

# Postlab lab 4

## Recap power

## Adder recap

October 11, 2018

# Week 6

- Monday lab 4
  - Wires, Clock tree simulation
- Tuesday
  - Adder exercise part 1
  - Lecture Power
- Thursday
  - Postlab review lab 4, recap power, adder consolidation
  - Tutorial POTW Power

# Hand-in problem set 2

- Due on Monday October 15 23.55
- Grading works the same way as for prelabs 
  - (but we will not be able to start grading immediately)
- 5 problems
  - 3 on power
    - Power/delay/area tradeoff in tapered buffer from lab 4
    - Activity factors
    - Designing the power switch for reducing leakage
  - 2 on adders
    - Redesigning your cell from lab 2 and 3 with P and G signals
    - The dot operator / PG logic

# Learning outcomes In context

- design static CMOS logic gates (pull-up and pull-down networks) and implement these as standard cell
- from simple MOS transistor models, estimate static and dynamic properties of CMOS inverters and use these properties to model more complex gates.
- derive logical-effort normalized-delay parameters from circuit diagrams or layout, and use these parameters to estimate and trade off performance measures such as critical-path delays and power dissipation in present and future CMOS technologies.
- find critical paths in more complex combinatorial circuits, such as adders, and determine and minimise their delays.
- analyse wire-delay-dominated cases such as clock distribution and global interconnect, and suggest suitable buffering schemes to minimize delay or delay spread.
- design simple sequential systems that meet set-up and hold time constraints for timing circuits, including the effect of metastability in synchronisation.,
- use industrial-type design automation tools to design, implement and verify basic CMOS circuit elements following the design flow supported by such tools.

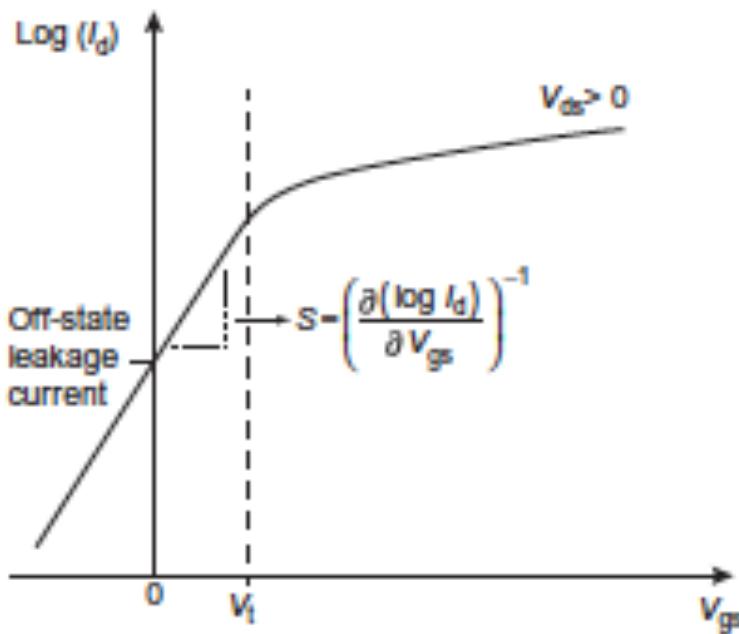
# What does “in context” mean?

- All information may not be readily available. May have to deduce it from data, graph or assume something reasonable.
- The problem often has to be “extracted” from its context to make it “clean”.
- You have to decide which method to use.
- There may not be one “right answer”. You may have to argue for why you decide to design one way or the other.

# From MUD cards

- Does gate leakage dominate over subthreshold leakage in CMOS process below 45 nm?
- How to compute activity factors for entire systems/chips?
- What happens if we lower  $V_{DD}$  too much?

# Subthreshold leakage

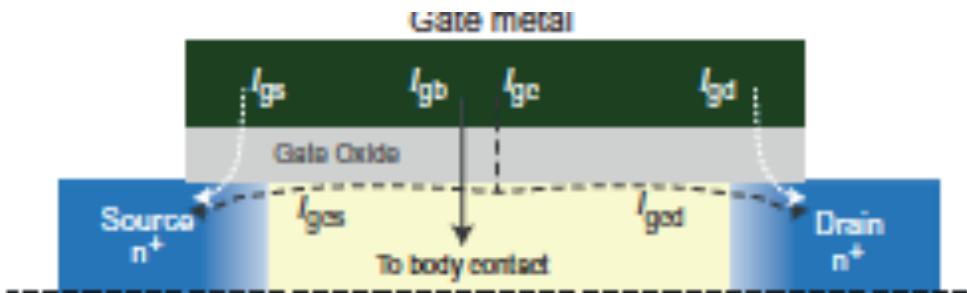


**FIGURE 5.1**

---

The transistor's drain current (on a logarithmic scale) as a function of its gate voltage. The off-state leakage current, threshold voltage, and subthreshold swing are marked.

