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Introduction

* Chips are mostly made of wires called interconnect
— In stick diagram, wires set size

— Transistors are little things under the wires

Odd metal wires

— Many layers of wires

* Wires are as important as transistors

n
— Speed 2
=
— Power o
)
— Noise E
)
>
L

* Alternating layers run orthogonally
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Choice of metals

e Until 180 nm generation, most wires were aluminum

e Contemporary processes normally use copper

— Cu atoms diffuse into silicon and damage FETs

— Must be surrounded by a diffusion barrier

Metal Bulk resistivity (u<2.cm)
Silver (AQ) 1.6
Copper (Cu) 1.7
Gold (Au) 2.2
Aluminum (Al) 2.8
Tungsten (W) 5.3
Titanium (Ti) 43.0
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Layer stack

 AMS 0.35 um process has 3 metal layers

— M1 for within-cell routing

— M2/M3 for vertical/horizontal routing between cells
 Modern processes use 6-10+ metal layers

— M1: thin, narrow (< 1.5 x minimum feature size)

* High density wiring in cells

— Mid layers: thick, wide e

e Global interconnect

— Top layers: THICK, WIDE
« For Vg, GND, clk

M7

M6
M5

M4

M3
M2
M1
a4 Transistors
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Wire geometry

Pitch=w + s

< >

W ‘ |<w><S>|

w>>t

Old technology Modern technology

Today: pack in many skinny wires!

For long skinny wires resistance cannot be neglected since cross sectional area
shrinks with feature size, wire length stays the same or increases.

Hence: wire resistances can no longer be neglected!
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Wire geometry

Long skinny wires R=p L _ T

— wire resistance cannot be neglected A

Wire length is increasing with large chips

Wire cross sectional area shrinks with feature size
Wires can no longer be modeled as capacitances alone

We need improved wire models that considers wire
resistance along with wire capacitance!

Model must be distributed between at least two circuit
nodes!
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Wire resistance

L
R=p—=rL
pA ,
Area=wxt=R=p L
WXt

—>
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Wire resistance

L
R=p—=rL
pA ,
Area=wxt=R=p L
WXt

All wires in certain layer has
the same thickness, t, hence
sheet resistivity is a convenient measure t

—>
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Wire resistance

L
R = p —_— = ]/'L |‘ W e S .I

A

L
Area =wxt=R=p L
wXxt
All wires in certain layer has
the same thickness, t, hence
sheet resistivity is a convenient measure t
P hy

R, =

= 7 in ohms per square, Q/O
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Wire resistance

L
R=p—=rL

A

L
Area =wxt=R=p L
wXxt
All wires in certain layer has
the same thickness, t, hence
sheet resistivity is a convenient measure t
P hy

—

RS = 7 in ohms per square, Q/0J

The "number of squares” in the direction of current flow is L/W
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Wire resistance

L
R = p —_— = ]/'L |< W e S .l

A

L
Area =wxt=R=p L
wXxt
All wires in certain layer has
the same thickness, t, hence
sheet resistivity is a convenient measure t
P hy

R, =

= 7 in ohms per square, Q/O

The “number of squares” in the direction of current flow is L/W
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Wire resistance

L
R=p—=I”L |‘WNS .|

A

L
Area =wxt=R=p L
wXxt
All wires in certain layer has
the same thickness, t, hence
sheet resistivity is a convenient measure t
P hy

RS = 7 in ohms per square, Q/0J

The "number of squares” in the direction of current flow is L/W

If we assign a certain width, W, to all wires in certain layer
they will all have the same resistance per unit length, r=R/W,
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Example

e Estimate the sheet resistance of a 220 nm thick copper
wire if the resistivity of the thin copper film is 22 nQ:m.

R =

S
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Example

e Estimate the sheet resistance of a 220 nm thick copper
wire if the resistivity of the thin copper film is 22 nQ:m.

R =X - —-0.10 Q/o
t 220 nm
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Example

e Estimate the sheet resistance of a 220 nm thick copper
wire if the resistivity of the thin copper film is 22 nQ:m.

R =X - —-0.10 Q/o
t 220 nm

e Find the total resistance if the wire is 0.125 um wide and 1
mm long. (lgnore the barrierlaver)

R-
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Example

e Estimate the sheet resistance of a 220 nm thick copper
wire if the resistivity of the thin copper film is 22 nQ:m.

R =X - —-0.10 Q/o
t 220 nm

e Find the total resistance if the wire is 0.125 um wide and 1
mm long. (lgnore the barrier layer)

R=010 ox20um
—x  0.125um

L/W=8000 "squares"
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Example

e Estimate the sheet resistance of a 220 nm thick copper
wire if the resistivity of the thin copper film is 22 nQ:m.

R =X - —-0.10 Q/o
t 220 nm

e Find the total resistance if the wire is 0.125 um wide and 1
mm long. (lgnore the barrier layer)

R=010 ox20um
—x  0.125um

L/W=8000 "squares"

 Wires 125 nm wide have a resistivity per unit length of 800
Q/mm
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Wire capacitance

layer n+1

h,

insulator

:‘l-.‘

v
i — —CH— layer n
¢ .

1

layer n-1

Wires have a capacitance c¢ per unit length
* to neighbors in the same layer
* tolayers above and below
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:‘l-.‘

2

1

Wire capacitance

layer n+1

C

v
J1OHA\HH | tevern
X |

layer n-1

Wires have a capacitance c¢ per unit length

to neighbors in the same layer

to layers above and below

Parallel-plate capacitance equation

Cop = eA/h, where top/bottom

area A=WxL

£=K¢,, £,=8.85:10"12 F/m in vacuum

SiO, permittivity is k=4

low-kappa materials have k<3
October 2018
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Wi

re capacitance

2;& Parallel plate capacitance
layer n+1
v CoT
i HHNNNHH layer n
¢ CbotﬁI: Cog
layer n-1

Wires have a capacitance c¢ per unit length

to neighbors in the same layer

to layers above and below

Parallel-plate capacitance equation

Cop = eA/h, where top/bottom

area A=WxL

£=K¢,, £,=8.85:10"12 F/m in vacuum

SiO, permittivity is k=4

low-kappa materials have k<3
October 2018
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Wi

re capacitance

2;& Parallel plate capacitance
layer n+1
v CoT
i ==a\gl= layer n
¢ CbotﬁI: Cog
layer n-1 and fringing-field capacitance

