Chapter 5

Shared variable-based
synchronization and
communication

5.1 Mutual exclusion and 5.8 Protected objects in Ada
condition synchronization 5.9 Synchronized methods in
5.2 Busy waiting Java
5.8 Suspend and resume 5.10 Shared memory
5.4 Semaphores multiprocessors
5.5 Conditional critical regions 5.11 Simple embedded system
5.6 Monitors revisited
5.7 Mutexes and condition Summary
variables in C/Real-Time Further reading
POSIX Exercises

The major difficulties associated with concurrent programming arise from task
interactions. Rarely are tasks as independent of one another as they were in the
simple example at the end of Chapter 4. The correct behaviour of a concurrent
program is critically dependent on synchronization and communication between
tasks. In its widest sense, synchronization is the satisfaction of constraints on the
interleaving of the actions of different tasks (for example, a particular action
by one task only occurring after a specific action by another task). The term
is also used in the narrower sense of bringing two tasks simultaneously into
predefined states. Communication is the passing of information from one task
to another. The two concepts are linked, since some forms of communication
require synchronization, and synchronization can be considered as contentless
communication.

Inter-task communication is usually based upon either shared variables
or message passing. Shared variables are objects to which more than one
task has access; communication can therefore proceed by each task referenc-
ing these variables when appropriate. Message passing involves the explicit
exchange of data between two tasks by means of a message that passes from
one task to another via some agency. Note that the choice between shared
variables and message passing is one for the language or operating systems
designers; it does not imply that any particular implementation method should
be used. Shared variables are easy to support if there is shared memory be-
tween the tasks and, hence, they are an ideal mechanism for communication
between tasks in a shared memory multiprocessor system. However, they can

137

138 SHARED VARIABLE-BASED SYNCHRONIZATION AND COMMUNICATION

still be used even if the hardware incorporates a communication medium. Sim-
ilarly, a message-passing primitive is an ideal abstraction for a distributed sys-
tem where there is potentially no shared physical memory but, again, it can also
be supported via shared memory. Furthermore, an application can arguably
be programmed in either style and obtain the same functionality (Lauer and
Needham, 1978).

This chapter will concentrate on shared variable-based communication
and synchronization primitives. In particular, busy waiting, semaphores, con-
ditional critical regions, monitors, protected types and synchronized methods
are discussed. The impact of shared memory multiprocessors is also consid-
ered. Message-based synchronization and communication are discussed in
Chapter 6.

5.1 Mutual exclusion and condition synchronization

Although shared variables appear to be a straightforward way of passing information
between tasks, their unrestricted use is unreliable and unsafe due to multiple update
problems. Consider two tasks updating a shared variable, X, with the assignment:

Xi= X+1

On most hardware this will not be executed as an indivisible (atomic) operation, but will
be implemented in three distinct instructions:

(1) load the value of X into some register (or to the top of the stack);
(2) increment the value in the register by 1; and
(3) store the value in the register back to X.

As the three operations are not indivisible, two tasks simultaneously updating the variable
could follow an interleaving that would produce an incorrect result. For example, if X
was originally 5, the two tasks could each load 5 into their registers, increment and then
store 6.

A sequence of statements that must appear to be executed indivisibly is called a
critical section. The synchronization required to protect a critical section is known as
mutual exclusion. Atomicity, although absent from the assignment operation, is assumed
to be present at the memory level. Thus, if one task is executing X := 5, simultaneously
with another executing X := 6, the result will be either 5 or 6 (not some other value), If
this were not true, it would be difficult to reason about concurrent programs or implement
higher levels of atomicity, such as mutual exclusion synchronization. Clearly, however,
if two tasks are updating a structured object, this atomicity will only apply at the single
word element level.

The mutual exclusion problem itself was first described by Dijkstra (1965). It
lies at the heart of most concurrent task synchronizations and is of great theoretical as
well as practical interest. Mutual exclusion is not, however, the only synchronization of
importance; indeed, if two tasks do not share variables then there is no need for mutual
exclusion. Condition synchronization is another significant requirement and is needed

BUSY WAITING 139

when a task wishes to perform an operation that can only sensibly, or safely, be performed
if another task has itself taken some action or is in some defined state.

An example of condition synchronization comes with the use of buffers. Two tasks
that exchange data may perform better if communication is not direct but via a buffer.
This has the advantage of de-coupling the tasks and allows for small fluctuations in the
speed at which the two tasks are working. For example, an input task may receive data
in bursts that must be buffered for the appropriate user task. The use of a buffer to link
two tasks is common in concurrent programs and is known as a producer—consumer
system.

