A Serious Problem for Next-Generation Systems

gal-time computing i a wide-
apen research area of inwllectu-
ally challenging computer science
problems with direct pavoffs to current
rechnology, But results have been fow, and
designers presently have Hitle that would
enable them to handle the tming con-
straints of real-time systems effectively.
Furthermore, not encugh emphasis is
being placed on building the proper s¢ien-
tific underpinnings to achieve the needed
results.) Worse vet, many researchers,
technical managers, and government con-
tract monitors have serious misconcep-
tions about real-time computing--mis-
conceptions with sericus ramifications.
This article has three major objectives:

s 1o state and then dispel the most com-
mon misconceptions about real-time
computing

to briefly discuss the fundamental

sues of real-time compui-

ing, and
® t0 encourage increased research in
reai-time systerns,

i

John A. Stankovic*

University of Massachuselts

Development of next-
generation real-time
systems must be
highly focused and
coordinated because
their failure to meet
timing constraints
will result in economic,
human, and ecological
catastrophes.

What is real-time
computing?

In real-time computing the correctness
of the system depends not only on the log-
ical result of the computation but also on
the time at which the results are produced.
Real-time computing systems play a vital
role in our society, and they cover a spec-
tram from the very simple to the very com-
plex. Examples of current real-time
computing systems include the control of
laboratory experiments, the control of
automobile engines, command-and-
control systems, nuclear power plants,
process control plants, flight control sys-
tems, space shuttle and afrcraft avionics,
and robotics. The more complicated real-
{ime systems are expensive to build and
their timing constraints are verified with ad
hoc techniques, or with costly and exten-
sive simulations. Minor changes in the sys.
tem result in another round of extensive
testing, Different system components are

COMPUTER

extremely difficult to integrate and conse-
quently add to overall system cost. Mil-
lions (even billions) of dollars are being
spent (wasted) by industry and govern-
ment to build today’s real-time systems.
Current brute force techniques will not
scale to meet the requirements of guaran-
teeing real-time constraints of next-
generation systems.

Next-generation real-time systems will
be in application areas similar to those of
current systems. However, the systems will
be more complex: They will be distributed
and capable of exhibiting intelligent, adap-
tive, and highly dynamic behavior. They
will also have long lifetimes. Moreover,
catastrophic consequences will result if the
logical or timing constraints of the systems
are not met. Examples of these more
sophisticated systems are the autonomous
land rover, controllers of robots with elas-
tic joints, and systems found in intelligent
manufacturing, the space station, and
undersea exploration.

Two major forces are pushing real-time
systems into the next generation: their
need for artificial intelligence capabilities
and the rapid advance in hardware. These
forces are exacerbating the difficult scien-
tific and engineering problems faced in
building real-time systems. They add com-
plex entities that must be integrated into
current and future applications, but the
required design, analysis, and verification
techniques for such integration have not
kept pace. For example, hardware (and
software) technology has made distributed
computing and multiprocessing a reality,
and soon there will be many networks of
multiprocessors. However, almost no fun-
damental or scientific work has been done
in designing and verifying a real-time
application’s timing requirements when
that application is distributed across a
network.

As another example, Al systems exhibit
a great deal of adaptability and complex-
ity, making it impossible to precalculate all
possible combinations of tasks that might
occur. This precludes use of static schedul-
ing policies common in today’s real-time
systems. We need new approaches for real-
time scheduling in such systems, including
on-line guarantees and incremental
algorithms that produce better results asa
function of available time.

Common
misconceptions

Real-time-system design has not
attracted the attention from academic

October 1988

computer scientists and basic-research
funding agencies that it deserves. This lack
of adequate attention is due, at least in
part, to some common misconceptions
about real-time systems. Let’s look at
some of them.

There is no science in real-time-

system design.

It is certainly true that real-time-system
design is mostly ad hoc. This does not
mean, however, that a scientific approach
is not possible. Most good science grew out
of attempts to solve practical problems,
and there is plenty of evidence that
engineers of real-time systems need help.
For example, the first flight of the space
shuttle was delayed, at considerable cost,
because of a subtle timing bug that arose
from a transient CPU overload during sys-
tem initialization. Can we then develop a
scientific basis for verifying that a design
is free of such subtle timing bugs? Indeed,
the purpose of this article is to introduce
some of the technical problems involved in
designing reliable real-time systems and
point out where a scientific basis is emerg-
ing. We are starting to understand what
the important problems are in real-time
scheduling of resources.? Investigations
are beginning into the subtleties of includ-
ing a time metric in system specification
methods and semantic theories for real-
time programming languages.’

Advances in supercomputer hard-
ware will take care of real-time
requirements.

Advances in supercomputer design will
likely exploit parallel processors to
improve system throughput, but this does
not mean that timing constraints will be
met automatically. Unless the architecture
of the computing system is carefully tai-
lored to match that of the application, the
processors and their communication sub-
systems may not be able to handle all of the
task load and time-critical traffic. In fact,
real-time task-and-communication
scheduling problems will likely get worse
as more hardware is used.

Realistically, the history of computing
shows that the demand for more comput-
ing power has always outstripped the sup-
ply. If the past is any guide to the future,
the availability of more computing power
will only open up real-time applications
requiring greater- functionality, thus
exacerbating the timing problems. There
is no substitute for intelligent deployment
of finite resources. Other important issues
exist in real-time-systems design that can-

not be resolved by supercomputer hard-
ware alone, as we will see.

Real-time computing is equivalent to

fast computing.