Wires have a capacitance c¢ per unit length

to neighbors in the same layer

to layers above and below

Parallel-plate capacitance equation

Cop = eA/h, where top/bottom

area A=WxL

£=K¢,, £,=8.85:10"12 F/m in vacuum

SiO, permittivity is k=4

low-kappa materials have k<3
October 2018
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Wi

re capacitance

Parallel plate capacitance

layer n+1

C

v
J1OHA\HH | tevern
X |

layer n-1

Wires have a capacitance c per unit lengt N

Parallel-plate capacitance equation

to neighbors in the same layer

to layers above and below

Cop = eA/h, where top/bottom

area A=WxL

£=Kg,, €,=8.85:10"12 F/m in vacuum Cyire = Cpp T Crringe

SiO, permittivity is k=4

low-kappa materials have k<3
October 2018
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Metal2 Capacitance Data

S —ho—p —
T o t=h,=h,=0.7 um
metal 3 plane T
L
h2 ¢ CtOpT 300 M1, M3 planes
—e— s =320
t i _“— —H— metal 2 250 —m— =480
C.. £ e e
h ¢ Cb 1 ad) i 20
1 OtT < Isolated
metal 1 plane | o e
100 ----A----8 =640
Wire has capacitance ¢ per unit length e
50
e to neighbors in the same layer
0 T T T T
* to layers above and below 0 S0 1000 1500 2000

w (nm)
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Metal2 Capacitance Data

) t=h,=h,=0.7 um

400

metal 3 plane 1

350

topT 300

v
t 3] HH\\HH | metal2
:

M1, M3 planes
—e— s =320
—@— s =480
—aA—s =640
—@— 5=

C

200

Isolated

@)

W]

=3
Ciogar (@F/um)

-8 =320
-...s =480

3
©A----s =640
O____s:d)

metal 1 plane [

100

Wire has capacitance c per unit length

50

e to neighbors in the same layer

0

* to layers above and below 0 500 1000 1500 2000

w (nm)
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Metal2 Capacitance Data

) o t=h,=h,=0.7 um
metal 3 plane 1

350

topT 300

v
t 31 HHA\\HH | metal
:

M1, M3 planes

—e— s =320
—@— s =480
—aA—s =640

T
h C. L “adi = 200 | —e—s=w
1 bOtT i“:_v Isolated
S 150 cee®me--5 =320
metal 1 plane I oo 480
~---A----5 =640
100 5=

Wire has capacitance c per unit length

50

e to neighbors in the same layer

0

* to layers above and below 0 500 1000 1500 2000

w (nm)

» Wires typically have capacitances about ~ 0.2 fF/um, i. e. 200 fF/mm
* Compare with the 1.2 fF/um for the MOSFET gate capacitances
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Wire RC delay

e Wire RC product increases as L? with wire length L

 For our 1 mm example wire, the RC product was 160 ps
— ris wire resistance per unit length ~800 /mm (0.8 k2 /mm)
— cis wire capacitance per unit length ~200 fF/mm

e In comparison, the RC time constant of an inverter with a
FO4 was previously found to be 36 ps (5x7.2 ps)
— FO4 delay =0.7x36 = 25 ps

RC = rcl’

October 2018 Introduction to Integrated Circuit Design 12



Modern interconnect

o

b Metal 6

Via56 > ! |
ERTE il Ml B

[a——

: : <—Metal 3
Metal 2__

Via 1-2 _
Pt ™l

Local Tungsten interconnect
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Wire delay scaling — Local wires

stays constant

v (A
IerllrgethL/S, 1/5 R=R.,—— RS=B

width W/s S wi/S ’ t

Wire
length L,
width W

* For local wires crossing the same amount of circuitry

— Resistance stays roughly constant
* Aspect ratio does not change
» Sheet resistivity does not change if wire height stays large
and/or change material to copper stays constant

— Capacitance decreases by scaling factor C=(WC,)L/S
* Cap/unit length stays constant, while length decreases

* Hence, wire delay tracks gate delay ~1/S

From Mark Horowitz at Design Automation Conference 2000
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Wire delay scaling — Global wires

stays constant

Added functionality ‘

S=v2

. . L
ermthl. enith s R=R ~
e chh Wis
* For global wires crossing the whole chip
] ] ] ] stays constant
— Resistance grows linearly (with scaling factor) ‘

— Capacitance stays fixed C=wcC, )L
* Cap/unit length stays constant, as does wire length

* Two opposite trends:
— Wire delay increases (~S ) - gate delay decreases (~1/S)

From Mark Horowitz at Design Automation Conference 2000
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Modern Interconnect

Global Interconnect

2w
0 N _—
= B S =S : SGilobal = Spie
(o] —
238 Local Technology
-~ u |
2
£
@
o
=)
O
(/2]
10 100 1,000 10,000 100,000
10 um Length (u) 10 mm 10 cm
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Step-response to a rising input voltage along an
RC wire as a function of time and wire length

1.0

Voltage [V]

0.2

17
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Summary

We have

e discussed the importance of accurate wire modeling
considering not only wire capacitance but also wire resistance
as wires get longer and skinnier

« defined the concept of sheet resistance in ohms per square
* had alook at typical on-chip wire length distributions

 had a look at wire capacitance dependence on the surrounding
wiring on top, below, and along sidewalls
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Introduction to
on-chip interconnect

Wire delay modeling and repeater insertion
Lecture 7 continued
Tuesday October 2, 2018



Outline

Introduction

Introduce a distributed RC t-model for delay estimates
— Wire resistance per unit length L, r
— Wire capacitance per unit length L, ¢
— Distributed wire delay ~ Yrcl?

For simplicity, assume the existence of a dominant RC time constant
for describing the output signal at the wire end

We will show how repeaters can be inserted to keep wire lengths
short

— Find the optimal number of repeaters for any wire length

— Find the critical wire length for repeater insertion

Introduce the concept of wire effort
Conclusions

October 2018 Introduction to Integrated Circuit Design 20



Wire delay example

Estimate the delay of an inverter driving an identical inverter
at the end of the 1 mm wire! W, =2W,.

Assume wire cap c= 200 fF/mm, r=800 2/mm (from previous examples)

driver inverter receiver inverter
1 mm long, 125 nm wide Cu wire
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Wire delay example

Estimate the delay of an inverter driving an identical inverter
at the end of the 1 mm wire! W, =2W,.

Assume wire cap c= 200 fF/mm, r=800 2/mm (from previous examples)

The wire will affect the propagation delay if the wire R, C,,, product is larger
than the reference RC product of the inverter R ,C;=2 k€2 x 3.6 fF = 7.2 ps.

driver inverter receiver inverter
1 mm long, 125 nm wide Cu wire
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Wire delay example

Estimate the delay of an inverter driving an identical inverter
at the end of the 1 mm wire! W, =2W,.

Assume wire cap c= 200 fF/mm, r=800 2/mm (from previous examples)

The wire will affect the propagation delay if the wire R, C,,, product is larger
than the reference RC product of the inverter R ,C;=2 k€2 x 3.6 fF = 7.2 ps.

driver inverter receiver inverter
R,~=0.8 k2, C,,=200 fF

The given parameters yield a wire resistance of 800 €2 and a wire cap is 200 fF.

