
Lecture #11

Professor Jan Jonsson

Department of Computer Science and Engineering
Chalmers University of Technology

Real-Time Systems

Real-Time Systems

Verification

Implementation

Specification
•  Pseudo-parallel execution
 -- Rate-monotonic scheduling
 -- Earliest-deadline-first
 scheduling
•  Processor utilization
 analysis

Pseudo-parallel execution

General properties:
•  On-line schedule generation

–  Schedule determined by run-time behavior controlled by
priorities or time quanta to resolve access to the processor

–  Feasibility must be tested off-line by predicting run-time behavior
•  Mutual exclusion must be handled on-line

–  Support for mutual exclusion needed in run-time system
(e.g., mutex objects, disabling of interrupts)

•  Precedence constraints must be handled on-line
–  Dependent tasks must synchronize using semaphores, or

by adding suitable time offsets

Pseudo-parallel execution

Advantages:
•  High flexibility

–  Schedule can easily adapt to changes in the task set of the
system environment, e.g. new tasks can be added dynamically

•  External events are handled efficiently
–  I/O-based events handled via interrupt which activates a task

immediately through call-back functionality

•  Efficient for different types of tasks
–  Sporadic tasks can be easily supported, via suitable priority

assignment
–  Scheduling algorithms are often optimal

Pseudo-parallel execution

Disadvantages:
•  Complicates communication between tasks

–  Exact time of data availability is not known in advance, which
requires extra synchronization between tasks

–  Task execution is difficult to adapt to existing time-slot-based
network protocols (but works well with many priority-based
network protocols, e.g. CAN and Token Ring)

•  Task execution becomes non-deterministic
–  Temporary deviations (”jitter”) in task periodicity may occur
–  Exact feasibility tests often have high time complexity
–  Low observability (difficult to debug)

Pseudo-parallel execution

How is task scheduling done?
•  Using static or dynamic priorities:

–  Ready tasks are stored in a queue, sorted by priority
–  At scheduling decisions, the task with highest priority is selected

•  Using time quanta: (”round-robin”)
–  Ready tasks are stored in a circular FIFO queue
–  Each task gets access to the processor for a certain time interval

(quantum); real-time clock is used for interrupting the execution
–  New scheduling decisions can be taken sooner if the executing

task terminates or gets blocked

In this course, we only study pseudo-parallel execution
using task priorities.

Pseudo-parallel execution

How are task priorities assigned?
•  Static assignment:

–  Rate-monotonic (RM) scheduling
–  Deadline-monotonic (DM) scheduling
–  Weight-monotonic scheduling

•  Dynamic assignment:
–  Earliest-deadline-first (EDF) scheduling
–  Least-laxity-first scheduling

In this course, we only study rate-monotonic, deadline-
monotonic and earliest-deadline-first scheduling.

Pseudo-parallel execution

How is the scheduler implemented?
•  Use a queue for the ready tasks

–  The elements in the queue (i.e., the tasks) are sorted according
to task priorities; if multiple tasks have equal priority, the sorting
is arbitrary (e.g., FIFO)

•  The queue is updated at external or internal events
–  An external event is one that occurs in the environment (the

controlled system); for example: an I/O unit generates an
interrupt because data has become available at a sensor

–  An internal event is one that occurs within the computer system;
for example: a timer generates an interrupt because a certain
point in time has been reached

Rate-monotonic scheduling

Properties:
•  Uses static priorities

–  Priority is determined by task frequency (rate): the task with the
highest rate (= shortest period) receives highest priority

•  Theoretically well-established
–  Sufficient feasibility test can be performed in linear time

(under certain simplifying assumptions)
–  Exact feasibility test is an NP-complete problem

(pseudo-polynomial time with response-time analysis)
–  RM is optimal among all scheduling algorithms that use static

task priorities for which Di = Ti
(shown by C. L. Liu and J. W. Layland in 1973)

Earliest-deadline-first scheduling

Properties:
•  Uses dynamic priorities

–  Priority is determined by how critical the task is at a given point
in time: the task whose absolute deadline is closest in time
receives highest priority

•  Theoretically well-established
–  Exact feasibility test can often be performed in linear time

(under certain simplifying assumptions)
–  Exact feasibility test is in general an NP-complete problem

(pseudo-polynomial time with processor demand analysis)
–  EDF is optimal among all scheduling algorithms that use

dynamic task priorities
(shown by C. L. Liu and J. W. Layland in 1973)

Feasibility tests

What types of feasibility tests exist?
•  Hyper period analysis (for any type of scheduler)

–  In an existing schedule no task execution may miss its deadline

•  Processor utilization analysis (static/dynamic priority scheduling)
–  The fraction of processor time that is used for executing the

task set must not exceed a given bound

•  Response time analysis (static priority scheduling)
–  The worst-case response time for each task must not exceed

the deadline of the task

•  Processor demand analysis (dynamic priority scheduling)
–  The accumulated computation demand for the task set under

a given time interval must not exceed the length of the interval

Processor utilization analysis

The utilization for a set of periodic tasks is the fraction
of the processor’s capacity that is used for executing
the tasks.

