Lecture 4
Tapered CMOS Inverter stages

Dynamic properties
Additional material w more details



Introduction

The tapered buffer is analyzed in detail in terms of
path electrical effort H, and stage electrical effort h.

A stage electrical effort, or fanout, of four is shown to
be very close to the optimal solution for minimum
delay.

An H-tree clock distribution network is used to show
how branching affects the fanout of a critical timing
path. The path fanout, F, becomes the product of the
path branching, B, and the path electrical effort, H!

Conclusion F=BH and stage fanout f=NVF!



Please note that H is the

The tapered buﬁerpath electrical effort

while h is the
stage electrical effort.
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With two intermediate buffer inverters we obtain a normalized delay relative to tau:
D=(pinv+h1)+(pinv+h2)+(pinv+h3)

where we have defined the stage electrical efforts, or fanouts, h.

Here h,=x,, h,=X,/X,, and h;=x5/X,).

Only h, and h, are independent variables, the third h; becomes h;=H/h,h,.

TASK: Show that minimum delay is obtained for h,=h,=h,=h=3VH >>> D=3(p, ,+3VH)
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Please note that H is the

-I-he tapered buﬁerpath electrical effort

while h is the
stage electrical effort.

Reference inverter. . . and two inserted buffer inverters
Size=1 Size X4 Size X, H is the
C : x,C x,C path electrical effort
— O
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Reff - Reff/xl | )

With two intermediate buffer inverters we obtain a normalized delay relative to tau:
D=(pinv+h1)+(pinv+h2)+(pinv+H/h1h2)-

Taking partial derivatives wrt h, and h, we obtain
H

dihD(hl,hz)= 1- ? =0, and %D(hl,h2)= -5 =0

1 1 72 2 12

This yields h=h =h, and H=h* - h=3H
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The tapered buffer

Reference inverter. .. and two inserted buffer inverters

Size=1 Size X,=4
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Size X,=16  Eyample with path
electrical effort H=64

— — C.=64C

Sharing the load equally between the inverters yields equal stage fanouts h=3164=4

The total delay is then equal to 3 FO4 delays, i.e. 15tau=75 ps (assuming p,,,=1).
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The Tapered Buffer

* What if the path electrical effort, for some
reason, is very large, e.g. H=4096.

* How many inverters, N, are needed to
minimize the delay?

Size=1 Large path electrical

[>C effort H=4096=212
cL > S > C > e > e
T |

— C.=HC

Minimum delay D=N(p,,+h)? Determine best N and h!
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The Tapered Buffer

Solving this problem we start by accepting that minimum delay occurs when
stage electrical efforts, h, are equal.

Hence path propagation delay is given by D= N(p, +h)
Furthermore, h="VH, i.e. H= hV,

In H
Taking natural logarithms we obtain number of inverters N = ln_h
n
We rewrite path delay equationas p - Zim ™" +h InH
Inh

Looking for minimum path delay by taking derivatives of D wrt h
Ink-(p,, +h)/h

(lnh)2
Analytical solution is possible only for p,, =0:

we obtain InH =0, 1.e. Inh =19,~an+71

h=e=2.72 which givesN=InH
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The Tapered Buffer

* Forp, #0 the equation has to be solved numerically

Del
\\ elay

Normalized delay
[EY
Normalized area

Area

stage fanout

pinv =1

Stage fanout, h 8

Parasitic delay, p;
\z pan [Hedenstierna & Jeppson 1987]

For typical values of p,,, the optimum tapering factor is between 3.6 and 5. Typically a FO4!

Please, note that the propagation delay minimum is rather flat,
while total inverter area on the silicon decreases rapidly when larger stage fanout is used.
Silicon real estate (=cost) can be saved for relatively little loss of speed!
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The tapered buffer — area comparison

So for a path electrical effort H=4096=4%, minimum delay is
obtained for N=6 inverters with a stage fanout of four!!

Minimum normalized path delay D=6(p;,,+4)=30, and t,;=150 ps

What if we choose N=47? That is h=8.

What would be the propagation delay?

Normalized path delay D=4(p,,,+8)=36, and t, ;=180 ps.

At the same time the inverter area would be reduced from
A=1+4+16+64+256+1024=1365 units to
A=1+8+64+512=585 units.

That is a reduction by more than 55%.
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H-tree clock distribution

Problem: To distribute

a clock signal across G G G o
the chip area so that
|t' arrives ‘o X x. .
simultaneously to all b, b,
chip corners, i.e no
clock skew, and with 3 X3 X3 X3
sharp clock edges! X2 X2
CL CL C[_ CL
One approach is to by
use balanced H-trees!
G ‘ o} ‘ G G ‘
The load capacitances X X
C,are due to the input / s X X3
capacitances of all . .
. 2
clocked register cells. Xa X \xs / ’ \x: /
CL CL ‘ CL ‘ ‘ CL \
Cin
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H-tree clock distribution

 What is the electrical effort of the timing paths considering
also the branching?

e What sizes to choose for the inverters of the H-tree?

Critical path propagation delay

'
()
'

2

j
VYV Y
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H-tree clock distribution

Note: Here we change the inverter sizes to match the problem in slides 3-5

Critical path propagation dela
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H-tree clock distribution

As before, assume stage fanouts but now call them f,, f,, f;

Path delay is then given by D=(pmv +f1)+(p,-,w +f2)+(19,.nv +f3)

Define them as: f=bx.f=b 2f3— C, H
x,C. X,
H

Now we have: f./,/5= bXbx—x——be

Let us introduce the path branching effort B= b,b,!
The path fanout is now F=B H, and stage fanout f=3VF.
In an example with B=16 and H=256 we obtain F=4096=163

2018-09-13 Lecture 4: CMOS Inverter dynamics 13



Branching effort definitions

Stage branching effort b:
b = (Conpath + Coffpat)/conpath

Path branching effort B:

B=b,xb,x.... x by

More about these concepts next week
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Example solution for C=256 C!

H-tree clock distribution

256 C,y 256 C,y 256 C,y 256 C,y
16 16 16 16,
bz b2
16 16 16 16
4 4
256 C,y 256 C, 256 C,y 256 C,y

256 C 256 C 256 C 256 C ‘
4 N4/
16 16 16 16,
b,

b,

16 16 ;.16 ; ; 16 ;
25é Cin 256 C, ‘ 256 Cy ‘ 256 Cy \
Civ
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