(®%)) UNIVERSITY OF GOTHENBURG

Real-Time Systems

Lecture #14

Dr Risat Pathan

Department of Computer Science and Engineering
Chalmers University of Technology

CHALMERS |

UNIVERSITY OF TECHNOLOGY

' 5 UNIVERSITY OF GOTHENBURG

Real-Time Systems

 Multiprocessor scheduling

-- Partitioned scheduling
-- Global scheduling

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Multiprocessor scheduling

How are tasks assigned to processors?

e Static assignment

— The processor(s) used for executing a task are determined
before system is put in mission (“off-line”)

— Approach: Partitioned scheduling

e Dynamic assignment

— The processor(s) used for executing a task are determined
during system operation “on-line”

— Approach: Global scheduling

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Multiprocessor scheduling

How are tasks allowed to migrate?

e Partitioned scheduling
— No migration!
— Each instance of a task must execute on the same processor
— Equivalent to multiple uniprocessor systems!

e Global scheduling
— Full migration!

— Atask is allowed to execute on an arbitrary processor

— Migration can occur even during execution of an instance of
a task (for example, after being preempted)

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Multiprocessor scheduling

A fundamental limit:

The utilization guarantee bound for multiprocessor

scheduling (partitioned or global) using static task

priorities cannot be higher than 1/2 of the capacity
of the processors.

e Hence, we should not expect to utilize more than half the
processing capacity if hard real-time constraints exist.

e A way to circumvent this limit is to use p-fair (priorities +
time quanta) scheduling and dynamic task priorities.

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Partitioned scheduling

General characteristics:

e Each processor has its own queue for ready tasks

e Tasks are organized in groups, and each task group is
assigned to a specific processor

— For example, using a bin-packing algorithm

e \When selected for execution, a task can only be
dispatched to its assigned processor

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Partitioned scheduling

Advantages:

e Mature scheduling framework

— Most uniprocessor scheduling theory also applicable here
— Uniprocessor resource-management protocols can be used

e Supported by automotive industry
— AUTOSAR prescribes partitioned scheduling

Disadvantages:

e (Cannot exploit all unused execution time

— Surplus capacity cannot be shared among processors
— Will suffer from overly-pessimistic WCET derivation

(8% UNIVERSITY OF GOTHENBURG

CHALMERS |

Partitioned scheduling

Bin-packing algorithms:

e Basic idea:

— The problem concerns packing objects of varying sizes in boxes
("bins”) with the objective of minimizing number of used boxes.

® Application to multiprocessor systems:
— Bins are represented by processors and objects by tasks.

— The decision whether a processor is "full” or not is derived
from a utilization-based feasibility test.

® Assumptions:

D
a d
P,
— Independent, periodic tasks
) @
ZQ%

— Preemptive, uniprocessor scheduling (RM)

UNIVERSITY OF GOTHENBURG

o
CHALMERS | ¢
)
)
UNIVERSITY OF TECHNOLOGY

Partitioned scheduling

Bin-packing algorithms:
Rate-Monotonic-First-Fit (RMFF):
— Let the processors be indexed as u, i, ,..., 1
— Assign tasks in order of increasing periods (i.e., RM order).
— For each task 7;, choose the lowest previously-used ;j such
that 7,, together with all tasks that have already been

assigned to processor u,,can be feasibly scheduled
according to the utilization-based RM-feasibility test.

If all tasks are successfully assigned using RMFF, then
the tasks are schedulable on m processors.

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Partitioned scheduling

(Sufficient condition)

Processor utilization analysis for RMFF:

The utilization guarantee bound U, . for a system with
m processors using RMFF scheduling is

m(21/2 —1) <U

RMFF

Note: | (2 =1)=~0.41

Thus: task sets whose utilization do not exceed = 41% of the
total processor capacity is always RMFF-schedulable.

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Global scheduling

General characteristics:

e All ready tasks are kept in a common (global) queue that is
shared among the processors

e \Whenever a processor becomes idle, a task from the global
queue is selected for execution on that processor.

o After being preempted, a task may be dispatched to a
processor other than the one that started executing the
task.

