
Lecture #12

Professor Jan Jonsson

Department of Computer Science and Engineering
Chalmers University of Technology

Real-Time Systems

Real-Time Systems

Verification

Implementation

Specification

•  Pseudo-parallel execution
 -- Deadline-monotonic
 scheduling
•  Response-time analysis

Example: scheduling using RM

Problem: Assume a system with tasks according to the figure
below. The timing properties of the tasks are given in the table.
All tasks arrive the first time at time 0.

 Investigate the schedulability of the tasks when RM is used.
 (Note that Di < Ti for all tasks)

1τ 2τ 3τ
 Task Ci Di Ti

4 1τ
2τ
3τ

3
2

6
14
10

8
16
32

Example: scheduling using RM

Simulate an execution of the tasks using RM:

 The tasks are not schedulable even though

U = 4
8
+ 3
16

+ 2
32

= 24
32

= 0.75<URM = 3 21/3 −1() ≈ 0.780

 misses its deadline! 3τ

Priority = H

Priority = M

Priority = L

t 0 24 32 16 8

1τ

2τ

3τ

Deadline-monotonic scheduling

Properties:
•  Uses static priorities

–  Priority is determined by urgency: the task with the shortest
relative deadline receives highest priority

–  Proposed as a generalization of rate-monotonic scheduling
(RM is a special case of DM, with Di = Ti)

•  Theoretically well-established
–  Exact feasibility test is an NP-complete problem

(pseudo-polynomial time with response-time analysis)
–  DM is optimal among all scheduling algorithms that use static

task priorities for which Di ≤ Ti
(shown by J. Leung and J. W. Whitehead in 1982)

Example: scheduling using DM

Simulate an execution of the task set given earlier using DM:

 All tasks now meet their deadlines!

Priority = H

Priority = L

Priority = M

t 0 24 32 16 8

1τ

2τ

3τ

Feasibility tests

What types of feasibility tests exist?
•  Hyper period analysis (for any type of scheduler)

–  In an existing schedule no task execution may miss its deadline

•  Processor utilization analysis (static/dynamic priority scheduling)
–  The fraction of processor time that is used for executing the

task set must not exceed a given bound

•  Response time analysis (static priority scheduling)
–  The worst-case response time for each task must not exceed

the deadline of the task

•  Processor demand analysis (dynamic priority scheduling)
–  The accumulated computation demand for the task set under

a given time interval must not exceed the length of the interval

Response-time analysis

The response time for a task represents the worst-
case completion time of the task when execution
interference from other tasks are accounted for.

Ri

iii ICR +=

τ i

The response time for a task consists of:
 The task’s uninterrupted execution time (WCET)

 Interference from higher-priority tasks
iC

τ i

iI

Response-time analysis

Interference:
Consider two tasks, and , where has higher priority τ i τ j τ j

Case 1: jiiji CCRTR +=⇒≤<0

t 0

jT

iR

jC

iC

τ i

τ j

Response-time analysis

Interference:
Consider two tasks, and , where has higher priority τ i τ j τ j

Case 2: jiijij CCRTRT 22 +=⇒≤<

t 0

jT

iR

jC

1,iC 2,iC

τ i

τ j

When task is preempted by higher-priority task : τ i τ j

Response-time analysis

Interference:

The response time for is at most time units. τ i Ri

If , task can be preempted at most one time by τ iji TR ≤<0 τ j
If , task can be preempted at most two times by τ i τ jjij TRT 2≤<

...
If , task can be preempted at most three times by τ ijij TRT 32 ≤< τ j

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡

j

i

T
R

The number of interferences from is thus limited by: τ j

j
j

i C
T
R
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
The total time for these interferences are:

Response-time analysis

Interference:

•  For static-priority scheduling, the interference term is

Ii =
Ri
Tj

⎡

⎢
⎢
⎢

⎤

⎥
⎥
⎥∀j∈hp(i)

∑ Cj

where is the set of tasks with higher priority than . iτ)(ihp

•  The response time for a task is thus: iτ

Ri = Ci +
Ri
Tj

⎡

⎢
⎢
⎢

⎤

⎥
⎥
⎥
Cj

∀j∈hp(i)
∑

Response-time analysis

Interference:

•  The equation does not have a simple analytic solution.
•  However, an iterative procedure can be used:

Ri
n+1 = Ci +

Ri
n

Tj

⎡

⎢
⎢
⎢

⎤

⎥
⎥
⎥
Cj

∀j∈hp(i)
∑

•  The iteration starts with a value that is guaranteed to be less
than or equal to the final value of (e.g.) iR Ri

0 = Ci

•  The iteration completes at convergence () or if the
response time exceeds some threshold (e.g.)