October 2018 Introduction to Integrated Circuit Design 21



Wire delay example

Estimate the delay of an inverter driving an identical inverter
at the end of the 1 mm wire! W, =2W,.

Assume wire cap c= 200 fF/mm, r=800 2/mm (from previous examples)

The wire will affect the propagation delay if the wire R, C,,, product is larger
than the reference RC product of the inverter R ,C;=2 k€2 x 3.6 fF = 7.2 ps.

driver inverter receiver inverter
R,~=0.8 k2, C,,=200 fF

Hence, wire R,C,, product is 160 ps
The contribution to the system time constant from the distributed wire is 72R,,,C,,= 80 ps
Increasing the time constant from the 14.4 ps with no or a short wire to almost 95 ps.
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Wire delay example

Estimate the delay of an inverter driving an identical inverter
at the end of the 1 mm wire! W, =2W,.

Assume wire cap c= 200 fF/mm, r=800 2/mm (from previous examples)

The wire will affect the propagation delay if the wire R, C,,, product is larger
than the reference RC product of the inverter R ,C;=2 k€2 x 3.6 fF = 7.2 ps.

driver inverter receiver inverter
270 Q 270 Q 270 Q
1 1 1
I X

33 fF

__I__ =_|_= 33 fF

67 fF 67 fF

Wire resistance is distributed along the wire which must be modeled by segments
In Spice circuit simulations a 3-segment t-model is accurate to within 3%
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Wire delay example

Estimate the delay of an inverter driving an identical inverter
at the end of the 1 mm wire! W, =2W,.

Assume wire cap c= 200 fF/mm, r=800 2/mm (from previous examples)

The wire will affect the propagation delay if the wire R, C,,, product is larger
than the reference RC product of the inverter R ,C;=2 k€2 x 3.6 fF = 7.2 ps.

driver inverter receiver inverter
R,~=0.8 k2, C,,=200 fF
1
I X

I 1

Wire resistance is distributed along the wire which must be modeled by segments
In Spice circuit simulations a 3-segment t-model is accurate to within 3%
However, for simple analytical estimate: use single segment m-model.
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Wire delay example

Estimate the delay of an inverter driving an identical inverter
at the end of the 1 mm wire! W, =2W,.

Assume wire cap c= 200 fF/mm, r=800 2/mm (from previous examples)

The wire will affect the propagation delay if the wire R, C,,, product is larger
than the reference RC product of the inverter R ,C;=2 k€2 x 3.6 fF = 7.2 ps.

driver inverter receiver inverter
R =0.8 kQ2

[’

CJ L C,/ —L_

2=100 ‘ 2=100 ‘
fF fF

Wire m-model
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Wire delay example

Estimate the delay of an inverter driving an identical inverter
at the end of the 1 mm wire! W, =2W,.

Assume wire cap c= 200 fF/mm, r=800 2/mm (from previous examples)

The wire will affect the propagation delay if the wire R, C,,, product is larger
than the reference RC product of the inverter R ,C;=2 k€2 x 3.6 fF = 7.2 ps.

driver inverter receiver inverter
R =0.8 kQ2

[’

CJ L C,/ —L_

2=100 ‘ 2=100 ‘
fF fF

Wire m-model
Introduce electrical inverter models
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Wire delay example

Estimate the delay of an inverter driving an identical inverter
at the end of the 1 mm wire! W, =2W,.

Assume wire cap c= 200 fF/mm, r=800 2/mm (from previous examples)

The wire will affect the propagation delay if the wire R, C,,, product is larger
than the reference RC product of the inverter R ,C;=2 k€2 x 3.6 fF = 7.2 ps.

driver inverter receiver inverter
R R,=0.8 k€2 Input cap C
Cr—— Cf - Cu/ C—
2=100 ‘ 2 100 ‘ I
1 fF

Wire ﬂ:-model
Introduce electrical inverter models
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Wire delay example

Estimate the delay of an inverter driving an identical inverter
at the end of the 1 mm wire! W, =2W,.

Assume wire cap c= 200 fF/mm, r=800 2/mm (from previous examples)

The wire will affect the propagation delay if the wire R, C,,, product is larger
than the reference RC product of the inverter R ,C;=2 k€2 x 3.6 fF = 7.2 ps.

driver inverter receiver inverter
R R,=0.8 k€2 Input cap C
Cr—— Cf - Cu/ C—
2=100 ‘ 2 100 ‘ I
1 fF

Wire ﬂ:-model

Introduce electrical inverter models
What is the delay of this two-stage RC circuit?
Can be found analytically from second-order differential equation!

October 2018 Introduction to Integrated Circuit Design
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Simplify wire circuit to find solution

Redraw the wire circuit as a two-stage RC circuit, where

Stage 1: resistance R, and capacitance C,
Stage 2: resistance R, and capacitance C,

Ry v, R v

A @ sC, —% sC, —%

no

October 2018 Introduction to Integrated Circuit Design
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Simplify wire circuit to find solution

Redraw the wire circuit as a two-stage RC circuit, where

Stage 1: resistance R, and capacitance C,
Stage 2: resistance R, and capacitance C,

* Get transfer function, or 2" order linear differential equation

Ry v, R, Vv,
) !
TUT

H(s) :

T RRCC,s +(R(C +C)+RC, )s+1

Second order linear differential equation
RR,CCV +(R(C +C,)+RC, )W, +V, =0

October 2018 H i sauss e ey aeoa s e SIGN

24



Simplify wire circuit to find solution

Redraw the wire circuit as a two-stage RC circuit, where

Stage 1: resistance R, and capacitance C,
Stage 2: resistance R, and capacitance C,

* Get transfer function, or 2" order linear differential equation

Ry Vi R, V,
! |
TTT

H(s) :

T RRCC,s +(R(C +C)+RC, )s+1

Characteristic eq. yields exponential time constants
RR,CC,s* +(R (C,+C,)+R,C,)s+1=0

October 2018 Ha saus s ey aeoa s e SIGN
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Simplify wire circuit to find solution

Redraw the wire circuit as a two-stage RC circuit, where
Stage 1: resistance R, and capacitance C,
Stage 2: resistance R, and capacitance C,
* Get transfer function, or 2" order linear differential equation

Let’s denote the two solutions
Ry V, R, v, to the characteristic equation s,

| |
V sC,—— sC,——

1 1
H(s) :

T RRCC,s +(R(C +C)+RC, )s+1

and s,, respectively.

