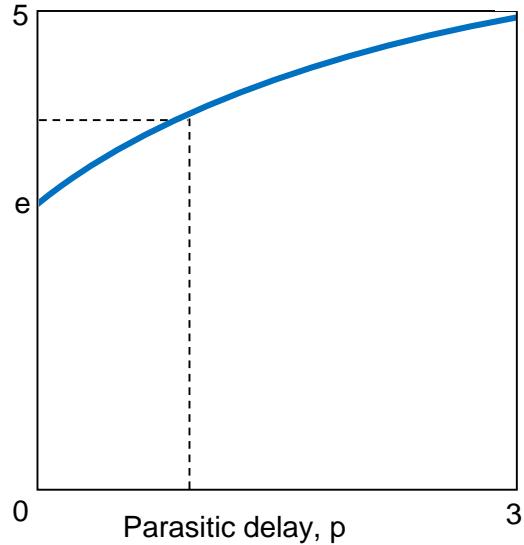
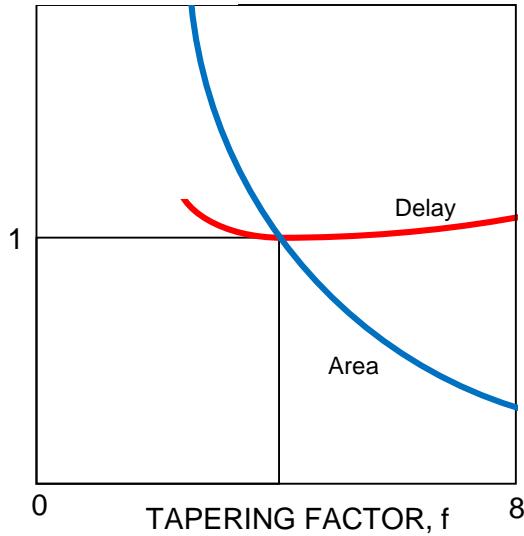
Relative delay=number of stages * stage delay: $d = N(p + f)$

Minimum delay when all inverters have the same fanout: $f = \sqrt[N]{x}$

Number of stages: $N = \ln x / \ln f$

Relative delay: $d = (p + f) \ln x / \ln f$

Optimal tapering factor



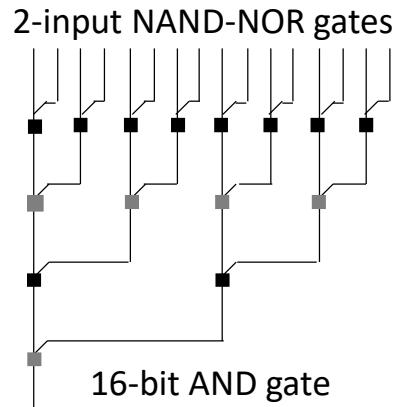
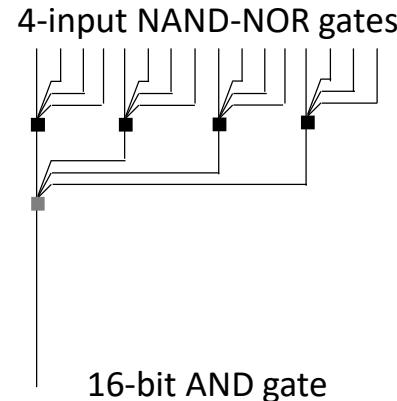
For typical values of p , the optimum tapering factor is between 3.6 and 5. Typically a FO4!

- A buffer with $N-1$ extra inverters consume an area $A_0 \approx f + f^2 + \dots + f^{N-1}$
- **By choosing a somewhat larger tapering factor we can easily save more than 50% in area while only losing 10% in speed!**

Optimization – Number of inputs

Question: What if we were to build a 16-bit AND gate using n -input NAND/ NOR-gate combinations, what would be the most efficient number of gate inputs to minimize the delay? (Reminder: $\overline{\overline{ab} + \overline{cd}} = abcd$.)

Answer: Is it with 2- or 4-input gates? Or with 8-input gates?



Optimization – Number of inputs

Question: What if we were to build a 16-bit AND gate using n -input NAND/ NOR-gate combinations, what would be the most efficient number of gate inputs to minimize the delay? (Reminder: $\overline{\overline{ab} + \overline{cd}} = abcd$.)

Answer: Is it with 2- or 4-input gates? Or with 8-input gates?