The objective of fast computing is to
minimize the average response time of a
given set of tasks. However, the objective
of real-time computing is to meet the indi-
vidual timing requirement of each task.
Rather than being fast (which is a relative
term anyway), the most important prop-
erty of a real-time system should be pre-
dictability; that is, its functional and
timing behavior should be as determinis-
tic as necessary to satisfy system specifica-
tions. Fast computing is helpful in meeting
stringent timing specifications, but fast
computing alone does not guarantee pre-
dictability.

Other factors besides fast hardware or
algorithms determine predictability.
Sometimes the implementation language
may not be expressive enough to prescribe
certain timing behavior. For example, the
delay statement of Ada puts only a lower
bound on when a task is next scheduled;
there is no language support to guarantee
that a task cannot be delayed longer than
adesired upper bound. The scheduling of
(or the lack of programmer control over)
nondeterministic constructs such as the
select statement in Ada is especially
troublesome, since timing properties that
involve upper bounds cannot be guaran-
teed by the usual fairness semantics defin-
ing such constructs.

Perhaps the best response to those who
claim that real-time computing is equiva-
lent to fast computing is to raise the fol-
lowing question: Given a set of demanding
real-time requirements and an implemen-
tation using the fastest hardware and soft-
ware possible, how can one show that the
specified timing behavior is indeed being
achieved? Testing is not the answer.
Indeed, for all the laborious testing and
simulation effort on the space shuttle, the
timing bug that delayed its first flight was
discovered the hard way; there was only a
1 in 67 probability that a transient over-
load during initialization could put the
redundant processors out of sync, but it
did nevertheless. Predictability, not speed,
is the foremost goal in real-time-system
design.

Since testing is not the answer to our
problems, do we know the answer? Not
completely. We do know that a formal
verification procedure coupled with test-
ing would be significantly better than what
we have now. However, that is not the

1

entire answer either. In fact, most of the
problems enumerated in the upcoming sec-
tion on the challenge of real-time comput-
ing systems must be solved and then used
in an integrated fashion.

Real-time programming is assembly
coding, priority interrupt program-
ming, and device driver writing.

To meet tight timing constraints, cur-
rent practice in real-time programming
relies heavily on machine-level optimiza-
tion techniques. These techniques are
labor intensive and sometimes introduce
additional timing assumptions (unwisely,
but as a last resort) on which the correct-
ness of an implementation depends. Reli-
ance on clever hand-coding and
difficult-to-trace timing assumptions is
a major source of bugs in real-time pro-
gramming, especially in modifying large
real-time programs. A primary objective
in real-time-systems research is in fact
to automate, by exploiting optimizing
transforms and scheduling theory, the syn-
thesis of highly efficient code and cus-
tomized resource schedulers from
timing-constraint specifications. On the
other hand, while assembly language pro-
gramming, interrupt programming, and
device driver writing are aspects of real-
time computing, they do not constitute
open scientific problems—except in their
automation.

Real-time-systems research is perfor-

mance engineering.

An important aspect of real-time-
systems research is to investigate effective
resource allocation strategies so as to
satisfy stringent timing-behavior require-
ments. The synthesis aspects of real-time-
system research can indeed be regarded as
performance engineering (but see the next
misconception below). The proper design
of a real-time system, however, requires
solutions to many other interesting
problems—for example, specification and
verification of timing behavior, and pro-
gramming-language semantics dealing
with time. Certain theoretical problems
also involve the use of timing constraints,
sometimes implicitly, to ensure correct-
ness. For example, the well-known Byzan-
tine generals problem is unsolvable for
totally asynchronous systems but is solv-
able if the generals can vote in rounds.
That a good general must deliver a num-
ber of messages within a round according
to the voting protocol is a form of timing
constraint.

Indeed, the correct functioning of many

12

systems often depends on having an imple-
mentation that can perform an operation
requiring the satisfaction of certain timing
constraints, albeit implicitly specified (for
example, in the form of testing an atomic
predicate such as determining whether a
communication channel is empty). An
important problem in real-time-systems
research is to investigate the role time plays
as a synchronization mechanism; for
example, what is the logical power of
different forms of timing constraints in
solving various coordination problems? If
a system must depend on the satisfaction
of some timing constraints for its correct-
ness, is there a least-restrictive set of tim-
ing constraints sufficient for the purpose?
Does the imposition of various timing con-
straints facilitate more efficient solutions
to distributed coordination problems?
Such questions certainly go beyond tradi-
tional performance engineering.

The problems in real-time-system
design have all been solved in other
areas of computer science or opera-
tions research.

While real-time-system researchers
should certainly try to exploit the problem
solution techniques developed in more
established research areas, there are
unique problems in real-time systems that
have not been solved in any other area. For
example, performance engineering in
computer science has been concerned
mostly with analyzing the average values
of performance parameters, whereas an
important consideration in real-time-
system design is whether or not some strin-
gent deadlines can be met. Queueing
models traditionally use convenient
stochastic assumptions that are justified by
large populations and stable operating
conditions. Analytical results based on
these assumptions may be quite useless for
some real-time applications. For example,
the hot-spot contention phenomenon (a
highly nonlinear performance degradation
due to slight deviations from uniform traf-
fic in multistage interconnection networks)
is likely to be catastrophic for time-critical
communication packets. Likewise, the
combinatorial scheduling problems in
operations research deal mostly with one-
shot tasks, that is, each task needs to be
scheduled only once, whereas in real-time
systems the same task may recur infinitely
often, either periodically or at irregular
intervals, and may have to synchronize or
communicate with many other tasks. The
general synthesis problem of arbitrary tim-
ing behavior will certainly require new

techniques not found in existing literature.