Characteristic eq. yields exponential time constants
RR,CC,s* +(R (C,+C,)+R,C,)s+1=0

October 2018 Ha saus s ey aeoa s e SIGN 24



Simplify wire circuit to find solution

Redraw the wire circuit as a two-stage RC circuit, where

Stage 1: resistance R, and capacitance C,
Stage 2: resistance R, and capacitance C,

* Get transfer function, or 2" order linear differential equation

Let’s denote the two solutions
Ry V, R, V to the characteristic equation s,

| and s,, respectively.
Vv sC,—— sC For the case of a falling output

2
|
in 2 T the solution is:
:[ V,(t)=V,e" +V,e™

H(s)= :
RR,CC,s" +(R (C +C,)+R,C, )s +1

Characteristic eq. yields exponential time constants
RR,CC,s* +(R (C,+C,)+R,C,)s+1=0

October 2018 Ha saus s ey aeoa s e SIGN 24



Simplify wire circuit to find solution

Redraw the wire circuit as a two-stage RC circuit, where
Stage 1: resistance R, and capacitance C,

Stage 2: resistance R, and capacitance C,

* Get transfer function, or 2" order linear differential equation
Let’s denote the two solutions

R

Ry V, 2 V to the characteristic equation s,
| I and s,, respectively..
v sC,—— sC,—— For the cz.ase _Of a falling output
in T T the solution is:
Vy ()= Ve + Ve
1 Characteristic eq. also yields

sum Of the two time constants
=(-D)+(-H) =R (C +C,)+RC,
—

—

Characteristic eq. yields exponential time constants T -

RR,CC,s* +(R (C +C, 2+RC )s+1=0

October 2018 i CuusTU wo gt s o v o oSIGN
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Simplify wire circuit to find solution

Redraw the wire circuit as a two-stage RC circuit, where

Stage 1: resistance R, and capacitance C,
Stage 2: resistance R, and capacitance C,

* Get transfer function, or 2" order linear differential equation

Let’s denote the two solutions
Ry V, R, V to the characteristic equation s,

2
| I and s,, respectively.
v SC,—— sC,—— For the cz.ase _Of a falling output
in ‘ ‘ the solution is:
Vz (t) = Vzlew + szeSZt
1 Characteristic eq. also yields

sum of the two time constants
T, =(-D+(-H=R(C+C,)+RC,
Most often one time constant is dominant, for the R
case of a falling output voltage resulting in |V, (t)=V,,-¢"™

H(s)=
(s) RR,CC,s* +(R (C +C,)+RC, )s +1
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Simplify wire circuit to find solution

Redraw the wire circuit as a two-stage RC circuit, where

Stage 1: resistance R, and capacitance C,
Stage 2: resistance R, and capacitance C,

* Get transfer function, or 2" order linear differential equation

Let’s denote the two solutions
Ry V, R, V to the characteristic equation s,

2
| I and s,, respectively.
v SC,—— sC,—— For the cz.ase _Of a falling output
in ‘ ‘ the solution is:
Vz (t) = Vzlew + szeSZt
1 Characteristic eq. also yields

sum of the two time constants
T, =(-D+(-H=R(C+C,)+RC,
Most often one time constant is dominant, for the .
case of a falling output voltage resulting in |V, (t)=V,,-¢"™ Propagation delay: 1, =0.7xt,

H(s)=
(s) RR,CC,s* +(R (C +C,)+RC, )s +1

October 2018 Ha s s ey aeoa s e SIGN 24



Approximative solution

Let’s have a look at a circuit example where R;=0.8R,, C,=1.2C,

Already for these 20% differences between R, and R,, C, and C,, respectively,

one of the time constants become dominant, i. e. t;,=2.45, t,=0.3

This graph compares the exact two-pole solution with the approximative
exponential de1cay assuming a dominant time constant T,=t,+1,=2.75

October 2018
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Approximative solution

Let’s have a look at a circuit example where R;=0.8R,, C,=1.2C,

Already for these 20% differences between R, and R,, C, and C,, respectively,

one of the time constants become dominant, i. e. t;,=2.45, t,=0.3

This graph compares the exact two-pole solution with the approximative
exponential de1cay assuming a dominant time constant T,=t,+1,=2.75
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Approximative solution

Let’s have a look at a circuit example where R;=0.8R,, C,=1.2C,

Already for these 20% differences between R, and R,, C, and C,, respectively,

one of the time constants become dominant, i. e. t;,=2.45, t,=0.3

This graph compares the exact two-pole solution with the approximative
exponential de1cay assuming a dominant time constant T,=t,+1,=2.75
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How to remember delay formula?

Estimate the delay of an inverter driving an identical inverter
at the end of the 1 mm wire! W, =2W,.

Assume wire cap c= 200 fF/mm, r=800 2/mm (from previous examples)

 Now, let us return to the simplified two-stage RC circuit
« How to remember how to get the dominant time constant?

R, v, R, v

V Ci—— C

T 7
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How to remember delay formula?

Estimate the delay of an inverter driving an identical inverter
at the end of the 1 mm wire! W, =2W,.

Assume wire cap c= 200 fF/mm, r=800 2/mm (from previous examples)

 Now, let us return to the simplified two-stage RC circuit
« How to remember how to get the dominant time constant?

Ry '\Vl R, '\Vz
2 7
V Ci—— C,——

T T

Each resistance is multiplied by its downstream capacitance!
T, =R (C +C,)+R,C,
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How to remember delay formula?

Estimate the delay of an inverter driving an identical inverter
at the end of the 1 mm wire! W, =2W,.

Assume wire cap c= 200 fF/mm, r=800 2/mm (from previous examples)

 Now, let us return to the simplified two-stage RC circuit
« How to remember how to get the dominant time constant?

R V R, 4 V.
=
C

vV C1 2

Or: Each capacitance is multiplied by its upstream resistance!
T,=RC +(R +R,)C,
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Return to wire delay example

Estimate the delay of an inverter driving an identical inverter
at the end of the 1 mm wire! W, =2W,.

Assume wire cap c= 200 fF/mm, r=800 2/mm (from previous examples)

The wire will affect the propagation delay if wire RC product R,,C,, is larger
than the well-known inverter RC product R ,C;=2 k€2 x 3.6 fF = 7.2 ps.

driver inverter receiver inverter
R R,=0.8 k€2 Input capacitance C
Cr—— S — G = C——
2=100 ‘ 2=100 ‘ ‘
. fF fF
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Return to wire delay example

Estimate the delay of an inverter driving an identical inverter
at the end of the 1 mm wire! W, =2W,.

Assume wire cap c= 200 fF/mm, r=800 2/mm (from previous examples)

The wire will affect the propagation delay if wire RC product R,,C,, is larger
than the well-known inverter RC product R ,C;=2 k€2 x 3.6 fF = 7.2 ps.

driver inverter receiver inverter
R R,=0.8 k€2 Input capacitance C
Cr—— S — G = C——
2=100 ‘ 2=100 ‘ ‘
. fF fF

C
Dominating delay time constant becomes: T, =R(C,+C+C, )+R, (C +7W)

October 2018 Introduction to Integrated Circuit Design 27



Return to wire delay example

Estimate the delay of an inverter driving an identical inverter
at the end of the 1 mm wire! W, =2W,.