# Gate leakage



**FIGURE 5.5**

Half cross-section of the fin of the FinFET shown in Figure 5.2. The components of the tunneling current are shown.  $I_{gs}$  and  $I_{gd}$  are tunneling currents in the gate-to-source/drain overlap regions;  $I_{gb}$  flows between the gate and the body;  $I_{gc}$  is the gate-to-channel tunneling current and it is partitioned into  $I_{gcs}$  and  $I_{gcd}$ , which flow out of the source and drain, respectively.

A chapter on leakage currents in finFETs is now available in  
Documents -> Extra readings for the interested  
The description of the different types of leakage is very good there.

# Does gate leakage dominate subthreshold leakage below 45 nm?

- Short answer:
- Not yet, due to:
  - high-K dielectrics employed from 45 nm and below.
  - FinFETs
- However, it is just a temporary solution!

# Activity factor definition

$\alpha$  = Probability that output switches from 0 to 1

$P_i$  = probability that node  $i$  is 1

$\overline{P}_i = 1 - P_i$  = probability that node  $i$  is 0

If the probabilities are uncorrelated:

$$\alpha = \overline{P}_i P_i = (1 - P_i) P_i$$

For random data:  $P_i = 0.5$  so  $\alpha = 0.25$

# Some two-input functions

| A | B | AND | NAND | OR | NOR | XOR |
|---|---|-----|------|----|-----|-----|
| 0 | 0 | 0   | 1    | 0  | 1   | 0   |
| 0 | 1 | 0   | 1    | 1  | 0   | 1   |
| 1 | 0 | 0   | 1    | 1  | 0   | 1   |
| 1 | 1 | 1   | 0    | 1  | 0   | 0   |

Step 1. Write down the expression for the probability of the output of each of the function being one.

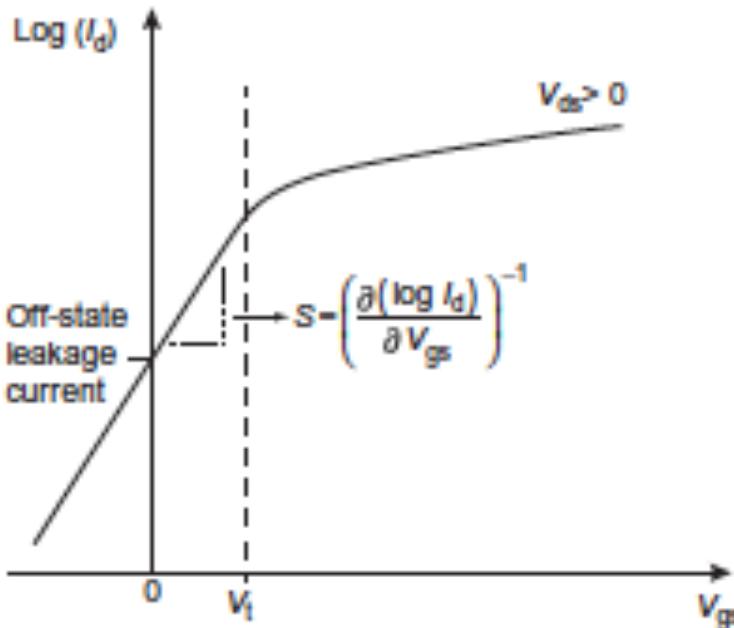
Step 2. Calculate activity factors for the five gates with  $PA=PB=0.5$ . Report in Socrative.

Result: All gates that have a 3-to-1 division of ones and zeros has the activity Factor  $3/16$ , but the XOR gates has  $1/4$ .

# Activity factors in large systems

- For certain signals it is easy:
  - Clocks: activity factor = 1
  - Logic signals that flip every clock cycle =  $\frac{1}{2}$ 
    - An example is a ring oscillator
- Otherwise you have to simulate and/or estimate

# What happens when you decrease $V_{DD}$ “too much”?



Below the threshold voltage there is also current.

But is it very small compared to the capacitances!