It is not meaningful to talk about
guaranteeing real-time performance,
because we cannot guarantee that the
hardware will not fail and the soft-
ware is bug free or that the actual
operating conditions will not violate
the specified design limits.

It is a truism that one can only hope to
minimize the probability of failure in the
systems one builds (assuming a belief in
quantum mechanics). The relevant ques-
tion, of course, is how to build systems in
such a way that we can have as much con-
fidence as possible that they will meet spec-
ifications at acceptable costs. In
real-time-system design, one should
attempt to allocate resources judiciously to
make certain that any critical timing con-
straint can be met with the available
resources, assuming that the hard-
ware/software functions correctly and the
external environment does not stress the
system beyond what it is designed to han-
dle. The fact that the hardware/software
may not function correctly or that the
operating conditions imposed by the exter-
nal world may exceed the design limits with
a nonzero probability does not give the
designer license to increase the odds of fail-
ure by not trying to allocate resources care-
fully so as to meet critical timing
constraints. We certainly cannot guaran-
tee anything outside our control, but what
we can guarantee, we should.

Real-time systems function in a static

environment.

Depending on the operating mode, a
real-time system may have to satisfy differ-
ent sets of timing constraints at different
times. Thus, an important topic in real-
time-systems research is the design of hier-
archical or selectable schedulers to make
resource allocation decisions for different
time granularities. A particularly vexing
industrial problem is how to reconfigure
systems to accommodate changing
requirements so as to create minimal dis-
ruption to ongoing operation. It is not
uncommon for some real-time-system
hardware to be in the field 15 or more
years; hence, any design methodology for
such systems must not assume a static envi-
ronment. On the other hand, if the real-
time application is small, inexpensive, and
unlikely to change, then current static
solution techniques work well. However,
such real-time applications are trivial com-
pared with those addressed in this article.

COMPUTER

The challenge of
real-time
computing systems

An important approach used in manag-
ing large-scale systems is to hierarchically
decompose the system into modules that
are realizations of the abstract data type
model. Although this methodology allows
us to reason about the correctness of com-
putation at each level of abstraction, it has
no provisions to support reasoning about
time and reliability abstractions, two vital
aspects of real-time systems. To develop a
scientific underpinning for real-time sys-
tems, we face the difficult scientific chal-
lenge of creating a set of unified theories
and technologies that will allow us to rea-
son about the correctness, timeliness, and
reliability at each level of abstraction and
to combine the results of each level into
results for the integrated system.

Building a science of large-scale real-
time systems will require new research
efforts in many distinct and yet related
areas. While each of these areas contains
well-developed theories and technologies,
none currently contains theories and
methods addressing the central issue in
real-time systems: a coherent treatment of
correctness, timeliness, and fault tolerance
in large-scale distributed computations.

The following subsections briefly iden-
tify the main research areas that need to be
better addressed if we are to solve the prob-
lems facing developers of next-generation
real-time systems. Of course, many of the
problems in these areas are difficult to
solve even without worrying about real-
time constraints. This article emphasizes
the special problems that real-time con-
straints cause. This material is intended for
those not familiar with research in real-
time computing, so it is necessarily high
level. Readers can find a more detailed and
technical discussion of each area in a com-
panion report.'

Specification and verification. The fun-
damental challenge in the specification
and verification of real-time systems is
how to incorporate the time metric.
Methods must be devised for including
timing constraints in specifications and for
establishing that a system satisfies such
specifications. The usual approaches for
specifying computing system behavior
entail enumerating events or actions that
the system participates in and describing
orders in which these can occur. It is not
clear how to extend such approaches for

October 1988

A great challenge lies
ahead in the modeling
and verification of
systems that are
subject to timing
constraints.

real-time constraints. Neither is it clear
how to extend programming notations to
allow the programmer to specify compu-
tations that are constrained by real time.

In general, inclusion of a time metric
can create subtleties in the semantics of
concurrency models (see Reed and Ros-
coe,* for example) and complicate the
verification problem. Whereas proof of
noninterference is the major verification
task in extending sequential systems to
concurrent systems on the basis of inter-
leaving, verification of real-time systems
will require the satisfaction of timing con-
straints where those constraints are derived
from the environment and implementa-
tion.? Consequently, a major challenge is
to solve the dilemma that verification tech-
niques abstract away from the implemen-
tation even though it is the implementation
and environment which provide the true
timing constraints. The result is that we
need a quantitative analysis (deadlines,
repetition rates) rather than the qualitative
analysis (eventual satisfaction) that is typi-
cally handled by current verification tech-
niques. On the other hand, the partial
synchrony of real-time systems that 1 esults
from the presence of timing constraints
may open up a whole new class of dis-
tributed control algorithms and inspire
novel verification techniques. Real-time
systems lie somewhere between the rela-
tively well studied fully synchronous and
fully asynchronous systems, and thereis a
great challenge ahead in the modeling and
verification of systems that are subject to
timing constraints.

In addition, to deduce properties of the
whole system from properties of its parts
and the way these parts are combined, we
must characterize a way to compose the
real-time constraints and properties of
parts to synthesize them for the whole. For
real-time properties, the parts interact in
ways that depend on resource constraints.

Thus, aspects of the system that are usually
ignored when real time is not of concern
come into play. This agaii suggests that a
new set of abstractions mu st be devised for
real-time systems. For example, fairness,
which is frequently used when reasoning
about concurrent and distributed systems,
is no longer an appropriaie abstraction of
the way processes are scheduled when real
time is a concern.