Assume wire cap c= 200 fF/mm, r=800 2/mm (from previous examples)

The wire will affect the propagation delay if wire RC product R,,C,, is larger
than the well-known inverter RC product R ,C;=2 k€2 x 3.6 fF = 7.2 ps.

driver inverter receiver inverter
R R,=0.8 k€2 Input capacitance C
Cr—— S — G = C——
2=100 ‘ 2=100 ‘ ‘
. fF fF

C
Dominating delay time constant becomes: T, =R(C,+C+C, )+R, (C+7W)
T,=R(C,+C)+ RC, + R,C +RW2Cw > 94.4 ps

— .
=2x7.2 psifp,,, =1 R isunknown Cis unknown wgo s
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Return to wire delay example

Estimate the delay of an inverter driving an identical inverter
at the end of the 1 mm wire! W, =2W,.

Assume wire cap c= 200 fF/mm, r=800 2/mm (from previous examples)

The wire will affect the propagation delay if wire RC product R,,C,, is larger
than the well-known inverter RC product R ,C;=2 k€2 x 3.6 fF = 7.2 ps.

driver inverter receiver inverter
R R,=0.8 k€2 Input capacitance C
Cr—— S — G = C——
2=100 ‘ 2=100 ‘ ‘
. fF fF

Dominating time constant T, can be normalized wrt téchnology time constant RC!

d = d: =va+1+RWCW K +RW+RWCW
RC RC R, R 2RC

inverter
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Return to wire delay example

Estimate the delay of an inverter driving an identical inverter
at the end of the 1 mm wire! W, =2W,.

Assume wire cap c= 200 fF/mm, r=800 2/mm (from previous examples)

The wire will affect the propagation delay if wire RC product R,,C,, is larger
than the well-known inverter RC product R ,C;=2 k€2 x 3.6 fF = 7.2 ps.

driver inverter receiver inverter
R R,=0.8 k€2 Input capacitance C
Cr—— S — G = C——
2=100 ‘ 2=100 ‘ ‘
A fF fF
: : . . . . R,C,
At this point, | have found it convenient to introduce the wire effort W.: W = RC
d = d: =pmv+1+RWCW K +RW +RW(’W
RC RC R, R 2RC

inverter
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Return to wire delay example

Estimate the delay of an inverter driving an identical inverter
at the end of the 1 mm wire! W, =2W,.

Assume wire cap c= 200 fF/mm, r=800 2/mm (from previous examples)

The wire will affect the propagation delay if wire RC product R,,C,, is larger
than the well-known inverter RC product R ,C;=2 k€2 x 3.6 fF = 7.2 ps.

driver inverter receiver inverter
R R,=0.8 k€2 Input capacitance C
Cr—— S — G = C——
2=100 ‘ 2=100 ‘ ‘
-+ fF fF

N , : : : R,C,

At this point, | have found it convenient to introduce the wire effort W.: W = RC
In our example, W.=160/7.2=22 gl _ b 414 R,C, R By Ry
RC RC R, R 2RC

inverter
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Return to wire delay example

Estimate the delay of an inverter driving an identical inverter
at the end of the 1 mm wire! W, =2W,.

Assume wire cap c= 200 fF/mm, r=800 2/mm (from previous examples)

The wire will affect the propagation delay if wire RC product R,,C,, is larger
than the well-known inverter RC product R ,C;=2 k€2 x 3.6 fF = 7.2 ps.

driver inverter receiver inverter
R R,=0.8 k€2 Input capacitance C
Cr—— S — G = C——
2=100 ‘ 2=100 ‘ ‘
L fF fF

. : . : . : R, C,

At this point, | have found it convenient to introduce the wire effort W.: W = RC
In our example, W.=160/7.2=22 _ R R, W,

and the normalized delay can be written d = P+ 1+ W, . * R * 2
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Return to wire delay example

Estimate the delay of an inverter driving an identical inverter
at the end of the 1 mm wire! W, =2W,.

Assume wire cap c= 200 fF/mm, r=800 2/mm (from previous examples)

The wire will affect the propagation delay if wire RC product R,,C,, is larger
than the well-known inverter RC product R ,C;=2 k€2 x 3.6 fF = 7.2 ps.

driver inverter receiver inverter
R R,=0.8 k€2 Input capacitance C
Cr—— S — G = C——
2=100 ‘ 2=100 ‘ ‘
. fF fF

Having developed a delay model based on the assumption of a dominating time
constant, let’s apply the model for finding the size of the inverter minimizing the delay!
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Return to wire delay example

Estimate the delay of an inverter driving an identical inverter
at the end of the 1 mm wire! W, =2W,.

Assume wire cap c= 200 fF/mm, r=800 2/mm (from previous examples)

The wire will affect the propagation delay if wire RC product R,,C,, is larger
than the well-known inverter RC product R ,C;=2 k€2 x 3.6 fF = 7.2 ps.

driver inverter receiver inverter
R R,=0.8 k€2 Input capacitance C
Cr—— S — G = C——
2=100 ‘ 2=100 ‘ ‘
. fF fF

Having developed a delay model based on the assumption of a dominating time
constant, let’s apply the model for finding the size of the inverter minimizing the delay!

d_We B oo B p 08k w,- —=R

9R = RW R2 optimal ~— /WE

October 2018 Introduction to Integrated Circuit Design 28
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Return to wire delay example

Estimate the delay of an inverter driving an identical inverter
at the end of the 1 mm wire! W, =2W,.

Assume wire cap c= 200 fF/mm, r=800 2/mm (from previous examples)

The wire will affect the propagation delay if wire RC product R,,C,, is larger
than the well-known inverter RC product R ,C;=2 k€2 x 3.6 fF = 7.2 ps.
driver inverter receiver inverter

R,=0.8 kQ
b’ 120
Cu/ Cu/

2=100 ‘ 2=100 ‘
fF fF

Having defined inverter size 10X for inverters with R=2 k€2, 120X is the inverter size
with R.~170 Q2 minimizing the delay caused by the wire.

Assuming p,, =1, and having W, =22, we obtaind,;, = 2 +2 W, + % =225
Piny=1

October 2018 Introduction to Integrated Circuit Design 29



Return to wire delay example

Estimate the delay of an inverter driving an identical inverter
at the end of the 1 mm wire! W, =2W,.