U

U =
Ci

Tii=1

n

∑

Since is the fraction of processor time that is used
for executing task the utilization for tasks is

ii TC /
iτ n

Simple feasibility test for RM
(Sufficient condition)

A sufficient condition for RM scheduling of synchronous
task sets, based on the utilization is U

U =
Ci

Tii=1

n

∑ ≤ n 21/n −1()

where is the number of tasks. n

This is a classic feasibility test presented by C. L. Liu and
J. W. Layland in 1973.

U

Simple feasibility test for RM
(Sufficient condition)

Observe that it is possible to derive a conservative
lower bound on utilization by letting . n→∞

lim
n→∞

n 21/n −1() = ln2 ≈ 0.693

This means that a set of tasks (regardless of number of
tasks) whose total utilization does not exceed 0.693 is
always schedulable with RM!

Simple feasibility test for RM
(Sufficient condition)

The test is valid under the following assumptions:
 1. All tasks are independent.

–  There must not exist dependencies due to precedence
or mutual exclusion

 2. All tasks are periodic or sporadic.
 3. All tasks have identical offsets (= synchronous task set)
 4. Task deadline equals the period ().
 5. Task preemptions are allowed.

Di = Ti

Simple feasibility test for RM
(Sufficient condition)

The proof of the test includes the following observation:

The response time for a task is maximized at a special
task-arrival pattern, referred to as the critical instant.

The feasibility test is derived using an analysis of this special
case. It is shown that if the task set is schedulable for the
critical instant case, it is also schedulable for any other case.

NOTE: For single-processor systems (assumed in this
proof) the critical instant occurs when the analyzed task
arrives at the same time as all tasks with higher priority.

Simple feasibility test for EDF
(Sufficient and necessary condition)

A sufficient and necessary condition for EDF scheduling
of synchronous task sets, based on the utilization is U

U =
Ci

Tii=1

n

∑ ≤ 1

where is the number of tasks. n

This is another classic feasibility test presented by C. L.
Liu and J. W. Layland in 1973. The test is exact!

U

Simple feasibility test for EDF
(Sufficient and necessary condition)

The test is valid under the following assumptions:
 1. All tasks are independent.

–  There must not exist dependencies due to precedence
or mutual exclusion

 2. All tasks are periodic.
 3. All tasks have identical offsets (= synchronous task set)
 4. Task deadline equals the period ().
 5. Task preemptions are allowed.

Di = Ti

Example: RM/EDF scheduling

Problem: Assume a system with tasks according to the figure below.
The timing properties of the tasks are given in the table. Consider
scheduling the tasks using rate-monotonic (RM) and earliest-
deadline-first (EDF) scheduling, respectively.

 a) What is the utilization of the task set?
 b) What do Liu & Layland’s feasibility tests for RM and EDF say?
 c) Are the tasks are schedulable using RM and EDF, respectively?

A B C
 Task Ci Oi Ti

A 1 0 3
B 1 0 4
C 1 0 5

Example: RM/EDF scheduling

a) The utilization of the system is U

U =
Ci

Tii=1

n

∑ =
1
3
+
1
4
+
1
5
≈ 0.783

b) The utilization bounds and are:

URM = n 21/n −1() = 3 21/3 −1() ≈ 0.780
URM

UEDF =1

U >URM

U <UEDF

The test fails!

The test succeeds!

UEDF

Example: RM/EDF scheduling

c) For EDF:
Since the task set is schedulable. U <UEDF

Since and the test is only sufficient, we cannot yet
determine whether the task set is schedulable or not.

U >URM

 For RM:

Example: RM/EDF scheduling

c) For RM: simulate an execution of the tasks.
 In general we would have to check the hyper period (LCM = 60).

However, Liu & Layland have shown that if the task set is schedulable
when all tasks arrive at the same time (i.e., at t = 0), then the task set is
also schedulable in all other cases. Hence, it is enough to demonstrate
that the first instance of each task will meet its deadline.

t 0 5 10 15

A

B

C

Example: RM/EDF scheduling

d) Add one more task (identical to task C) to EDF:

The schedule is still feasible!

t 0 5 10 15

A

B

C

D

U = Ci

Tii=1

n

∑ = 1
3
+ 1
4
+ 1
5
+ 1
5
≈ 0.983

Example: RM/EDF scheduling

d) Add one more task (identical to task C) to RM:

The first and second instance of task D misses its deadline!

t 0 5 10 15

A

B

C

D

U = Ci

Tii=1

n

∑ = 1
3
+ 1
4
+ 1
5
+ 1
5
≈ 0.983