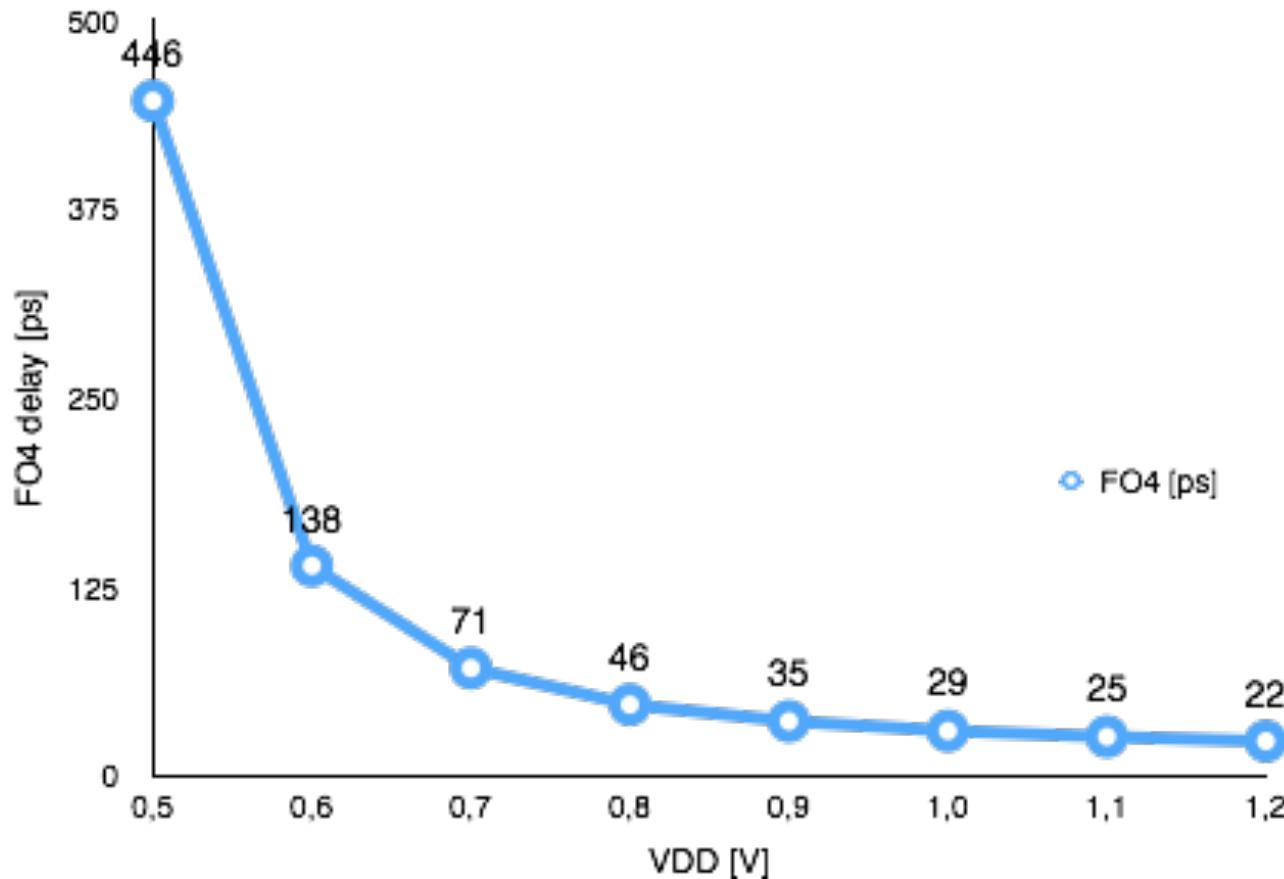
Consequence:  
Really SLOW circuits  
that use very little  
power.

**FIGURE 5.1**

The transistor's drain current (on a logarithmic scale) as a function of its gate voltage. The off-state leakage current, threshold voltage, and subthreshold swing are marked.

# FO4 experiment

FO4 delay as function of VDD for 65 nm process



# Prelab 4 The tapered buffer

Solving this problem we start by having derived that minimum delay occurs when stage electrical efforts,  $h$ , are equal.

Hence path propagation delay is given by  $D = N(p_{inv} + h)$

Furthermore,  $h = \sqrt[N]{H}$ , i.e.  $H = h^N$ .

Taking natural logarithms we obtain number of inverters  $N = \frac{\ln H}{\ln h}$

We rewrite path delay equation as  $D = \frac{p_{inv} + h}{\ln h} \ln H$

Looking for minimum path delay by taking derivatives of  $D$  wrt  $h$

we obtain  $\ln H \frac{\ln h - (p_{inv} + h)/h}{(\ln h)^2} = 0$ , i.e.  $\ln h = \frac{p_{inv} + h}{h}$

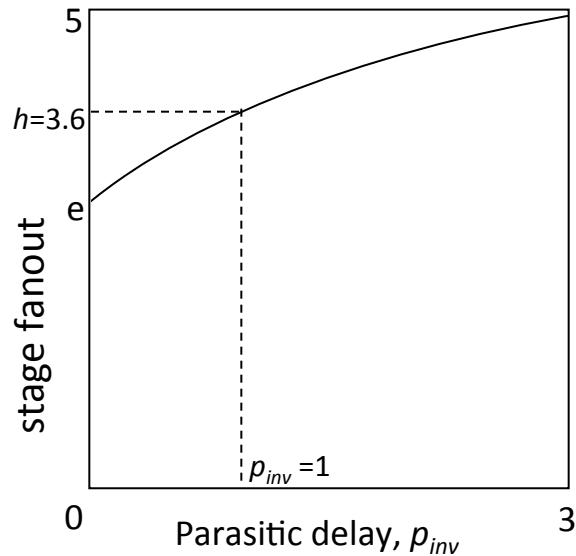
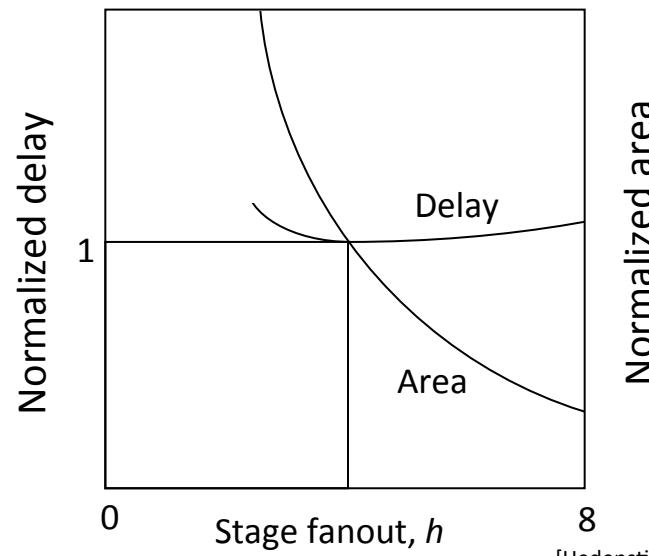
**Analytical solution is possible only for  $p_{inv}=0$ :**