Two condition synchronizations are necessary if a finite (bounded) buffer is used.
Firstly, the producer task must not attempt to deposit data into the buffer if the buffer is
full. Secondly, the consumer task cannot be allowed to extract objects from the buffer
if the buffer is empty. Moreover, if simultaneous deposits or extractions are possible,
mutual exclusion must be ensured so that two producers, for example, do not corrupt the
‘next free slot’ pointer of the buffer.

The implementation of any form of synchronization implies that tasks must at
times be held back until it is appropriate for them to proceed. In Section 5.2, mutual
exclusion and condition synchronization will be programmed (in pseudo code with
explicit task declaration) using busy-wait loops and flags. From this analysis, it should
be clear that further primitives are needed to ease the coding of algorithms that require
synchronization. .

5.2 Busy waiting

One way to implement synchronization is to have tasks set and check shared variables
that are acting as flags. This approach works reasonably well for implementing condition
synchronization, but no simple method for mutual exclusion exists. To signal a condition,
a task sets the value of a flag; to wait for this condition, another task checks this flag and
proceeds only when the appropriate value is read.

task Pl; -- pseudo code for waiting task
while flag = down do
null
end;
end P1;
task P2; -- signalling task
flag := up;
end P2;

If the condition is not yet set (that is, flag is still down) then P1 has no choice but to loop
round and recheck the flag. This is busy waiting; also known as spinning (with the flag
variables called spin locks).

Busy-wait algorithms are in general inefficient; they involve tasks using up pro-
cessing cycles when they cannot perform useful work. Even on a multiprocessor system,

140 SHARED VARIABLE-BASED SYNCHRONIZATION AND COMMUNICATION

they can give rise to excessive traffic on the memory bus or network (if distributed).
Moreover, it is not possible to impose queuing disciplines easily if there is more than
one task waiting on a condition (that is, checking the value of a flag). More seriously, they
can leave to livelock. This is an error condition where tasks get stuck in their busy-wait
loops and are unable to make progress.

Mutual exclusion presents even more difficulties as the algorithms required are
more complex. Consider two tasks (P1 and P2 again) that have mutual critical sections.
In order to protect access to these critical sections, it can be assumed that each task
executes an entry protocol before the critical section and an exit protocol afterwards.
Each task can therefore be considered to have the following form.

task P; —- pseudo code
loop
entry protocol
critical section
exit protocol
non-critical section
end
end P;

An algorithm is presented below that provides mutual exclusion and absence
of livelock. It was first presented by Peterson (1981). The approach of Peterson is to
have two flags (f1agl and f1lag2) that are manipulated by the task that ‘owns’ them
and a turn variable that is only used if there is contention for entry to the critical
sections.

task Pl; -- pseudo code
loop
flagl:= up; -- announce intent to enter
turn:= 2; -- give priority to other task
while flag2 = up and turn = 2 do
null;
end;

<critical section>
flagl:= down;
<non-critical section>
end
end P1;

task P2;
loop
flag2:= up; ~- announce intent to enter
turn:= 1; -~ give priority to other task
while flagl = up and turn = 1 do
null;
end;
<critical section>
flag2:= down;
<non-critical section>
end
end P2;

BUSY WAITING 141

If only one task wishes to enter its critical section then the other task’s flag will be down
and enfry will be immediate. However, if both flags have been raised then the value of
turn becomes significant. Let us say that it has the initial value 1; then there are four
possible interleavings, depending on the order in which each task assigns a value to
turn and then checks its value in the while statement:

First Possibility -- P1 first then P2

Pl sets turn to 2

P1 checks turn and enters busy loop

P2 sets turn to 1 (turn will now stay with that value)

P2 checks turn and enters busy loop

P1 loops around rechecks turn and enters critical section

Second Possibility -- P2 first then P1

P2 sets turn to 1

P2 checks turn and enters busy loop

Pl sets turn to 2 (turn will now stay with that value)

Pl checks turn and enters busy loop

P2 loops around rechecks turn and enters critical section

Third Possibility -- interleaved P1 and P2

Pl sets turn to 2

P2 sets turn to 1 (turn will stay with this wvalue)
P2 enters busy loop

Pl enters critical section

Fourth Possibility -- interleaved P2 and Pl

P2 sets turn to 1

Pl sets turn to 2 (turn will stay with this value)
Pl enters busy loop

P2 enters critical section

All four possibilities lead to one task in its critical section and one task in a busy loop.