Another problem that will be encoun-
tered is dealing with the state explosion
found in verification techniques.
Hundreds or even thousands of states are
usually required to formally express the
state of even a relatively <imple system in
enough detail so that coirectness can be
proved. Techniques for asstracting many
states into a higher level st ite are necessary
to tackle this problem, which is a difficult
one even when timing constraints are not
included.

Real-time scheduling theory. While
specification and verifica ion concern the
integrity of the system with respect to the
specification, scheduling “heory addresses
the problem of meeting the specified tim-
ing requirements. Satisfying the timing
requirements of real-time systems
demands the scheduling of system
resources according 1o some well-
understood algorithms so that the timing
behavior of the system is inderstandable,
predictable, and maintaiiable.

Scheduling theory is no restricted to the
study of real-time system: or even general
computer systems. It also arises in the
study of manufacturing systems, transpor-
tation systems, process control systems,
and so on. However, it is important to
realize that real-time-sy:tem scheduling
problems are different from the schedul-
ing problems usually cor sidered in areas
of operations research.” In most opera-
tions research scheduling problems, there
is a fixed system having ¢ >mpletely speci-
fied and static service characteristics. The
goalis to find optimal static schedules that
minimize the response time for a given task
set. Many real-time computing systems
lack an incentive for minimizing the
response time other than for meeting dead-
lines. The system is often highly dynamic,
requiring on-line, adaptive scheduling
algorithms. Such algorithms must be
based on heuristics, since these scheduling
problems are NP-hard.” In these cases the
goal is to schedule as ma 1y jobs as possi-
ble, subject to meeting the task timing
requirements. Alternative schedules
and/or error handlers are required and

13

must be' integrated with the on-line
scheduler.

One primary measure of a scheduling
algorithm is its associated processor utili-
zation level below which the deadlines of
all the tasks can be met.” There are other
measures too, such as penalty functions
defined according to the number of jobs
that miss their deadlines, and a weighted
success ratio, which is the percentage of
tasks that meet their deadlines weighted by
the importance of those tasks. The next
subsection discusses some additional real-
time scheduling issues in the context of
operating systems.

Real-time operating systems. One major
focal point for developing next-generation
real-time systems is the operating sys-
tem.*'° The operating system must pro-
vide basic support for guaranteeing
real-time constraints, supporting fault
tolerance and distribution, and integrating
time-constrained resource allocations and
scheduling across a spectrum of resource
types, including sensor processing, com-
munications, CPU, memory, and other
forms of I/O. Given that the system is dis-

T5

T4

T5 must complete
by a deadline D.

Figure 1. The end-to-end timing problem.

tributed, we face a complicated end-to-end
timing analysis problem (see Figure 1). In
other words, time constraints are applied
to collections of cooperating tasks, labeled
T;in the figure, and not only to individual
tasks.

For example, assume that a given node

processes sensor hits and determines that
a vehicle has entered its area of concern.
This node may have to communicate that
information to one or more remote nodes
and receive replies indicating the appropri-
ate action. The time by which this node
must act depends on a time constraint
imposed by the velocity of the incoming
vehicle. Such a system is distributed,
highly dynamic, and operates under strict
time constraints. The entire collection of
tasks dealing with sensor processing, com-
munication between tasks, and application
logic must be accomplished under a single
end-to-end timing constraint.

To develop next-generation real-time
distributed operating systems suitable for
complicated applications such as the space
station, teams of robots working in a haz-
ardous environment, or command-and-
control applications, at least three major
scientific innovations are required.

(1) The time dimension must be elevated
to a central principle of the system. Time
requirements and properties cannot be an
afterthought. An especially perplexing
aspect of this problem is that most system
design and verification techniques are

e wrote the book
Now we've

Get afree video from the

leader in CASE.

It’s called “The Excelerator®
Difference’” And it’s a frank, management-
to-management discussion about why
Excelerator from Index Technology is so
" different from other CASE solutions. And why
- Excelerator/RTS’ superior capabilities—with
Index Technology’s implementation support—can
make a difference in your organization.

In this short video, you'll learn how Index
Technology has helped the leaders in aerospace,
defense and engineering. And how we can help you

lerator is a registered trademark and the [ndex Technology logotype is a trademark of Index Technology Corporation.

based on abstraction, which ignores imple-
mentation details. This is obviously a good
idea; however, in real-time systems, tim-
ing constraints are derived from the envi-
ronment and the implementation. Solving
this dilemma is a key scientific issue.

(2) The basic paradigms found in
today’s general-purpose distributed oper-
ating systems must change. The current
basis, with the notion of application tasks
requesting resources as if they were ran-
dom processes and the operating system
being designed to expect such random
inputs, is unacceptable. A new, more
deterministic paradigm is needed. In such
a paradigm, each operating-system prim-
itive, along with application tasks and their
interactions, would be well understood,
bounded, and predictable. The interaction
between tasks includes invocation interac-
tions, communication interactions, and
resource conflict interactions. In the new
paradigm the system must be flexible
enough to react to a highly dynamic and
adaptive environment, but at the same
time able to predict and possibly avoid
resource conflicts so that timing con-
straints can be (predictably) met. In other

words, the environment may cause an
unpredictable combination of events to
occur, but the system must be carefully
constructed to enable it to react in such a
way that at any time during execution the
system can predict its capabilities in meet-
ing its deadline. The new paradigm must
be based on the delicately balanced notions
of flexibility and predictability. One such
paradigm is being investigated in the
Spring kernel.’

