
-ti 



extremely difficult to integrate and conse- 
quently add to overall system cost. Mil- 
lions (even billions) of dollars are being 
spent (wasted) by industry and govern- 
ment to build today’s real-time systems. 
Current brute force techniques will not 
scale to meet the requirements of guaran- 
teeing real-time constraints of next- 
generation systems. 

Next-generation real-time systems will 
be in application areas similar to those of 
current systems. However, the systems will 
be more complex: They will be distributed 
and capable of exhibiting intelligent, adap- 
tive, and highly dynamic behavior. They 
will also have long lifetimes. Moreover, 
catastrophic consequences will result if the 
logical or timing constraints of the systems 
are not met. Examples of these more 
sophisticated systems are the autonomous 
land rover, controllers of robots with elas- 
tic joints, and systems found in intelligent 
manufacturing, the space station, and 
undersea exploration. 

Two major forces are pushing real-time 
systems into the next generation: their 
need for artificial intelligence capabilities 
and the rapid advance in hardware. These 
forces are exacerbating the difficult scien- 
tific and engineering problems faced in 
building real-time systems. They add com- 
plex entities that must be integrated into 
current and future applications, but the 
required design, analysis, and verification 
techniques for such integration have not 
kept pace. For example, hardware (and 
software) technology has made distributed 
computing and multiprocessing a reality, 
and soon there will be many networks of 
multiprocessors. However, almost no fun- 
damental or scientific work has been done 
in designing and verifying a real-time 
application’s timing requirements when 
that application is distributed across a 
network. 

As another example, AI systems exhibit 
a great deal of adaptability and complex- 
ity, making it impossible to precalculate all 
possible combinations of tasks that might 
occur. This precludes use of static schedul- 
ing policies common in today’s real-time 
systems. We need new approaches for real- 
time scheduling in such systems, including 
on-line guarantees and incremental 
algorithms that produce better results as a 
function of available time. 

Common 
misconceptions 

Real-time-system design has not 
attracted the attention from academic 

computer scientists and basic-research 
funding agencies that it deserves. This lack 
of adequate attention is due, at least in 
part, to some common misconceptions 
about real-time systems. Let’s look at 
some of them. 

There is no science in real-time- 
system design. 
It is certainly true that real-time-system 

design is mostly ad hoc. This does not 
mean, however, that a scientific approach 
is not possible. Most good sciencegrew out 
of attempts to  solve practical problems, 
and there is plenty of evidence that 
engineers of real-time systems need help. 
For example, the first flight of the space 
shuttle was delayed, at considerable cost, 
because of a subtle timing bug that arose 
from a transient CPU overload during sys- 
tem initialization. Can we then develop a 
scientific basis for verifying that a design 
is free of such subtle timing bugs? Indeed, 
the purpose of this article is t o  introduce 
some of the technical problems involved in 
designing reliable real-time systems and 
point out where a scientific basis is emerg- 
ing. We are starting to understand what 
the important problems are in real-time 
scheduling of resources.* Investigations 
are beginning into the subtleties of includ- 
ing a time metric in system specification 
methods and semantic theories for real- 
time programming ~anguages.~ 

Advances in supercomputer hard- 
ware will take care of real-time 
requirements. 
Advances in supercomputer design will 

likely exploit parallel processors to 
improve system throughput, but this does 
not mean that timing constraints will be 
met automatically. Unless the architecture 
of the computing system is carefully tai- 
lored to match that of the application, the 
processors and their communication sub- 
systems may not be able to handle all of the 
task load and time-critical traffic. In fact, 
real-time task-and-communication 
scheduling problems will likely get worse 
as more hardware is used. 

Realistically, the history of computing 
shows that the demand for more comput- 
ing power has always outstripped the sup- 
ply. If the past is any guide to the future, 
the availability of more computing power 
will only open up real-time applications 
requiring greater functionality, thus 
exacerbating the timing problems. There 
is no substitute for intelligent deployment 
of finite resources. Other important issues 
exist in real-time-systems design that can- 

not be resolved by supercomputer hard- 
ware alone, as we will see. 

Real-time computing is equivalent to 
fast computing. 
The objective of fast computing is to 

minimize the average response time of a 
given set of tasks. However, the objective 
of real-time computing is to meet the indi- 
vidual timing requirement of each task. 
Rather than being fast (which is a relative 
term anyway), the most important prop- 
erty of a real-time system should be pre- 
dictability; that is, its functional and 
timing behavior should be as determinis- 
tic as necessary to satisfy system specifica- 
tions. Fast computing is helpful in meeting 
stringent timing specifications, but fast 
computing alone does not guarantee pre- 
dictability. 