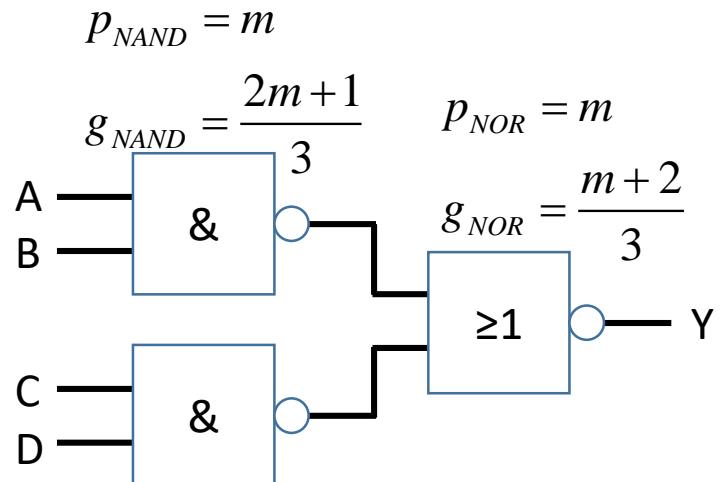
The NAND/NOR pair delay can be written $d_{pair} = 3m + 1$.

With a logical depth, N , given by $n^N = 16$,
the total normalized delay can be written

$$d_{AND16} = \frac{3m + 1}{2} \times \frac{\ln 16}{\ln m}$$

which has a minimum for $m = \frac{3m + 1}{3 \ln m} = 3$.

However, the number of inputs must in this case be a multiple of 2, so our choice is to use 2- or 4-input gates; both resulting in about the same delay, with a minor advantage for the 4-input solution.



Optimization – Number of inputs

Question: What if we were to build a 16-bit AND gate using n -input NAND/ NOR-gate combinations, what would be the most efficient number of gate inputs to minimize the delay? (Reminder: $\overline{\overline{ab} + \overline{cd}} = abcd$.)

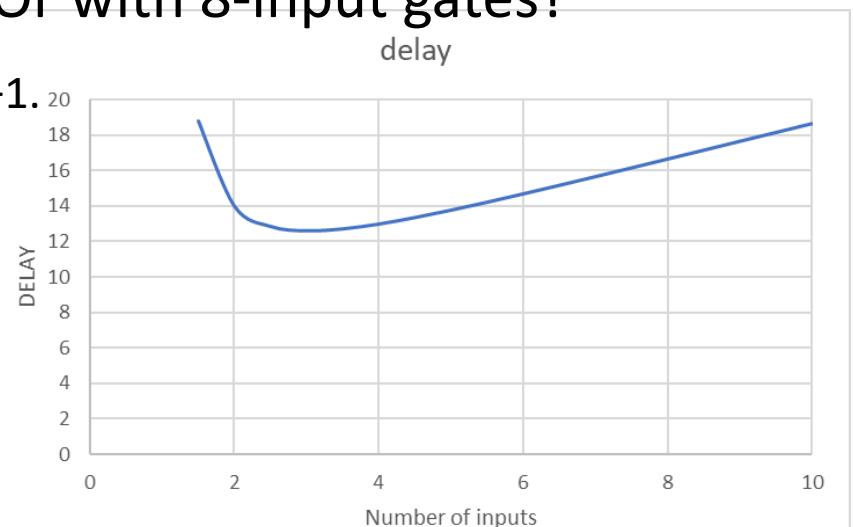
Answer: Is it with 2- or 4-input gates? Or with 8-input gates?

The NAND/NOR pair delay can be written $d_{pair} = 3m + 1$.

With a logical depth, N , given by $n^N = 16$,
the total normalized delay can be written

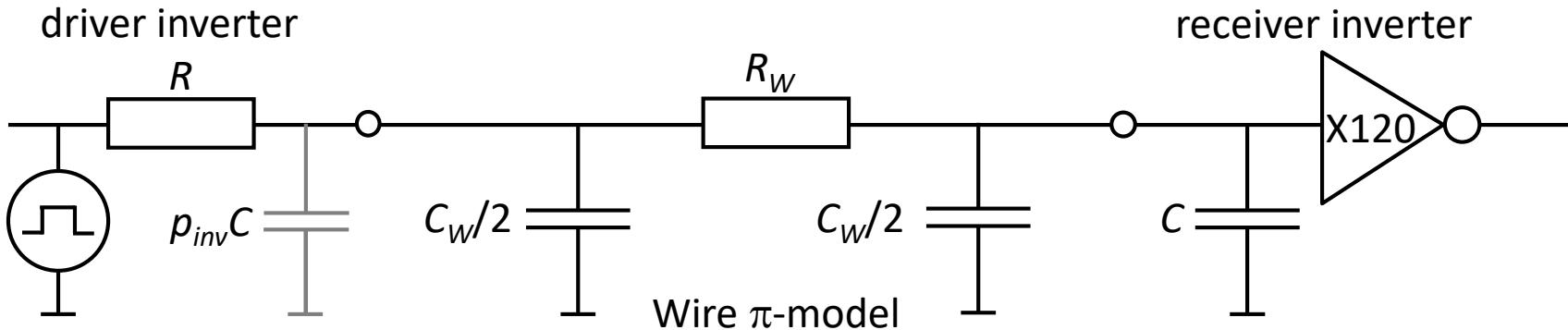
$$d_{AND16} = \frac{3m + 1}{2} \times \frac{\ln 16}{\ln m}$$

which has a minimum for $m = \frac{3m + 1}{3 \ln m} = 3$.