$h = e = 2.72$  which gives  $N = \ln H$

Note: Derivation inserted for completeness.  
You don't have to learn to do this derivation!

# The tapered buffer

- For  $p_{inv} \neq 0$  the equation has to be solved numerically



[Hedenstierna & Jeppson 1987]

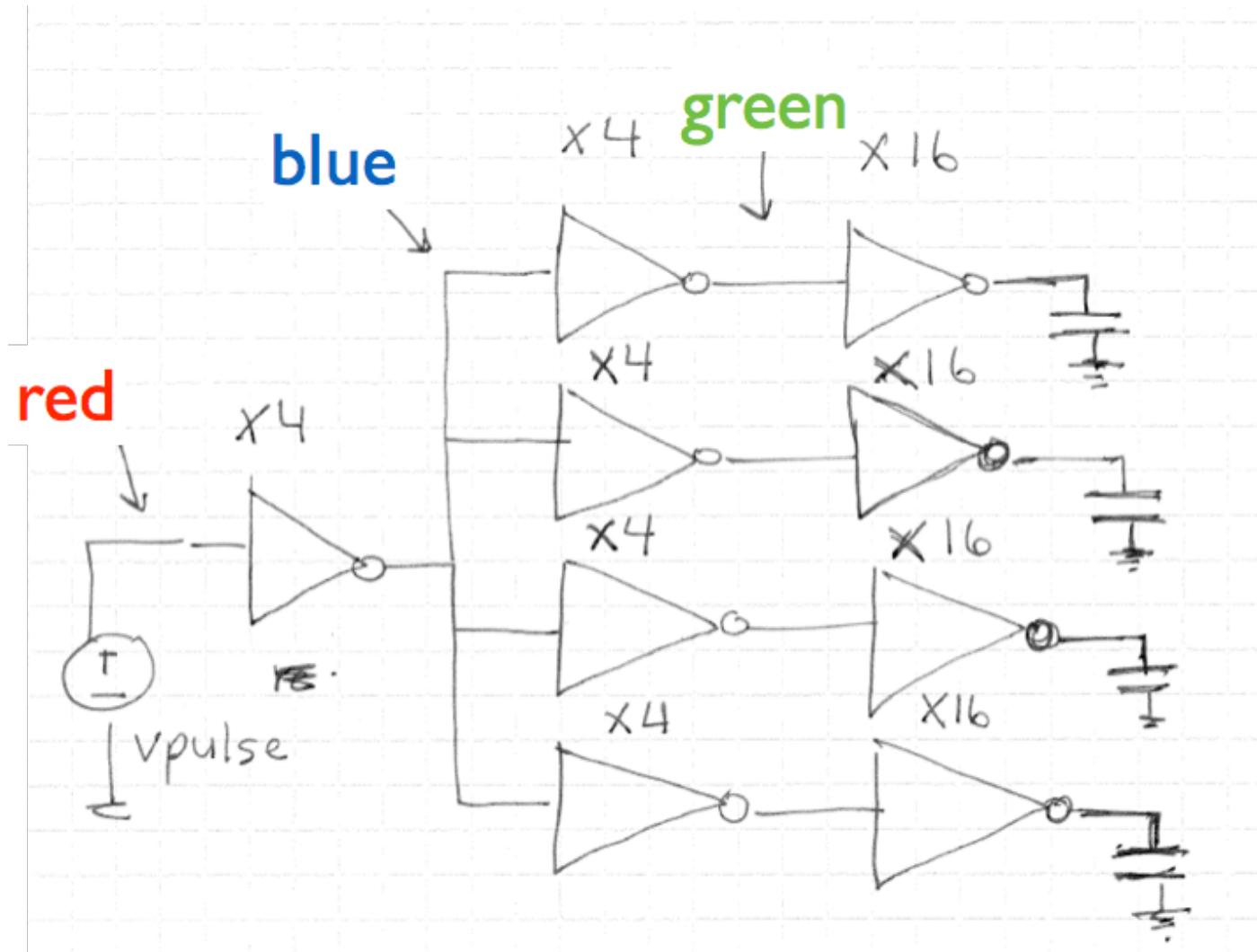
For typical values of  $p_{inv}$  the optimum tapering factor is between 3.6 and 5. Typically a FO4!