Assume wire cap c= 200 fF/mm, r=800 2/mm (from previous examples)
The wire will affect the propagation delay if wire RC product R,,C,, is larger

than the well-known inverter RC product R ,C;=2 k€2 x 3.6 fF = 7.2 ps.
receiver inverter

driver inverter

R,=0.8 kQ
@ 120
c,/ c/ 1

2=100 ‘ 2=100 ‘
fF

fF

Having defined inverter size 10X for inverters with R=2 k€2, 120X is the inverter size

with R.~170 Q2 minimizing the delay caused by the wire.
Total delay becomes 22.5 multiples of the basic 5 ps that we have defined for the 65

nm CMOS process, i.e. 112.5 ps, a value to be compared to the 10 ps with no wire.
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Keeping wires short using repeaters

For keeping wires short, what if we divide the wire in the
example into 2 segments by inserting a repeater in the middle?

A repeater is just an identical inverter that we call repeater!
To estimate the propagation delay, just add the two segment delays!

driver inverter

receiver inverter

E R, /2, C,/2
‘

October 2018
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Keeping wires short using repeaters

For keeping wires short, what if we divide the example wire
into 2 segments and insert a repeater?

A repeater is just an identical inverter that we call repeater!
To estimate the propagation delay, just add the two segment delays!

R Ry/2 R R,/2

—o——___] —o—T1 1

Pin/C J. lCW/4 Cul4 J_ ¢ J_ PinC T TCW/4 cW/4l c J.

+
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Keeping wires short using repeaters

For keeping wires short, what if we divide the example wire
into 2 segments and insert a repeater?

A repeater is just an identical inverter that we call repeater!
To estimate the propagation delay, just add the two segment delays!

R Ry/2 R R,/2

—o——___] —o—T1 1

Pin/C J_ J-CW/4 C /4 J_ C J_ + p.,C T TCW/4 CW/4J_ C J_

If we keep the total wire effort W, =22, the sum of the two stage delays is
W. R +RW/2+WE/4
2 __ 4 R,/2 R 2

(Using delay Eq. on slide 27)
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Keeping wires short using repeaters

For keeping wires short, what if we divide the example wire
into 2 segments and insert a repeater?

A repeater is just an identical inverter that we call repeater!
To estimate the propagation delay, just add the two segment delays!

R Ry/2 R R,/2

—o——___] —o—T1 1

Pin/C J_ J-CW/4 C /4 J_ C J_ + p.,C T TCW/4 CW/4J_ C J_

If we keep the total wire effort W, =22, the sum of the two stage delays is

/4 R, /2 W._/4
d=2x(pmv+1+ s K + v/ + /
—

4R 2 R ) (Using delay Eq. on slide 27)

R
Keeping R, =R, =\/% md,, =2><(2+./WE +%)=2x(2+2.35+2.35+2.8)=19
E
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Keeping wires short using repeaters

For keeping wires short, what if we divide the example wire
into 2 segments and insert a repeater?

A repeater is just an identical inverter that we call repeater!
To estimate the propagation delay, just add the two segment delays!

R Ry/2 R R,/2

—o——___] —o—T1 1

PinC J_ J.CW/4 Cold J_ c J_ + e T Tcwm cW/4l c T

If we keep the total wire effort W, =22, the sum of the two stage delays is

/4 R, /2 W._/4
d=2x(pmv+1+ s K + v/ + /
—

4R 2 R ) (Using delay Eq. on slide 27)

R
Keeping R, =R, =\/% md,, =2><(2+./WE +%)=2x(2+2.35+2.35+2.8)=19
E

Just a small decrease of the wire delay (from 22.5 to 19)! But still . . .
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Keeping wires short using repeaters

But what if the wire is much longer, say 10-15 mm?

What would be the optimal number of segments, m, into which the wire
should be split by inserting m-1 identical repeaters for minimizing the delay?

driver inverter

E R,/m, C,/m 'E
‘

October 2018
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Keeping wires short using repeaters

But what if the wire is much longer, say 10-15 mm?

What would be the optimal number of segments, m, into which the wire
should be split by inserting m-1 identical repeaters for minimizing the delay?

driver inverter receiver inverter

Rv/m/ Cw/m Rv/m, CW/m
oA Do Ipotef I

If we keep W/, as the total wire effort, the delay can be written

W, R /m W, ) A
d=mx|p +1+ + ‘m_\/(p+l)

m RW/m 2
pinv=1
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Keeping wires short using repeaters

But what if the wire is much longer, say 10-15 mm?

What would be the optimal number of segments, m, into which the wire
should be split by inserting m-1 identical repeaters for minimizing the delay?

driver inverter receiver inverter

Rv/m/ Cw/m Rv/m, CW/m
oA Do Ipotef I

If we keep W/, as the total wire effort, the delay can be written

W. R R,/m ow _\/W
Aoz e +1+[ W/m ) sz ‘mopz‘\/z(pmfn)_i

Py~
The previous inverter sizing is still optimal, since the two middle terms

yielding the relationship between R and R , are independent of m!

October 2018 Introduction to Integrated Circuit Design 32



Keeping wires short using repeaters

But what if the wire is much longer, say 10-15 mm?

What would be the optimal number of segments, m, into which the wire
should be split by inserting m-1 identical repeaters for minimizing the delay?

driver inverter receiver inverter

Rv/m/ Cw/m Rv/m, CW/m
oA Do Ipotef I

What is the critical wire length for considering repeater insertion?
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Keeping wires short using repeaters

But what if the wire is much longer, say 10-15 mm?

What would be the optimal number of segments, m, into which the wire
should be split by inserting m-1 identical repeaters for minimizing the delay?

driver inverter receiver inverter

R,/m, C,/m R,/m, C,/m
ot B0 Dot

What is the critical wire length for considering repeater insertion?

L. = L 2L =2‘/R—C=2‘/7—'2=O.42mm
M, W rc 160
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Keeping wires short using repeaters

But what if the wire is much longer, say 10-15 mm?

What would be the optimal number of segments, m, into which the wire
should be split by inserting m-1 identical repeaters for minimizing the delay?

driver inverter receiver inverter

R,/m, C,/m R,/m, C,/m
bﬂ @» . —20 Qﬂ

What is the critical wire length for considering repeater insertion?

L. = L 2L =2‘/E=2‘/7—'2=0.42mm
M, W rc 160

Hence, in the case of our 1 mm wire example, it’s optimal to divide wire in two
segments. However, the gain was small and the signal became inverted
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Example: 10 mm wire

But what if the wire is much longer, say 10 mm?

The critical length being 0.42 mm suggests insertion of 22 repeaters,
i.e. that we should divide the wire into 23 segments.

driver inverter

/m,

receiver inverter

a R,/m,
‘

Cy/m R,
b’ - —120

The wire effort is now W,=16000/7.2 = 2200
Hence, minimum normalized delay is 4VW_=188=190.

Summarizing the 23 stage delays gives the same result:

d=23x2+2W, +ZV—’65=46+2x47+48=188z190

Important comment: An even number of repeaters does not invert the signal!