(3) A highly integrated and time-
constrained resource allocation
approach? is necessary to adequately
address timing constraints, predictability,
adaptability, and fault tolerance. Most
current scheduling algorithms typically
account for one resource at a time and
ignore fault tolerance. This is especially
true in the present state of real-time
scheduling. Independent scheduling of
unique resources is not sufficient when
attempting to perform time-constrained
scheduling. For a task to meet its deadline,
we must ensure that resources are available
to it in time and that the sequencing of
events meets precedence constraints.

One can identify many other issues (at

all levels of detail) that ar¢ critical to real-
time operating systems. The need for a
global time reference and the ability to
scale to larger and larger : ystems are just
two examples.

Real-time programminy: languages and
design methodology. As tt e complexity of
real-time systems increases, high demand
will be placed on the programming
abstractions provided by languages. Cur-
rently available abstractior s and languages
must evolve with future advances in the
specification techniques, logic, and theory
underlying real-time systems. Unfor-
tunately, this goal has not been fulfilled in
the past. For example, Ad.1is designed for
embedded hard real-time ¢ pplications and
is intended to support static priority
scheduling of tasks. However, the defini-
tion of Ada tasking allow: a high-priority
task to wait for a low-pricrity task for an
unpredictable duration. Consequently,
when processes are programmed in the
form of Ada tasks, the resulting timing
behavior is likely 1o be unpredictable.
Building the next generat on of real-time
systems will require a programming meth-

on CASE.
made the movi

design, document and deliver better systems, on time

and within budget.

You'll also learn why Index Technology is
the smartest choice now. And why we’ll con-
tinue to lead the industry for years to come.

Call for your free video, “The
Excelerator Difference?” And soon our

Free: QuE.

Just call us toll free at 1-800-777-8858.

Index Technology Corp.
One Main Street
Cambridge. MA 02142

story will be
appearing

in a post office
box near you.
So don’t wait.

Index Technolog

™
Reader Service Number 5

odology that gives due consideration to the
needs of meeting real-time requirements.
The important research issues include

® Support for the management of time.
First, language constructs should support
the expression of timing constraints. For
example, Ada tasking should have sup-
ported the raising of an exception when a
task’s deadline is missed. Second, the pro-
gramming environment should provide
the programmer with the primitives to
control and to keep track of the resource
utilization of software modules. This
includes being able to develop programs
with predictable performance in terms of
absolute time. Finally, language constructs
should support the use of sound schedul-
ing algorithms.

e Schedulability check. Given a set of
well-understood scheduling algorithms,
schedulability analysis allows us to deter-
mine if the timing requirements can be
met. With proper support for the manage-
ment of time, it may be possible to per-
form schedulability checks at compile
time. This idea is similar to the type-
checking concept.

® Reusable real-time software modules.
An added difficulty with reusable real-
time software modules is meeting differ-
ent timing requirements for different
applications.

® Support for distributed programs and
fault tolerance. The problem of predicting
the timing behavior of real-time programs
is further exacerbated in the context of dis-
tributed systems. Special fault-tolerance
features might be added to the semantics
of the language—for example, various
recovery mechanisms subject to timing
considerations.

Distributed real-time databases. In a
real-time database system, a significant
portion of data is often highly perishable
in the sense that it has value to the mission
only if used quickly. Satisfying the timing
requirements involves two key issues:
First, the degree of concurrency in trans-
action processing must be increased; sec-
ond, concurrency control protocols and
real-time scheduling algorithms must be
integrated.

The characteristics of a real-time data-
base, such as a tracking database, are dis-
tinct from commercial database systems.
In areal-time database, transactions often
must perform statistical operations—
correlation, for example—over a large
amount of data that is continuously
updated, and they must satisfy stringent

16

The dynamic nature
of symbolic systems
requires support for
automated memory
management.

timing requirements. As observed by
Bernstein et al.," serializability is not a
good criterion for concurrency control of
such databases because of the limitation of
concurrency allowed by serializable con-
current executions. Several approaches
designed to obtain a high degree of concur-
rency by exploring application-specific
semantic information have been proposed.
In addition, a modular decomposition
approach for nonserializable concurrency
control and failure recovery has been pro-
posed.’? This approach assumes that
global serialization is too strong a condi-
tion. Instead it uses a setwise serializabil-
ity notion, which is shown to apply to the
database associated with a cluster of track-
ing stations.

While concurrency control of transac-
tions and hard real-time process schedul-
ing have both progressed, very little is
known about the integration between con-
currency control protocols and hard real-
time process-scheduling algorithms. In
concurrency control we do not typically
address the meeting of hard deadlines. The
objective is to provide a high degree of
concurrency and thus faster average
response time. On the other hand, in the
schedulability analysis of real-time process
scheduling—for example, processes for
signal processing and feedback control—it
is customary to assume that tasks are
independent, or that the time spent syn-
chronizing their access to shared data is
negligible compared with execution time
and deadlines. The objective here is to
maximize resources, such as CPU utiliza-
tion, subject to meeting timing constraints.
The fundamental challenge of real-time
databases seems to be the creation of a uni-
fied theory that will provide us with a real-
time concurrency-control protocol that
maximizes both concurrency and resource
utilization subject to three constraints at
the same time: data consistency, transac-
tion correctness, and transaction
deadlines.