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Global scheduling

Advantages:
e Supported by most multiprocessor operating systems
— Windows 7, Mac OS X, Linux, ...

e Effective utilization of processing resources

— Unused processor time can easily be reclaimed, for example
when a task does not execute its full WCET.

Disadvantages:

® \Weak theoretical framework
— Few results from the uniprocessor analysis can be used

ST

CHALMERS | {&)) UNIVERSITY OF GOTHENBURG

Jasss”

Weak theoretical framework

The "root of all evil” in global scheduling:

Few of the results obtained for a single processor
generalize directly to the multiple processor case; bringing
In additional processors adds a new dimension to the
scheduling problem. The simple fact that a task can use
only one processor even when several processors are
free at the same time adds a surprising amount of difficulty
to the scheduling of multiple processors.

(8%) UNIVERSITY OF GOTHENBURG

CHALMERS |

Weak theoretical framework

Underlying causes:

e Dhall’s effect:

— With RM, DM and EDF, some low-utilization task sets can be
non-schedulable regardless of how many processors are used.
Thus, any utilization guarantee bound would become so low
that it would be useless in practice.

— This is in contrast to the uniprocessor case where we have
utilization guarantee bounds of 69.3% (RM) and 100% (EDF).

e Hard-to-find critical instant:

— A critical instant does not always occur when a task arrives at
the same time as all its higher-priority tasks.

— Note that this is in contrast to the uniprocessor case!

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Weak theoretical framework

Dhall’'s effect: 7,={C =2¢T =1}
7, ={C,=2¢T,=1}
7,={C,=2¢T, =1}

(RM scheduling) 7,={C,=1T,=1+¢}
|
Ty 7, misses its deadline
| [I
| [o]
Al B2

ja)
\9]
)

—_—

1+ €&

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Weak theoretical framework

Dhall’'s effect:

e Applies for RM, DM and EDF scheduling

e The utilization of a non-schedulable task set can be as low
as to 1 (= 100%) no matter how many processors are used.

1
Ulbl=m28+ > 1
51094 1 1+¢

when € -0

Note: Total available processor capacity is m (= m-100%)

Consequence:
New multiprocessor priority-assignment schemes are needed!

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Weak theoretical framework

Hard-to-find critical instant: r,={C=1T =2}
7,={C,=2,T,=3}
(RM scheduling) 7,=1C,=2T,=4}
7o ! ! ! I ! I !
7 I I I I I
73 I T I I

response time of 7, is maximized for second instance

Mol Tt Tio] (T1a] (1483271503506 [01,7]03.4) T8

Wl Toq |31 T22 (T3o T23 (133 T2.4 05 134
0 4 8 12 16

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Weak theoretical framework

Hard-to-find critical instant:

e A critical instant does not always occur when a task arrives
at the same time as all its higher-priority tasks.

e Finding the critical instant is a very (NP-7?) hard problem

e Note: recall that knowledge about the critical instant is a
fundamental property in uniprocessor feasibility tests.

Consequence:

New methods for constructing effective multiprocessor
feasibility tests are needed!

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Weak theoretical framework

Dhall’'s effect: 7,={C =2¢T =1}
7, ={C,=2¢T,=1}
7,={C,=2¢T, =1}

(RM scheduling) 7,={C,=1T,=1+¢}
|
Ty 7, misses its deadline
| e I
v o]
Al B2

ja)
\9]
)

—_—

1+ €&

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

New priority-assignment scheme

How to avoid Dhall’s effect:

e Problem: RM, DM & EDF only account for task deadlines!
Actual computation demands are not accounted for.

e Solution: Dhall’s effect can easily be avoided by letting tasks
with high utilization receive higher priority:

|
W Ty T4
« | T an
u @
| m >
0 2¢ 1 1+¢

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

New priority-assignment scheme

RM-US[m/(3m-2)]:

e RM-US[m/(3m-2)] assigns (static) priorities to tasks
according to the following rule:

If U. >m/(3m—2) then 7, has the highest priority
(ties broken arbitrarily)

If U, <m/(3m—2)then T, has RM priority

e Clearly, tasks with higher utilization U, =C, /T, get
higher priority.