However, the number of inputs must in this case be a multiple of 2, so our choice is to use 2- or 4-input gates; both resulting in about the same delay, with a minor advantage for the 4-input solution.

Driving long wires



1. Start by defining wire effort $W_E = \frac{R_W C_W}{R C}$

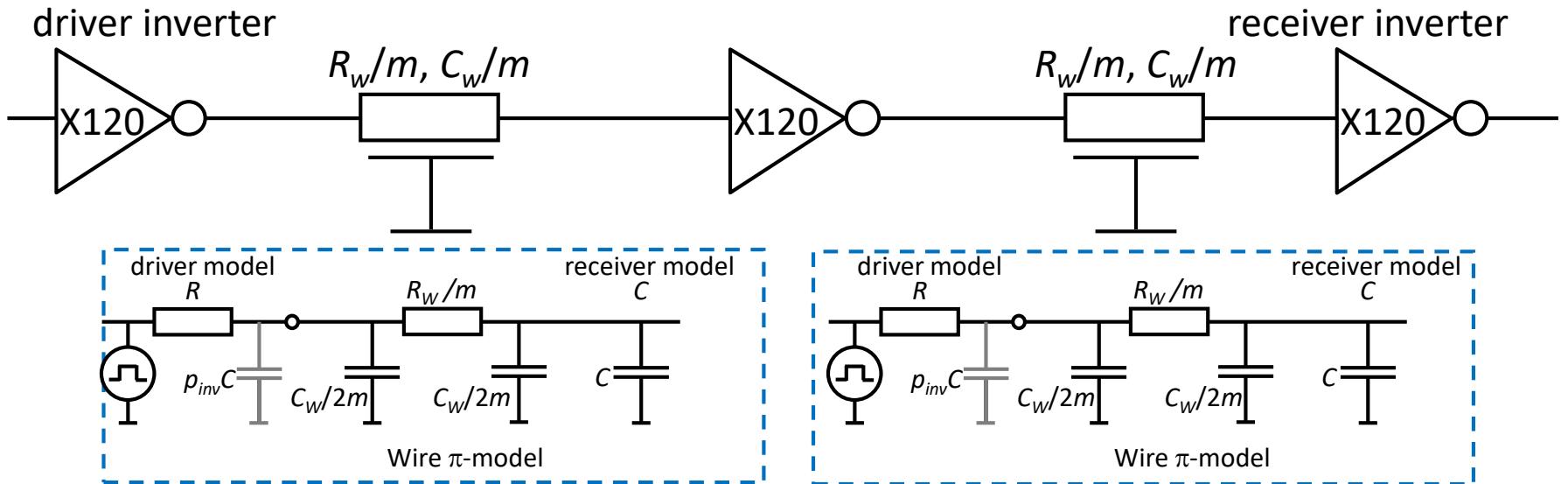
2. Replace wire with wire RC π -model!

3. Consider critical wire length for repeater insertion!

$$L_{crit} = \frac{2L}{\sqrt{W_E}} = 2\sqrt{\frac{RC}{rc}}$$

where r and c are wire resistance and capacitance per unit length!