Artificial intelligence. Real-time Al
research currently emphasizes reasoning
about time-constrained processes and
using heuristic knowledge to control or
schedule these processes. A key consider-
ation in robust problem solving is to pro-
vide the best available solution within a
dynamically determined time constraint.
Many of the current issues in real-time-
systems research are applicable to such a
system, but additional considerations
exist. For example, the dynamic nature of
symbolic systems requires support for
automated memory management. Current
garbage collection techniques make it dif-
ficult, if not impossible, to guarantee a
maximum system latency.

Other features of symbolic systems that
exacerbate the predictability problem
include the ability to create and execute a
function at runtime and the ability to exe-
cute a runtime-selected function passed as
an argument. In addition, opportunistic
control strategies provide the ability to
dynamically direct program execution in
response to real-time events. This contrasts
sharply with the current real-time-systems
assumption of a statically determined
‘‘decision tree’’ control sequence. The
implication here is that the sequences of
processing cannot be predetermined.

This is by no means a comprehensive list
of the issues involved in real-time symbolic
systems. No doubt additional research
issues will arise as real-time Al applica-
tions evolve and attempts are made to
solve problems in severely time-
constrained domains.

Fault tolerance. A real-time computer
system and its environment form a syner-
gistic pair. For example, most commercial
and military aircraft cannot fly without
digital-control computers. In such systems
it is meaningless to consider on-board con-
trol computers without considering the air-
craft itself. The tight interaction between
the environment and a real-time computer
arises from time and reliability constraints.
Unless the computer can provide *‘accept-
able’’ services to its environment, its role
will be lost and thus viewed as failed or
nonexistent. Failure can result from mas-
sive loss of components (static failure) or
from failure to respond fast enough to
environmental stimuli (dynamic fail-
ure).'* This interplay must be carefully
characterized for various real-time appli-
cations, in which even the determination
of deadlines is by itself a relatively unex-
plored problem. On the basis of this
characterization of a real-time problem, a

COMPUTER

vast number of design and analysis prob-
lems for real-time computers remain to be
solved—for example, optimal error han-
dling, redundancy management, and tun-
ing of architectures.

Certain research issues are important in
making real-time systems fault tolerant
and reliable. Specifically,

® The formal specification of the relia-
bility requirement and the impact of tim-
ing constraints on such a requirement is a
difficult problem.

® Error handling is usually composed of
an ordered sequence of steps: error detec-
tion, fault location, system reconfigura-
tion, and recovery. All these steps must be
designed and analyzed in the context of
combined performance (including timing
constraints) and reliability. Interplay
between these steps must be carefully stud-
ied. Hardware and operating-system sup-
port, together with their effects on
performance and reliability, are important
research subjects.

® The effects of real-time work loads on
fault tolerance has not been adequately
addressed. [t is well known that the relia-
bility of a computer system depends heav-
ily on its work load. Characterizing the
effects of ‘‘representative’ real-time work
loads on fault tolerance is essential.

Real-time-system architectures. Many
real-time systems can be viewed as a three-
stage pipeline: data acquisition from sen-
sors, data processing, and output to actu-
ators and/or displays.'* Next-generation
systems will often be distributed such that
each node may be a multiprocessor (see
Figure 2). A real-time system’s architec-
ture must be designed to support these
components with high fidelity. For data
acquisition and for actuators, the architec-
ture must provide extensive 1/0 capabili-
ties while providing fast, timely, and
reliable operations for the data-processing
stage.

Conventional real-time architectures are
based on dedicated hardware and soft-
ware: The architecture usually must
change with a change in applications. Such
architectures are neither cost effective nor
well utilized. Because of advances in VLSI
technology, it is becoming possible to
develop a new distributed architecture
suitable for broader classes of real-time
applications. Important issues in this new
architecture include interconnection topol-
ogy, Interprocess communications, and
support of operating-system and fault-
tolerance functions.

October 1988

>

G

_l >Actuators

D Sensors

Figure 2. A distributed real-time architecture.

Some open research topics in real-time
architecture are

¢ Interconnection topology for proces-
sors and [/O. The need for extensive
1/0 and high-speed data processing in
real-time applications makes it impor-
tant to develop an integrated intercon-
nection topology for both processors
and I/0. Although the processing
topology has been studied extensively,
little attention has been paid to the dis-
tribution of I/0 data.

e Fast, reliable, and time-constrained
communications.

e Architectural support
handling.

e Architectural support for scheduling
algorithms.

® Architectural support for real-time
operating systems.

e Architectural support for real-time
language features.

for error

Ideally, any architectural design should
adopt a synergistic approach wherein the-
ory, operating system, and hardware are
all developed with the single goal of
achieving the real-time constraints in a
cost-effective and integrated fashion.

Real-time communication. The com-
munication media for next-generation dis-
tributed real-time systems will be required
to form the backbone upon which predict-
able, stable, and extensible system solu-
tions will be built. To be successful, the
real-time communication subsystem must

be able to predictably satisfy individual
message-level timing requirements. The
timing requirements are driven not only by
applications’ interprocess communica-
tion, but also by tine-constrained
operating-system functi>ns invoked on
behalf of application pro:esses. Network-
ing solutions for this context are distin-
guished from the stand:rd nonreal-time
solutions with the introduction of zime. In
a nonreal-time setting, it is sufficient to
verify the logical correctness of a commu-
nications solution; however, in a real-time
setting it is also necessar to verify timing
correctness. Software eigineering prac-
tices have helped in dete ‘mining the logi-
cal correctness of systeras solutions but
have not addressed timing correctness.
Timing correctness includes ensuring the
schedulability of syrchronous and
sporadic messages as well as ensuring that
the response time requirements of asyn-
chronous messages are met. Ensuring tim-
ing correctness for :tatic real-time
communications systerrs using current
technology is difficult; ensuring timing
correctness in the next generation’s
dynamic environment wi:l be a substantial
research challenge.