Ri
n+1 = Ri

n

 Di

Exact feasibility test for DM
(Sufficient and necessary condition)

A sufficient and necessary condition for DM scheduling
of synchronous task sets, for which , is

The response-time analysis and associated feasibility test was
presented by M. Joseph and P. Pandya in 1986.

∀i: Ri ≤ Di

where is the worst-case response time for task iR iτ

 Di ≤ Ti

 In other words: for the task set to be schedulable with DM there must
not exist an instance of a task execution in the schedule where the
worst-case response time of the task exceeds its deadline.

Exact feasibility test for DM
(Sufficient and necessary condition)

The test is valid under the following assumptions:
 1. All tasks are independent.

–  There must not exist dependencies due to precedence
or mutual exclusion

 2. All tasks are periodic.
 3. All tasks have identical offsets (= synchronous task set).
 4. Task deadline does not exceed the period ().
 5. Task preemptions are allowed.

ii TD ≤

Example 1: scheduling using DM

Problem: We once again assume the system with tasks given in
the beginning of this lecture.
 Show, by using response-time analysis, that the tasks are
schedulable using DM.

1τ 2τ 3τ
 Task Ci Di Ti

4 1τ
2τ
3τ

3
2

6
14
10

8
16
32

Example 1: scheduling using DM
Calculation of response times:

R1 =C1 = 4

R3 =C3 +
R3
T1

⎡

⎢
⎢

⎤

⎥
⎥C1

R3
2 = 2+ 6

8
⎡

⎢
⎢

⎤

⎥
⎥ ⋅4 = 2+1⋅4 = 6

[Assume R3
0 = C3 = 2]

[τ1 has highest priority w r t DM]

[Convergence because R3
2 = R3

1]
R3
1 = 2+ 2

8
⎡

⎢
⎢

⎤

⎥
⎥ ⋅4 = 2+1⋅4 = 6

[τ 3 has medium priority w r t DM]

≤ D1 = 6 ⇒ OK!

≤ D3 =10 ⇒ OK!

Example 1: scheduling using DM

R2 =C2 +
R2
T1

⎡

⎢
⎢

⎤

⎥
⎥C1 +

R2
T3

⎡

⎢
⎢

⎤

⎥
⎥C3

[Convergence because R2
3 = R2

2]

[Assume R2
0 = C2 = 3]

R2
1 = 3+ 3

8
⎡

⎢
⎢

⎤

⎥
⎥ ⋅4+

3
32
⎡

⎢
⎢

⎤

⎥
⎥ ⋅2 = 3+1⋅4+1⋅2 = 9

[τ 2 has lowest priority w r t DM]

R2
2 = 3+ 9

8
⎡

⎢
⎢

⎤

⎥
⎥ ⋅4+

9
32
⎡

⎢
⎢

⎤

⎥
⎥ ⋅2 = 3+ 2 ⋅4+1⋅2 =13

R2
3 = 3+ 13

8
⎡

⎢
⎢

⎤

⎥
⎥ ⋅4+

13
32
⎡

⎢
⎢

⎤

⎥
⎥ ⋅2 = 3+ 2 ⋅4+1⋅2 =13 ≤ D2 =14 ⇒ OK!

Example 1: scheduling using DM

As we saw in the beginning of the lecture the resulting
schedule looks like this:

Priority = H

Priority = L

Priority = M

t 0 24 32 16 8

1τ

2τ

3τ

The test can be extended to handle:

•  Blocking

•  Start-time variations (”release jitter”)

•  Time offsets (asynchronous task sets)

•  Deadlines exceeding the period

•  Overhead due to context switches, timers, interrupts, …

In this course, we only show how blocking is handled.

Extended response-time analysis

Blocking can be accounted for in the following cases:
•  Blocking caused by critical regions

–  Blocking factor represents the length of critical region(s) that
are executed by tasks with lower priority than

•  Blocking caused by non-preemptive scheduling
–  Blocking factor represents largest WCET (not counting)

Extended response-time analysis

Ri = Ci + Bi +

Ri

Tj

!

"
"

#

$
$ C j

∀j∈hp(i)
∑

iB
iτ

iB iτ

Priority Ceiling Protocol:
•  Basic idea:

Each resource is assigned a priority ceiling equal to the priority
of the highest-priority task that can lock it. Then, a task is
allowed to enter a critical region only if its priority is higher than
all priority ceilings of the resources currently locked by tasks
other than .