Other factors besides fast hardware or 
algorithms determine predictability. 
Sometimes the implementation language 
may not be expressive enough to prescribe 
certain timing behavior. For example, the 
delay statement of Ada puts only a lower 
bound on when a task is next scheduled; 
there is no language support to guarantee 
that a task cannot be delayed longer than 
a desired upper bound. The scheduling of 
(or the lack of programmer control over) 
nondeterministic constructs such as the 
select statement in Ada is especially 
troublesome, since timing properties that 
involve upper bounds cannot be guaran- 
teed by the usual fairness semantics defin- 
ing such constructs. 

Perhaps the best response to those who 
claim that real-time computing is equiva- 
lent to fast computing is to raise the fol- 
lowing question: Given a set of demanding 
real-time requirements and an implemen- 
tation using the fastest hardware and soft- 
ware possible, how can one show that the 
specified timing behavior is indeed being 
achieved? Testing is not the answer. 
Indeed, for all the laborious testing and 
simulation effort on the space shuttle, the 
timing bug that delayed its first flight was 
discovered the hard way; there was only a 
1 in 67 probability that a transient over- 
load during initialization could put the 
redundant processors out of sync, but it 
did nevertheless. Predictability, not speed, 
is the foremost goal in real-time-system 
design. 

Since testing is not the answer to our 
problems, do we know the answer? Not 
completely. We do know that a formal 
verification procedure coupled with test- 
ing would be significantly better than what 
we have now. However, that is not the 
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entire answer either. In fact, most of the 
problems enumerated in the upcoming sec- 
tion on the challenge of real-time comput- 
ing systems must be solved and then used 
in an integrated fashion. 

Real-time programming is assembly 
coding, priority interrupt program- 
ming, and device driver writing. 
T o  meet tight timing constraints, cur- 

rent practice in real-time programming 
relies heavily on machine-level optimiza- 
tion techniques. These techniques are 
labor intensive and sometimes introduce 
additional timing assumptions (unwisely, 
but as a last resort) on which the correct- 
ness of an  implementation depends. Reli- 
ance  o n  clever hand-coding a n d  
difficult-to-trace timing assumptions is 
a major source of bugs in real-time pro- 
gramming, especially in modifying large 
real-time programs. A primary objective 
in real-time-systems research is in fact 
to automate, by exploiting optimizing 
transforms and scheduling theory, the syn- 
thesis of highly efficient code and cus- 
tomized resource schedulers  f r o m  
timing-constraint specifications. On the 
other hand, while assembly language pro- 
gramming, interrupt programming, and 
device driver writing are aspects of real- 
time computing, they d o  not constitute 
open scientific problems-except in their 
automation. 

Real-time-systems research is perfor- 
mance engineering. 
An important aspect of real-time- 

systems research is to investigate effective 
resource allocation strategies so as to 
satisfy stringent timing-behavior require- 
ments. The synthesis aspects of real-time- 
system research can indeed be regarded as 
performance engineering (but see the next 
misconception below). The proper design 
of  a real-time system, however, requires 
solutions to  many other interesting 
problems-for example, specification and 
verification of timing behavior, and pro- 
gramming-language semantics dealing 
with time. Certain theoretical problems 
also involve the use of timing constraints, 
sometimes implicitly, to  ensure correct- 
ness. For example, the well-known Byzan- 
tine generals problem is unsolvable for 
totally asynchronous systems but is solv- 
able if the generals can vote in rounds. 
That a good general must deliver a num- 
ber of messages within a round according 
to  the voting protocol is a form of timing 
constraint. 

Indeed, the correct functioning of many 

systems often depends on having an imple- 
mentation that can perform an  operation 
requiring the satisfaction of certain timing 
constraints, albeit implicitly specified (for 
example, in the form of testing an atomic 
predicate such as determining whether a 
communication channel is empty). An 
important problem in real-time-systems 
research is to investigate the role time plays 

techniques not found in existing literature. 

It is not meaningful to talk about 
guaranteeing real-time performance, 
because we cannot guarantee that the 
hardware will not fail and the soft- 
ware is bug free or that the actual 
operating conditions will not violate 
the specified design limits. 