Repeater insertion



Normalized delay m segments

$$d = m(1 + p_{inv}) + W_E \frac{R}{R_w} + \frac{R_w}{R} + \frac{W_E}{2m}$$

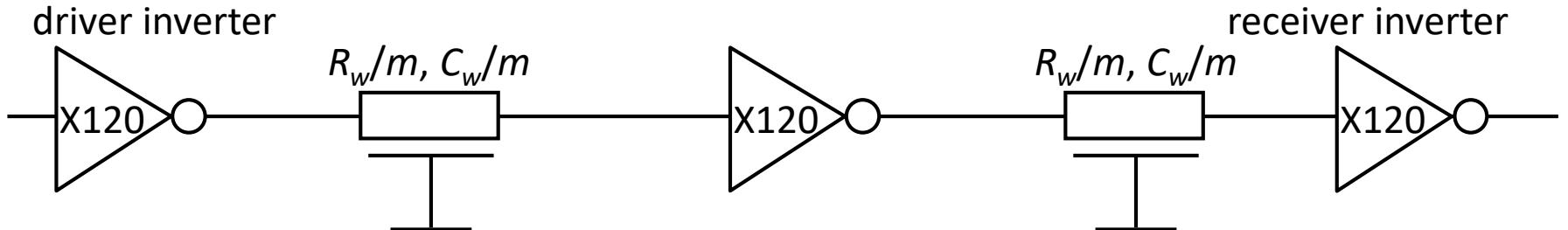
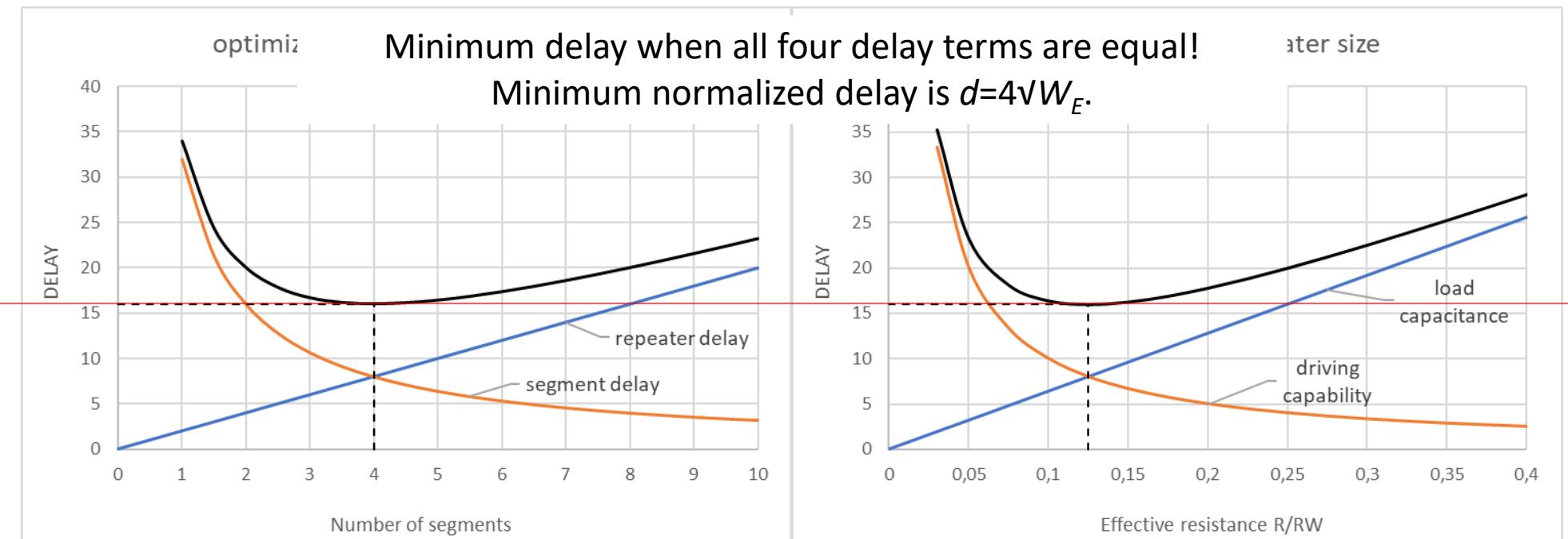
Find minimum

$$\frac{\partial d}{\partial R} = \frac{W_E}{R_w} - \frac{R_w}{R^2} = 0 \rightarrow R = \frac{R_w}{\sqrt{W_E}}$$

Find minimum

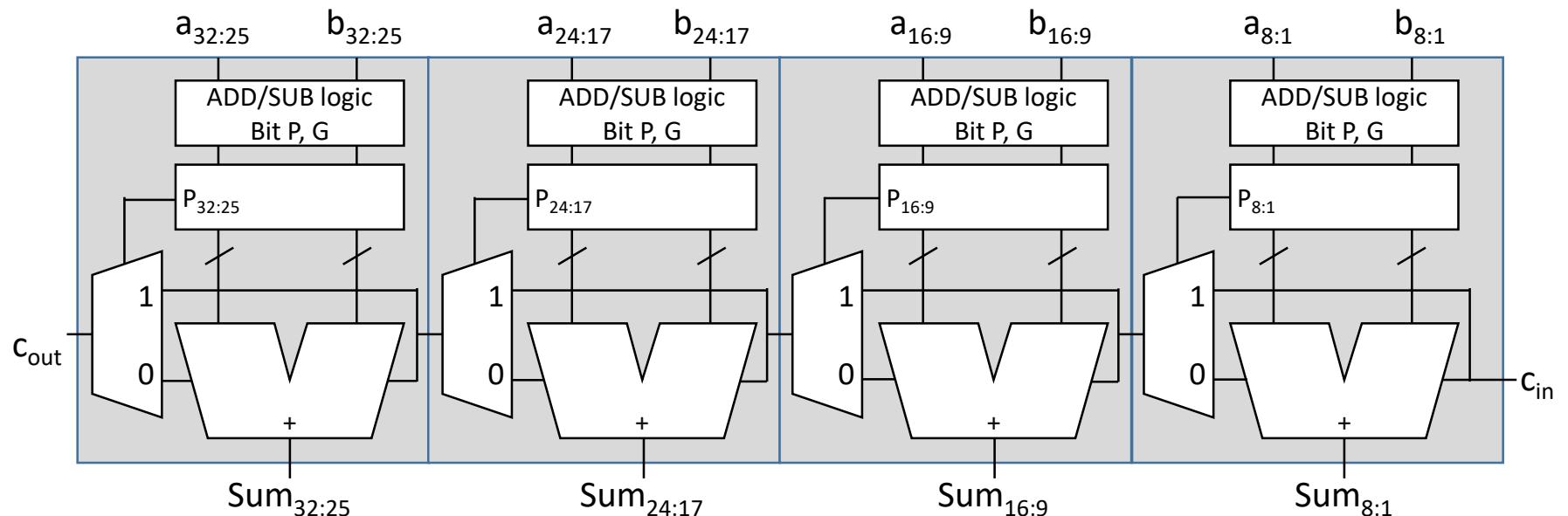
$$\frac{\partial d}{\partial m} = (1 + p_{inv}) - \frac{W_E}{2m^2} = 0 \rightarrow m = \sqrt{\frac{W_E}{2(p_{inv} + 1)}} \approx \frac{1}{2} \sqrt{W_E}$$