Additional research is nieeded to develop
technologies that support the unique
challenges of real-time communications.
These include

e Dynamic routing solutions with
guaranteed timing correctness.
e Network buffer management that

17

supports scheduling solutions.

e Fault-tolerant and time-constrained
communications.

e Network scheduling that can be com-
bined with processor scheduling to
provide system-level scheduling
solutions.

Meeting these challenges will require
substantial research effort with associated
breakthroughs in network control theory.
With the network forming the backbone
of many next-generation distributed real-
time systems, a system will be no stronger
than the communications solution that
supports it.

Conclusions

Many real-time systems of tomorrow
will be large and complex and will function
in distributed and dynamic environments.
They will include expert system compo-
nents and will involve complex timing con-
straints encompassing different granules
of time. Moreover, economic, human, and
ecological catastrophes will result if these
timing constraints are not met. Meeting
the challenges imposed by these charac-
teristics very much depends on a focused
and coordinated effort in all aspects of sys-
tem development, such as

e Specification and verification tech-
niques that can handle the needs of
real-time systems with a large number
of interacting components.
Design methodologies that can be
used to synthesize systems with the
specified timing properties where
these timing properties are considered
from the beginning of the design
process.
Programming languages with explicit
constructs to express—with unambig-
uous semantics—the time-related
behavior of modules.
Scheduling algorithms that can, inan
integrated and dynamic fashion, han-
dle (1) complex task structures with
resource and precedence constraints,
(2) resources (such as the communica-
tion subnet and I/O devices), and
(3) timing constraints of varying
granularity.
Operating-system functions designed
to deal with highly integrated and
cooperative time-constrained
resource management in a fast and
predictable manner.
e Communication architectures and
protocols for dealing efficiently with
messages that require timely delivery.

e Architecture support for fault toler-
ance, efficient operating-system func-
tioning, and time-constrained
communication.

eal-time systems have brought

about unmet challenges in a wide

range of computer science dis-
ciplines. Each of these challenges must be
overcome before a science of large-scale
real-time systems can become a reality.
The task is formidable, and success will
require a concerted effort by many differ-
ent participants in the computer science
community. It will require the enticement
of new researchers into the field, especially
in academia, where relatively little work of
this nature is being done. We must coor-
dinate interaction between research efforts
in universities and development efforts in
industry so that academic researchers will
be familiar with key problems faced by
system developers, and system developers
will be aware of relevant new theories and
technologies.

The solution to developing a theory of
large-scale real-time systems does not lie in
the current methodologies of operations
research, database theory, scheduling the-
ory, or operating-systems theory. Rather,
it lies in well-coordinated and expanded
efforts of universities, industry, and
government laboratories directed toward
the distinct problems that this topic
introduces. The need for such cooperation
was also emphasized in a report to the
Executive Office of the President, Office
of Science and Technology Policy."
While that report dealt with problems in
high-performance computing, software
technology and algorithms, networking,
basic research, and human resources, our
general conclusions are the same. How-
ever, this article is much more detailed in
its emphasis on the basic research needs of
a single important research topic: real-time
computing.]

Acknowledgments

This article incorporates ideas presented at
the Carnegie Mellon University Workshop on
Fundamental Issues in Distributed Real-Time
Systems and represents the work of many
individuals. Those who contributed signifi-
cantly to the ideas presented here include Lui
Sha, John Lehoczky, Hide Tokuda, Jay Stros-
nider, and Ragunathan Rajkumar, Carnegie
Mellon University; Al Mok, University of Texas
at Austin; Andre van Tilborg, Office of Naval

Research; Krithi Ramamritham and Zhao Wei,
University of Massachusetts; Kang Shin, Uni-
versity of Michigan; David C.L. Liu, University
of Illinois; Pat Watson, IBM; and Karen John-
son and Ellen Waldrum, Texas Instruments.

A longer and more technical version of this
article," produced in concert with the
individuals listed above, is available from J.
Stankovic. This work has been partially sup-
ported by the Office of Naval Research under
contract 048-716/3-22-85.

References

1. J. Stankovic, ‘‘Real-Time Computing Sys-
tems: The Next Generation,”” Tech. Report
TR-88-06, COINS Dept., Univ. of Mas-
sachusetts, Jan. 1988.

2. W. Zhao, K. Ramamritham, and J.
Stankovic, ‘‘Scheduling Tasks with
Resource Requirements in Hard Real-Time
Systems,”’ IEEE Trans. Software Eng.,
Vol. SE-13, No. 5, May 1987, pp. 564-577.

3. F. Jahanian and A .K. Mok, ‘‘Safety Anal-
ysis of Timing Properties in Real-Time Sys-
tems,”’ IEEE Trans. Software Eng., Vol.
SE-12, No. 9, Sept. 1986, pp. 890-904.

4. G.M. Reed and A.W. Roscoe, ‘A Timed
Model for Communicating Sequential Pro-
cesses,”” Proc. ICALP 86, Springer LNCS
226, 1986, pp. 314-323.

5. S.K.Dhalland C.L. Liu, *‘Ona Real-Time
Scheduling Problem,’”” Operations
Research, Vol. 26, No. 1, Feb. 1978, pp.
127-140.