It is a truism that one can only hope to as a synchronization mechanism; for 

minimize the probability of failure in the example, what is the logical power of 
different forms of timing constraints in systems one builds (assuming a belief in 
solving various coordination problems? If quantum mechanics), The relevant ques- 

tion, of course, is how to build systems in a system must depend on the satisfaction 

such a way that we can have as much con- of some timing constraints for its correct- 

fidence as possible that they will meet spec- ness, is there a least-restrictive set of tim- 
ingconstraintssufficient forthepurpose? if ications at  acceptable I n  

real-time-system design, one should Does the imposition of various timing con- 

attempt to allocate resources judiciously to straints facilitate more efficient solutions 
to distributed coordination problems? make certain that any critical timing con- 
Such questions certainly go beyond tradi- straint can be met with the available 
tional performance engineering. resources, assuming that  the hard- 

ware/software functions correctly and the 
external environment does not stress the 
system beyond what it  is designed to han- 
dle. The fact that the hardware/software 
may not function correctly or that the 

The problems in real-time-system 
design have all been so,ved in other 
areas of computer science or opera- 
tions research. 

real-time-system researchers 
the problem 

operating conditions imposed by the exter- 
nal world may exceed the design limits with certainly try to 

solution techniques developed in more a probability does not give the 
research there are designer license to increase theodds of fail- 

fully so as to mezt critical timing 
constraints. We certainly cannot guaran- 
tee anything outside our control, but what 
we can guarantee, we should. 

unique problems in systems that ure by not trying to allocate resources care- 
have not been solved in any other area. For 
example, performance engineering in 
computer science has been concerned 
mostly with analyzing the average values 
of performance parameters, whereas an 
important consideration in real-time- 
system design is whether or not strin- 
gent deadlines can be met. Queueing 
models traditionally use convenient Depending on the operating mode, a 
stochastic assumptions that are justified by real-time system may have to satisfy differ- 
large populations and stable operating ent sets of timing constraints at different 
conditions. Analytical results based on times. Thus, an important topic in real- 
these assumptions may be quite useless for time-systems research is the design of hier- 
some real-time applications. For example, archical or selectable schedulers to make 
the hot-spot contention phenomenon (a resource allocation decisions for different 
highly nonlinear performance degradation time granularities. A particularly vexing 
due to slight deviations from uniform traf- industrial problem is how to reconfigure 
ficin multistage interconnection networks) systems t o  accommodate  changing 
is likely to be catastrophic for time-critical requirements so as to create minimal dis- 
communication packets. Likewise, the ruption to ongoing operation. It is not 
combinatorial scheduling problems in uncommon for some real-time-system 
operations research deal mostly with one- hardware to be in the field 15 or more 
shot tasks, that is, each task needs to be years; hence, any design methodology for 
scheduled only once, whereas in real-time such systems must not assume a static envi- 
systems the same task may recur infinitely ronment. On the other hand, if the real- 
often, either periodically or at irregular time application is small, inexpensive, and 
intervals, and may have to synchronize or unlikely to change, then current static 
communicate with many other tasks. The solution techniques work well. However, 
general synthesis problem of arbitrary tim- such real-time applications are trivial com- 
ing behavior will certainly require new pared with those addressed in this article. 

Real-time systems function in a static 
environment. 
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The challenge of 
real-time 
computing systems 

ing large-scale systems is t o  hierarchically 

model. Although this methodology allows 

A great challenge lies 

and verification of 
systems that are 
subject to timing 

constraints. 

An important approach used in manag- 

decompose the system into modules that 
are realizations of the abstract data type 

us t o  reason about the correctness of com- 
putation at  each level of abstraction, it has 

ahead in the 

no provisions to  support reasoning about 
time and reliability abstractions, two vital 
aspects of real-time systems. To develop a 
scientific underpinning for real-time sys- 
tems, we face the difficult scientific chal- 
lenge of creating a set of unified theories 
and technologies that will allow us to rea- 
son about the correctness, timeliness, and 
reliability a t  each level of abstraction and 
to  combine the results of each level into 
results for the integrated system. 

Building a science of large-scale real- 
time systems will require new research 
efforts in many distinct and yet related 
areas. While each of these areas contains 
well-developed theories and technologies, 
none currently contains theories and 
methods addressing the central issue in 
real-time systems: a coherent treatment of 
correctness, timeliness, and fault tolerance 
in large-scale distributed computations. 

The following subsections briefly iden- 
tify the main research areas that need to be 
better addressed if we are to solve the prob- 
lems facing developers of  next-generation 
real-time systems. Of course, many of the 
problems in these areas are difficult to 
solve even without worrying about real- 
time constraints. This article emphasizes 
the special problems that real-time con- 
straints cause. This material is intended for 
those not familiar with research in real- 
time computing, so it is necessarily high 
level. Readers can find a more detailed and 
technical discussion of each area in a com- 
panion report.' 