October 2018
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Conclusion

Introduced a distributed wire RC model, the t-model

Discussed the relevance of a delay model assuming the
existence of a dominant time constant

Understood that wires should be kept short since wire delay or
flight time, increases with the wire length squared!

2
rel

W, = RC ~ I?! Therefore, keep wiresshort!

For long wires, delay can be minimized by inserting repeaters

We have derived expressions for the optimal number of
segments, m__,, and for the critical wire length L
L (R C )in verter

=2—

opt’ crit

Lcrit = m (I’C)
opt wire
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Introduction to
on-chip interconnect

Elmore delay model
Lecture 7 continued
Tuesday October 2, 2018



Outline

* Elmore delay model —a generalized model
 How to handle wire branches

* Conclusions
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H-tree clock distribution
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H-tree clock distribut

October 2018

4R,, 4C,,

on

O
2R,, 8C,,
)

O
2R, 8C,,
i)

4R,, 4C,,

IS
(AR

Introduction to Integrated Circuit Design

38



O—

G

—0

o—

October 2018

H-tree clock distribu

tio

)

Ag%é\x/clgéé é%;lév%l
??? ??? ??? ???

Introduction to Integrated Circuit Design

38



ldentify the critical t
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ldentify the critical timing path

Ry, 16C,,

2R,, 8C,,

0O X, X,
4R,, 4C,,
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ldentify the critical timing path

4R,, 4C,,
—0< X, >®~

Ry, 16C,,
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ldentify the critical timing path

R,/2, 8C,,

=
O
©
H

s
<

Ry, 16C,,
CIN

YYYY



ldentify the critical timing path

D
Dﬁ
x
<
[EY
(e}
(@)
<
Ry, 16C,,
\;/ \;/ ;NX; \;/



ldentify the critical timing path
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ldentify the critical timing path
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ldentify the critical timing path

YYYY
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ldentify the critical timing path

R R, R, R,/2

| o | | | | | | |

— — — —
C 8C, 8C,, 8C,, 8C, == 4C,== 4C,= 4c
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ldentify the critical timing path
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ldentify the critical timing path

R 2Ry, R,/2

| e | 1 e |

| — L
C 16C, == 16C,, == 4C, == 4C, 4C
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General solution

R, R, R,
Viy | LI I Vour
O C,—=— C,——

R 2RW Rw/z

| e | 1 e |

| — L
Cp == 16C,, == 16C,) == 4C, ==  4C 4C
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General solution

Rl R2 R3
1 I 1 I 1
V[N e eed | S | VOUT
C1=-|-= C2=-|-= G —_-|-=
Transfer function a=RR,RC,C,C,

H(s)= 1 b=RR,CC, + RR,GC, + RR,C,C, + RR,C,C,

aS3+bS2+CS+1 C=R1(C1+C2+C3)+R2(C2+C3)+R3C3

2R, R,/2

R
1
SR

C

T

16C,, = 16C,, == 4C, == 4C 4C
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General solution

R, R, R,
1 1 I 1
Vi 1 I I I— Vour
C1=-|-= C2=-|-= G —_-|-=
Transfer function a=RR,R,C,C,C,
7 (S ) _ 1 b=RR,CC, +RR,CC,+RR,C,C, +R,RC,C,
aS3+bS2+CS+1 C=R1(C1+C2+C3)+R2(C2+C3)+R3C3

This transfer function corresponds to a third order linear differential equation

The solution is a sum of three exponentials with three different time constants
We cannot solve this analytically.

But if we assume that there is a dominant time constant T, it is given by ¢

October 2018 Introduction to Integrated Circuit Design 43



General solution

R, R, R,
1 1 I 1
Vi 1 I I I— Vour
C1=-|-= C2=-|-= G —_-|-=
Transfer function a=RR,R,C,C,C,
7 (S ) _ 1 b=RR,CC, +RR,CC,+RR,C,C, +R,RC,C,
aS3+bS2+CS+1 C=R1(C1+C2+C3)+R2(C2+C3)+R3C3

This transfer function corresponds to a third order linear differential equation
The solution is a sum of three exponentials with three different time constants
We cannot solve this analytically.

But if we assume that there is a dominant time constant T, it is given by ¢

T,=R(C +C,+C,)+R,(C,+C;)+RC,
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General solution

Each resistance is multiplied by its downstream capacitance!
T,=R(C +C,+C)+R,(C, +C;)+RC,

Rl R2 R3
vy ——HIp— T HIp—C HID—,,
C,—— C,—— C, —T_
Transfer function a=RR,R,C,C,C,
I (S ) _ 1 b=RR,CC, +RR,CC,+RR,C,C, +R,RC,C,
aS3+bS2+CS+1 C=R1(C1+C2+C3)+R2(C2+C3)+R3C3

This transfer function corresponds to a third order linear differential equation

The solution is a sum of three exponentials with three different time constants
We cannot solve this analytically.

But if we assume that there is a dominant time constant T, it is given by ¢

T,=R(C +C,+C,)+R,(C,+C;)+RC,
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General solution

Each capacitance is multiplied by its upstream resistance!
T,=C(R+R,+R)+C,(R +R,)+CR

R, R, Ry

Vi —I:ITI:I—TI:ItVOUT
T T T

Transfer function a=RR,R,C,C,C,
H(s)= 1 b=RR,CC, + RR,GC, + RR,C,C, + RR,C,C,
aS3+bS2+CS+1 C=R1(C1+C2+C3)+R2(C2+C3)+R3C3

This transfer function corresponds to a third order linear differential equation

The solution is a sum of three exponentials with three different time constants
We cannot solve this analytically.

But if we assume that there is a dominant time constant T, it is given by ¢

T,=R(C +C,+C,)+R,(C,+C;)+RC,
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The man behind Elmore delay

e  William Cronk EImore (1909 - 2003) was an American
physicist, educator, and author.

* He s best known for his work on and related to the
Manhattan project during World War I1.

*  Professor of Physics at Swarthmore College, Pennsylvania,
from 1938 to 1974.

 Authored two influential books during his life,
— Electronics-Experimental Techniques with M. Sands
— Physics of Waves with Mark Heald.

 Heis also known for deriving a simple approximation for the
delay through an RC network, known as the Elmore delay.

* Despite his clear potential for advancing theoretical and
experimental physics, EImore was known for developing (and W. C. ElImore
publishing) laboratory experiments that effectively taught
students the fundamentals of physics.