Repeater insertion



32-bit carry skip adder

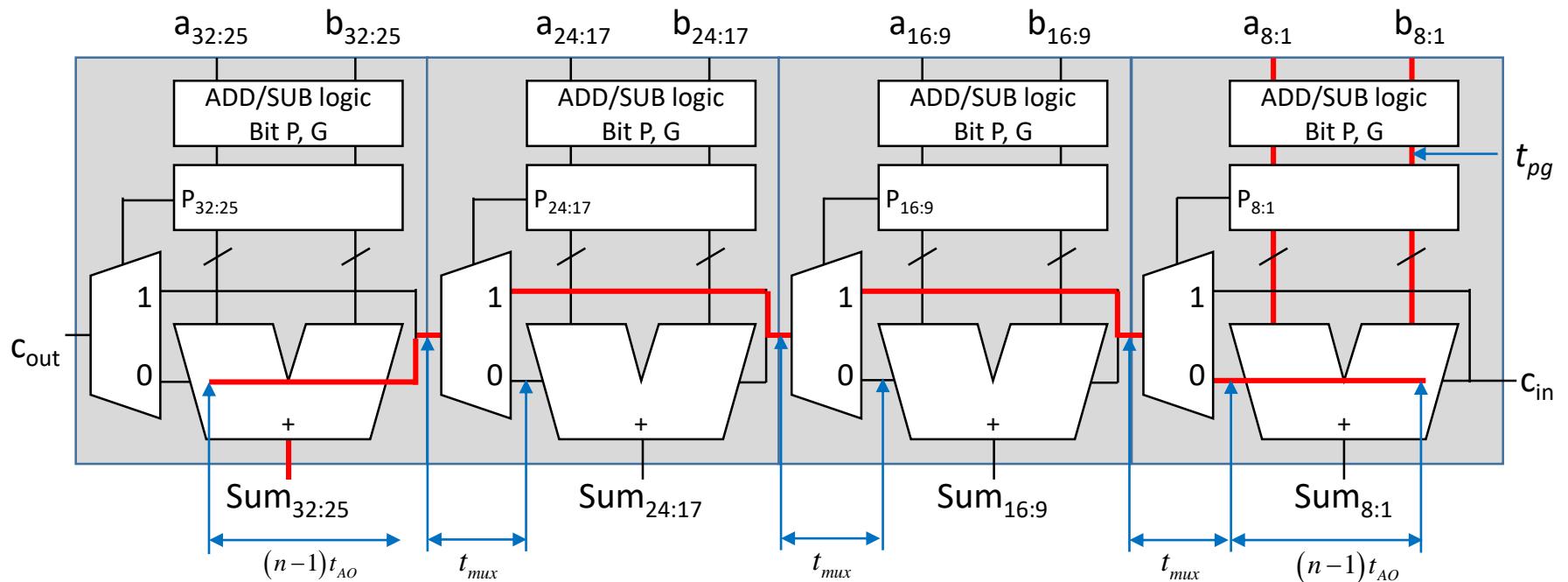
- Identify worst-case propagation delay for 32-bit adder!
- How to optimize a 32-bit adder built with k n -bit blocks?



The worst case delay, t_{skip} , is for calculating the most significant bit sum when a carry is generated in the least significant bit.