Specification and verification. The fun- 
damental challenge in the specification 
and verification of real-time systems is 
how to  incorporate the time metric. 
Methods must be devised for including 
timing constraints in specifications and for 
establishing that a system satisfies such 
specifications. The usual approaches for 
specifying computing system behavior 
entail enumerating events or actions that 
the system participates in and describing 
orders in which these can occur. It is not 
clear how to  extend such approaches for 

real-time constraints. Neither is i t  clear 
how to  extend programming notations to 
allow the programmer to specify compu- 
tations that are constrained by real time. 

In general, inclusion of a time metric 
can create subtleties in the semantics of 
concurrency models (see Reed and Ros- 
c ~ e , ~  for example) and complicate the 
verification problem. Whereas proof of 
noninterference is the major verification 
task in extending sequential systems to  
concurrent systems on  the basis of inter- 
leaving, verification of real-time systems 
will require the satisfaction of  timing con- 
straints where those constraints are derived 
from the environment and implementa- 
tion.' Consequently, a major challenge is 
to solve the dilemma that verification tech- 
niques abstract away from the implemen- 
tation even though it is the implementation 
and environment which provide the true 
timing constraints. The result is that we 
need a quantitative analysis (deadlines, 
repetition rates) rather than the qualitative 
analysis (eventual satisfaction) that is typi- 
cally handled by current verification tech- 
niques. O n  the other hand, the partial 
synchrony of real-time systems that izsults 
from the presence of timing constraints 
may open up  a whole new class of dis- 
tributed control algorithms and inspire 
novel verification techniques. Real-time 
systems lie somewhere between the rela- 
tively well studied fully synchronous and 
fully asynchronous systems, and there is a 
great challenge ahead in the modeling and 
verification of systems that are subject to 
timing constraints. 

In addition, t o  deduce properties of the 
whole system from properties of its parts 
and the way these parts are combined, we 
must characterize a way to  compose the 
real-time constraints and properties of 
parts to synthesize them for the whole. For 
real-time properties, the parts interact in 
ways that depend on resource constraints. 

Thus, aspects of the systeni that are usually 
ignored when real time i r  not of concern 
come into play. This agah suggests that a 
new set of abstractions m i  st be devised for 
real-time systems. For ex~imple,fuirness, 
which is frequently used when reasoning 
about concurrent and dist Vibuted systems, 
is no  longer an appropriale abstraction of 
the way processes are scht duled when real 
time is a concern. 

Another problem that h i l l  be encoun- 
tered is dealing with the state explosion 
f o u n d  in verificatioii  techniques.  
Hundreds or even thousands of states are 
usually required to  formally express the 
state of even a relatively I imple sy5tem in 
enough detail so that col rectness can be 
proved. Techniques for axtract ing many 
states into a higher level st ite are necessary 
to tackle this problem, wliich is a difficult 
one even when timing coiistraints are not 
included. 

Real-time scheduling theory. While 
specification and verifica ion concern the 
integrity of the system wi:h respect to the 
specification, scheduling heory addresses 
the problem of meeting tjie specified tim- 
ing requirements. Satisfying the timing 
requirements  o f  real .rime systems 
demands the schedul ,ng of  system 
resources according I O  some well- 
understood algorithms s i t  that the timing 
behavior of the system is inderstandable, 
predictable, and maintai iable. 

Scheduling theory is no restricted to the 
study of  real-time system o r  even general 
computer systems. It al;o arises in the 
study of manufacturing si stems, transpor- 
tation systems, process ( ontrol systems, 
and so on.  However, i t  is important t o  
realize that real-time-sy: tern scheduling 
problems are different from the schedul- 
ing problems usually cor sidered in areas 
of operations research.'." In most opera- 
tions research scheduling problems, there 
is a fixed system having c mpletely speci- 
fied and static service characteristics. The 
goal is t o  find optimal star ic schedules that 
minimize the response tims for a given task 
set. Many real-time coniputing systems 
lack an  incentive for minimizing the 
response time other than f 3r meeting dead- 
lines. The system is often highly dynamic, 
requiring on-line, adaF tive scheduling 
algorithms. Such algorithms must be 
based on heuristics, since these scheduling 
problems are NP-hard.* In these cases the 
goal is t o  schedule as m a  iy jobs as possi- 
ble, subject t o  meeting the task timing 
requirements. Alternative schedules 
and/or error handlers are required and 
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must be integrated with the on-line 
scheduler. 

One primary measure of a scheduling 
algorithm is its associated processor utili- 
zation level below which the deadlines of 
all the tasks can be met.’ There are other 
measures too, such as penalty functions 
defined according to  the number of jobs 
that miss their deadlines, and a weighted 
success ratio, which is the percentage of 
tasks that meet their deadlines weighted by 
the importance of those tasks. The next 
subsection discusses some additional real- 
time scheduling issues in the context of 
operating systems. 