6. M.R. Garey and D.S. Johnson, ‘‘Two-
Processor Scheduling with Start-Times and
Deadlines,”” SIAM J. Computing, Vol. 6,
1977, pp. 416-426.

7. C.L. Liuand J.W. Layland, ‘‘Scheduling
Algorithms for Multiprogramming in a
Hard Real-Time Environment,”” J. ACM,
Vol. 20, No. 1, Jan. 1973, pp. 46-61.

8. K. Schwanet al., “‘High Performance Oper-
ating System Primitives for Robotics and
Real-Time Control Systems,’” ACM Trans.
Computer Systems, Vol. 5, No. 3, Aug.
1987, pp. 189-231.

9. J. Stankovic and K. Ramamritham, ‘‘The
Design of the Spring Kernel,”’ Proc. Real-
Time Systems Symp., CS Press, Los
Alamitos, Calif., Dec. 1987, pp. 146-155.

10. H. Tokuda, J. Wendorf, and H. Wang,
“Implementation of a Time Driven
Scheduler for Real-Time Operating Sys-
tems,”’ Proc. Real-Time Systems Symp., CS
Press, Los Alamitos, Calif., Dec. 1987, pp.
271-280.

11. P.A. Bernstein, V. Hadzilacos, and N.
Goodman, Concurrency Control and
Recovery in Database Systems, Addison-
Wesley, Reading, Mass., 1987.

12. L. Sha, J. Lehoczky, and E.D. Jensen,
““Modular Concurrency Control and Fail-
ure Recovery,”” IEEE Trans. Computers,
Vol. 37, No. 2, Feb. 1988, pp. 146-159.

COMPUTER

13. K.G. Shin, C.M. Krishna, and Y.-H. Lee,
‘A Unified Method for Evaluating Real-
Time Computer Controllers and Its Appli-
cation,”” JIEEE Trans. Automatic Control,
Vol. AC-30, No. 4, Apr. 1985, pp. 357-366.

14. C.M. Krishna, K.G. Shin, and 1.S. Bhan-
dari, ‘‘Processor Trade-offs in Distributed
Real-Time Systems,”’ [EEE Trans. Com-
puters, Vol. C-36, No. 9, Sept. 1987, pp.
1,030-1,040.

15. A Research and Development Strategy
for High Performance Computing,
Report, Executive Office of the President,
Office of Science and Technology Policy,
Nov. 20, 1987.

John A. Stankovic is an associate professor in
the Computer and Information Science Depart-
ment at the University of Massachusetts at
Ambherst. His research interests include inves-
tigating various approaches to scheduling on
local area networks and multiprocessors, and
developing flexible, distributed, hard real-time
systems. He is currently building a hard real-
time kernel called Spring, based on a new
scheduling paradigm and on ensuring predict-
ability. Heis also doing research on a distributed
database testbed called CARAT, which has
been operational for several years.

Stankovic has held visiting positions in the
Computer Science Department at Carnegie Mel-
lon University and at INRIA in France. Heis an
editor for IEEE Transactions on Computers
and a member of ACM and Sigma Xi.
Stankovic received a BS in electrical engineer-
ing and MS and PhD degrees in computer
science, all from Brown University, in 1970,
1976, and 1979, respectively.

Readers may contact the author at COINS
Dept., Lederle Graduate Research Center,
Univ. of Massachusetts at Amherst, Amherst,
MA 01003.

October 1988

DISTRIBUTED

SYSTEMS

SPECIALISTS

Tomorrow’s Computin
Technology is Today’s Challenge

Some of the nation’s most excit-
ing developments in software
technology, supercomputer
architecture, Al, and expert sys-
tems are under scrutiny right
now at the Institute for Defense
Analyses. IDA is a Federally
Funded Research and Develop-
ment Center serving the Office of
Secretary of Defense, the Joint
Chiefs of Staff, Defense Agen-
cies, and other Federal sponsors.

IDA’s Computer and Software
Engineering Division (CSED) is
secking professional staff
members with an in-depth theo-
retical and practical background
in the area of Distributed Sys-
tems. Tasks include efforts aimed
at designing and prototyping sys-
tems, evaluating/assessing alter-
native strategies or designs, and
advising major DoD programs
on the suitability of various
technologies or on the need for
research in the field.

Specific desired interests and

skills include:

® Operating systems — including
clock synchronization, efficient
IPC and RPC, centralized and
distributed scheduling, and
resource allocation

@ Data base systems — including
access control, distribution
transparency, data redun-
dancy, concurrency control,
security

® Communication protocols

® Reliability and survivability —
including issues related to

transaction logging, rollback
and recovery, process migra-
tion, and system
reconfiguration

Specialists in other areas of
Computer Science are also
sought: Artificial Intelligence and
Expert Systems, Software Engi-
neers, Computer Security Scien-
tists and Programming Lan-
guage Experts.

We offer career opportunities at
many levels of experience. You
may be a highly experienced
individual able to lead IDA proj-
ects and programs . . . or a
recent MS/PhD graduate. You
can expect a competitive salary,
excellent benefits, ard a superior
professional environment.
Equally important, you can
expect a role on the leading edge
of the state of the art in comput-
ing. If this kind of future appeals
to you, we urge you to investi-
gate a career with IDA. Please
forward your resume to:

Mr. Thomas J. Shirhall
Manager of Professional Staffing
Institute for Defense Analyses
1801 N. Beauregard Street
Alexandria, VA 22311

An equal opportunit;’ employer.
U.S. Citizenship is reuired.

=