W.C. Elmore. The Transient Analysis of Damped Linear Networks with Particular Regard to Wideband Amplifiers, J. Applied Physics, vol. 19(1), 1948
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ldentify the critical timing path

R 2R, R,/2

| o | | e | | |

e— e— e—
C, == 16C,, == 16C,, = 4C, ==  4C,= 4ac

October 2018 Introduction to Integrated Circuit Design 45



ldentify the critical timing path

YYYY

16C,, =_|_= 4CWT 4CWT 4C T

T, =R(C, +4C)+Rx40C, +2R, (4C +24C, )+R7W(4C+4CW)
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ldentify the critical timing path

YYYY

=1 16CWT 16C,, =_|_= 4CWT 4CWT AC T
T, = R(C, +4C)+ Rx40C, +2R, (4C +24C,, )+ RTW(4C +4C,, )

T, =R(C, +4C)+40RC, +10R,C +50R,C,
October 2018 Introduction to Integrated Circuit Design
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H-tree clock distribut

If we had notseen G

the symmetry, we

should have started
with the main path
delay — neglecting the—
influence of any ,

Ry
-

branches

Ry

C, G
4R,, 4C,,
— . —
2

G s G
o
~N

16C,,
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Always start by identifying ma

If we had notseen G

the symmetry, we __
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Always start by identifying main path
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Always start by identifying main path

If we had not seen
the symmetry, we

should have started . 2R,, >
with the main path oo oL |
delay — neglecting the - “I T
influence of any a |12
branches
Electrical RC wire model (neglecting branches)
Ry 2R,

R 2R,

— Rw_ 2R

e— e— e—
C
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e
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8C, == 4C, ac, == ¢, =

T "T™T T "T "T'T
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Always start by identifying main path

If we had not seen
the symmetry, we

should have started . 2R,, >
with the main path vl BN
delay — neglecting the - “I T
influence of any a |12

branches

Obtain Elmore time constant
(by multiplying each resistance by

Electrical RC wire model (neglecting branches) all downstream capacitances)
R R, 2R, 2R,
C 8C, 8C,, 4C,, 4C m= C,== C c

T
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Always start by identifying main path
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Obtain ElImore time constant
(by multiplying each resistance by
Electrical RC wire model (neglecting branches) all downstream capacitances)
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Always start by identifying main path
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the symmetry, we

should have started . 2R,, >
with the main path vl BN
delay — neglecting the - “I T
influence of any a |12

branches

Obtain ElImore time constant
(by multiplying each resistance by
Electrical RC wire model (neglecting branches) all downstream capacitances)

2R,

R 2R,

— Rw_ 2R 2R

e— e— e— e—
C

5 8C,, 8C,, 4C,, 4Cy== C,== C, c
rr T T T T T T
=R(C,+C)+Rx26C, +R, (C+18C, )+2R, (C+6C, )+2R, (C+C, )

=R(C,+C)+26RC, +5R,C+32R,C,
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Then consider neglected branches
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Then consider neglected branches

We have two neglected branches: #1 and #2

Branch #2

Branch #1
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Then consider neglected branches

We have two neglected branches: #1 and #2
Rule of thumb: Forget about the branch resistances, only consider branch capacitances

Branch #2

8C,,

Branch #1
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Then consider neglected branches
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Branch #2

Capacitances on branch #1
Upstream resistance: R+R,,,

12CW+ 2c+

=
Branch #1 8
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Capacitances on branch #2
Upstream resistance: R+3R,

+c +2CW

Ry, 16C,,

Capacitances on branch #1
Upstream resistance: R+R,,,

12CW+ 2c+
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Then consider neglected branches

We have two neglected branches: #1 and #2
Rule of thumb: Forget about the branch resistances, only consider branch capacitances

Branch #2

Capacitances on branch #2
Upstream resistance: R+3R,

+c +2CW

Ry, 16C,,

T, = (R +3R, )(2CW + C)

Capacitances on branch #1
Upstream resistance: R+R,,,

12CW+ 2c+

T =(R+R,)(12C, +2C)
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Then consider neglected branches

We have two neglected branches: #1 and #2
Rule of thumb: Forget about the branch resistances, only consider branch capacitances

Branch #2

Capacitances on branch #2
Upstream resistance: R+3R,

+C +2CW

Ry, 16C,,

T, = (R +3R, )(2CW + C)

Capacitances on branch #1
Upstream resistance: R+R,

12CW+ 2c+

T =(R+R,)(12C, +2C)

X,
4CW

Branch contribution to EImore time constant: 7} ,,,.cs = 3RC+14RC,, +5R,C +18R,,C,,

8C,,

Branch #1
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Then consider neglected branches

We have two neglected branches: #1 and #2
Rule of thumb: Forget about the branch resistances, only consider branch capacitances

Branch #2

Capacitances on branch #2
Upstream resistance: R+3R,

+c +2CW

T, = (R +3R, )(2CW + C)

Capacitances on branch #1

R, 16C,, Upstream resistance: R+R,,
L L
12CWT ZCT

8C,,

T =(R+R,)(12C, +2C)

X,
4CW

Branch contribution to Elmore time constant: 7, ,,..c.; =3RC +14RC,, +5R,C +18R,C,

Total Elmore time constant: 7, = R(C, +4C)+40RC,, +10R,C +50R,C,

Branch #1

OLX2
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Inverter sizing

How to size driver inverter to minimize the time constant, and hence the wire delay?

Total Elmore time constant: 7, = R(C, +4C)+40RC,, +10R,C +50R,C,
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Inverter sizing

How to size driver inverter to minimize the time constant, and hence the wire delay?

RiCy R L 10Bw 45080 Co
R RC

T
Normalize ElImore time constant: d=%=pmv+4+40

2¢,, 2R, 2C,,

Define wire effort:
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=
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Inverter sizing

How to size driver inverter to minimize the time constant, and hence the wire delay?

T, R,Cy R Ry o R/Cy
R RC

Normalize Elmore time constant: d—$=19mv+4+40

2¢,, 2R, 2C,,

Define wire effort:
_ RWCW

W,
£ RC

2R,, 8C,,

d=p, +4+40WERi+10%W+50WE

w

8C,,

O] Xy X,
4C,,
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Inverter sizing

How to size driver inverter to minimize the time constant, and hence the wire delay?

T, R,Cy R Ry o R/Cy
R RC

Normalize Elmore time constant: d—$=19mv+4+40

2¢,, 2R, 2C,,

Define wire effort:

WE — RW CW

RC G

2 R R,
. d=p, +4+40W, —+10— + 507,
3 R, R

.. R

d minimum when od =4 W -1 VZ =0
R R, R
2 R

2 d_. forR=—=X

N

O] Xy X,
4C,,

Total Elmore time constant: 7, = R(C,, +4C)+40RC,, +10R, C +50R,,C,
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Conclusion

We have learnt two things:
 The Elmore model —a generalized delay model

— Relying on the existence of a dominating time constant

 How to handle the influence on delay of branches
— Main timing path first, neglecting branches

— Then consider branches neglecting any branch resistances only
considering branch capacitances!
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Thanks a lot for listening!

Introduction to Integrated Circuit Design

52