Real-time operating systems. One major 
focal point for developing next-generation 
real-time systems is the operating sys- 

The operating system must pro- 
vide basic support for guaranteeing 
real-time constraints, supporting fault 
tolerance and distribution, and integrating 
time-constrained resource allocations and 
scheduling across a spectrum of resource 
types, including sensor processing, com- 
munications, CPU, memory, and other 
forms of I/O. Given that the system is dis- 

. . 
.... 

T5 must complete 
by a deadline D. 

Figure 1.  The end-to-end timing problem. 

tributed, we face a complicated end-to-end 
timing analysis problem (see Figure 1). In 
other words, time constraints are applied 
to collections of cooperating tasks, labeled 
T, in the figure, and not only to individual 
tasks. 

For example, assume that a given node 

processes sensor hits and determines that 
a vehicle has entered its area of concern. 
This node may have to communicate that 
information to  one or more remote nodes 
and receive replies indicating the appropri- 
ate action. The time by which this node 
must act depends on a time constraint 
imposed by the velocity of the incoming 
vehicle. Such a system is distributed, 
highly dynamic, and operates under strict 
time constraints. The entire collection of 
tasks dealing with sensor processing, com- 
munication between tasks, and application 
logic must be accomplished under a single 
end-to-end timing constraint. 

T o  develop next-generation real-time 
distributed operating systems suitable for 
complicated applications such as the space 
station, teams of robots working in a haz- 
ardous environment, or command-and- 
control applications, at least three major 
scientific innovation5 are required. 

(1) The timedimension must be elevated 
to a central principle of the system. Time 
requirements and properties cannot be an 
afterthought. An especially perplexing 
aspect of this problem is that most system 
design and verification techniques are 



based on abstraction, which ignores imple- 
mentation details. This is obviously a good 
idea; however, in real-time systems, tim- 
ing constraints are derived from the envi- 
ronment and the implementation. Solving 
this dilemma is a key scientific issue. 

(2) The basic paradigms found in 
today's general-purpose distributed oper- 
ating systems must change. The current 
basis, with the notion of application tasks 
requesting resources as if they were ran- 
dom processes and the operating system 
being designed to expect such random 
inputs, is unacceptable. A new, more 
deterministic paradigm is needed. In such 
a paradigm, each operating-system prim- 
itive, along with application tasks and their 
interactions, would be well understood, 
bounded, and predictable. The interaction 
between tasks includes invocation interac- 
tions, communication interactions, and 
resource conflict interactions. In the new 
paradigm the system must be flexible 
enough to react to a highly dynamic and 
adaptive environment, but a t  the same 
time able to predict and possibly avoid 
resource conflicts so that timing con- 
straints can be (predictably) met. In other 

words, the environment may cause an 
unpredictable combination of events to 
occur, but the system must be carefully 
constructed to  enable i t  t o  react in such a 
way that at  any time during execution the 
system can predict its capabilities in meet- 
ing its deadline. The new paradigm must 
be based on the delicately balanced notions 
of flexibility and predictability. One such 
paradigm is being investigated in the 
Spring kernel. 

(3) A highly integrated and time- 
cons t r a ined  r eso u r ce a l  I o c a  t i o n 
approach' is necessary to adequately 
address timing constraints, predictability, 
adaptability, and fault tolerance. Most 
current scheduling algorithms typically 
account for one resource at  a time and 
ignore fault tolerance. This is especially 
true in the present state of real-time 
scheduling. Independent scheduling of 
unique resources is not sufficient when 
attempting to  perform time-constrained 
scheduling. For a task to meet its deadline, 
we must ensure that resources are available 
to  i t  in time and that the sequencing of 
events meets precedence constraints. 

One can identify many other issues (at 

all levels of detail) that art critical to real- 
time operating sy5tenis. rtic need for a 
global time refcrence aml the ability to 
scale to larger and larger I )stem5 are just 
two examplc5. 