32-bit carry skip adder

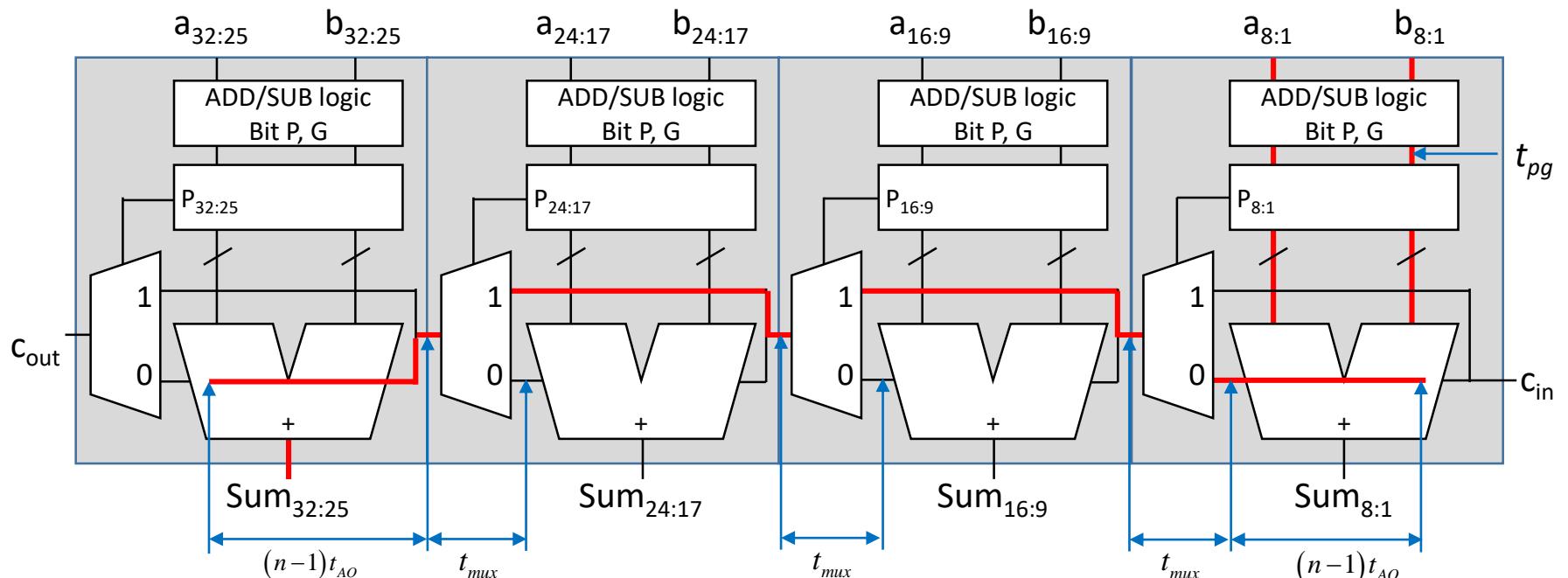
- Identify worst-case propagation delay for 32-bit adder!
- How to optimize a 32-bit adder built with k n -bit blocks?



The worst case delay, t_{skip} , is for calculating the most significant bit sum when a carry is generated in the least significant bit.

32-bit carry skip adder

- Identify worst-case propagation delay for 32-bit adder!
- How to optimize a 32-bit adder built with k n -bit blocks?