When the task blocks one or more higher-priority tasks, it
temporarily inherits the highest priority of the blocked tasks.

iτ

iτ

iτ

Recollection from an earlier lecture

Blocking using ceiling priority protocol ICPP:

Recollection from an earlier lecture

L receives R’s ceiling priority (= H’s priority)

L receives original priority
H blocked

t
H

t
M

normal execution

critical region

priority (H) > priority (M) > priority (L)

t
L

H and L share mutex resource R

Blocking caused by lower-priority tasks:

•  This occurs if the lower-priority task is within a critical

region when arrives, and the critical region’s ceiling
priority is higher than or equal to the priority of . τ i

τ i

•  When using a priority ceiling protocol (such as ICPP),
a task can only be blocked once by a task with lower
priority than . τ i

τ i

•  Blocking now means that the start time of is delayed

(= the blocking factor) iB
τ i

•  As soon as has started its execution, it cannot be

blocked by a lower-priority task.
τ i

Extended response-time analysis

Determining the blocking factor for task : τ i

1. Determine the ceiling priorities for all critical regions.

2. Identify the tasks that have a priority lower than and
that calls critical regions with a ceiling priority equal to or
higher than the priority of . τ i

τ i

3. Consider the times that these tasks lock the actual critical
regions. The longest of those times constitutes the blocking
factor . iB

Extended response-time analysis

Example 2: scheduling using DM

Problem: Assume a system with three tasks using two resources,
according to the figure below. The timing properties of the tasks
are given in the table. Note that Di ≤ Ti.
 Two semaphores, S1 and S2, are used for protecting the resources.
 The parameters HS1 and HS2 represent the longest time a task may
lock semaphore S1 and S2, respectively.

S1 S2

1τ 2τ 3τ Task Ci Di Ti

2 4

25
3 12 12
8 24

5
HS1 HS2

1
-
2 -

1
1 1τ

2τ
3τ

Example 2: scheduling using DM

Problem: (cont’d)

 Examine the schedulability of the tasks when ICPP (Immediate
Ceiling Priority Protocol) is used.

 a) Derive the ceiling priorities of the semaphores.
 b) Derive the blocking factors for the tasks.
 c) Determine whether the tasks are schedulable or not using DM.

 may use semaphore S2

Example 2: scheduling using DM

a) Ceiling priorities for the semaphores:

 S1 = max{H , M}= H

 S2 = max{H , L} = H

H M L

b) Since both semaphores have highest ceiling priority (H),
tasks and may be blocked by a task with lower priority
regardless of which semaphore that lower-priority task uses.

3 0B =

 B1 = max{1,2}= 2 may use semaphore S1 or

 may use semaphore S2 B2 = max{2} = 2

S1 S2

1τ 2τ 3τ

1τ 2τ

3τ
3τ
2τ

NOTE: may be blocked although it does not use S2 2τ

Example 2: scheduling using DM

c) Calculate response times:

 R1 = C1 + B1 = 2 + 2 = 4 ≤ D1 = 4 ⇒OK!

R2 = C2 + B2 +

R2

T1

!

"
"

#

$
$C1

R2

1 = 3+ 2 +
3
5
!

"
"
#

$
$ ⋅2 = 3+ 2 +1⋅2 = 7

R2

2 = 3+ 2 +
7
5
!

"
"
#

$
$ ⋅2 = 3+ 2 + 2 ⋅2 = 9

R2

3 = 3+ 2 +
9
5
!

"
"
#

$
$ ⋅2 = 3+ 2 + 2 ⋅2 = 9 ≤ D2 = 12 ⇒OK!

[Assume R2
0 = C2 = 3]

Example 2: scheduling using DM

R3 = C3 +

R3

T2

!

"
"

#

$
$C2 +

R3

T1

!

"
"

#

$
$C1

R3

1 = 8 +
8

12
!

"
"

#

$
$ ⋅3+

8
5
!

"
"
#

$
$ ⋅2 = 8 +1⋅3+ 2 ⋅2 = 15

R3

2 = 8 +
15
12
!

"
"

#

$
$ ⋅3+

15
5

!

"
"

#

$
$ ⋅2 = 8 + 2 ⋅3+ 3 ⋅2 = 20

R3

5 = 8 +
24
12
!

"
"

#

$
$ ⋅3+

24
5

!

"
"

#

$
$ ⋅2 = 8 + 2 ⋅3+ 5 ⋅2 = 24 ≤ D3 = 24 ⇒OK!

R3

3 = 8 +
20
12
!

"
"

#

$
$ ⋅3+

20
5

!

"
"

#

$
$ ⋅2 = 8 + 2 ⋅3+ 4 ⋅2 = 22

R3

4 = 8 +
22
12
!

"
"

#

$
$ ⋅3+

22
5

!

"
"

#

$
$ ⋅2 = 8 + 2 ⋅3+ 5 ⋅2 = 24

[Assume R3
0 = C3 = 8]