Real-time programmini; languages and 
design methodology. As t t  e complexity of 
real-time systems increase s ,  high demand 
will be placed on  the prograrnniing 
abstractions provided by languages. Cur- 
rently available abstractior s and languages 
must evolve with future ;icl\ances in the 
specification techniques, I, ,gic, and theory 
underlying real-time sy i t  ems. Unfor- 
tunately, this goal has nor x c ' n  fulfilled in 
the past. For example, Ad,i is h i g n e d  for 
embedded hard real-time 2 pplications and 
is intended to support s td i c  priority 
scheduling of tasks. H o w ~ * \ e r ,  the dcfini- 
tion of Ada tasking allo\j I a high-priority 
task to  wait for a low-pric r i t y  task for an 
unpredictable duration. C'vnsequently, 
when processes are prosrarnnied in the 
form of Ada tasks, the ie5ulting riming 
behavior is likely to be unpredictable. 
Building the next generat on o f  real-time 
systems will require a proe ramming meth- 



odology that gives due consideration to the 
needs of meeting real-time requirements. 
The important research issues include 

Support for the management of time. 
First, language constructs should support 
the expression of timing constraints. For 
example, Ada tasking should have sup- 
ported the raising of an  exception when a 
task’s deadline is missed. Second, the pro- 
gramming environment should provide 
the programmer with the primitives to 
control and to keep track of the resource 
utilization of software modules. This 
includes being able to develop programs 
with predictable performance in terms of 
absolute time. Finally, language constructs 
should support the use of sound schedul- 
ing algorithms. 

Schedulability check. Given a set of 
well-understood scheduling algorithms, 
schedulability analysis allows us to  deter- 
mine if  the timing requirements can be 
met. With proper support for the manage- 
ment of time, it may be possible to per- 
form schedulability checks at  compile 
time. This idea is similar t o  the type- 
checking concept. 

Reusable real-time software modules. 
An added difficulty with reusable real- 
time software modules is meeting differ- 
ent timing requirements for different 
applications. 

Support for distributed programs and 
fault tolerance. The problem of predicting 
the timing behavior of real-time programs 
is further exacerbated in the context of dis- 
tributed systems. Special fault-tolerance 
features might be added to  the semantics 
of the language-for example, various 
recovery mechanisms subject to timing 
considerations. 

Distributed real-time databases. In a 
real-time database system, a significant 
portion of data is often highly perishable 
in the sense that it has value to  the mission 
only if used quickly. Satisfying the timing 
requirements involves two key issues: 
First, the degree of concurrency in trans- 
action processing must be increased; sec- 
ond, concurrency control protocols and 
real-time scheduling algorithms must be 
integrated. 

The characteristics of a real-time data- 
base, such as a tracking database, are dis- 
tinct from commercial database systems. 
In a real-time database, transactions often 
must perform statistical operations- 
correlation, for example-over a large 
amount of data that is continuously 
updated, and they must satisfy stringent 

The dynamic nature 
of symbolic systems 
requires support for 
automated memory 

management. 

timing requirements. As observed by 
Bernstein et al.,” serializability is not a 
good criterion for concurrency control of 
such databases because of the limitation of 
concurrency allowed by serializable con- 
current executions. Several approaches 
designed to obtain a high degree of concur- 
rency by exploring application-specific 
semantic information have been proposed. 
In addition, a modular decomposition 
approach for nonserializable concurrency 
control and failure recovery has been pro- 
posed.” This approach assumes that 
global serialization is too strong a condi- 
tion. Instead it uses a setwise serializabil- 
ity notion, which is shown to apply to the 
database associated with a cluster of track- 
ing stations. 

While concurrency control of transac- 
tions and hard real-time process schedul- 
ing have both progressed, very little is 
known about the integration between con- 
currency control protocols and hard real- 
time process-scheduling algorithms. In 
concurrency control we d o  not typically 
address the meeting of hard deadlines. The 
objective is t o  provide a high degree of 
concurrency and thus faster average 
response time. On the other hand, in the 
schedulability analysis of real-time process 
scheduling-for example, processes for 
signal processing and feedback control-it 
is customary to assume that tasks are 
independent, or that the time spent syn- 
chronizing their access to shared data is 
negligible compared with execution time 
and deadlines. The objective here is to 
maximize resources, such as CPU utiliza- 
tion, subject to meeting timing constraints. 
The fundamental challenge of real-time 
databases seems to be the creation of a uni- 
fied theory that will provide us with areal- 
time concurrency-control protocol that 
maximizes both concurrency and resource 
utilization subject to three constraints at  
the same time: data consistency, transac- 
t ion  cor rec tness ,  a n d  t ransac t ion  
deadlines. 

Artificial intelligence. Real-time AI 
research currently emphasizes reasoning 
about time-constrained processes and 
using heuristic knowledge to  control or 
schedule these processes. A key consider- 
ation in robust problem solving is t o  pro- 
vide the best available solution within a 
dynamically determined time constraint. 
Many of the current issues in real-time- 
systems research are applicable to  such a 
system, but additional considerations 
exist. For example, the dynamic nature of 
symbolic systems requires support for 
automated memory management. Current 
garbage collection techniques make it dif- 
ficult, if  not impossible, to guarantee a 
maximum system latency. 