Note that the propagation delay minimum is rather flat, while total inverter area on the silicon decreases rapidly when larger stage fanout is used. Silicon real estate (=cost) can be saved for relatively little loss of speed!

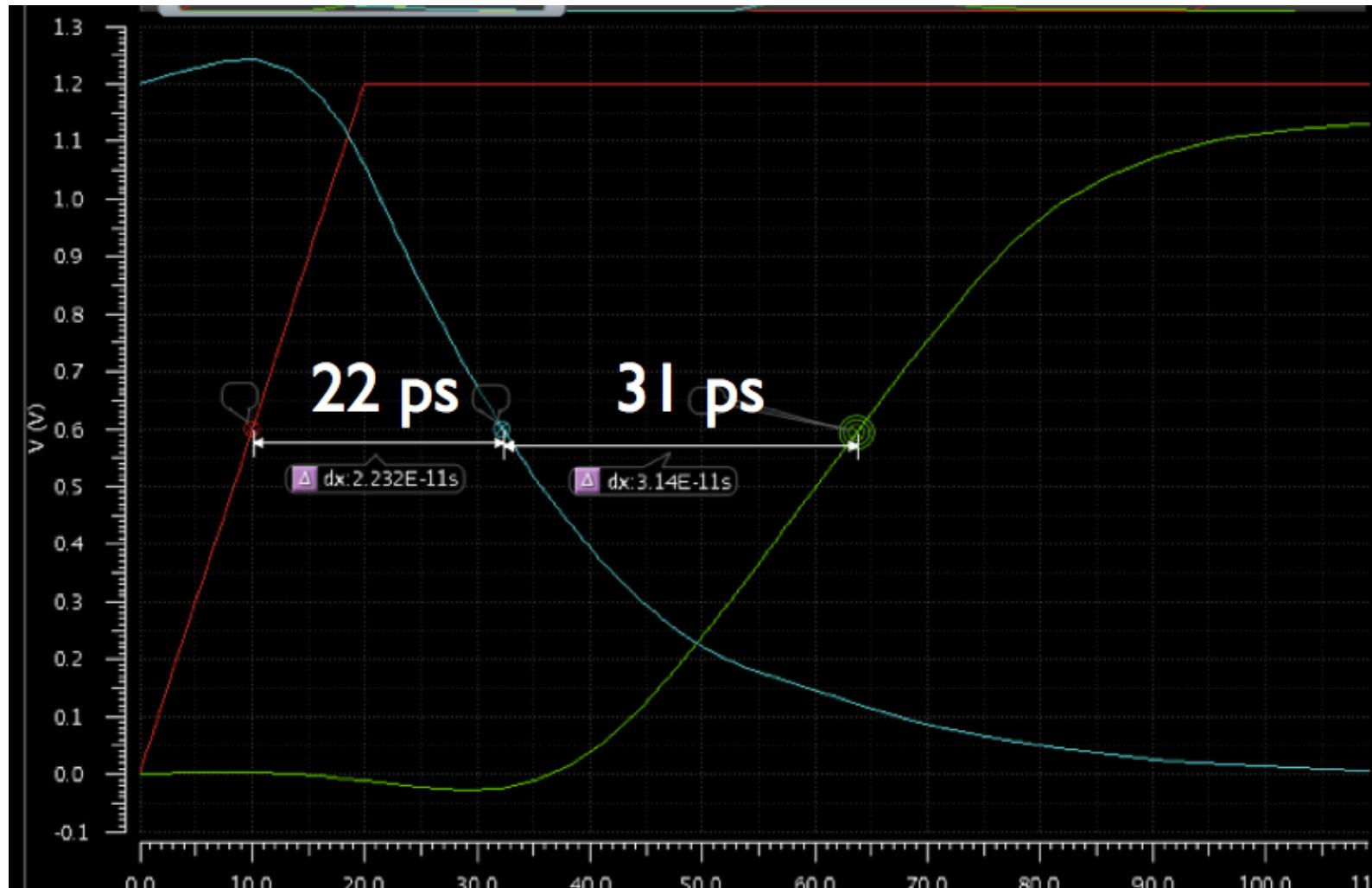
# Postlab 4

## Why is the simulated delay in the tapered buffer longer than calculated?

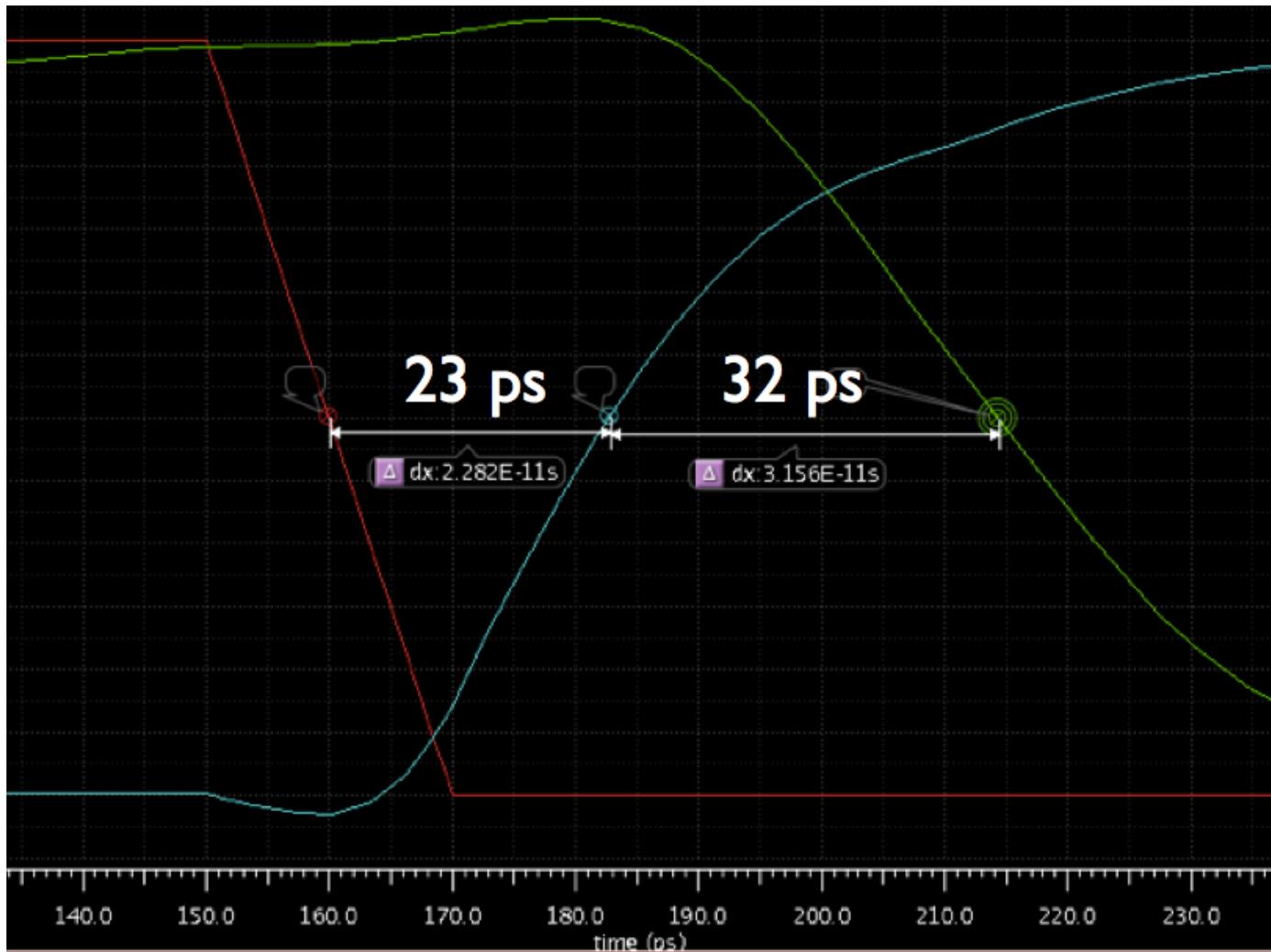