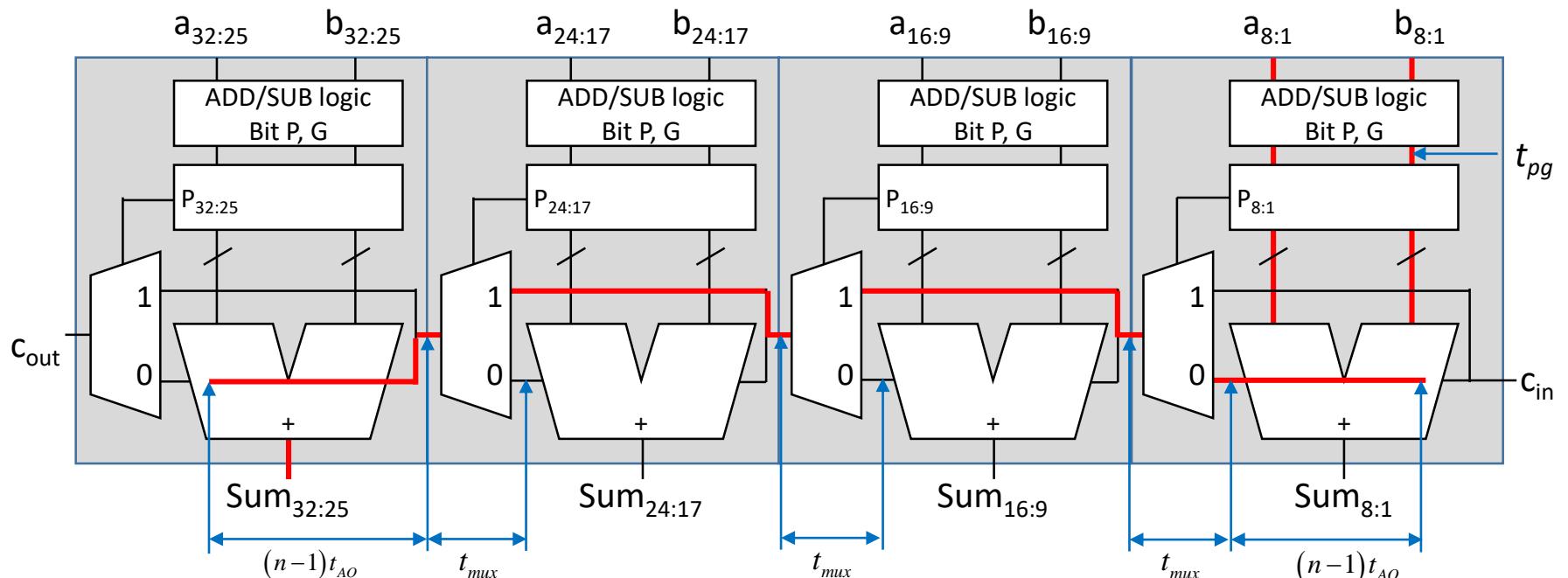


$$t_{skip} = t_{pg} + 2(n-1)t_{AO} + (k-1)t_{mux} + t_{XOR}$$

$$t_{skip} = t_{pg} + 2(n-1)t_{AO} + (32/n-1)t_{mux} + t_{XOR}$$

32-bit carry skip adder

- Identify worst-case propagation delay for 32-bit adder!
- How to optimize a 32-bit adder built with k n -bit blocks?



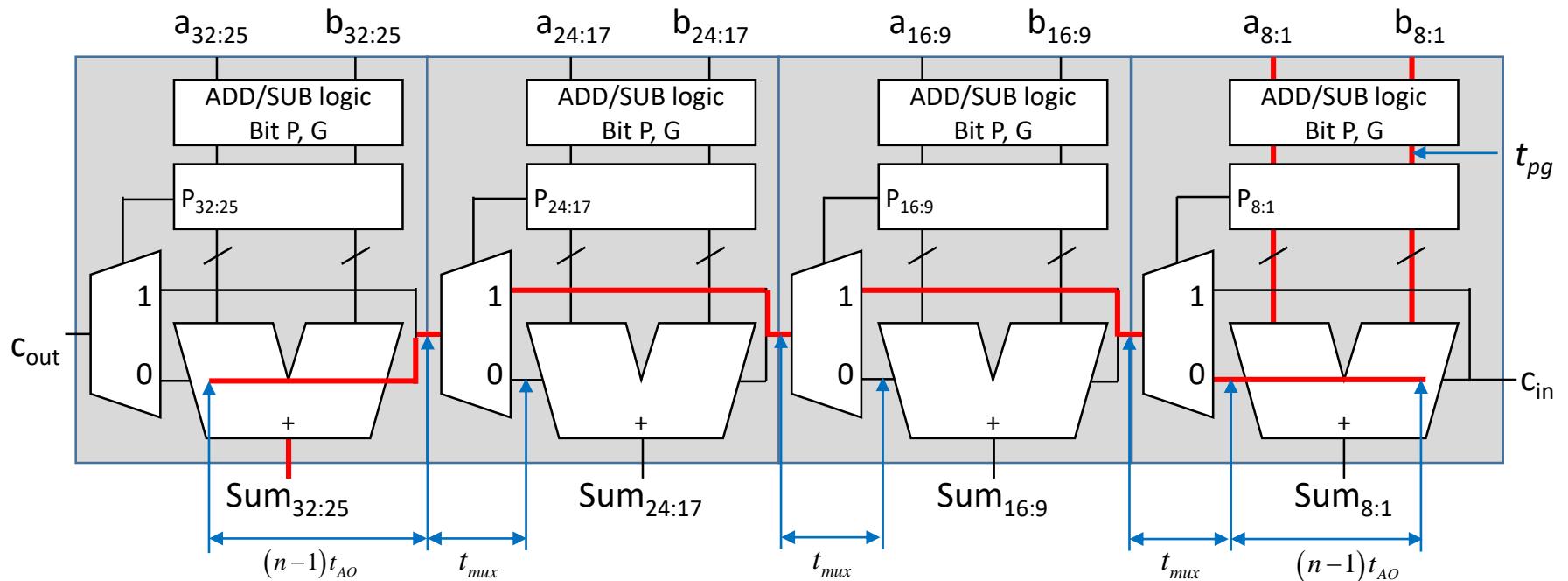
$$t_{skip} = t_{pg} + 2(n-1)t_{AO} + (k-1)t_{mux} + t_{XOR}$$

$$t_{skip} = t_{pg} + 2(n-1)t_{AO} + (32/n-1)t_{mux} + t_{XOR}$$

$$n_{opt} = 4 \sqrt{\frac{t_{MUX}}{t_{AO}}}.$$

32-bit carry skip adder

- Identify worst-case propagation delay for 32-bit adder!
- How to optimize a 32-bit adder built with k n -bit blocks?