Other features of symbolic systems that 
exacerbate the predictability problem 
include the ability to create and execute a 
function at  runtime and the ability to  exe- 
cute a runtime-selected function passed as 
an argument. In addition, opportunistic 
control strategies provide the ability to 
dynamically direct program execution in 
response to real-time events. This contrasts 
sharply with the current real-time-systems 
assumption c f  a statically determined 
“decision tree” control sequence. The 
implication here is that the sequences of 
processing cannot be predetermined. 

This is by no means a comprehensive list 
of the issues involved in real-time symbolic 
systems. No doubt additional research 
issues will arise as real-time AI applica- 
tions evolve and attempts are made to  
solve problems in severely t ime- 
constrained domains. 

Fault tolerance. A real-time computer 
system and its environment form a syner- 
gistic pair. For example, most commercial 
and military aircraft cannot fly without 
digital-control computers. In such systems 
it is meaningless to consider on-board con- 
trol computers without considering the air- 
craft itself. The tight interaction between 
the environment and a real-time computer 
arises from time and reliability constraints. 
Unless the computer can provide “accept- 
able” services to its environment, its role 
will be lost and thus viewed as failed or 
nonexistent. Failure can result from mas- 
sive loss of components (static failure) or 
from failure to respond fast enough to 
environmental stimuli (dynamic fail- 
ure).I3 This interplay must be carefully 
characterized for various real-time appli- 
cations, in which even the determination 
of deadlines is by itself a relatively unex- 
plored problem. On the basis of this 
characterization of a real-time problem, a 
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vast number of design and analysis prob- 
lems for real-time computers remain to be 
solved-for example, optimal error han- 
dling, redundancy management, and tun- 
ing of architectures. 

Certain research issues are important in 
making real-time systems fault tolerant 
and reliable. Specifically, 

The formal specification of the relia- 
bility requirement and the impact of tim- 
ing constraints on such a requirement is a 
difficult problem. 

Error handling is usually composed of 
an ordered sequence of steps: error detec- 
tion, fault location, system reconfigura- 
tion, and recovery. All these steps must be 
designed and analyzed in the context of 
combined performance (including timing 
constraints) and reliability. Interplay 
between these steps must be carefully stud- 
ied. Hardware and operating-system sup- 
port, together with their effects on 
performance and reliability, are important 
research subjects. 

The effects of real-time work loads on 
fault tolerance has not been adequately 
addressed. It is well known that the relia- 
bility of a computer system depends heav- 
ily on its work load. Characterizing the 
effects of “representative” real-time work 
loads on fault tolerance is essential. 

Real-time-system architectures. Many 
real-time systems can be viewed as a three- 
stage pipeline: data acquisition from sen- 
sors, data processing, and output to actu- 
ators and/or displays. I 4  Next-generation 
systems will often be distributed such that 
each node may be a multiprocessor (see 
Figure 2 ) .  A real-time system’s architec- 
ture must be designed to support these 
components with high fidelity. For data 
acquisition and for actuators, the architec- 
ture must provide extensive 1/0 capabili- 
ties while providing fast, timely, and 
reliable operations for the data-processing 
stage. 

Conventional real-time architectures are 
based on dedicated hardware and soft- 
ware: The architecture usually must 
change with a change in applications. Such 
architectures are neither cost effective nor 
wel! utilized. Because of advances in VLSI 
technology, i t  is becoming possible to 
develop a new distributed architecture 
suitable for broader classes of real-time 
applications. Important issues in this new 
architecture include interconnection topol- 
ogy, interprocess communications, and 
support of operating-system and fault- 
tolerance functions. 

0 UCJ 

+Act u ato IS Sensors 

Figure 2. A distributed real-time architecture. 

Some open research topics in real-time 

Interconnection topology for proces- 
sors and I/O. The need for extensive 
1/0 and high-speed data processing in 
real-time applications makes it impor- 
tant to develop an integrated intercon- 
nection topology for both processors 
and I/O. Although the processing 
topology has been studied extensively, 
little attention has been paid to the dis- 
tribution of 1 /0  data. 
Fast, reliable, and time-constrained 
communications. 
Architectural support for error 
handling. 
Architectural support for scheduling 
algorithms. 
Architectural support for real-time 
operating systems. 
Architectural support for real-time 
language features. 