# FO4 experiment revisited



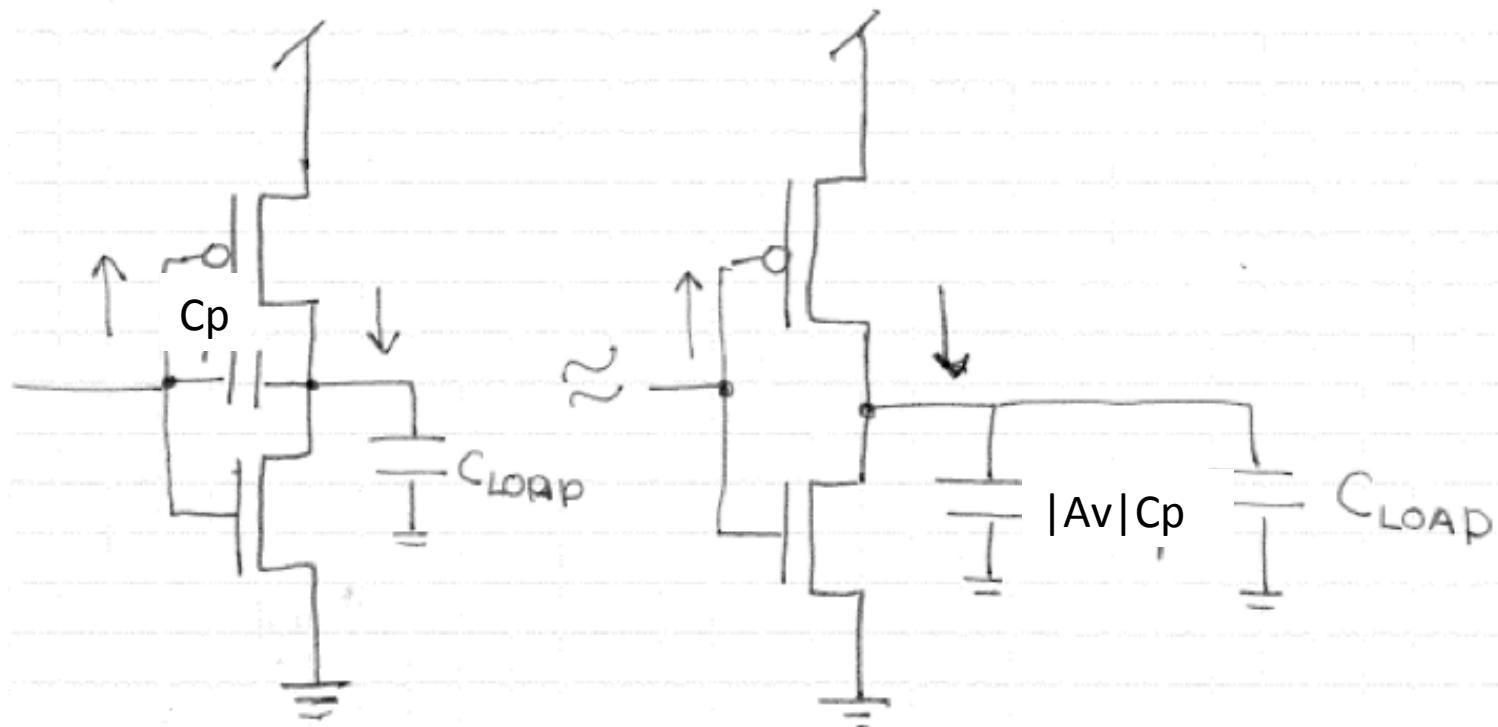
# FO4 revisited results



# FO4 delay revisited



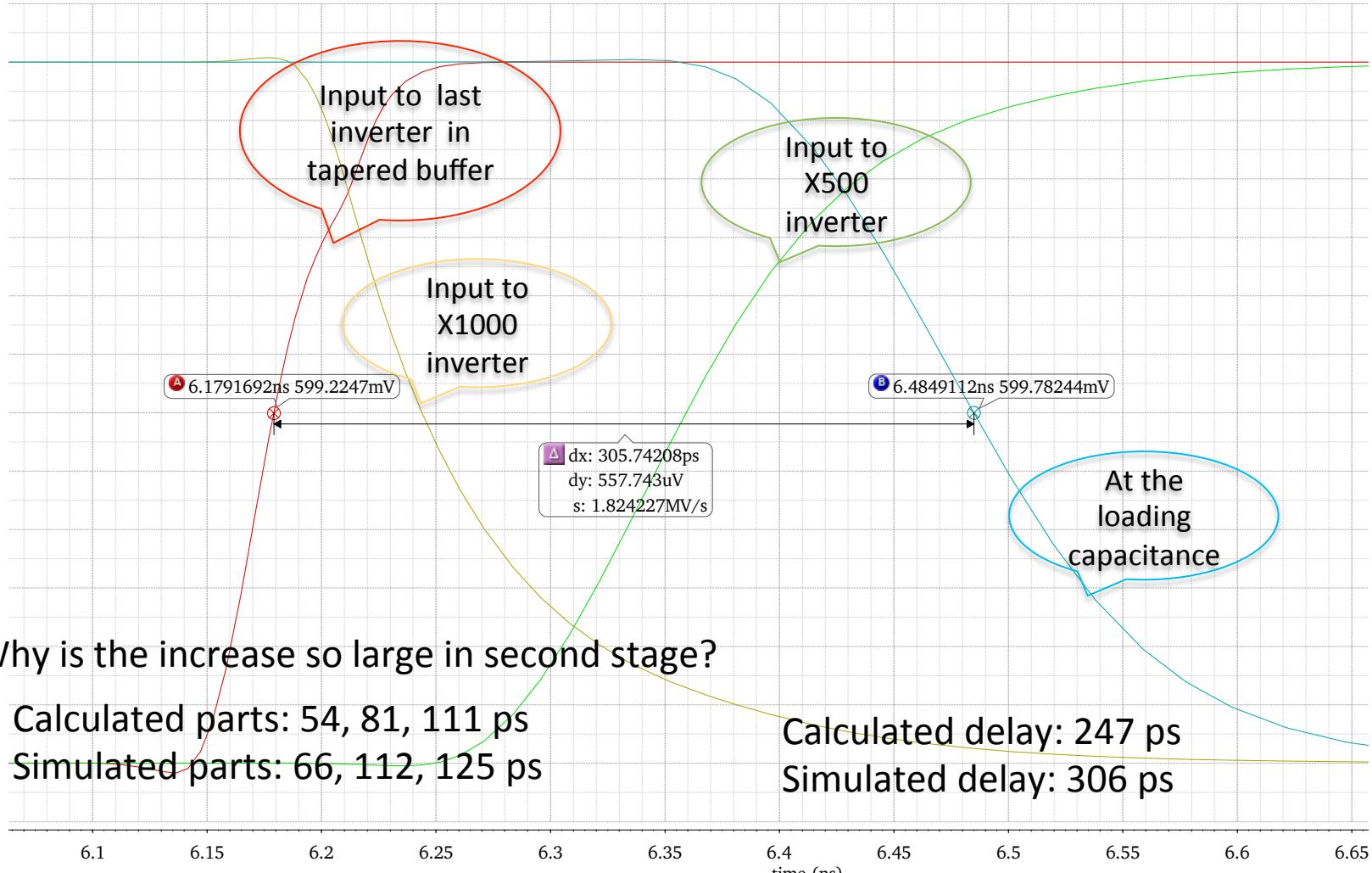
# Miller effect or bootstrapping



See Weste & Harris 4.4.6.6

# Postlab 4 Why is delay with repeaters longer than calculated?

0 s -> 24 ns



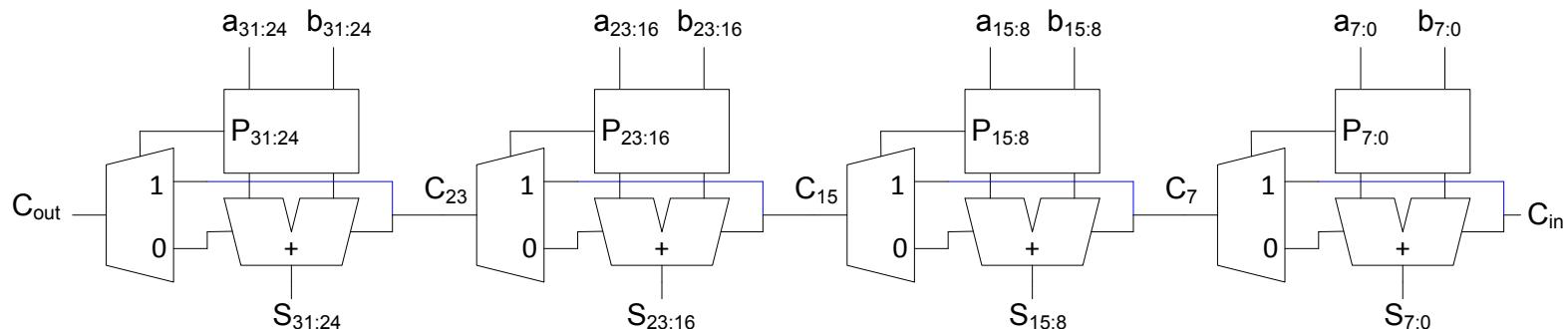
# Adder exercises

- Exercise 1:
  - Ripple-carry adder/subtractor