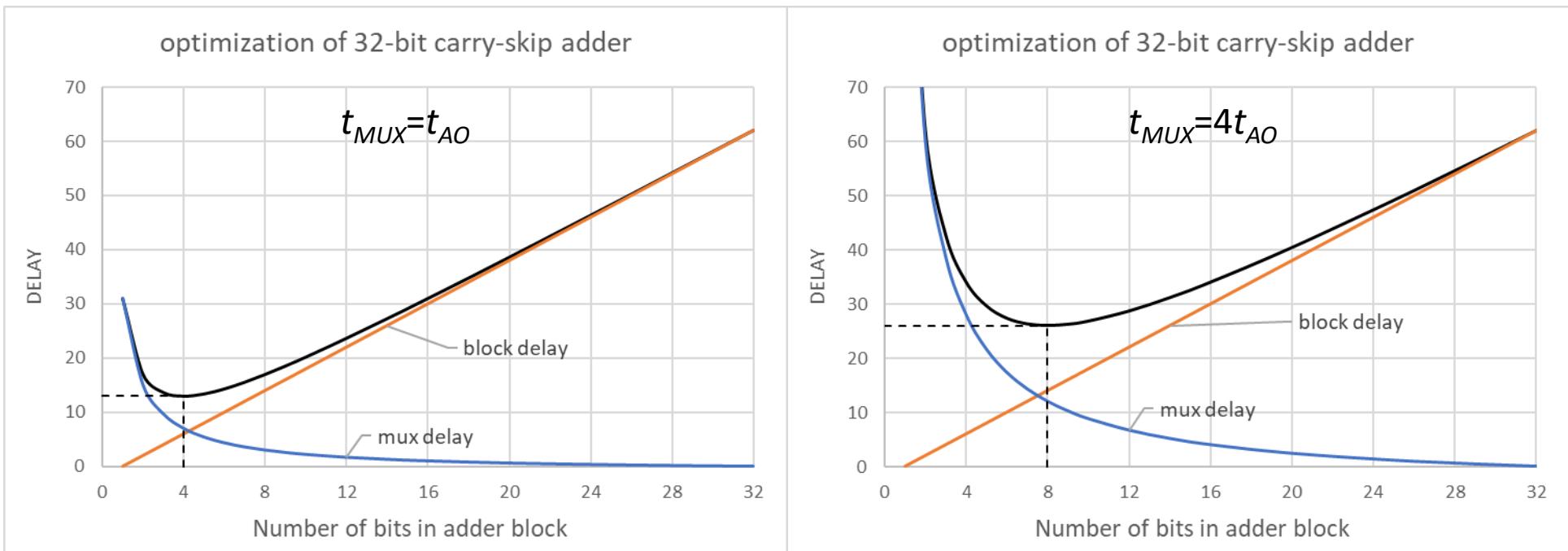


If efficient muxes with $t_{MUX}=t_{AO}$ could be used, 4-bit blocks would be most efficient.

If muxes are slow due to their complexity, say $t_{MUX}=4t_{AO}$, then 8-bit blocks would be most efficient.

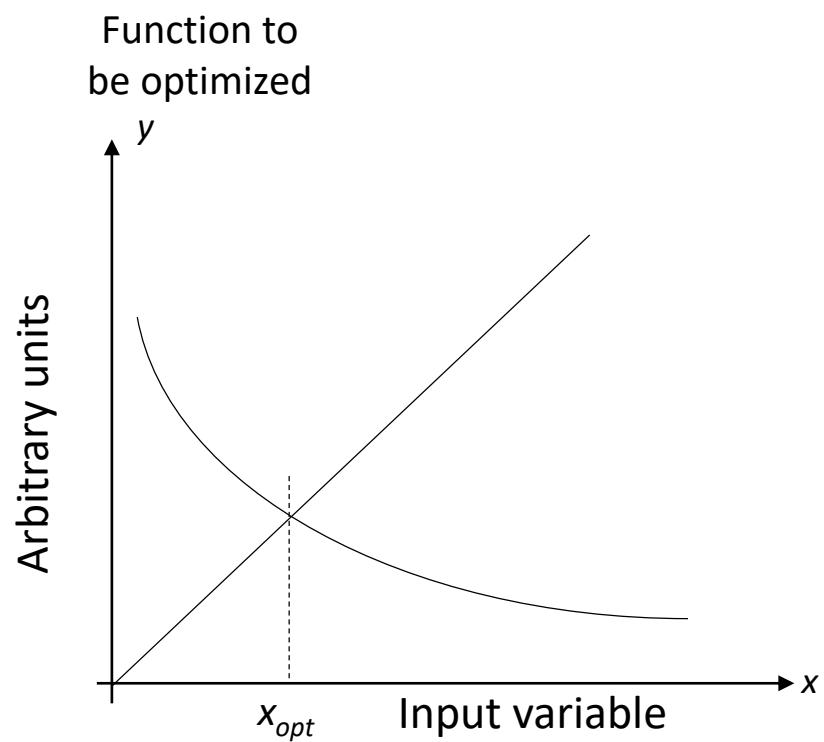
32-bit carry skip adder

- Identify worst-case propagation delay for 32-bit adder!
- How to optimize a 32-bit adder built with k n -bit blocks?



If efficient muxes with $t_{MUX}=t_{AO}$ could be used, 4-bit blocks would be most efficient.
If muxes are slow due to their complexity, say $t_{MUX}=4t_{AO}$, then 8-bit blocks would be most efficient.

Optimization – Summary



End of “what if” lecture!

Q & A?