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Example: RM-US[m/(3m-2)]

Problem: Assign priorities according to RM-US[m/(3m-2)],
assuming the following task set to be scheduled on a system
with m = 3 processors:

’Z'lz{Clzl,T{ :7} 72:{C2:2,7;:10}
r,={C,=9,T,=20} 7,=1C,=11T,=22;
7, ={C,=2,T, =25}

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Example: RM-US[m/(3m-2)]

RM-US[m/(3m-2)] example:

e The utilizations of these tasks are: 0.143, 0.2, 0.45, 0.5 and
0.08, respectively.

For m=3:

m/(Bm—2)=3/7=0.4286

e Hence, tasks 7, and 7, will be assigned higher priorities, and
the remaining tasks will be assigned RM priorities.

e The possible priority assignments are therefore as follows
(highest-priority task listed first):

1,,7,,7,,7,,T, or 7,,7.,7,7,,7,

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

New feasibility tests

Processor utilization analysis for RM-US[m/(3m-2)]:

e A sufficient condition for RM-US[m/(3m-2)] scheduling on
m identical processors is

Question: does RM-US[m/(3m-2)] avoid Dhall’s effect?

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

New feasibility tests

Processor utilization analysis for RM-US[m/(3m-2)]:

o \We observe that, regardless of the number of processors,
the task set will always meet its deadlines as long as no
more than one third of the processing capacity is used:

2
m m

URM—US[m/(3m_2)] ~ ’}113010 3m—2 B ?

e RM-US[m/(3m-2)] thus avoids Dhall's effect since we can
always add more processors if deadlines were missed.

e Note that this remedy was not possible with traditional RM.

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

New feasibility tests

Response-time analysis for multiprocessors:

e Uses the same principle as the uniprocessor case, where
the response time for a task 7, consists of:

C; The task’s uninterrupted execution time (WCET)

I. Interference from higher-priority tasks

R =C, +1,

e The difference is that the calculation of interference now
has to account for the fact that higher-priority tasks can
execute in parallel on the processors.

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

New feasibility tests

Response-time analysis for multiprocessors:

e For the multiprocessor case, with n tasks and m processors,
we observe two things:

1. Interference can only occur when n > m.

2. Interference can only affect the n —m tasks with lowest
priority since the m highest-priority tasks will always
execute in parallel without contention on the m processors.

e Consequently, interference of a task is a function of the
execution overlap of its higher-priority tasks.

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

New feasibility tests

Response-time analysis for multiprocessors:

e The following two observations give us the secret to
analyzing the interference of a task:

With respect to the execution overlap it can be shown
that the interference is maximized when the higher-priority
tasks completely overlap their execution.

Compared to the uniprocessor case, one extra instance
of each higher-priority task must be accounted for in the
interference analysis.

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

New feasibility tests

Response-time analysis for multiprocessors:

e The worst-case interference term is

[=— 2 —|-C,+C,

M ichp(i) TJ

where hp(i) is the set of tasks with higher priority than 7, .

® The worst-case response time for a task 7, is thus:

1 R,
Ri:Ci+_ Z F 'Cj+Cj
J

M e np(i)

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

New feasibility tests

Response-time analysis for multiprocessors:

e As before, an iterative approach can be used for finding
the worst-case response time:

Rn+1 | E :] !

m e | 1

e \We now have a sufficient condition for static-priority
scheduling on multiprocessors:

Vi: R <D,

(8%) UNIVERSITY OF GOTHENBURG

CHALMERS |

Global scheduling

Early breakthrough results in global scheduling:

e Static priorities:
— 2001: RM-US[m/(3m-2)] circumvents Dhall’s effect and has non-
zero resource utilization guarantee bound of m/(3m-2) = 33.3%.

— 2003: Baker generalized the RM-US results to DM.

e Dynamic priorities:
— 2002: Srinivasan & Baruah proposed the EDF-US[m/(2m-1)]

scheme with a corresponding non-zero resource utilization
guarantee bound of m/(2m-1) = 50%.

e Optimal multiprocessor scheduling:
— 1995: Using p-fair (priorities + time quanta) scheduling and
dynamic priorities it is possible to achieve 100% resource
utilization on a multiprocessor.