  - Ripple-carry adder with PG signals
  - Ripple-carry adder with block P
- Exercise 2
  - Tree carry calculation, prefix adders
    - One example: Sklansky

# Carry-Skip Adder

- Carry-ripple is slow through all N stages
- Carry-skip allows carry to skip over groups of n bits
  - Decision based on n-bit propagate signal

N-bit adder



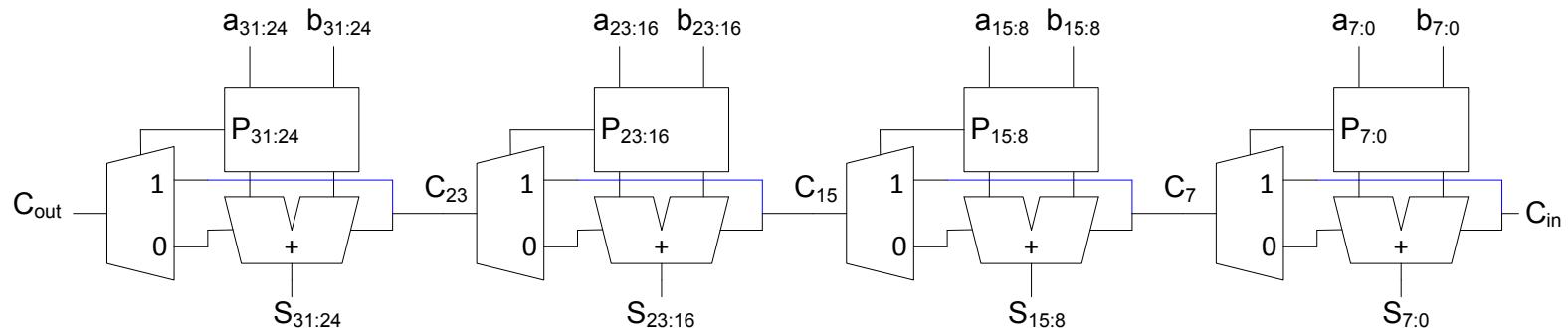
$k = N/n$  number of n-bit blocks

Verify the delay model given in eq. 11.13:  $t_{skip} = t_{pg} + 2(n-1)t_{AO} + (k-1)t_{mux} + t_{XOR}$

# Carry-Skip Adder

- Carry-ripple is slow through all N stages
- Carry-skip allows carry to skip over groups of n bits
  - Decision based on n-bit propagate signal

N-bit adder



$k=N/n$  number of n-bit blocks

For 32-bit adder we had  $31 \times t_{AO}$ ; Now only  $t_{PG} + 14t_{AO} + 3t_{MUX}$   
Delay is cut in half!