Ideally, any architectural design should 
adopt a synergistic approach wherein the- 
ory, operating system, and hardware are 
all developed with the single goal of 
achieving the real-time constraints in a 
cost-effective and integrated fashion. 

architecture are 

Real-time communication. The com- 
munication media for next-generation dis- 
tributed real-time systems will be required 
to form the backbone upon which predict- 
able, stable, and extensible system solu- 
tions will be built. T o  be successful, the 
real-time communication subsystem must 

be able to predictably s,itisfy individual 
message-level timing recpirements. The 
timing requirements are driven not only by 
applications’ interprocc ss communica- 
t ion,  but also by t i  ne-constrained 
operating-system functims invoked on 
behalf of application pro2esses. Network- 
ing solutions for this context are distin- 
guished from the stand: rd nonreal-time 
solutions with the i n t r o d i d o n  of time. In 
a nonreal-time setting, i t  is sufficient to 
verify the logical correctiiess of a commu- 
nications solution; howe7, er, in a real-time 
setting it is also necessar! to verify timing 
correctness. Software e igineering prac- 
tices have helped in dete mining the logi- 
cal correctness of systeins solutions but 
have not addressed timing correctness. 
Timing correctness inclLides ensuring the 
schedulability of syr chronous and 
sporadic messages as weli as ensuring that 
the response time requirements of asyn- 
chronous messages are met. Ensuring tim- 
ing correctness for I tatic real-time 
communications systen s using current 
technology is difficult; ensuring timing 
correctness in the nest generation’s 
dynamicenvironment wi I be a substantial 
research challenge. 

Additional research is iieeded to develop 
technologies that suprort the unique 
challenges of real-time communications. 
These include 

Dynamic routing solutions with 

Network buffer management that 
guaranteed timing correctness. 
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supports scheduling solutions. 
Fault-tolerant and time-constrained 
communications. 
Network scheduling that can be com- 
bined with processor scheduling to 
provide system-level scheduling 
solutions. 

Meeting these challenges will require 
substantial research effort with associated 
breakthroughs in network control theory. 
With the network forming the backbone 
of many next-generation distributed real- 
time systems, a system will be no stronger 
than the communications solution that 
supports it. 

Conclusions 
Many real-time systems of tomorrow 

will be large and complex and will function 
in distributed and dynamic environments. 
They will include expert system compo- 
nents and will involve complex timing con- 
straints encompassing different granules 
of time. Moreover, economic, human, and 
ecological catastrophes will result if these 
timing constraints are not met. Meeting 
the challenges imposed by these charac- 
teristics very much depends on a focused 
and coordinated effort in all aspects of sys- 
tem development, such as 

Specification and verification tech- 
niques that can handle the needs of 
real-time systems with a large number 
of interacting components. 
Design methodologies that can be 
used to synthesize systems with the 
specified timing properties where 
these timing properties are considered 
from the beginning of the design 
process. 
Programming languages with explicit 
constructs to express-with unambig- 
uous semantics-the time-related 
behavior of modules. 
Scheduling algorithms that can, in an 
integrated and dynamic fashion, han- 
dle (1) complex task structures with 
resource and precedence constraints, 
(2) resources (such as the communica- 
tion subnet and 1/0 devices), and 
(3) timing constraints of varying 
granularity. 
Operating-system functions designed 
to deal with highly integrated and 
cooperat ive t ime-constrained 
resource management in a fast and 
predictable manner. 
Communication architectures and 
protocols for dealing efficiently with 
messages that require timely delivery. 

Architecture support for fault toler- 
ance, efficient operating-system func- 
t ion ing ,  a n d  t ime-constrained 
communication. 

eal-time systems have brought 
about unmet challenges in a wide 

, range of computer science dis- 
ciplines. Each of these challenges must be 
overcome before a science of large-scale 
real-time systems can become a reality. 
The task is formidable, and success will 
require a concerted effort by many differ- 
ent participants in the computer science 
community. It will require the enticement 
of new researchers into the field, especially 
in academia, where relatively little work of 
this nature is being done. We must coor- 
dinate interaction between research efforts 
in universities and development efforts in 
industry so that academic researchers will 
be familiar with key problems faced by 
system developers, and system developers 
will be aware of relevant new theories and 
technologies. 

The solution to developing a theory of 
large-scale real-time systems does not lie in 
the current methodologies of operations 
research, database theory, scheduling the- 
ory, or operating-systems theory. Rather, 
it lies in well-coordinated and expanded 
efforts of universities, industry, and 
government laboratories directed toward 
the distinct problems that this topic 
introduces. The need for such cooperation 
was also emphasized in a report to the 
Executive Office of the President, Office 
of Science and Technology P01icy.’~ 
While that report dealt with problems in 
high-performance computing, software 
technology and algorithms, networking, 
basic research, and human resources, our 
general conclusions are the same. How- 
ever, this article is much more detailed in 
its emphasis on the basic research needs of 
a single important research topic: real-time 
computing. U 
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