In general, although a single interleaving can only illustrate the failure of a system
to meet its specification, it is not possible to show easily that all possible interleavings
lead to compliance with the specification. Normally, proof methods (including model
checking) are needed to show such compliance.

Interestingly, the above algorithm is fair in the sense that if there is contention
for access (to their critical sections) and, say, P1 was successful (via either the first or
third possible interleaving) then P2 is bound to enter next. When P1 exits its critical
section, it lowers f1ag1. This could let P2 into its critical section, but even if it does
not (because P2 was not actually executing at that time) then P1 would proceed, enter
and leave its non-critical section, raise £lagl, set turn to 2 and then be placed in a
busy loop. There it would remain until P2 had entered and left its critical section and
reset £ lag? as its exit protocol.

In terms of reliability, the failure of a task in its non-critical section will not affect
the other task. This is not the case with failure in the protocols or critical section. Here, pre-
mature termination of a task would lead to livelock difficulties for the remaining program.

This discussion has been given at length to illustrate the difficulties of implementing
synchronization between tasks with only shared variables and no additional primitives

142 SHARED VARIABLE-BASED SYNCHRONIZATION AND COMMUNICATION

other than those found in sequential languages. These difficulties can be summarized as
follows.

e Protocols that use busy loops are difficult to design, understand and prove correct.
(The reader might like to consider generalizing Peterson’s algorithm for tasks.)

o Testing programs may not examine rare interleavings that break mutual exclusion
or lead to livelock.

e Busy-wait loops are inefficient.

e An unreliable (rogue) task that misuses shared variables will corrupt the entire
system.

No concurrent programming language relies entirely on busy waiting and shared vari-
ables; other methods and primitives have been introduced. For shared-variable systems,
semaphores and monitors are the most significant constructs and are described in Sections
5.4 and 5.6.

5.3 Suspend and resume

One of the problems with busy-wait loops is that they waste valuable processor time. An
alternative approach is to suspend (that is, remove from the set of runnable tasks) the
calling task if the condition for which it is waiting does not hold. Consider, for example,
simple condition synchronization using a £1ag. One task sets the flag, and another task
waits until the flag is set and then clears it. A simple suspend and resume mechanism
could be used as follows:

task Pl; -- pseudo code for walting task

if flag = down do
suspend;

end;

flag := down;

end P1;

task P2; -- gignalling task

flag := up;

resume P1l; -- has no effect, if Pl is not suspended
end P2;

An early version of the Java Thread class provided the following methods in support
of this approach.

public final void suspend();

// throws SecurityException;
public final void resume();

// throws SecurityFException;

SUSPEND AND RESUME 143

Thus the above example would be represented in Java.

boolean flag;
final boolean up = -true;
final boolean down = false;

clags FirstThread extends Thread {
public void run() {

if (flag == down) {
suspend () ;

}i

flag = down;

}
¥

class SecondThread extends Thread { // T2
FirstThread T1;

public SecondThread(FirstThread T) {
super () ;
T1L = T;

}

public void run() {

flag = up;
T1l.resume();

}
}

Unfortunately, this approach suffers from what is called a data race condition.

A data race condition is a fault in the design of the interactions between two
or move tasks whereby the result is unexpected and critically dependent on
the sequence or timing of accesses to shared data.

In this case, thread T1 could test the £1ag, and then the underlying run-time support
system (or operating system) could decide to preempt it and run T2. T2 sets the flag
and resumes T1. T1 is, of course, not suspended, so the resume has no effect. Now,
when T'1 next runs, it thinks the £1ag is down and therefore suspends itself.

The reason for this problem is that the £1ag is a shared resource which is being
tested and an action is being taken which depends on its status (the thread is suspending
itself). This testing and suspending is not an atomic operation, and therefore interference
can occur from other threads. It is for this reason that the most recent version of Java has
made these methods obsolete.

There are several well-known solutions to this race condition problem, all of which
provide a form of two-stage suspend operation. P1 essentially has to announce that it

144 SHARED VARIABLE-BASED SYNCHRONIZATION AND COMMUNICATION

Program 5.1 Synchronous task control.

package Ada.Synchronous_Task_Control is
type Suspension Object is limited private;
procedure Set_True(S : in out Suspension_Object);
procedure Set_False(S : in out Suspension_Object);
function Current_State(S : Suspension_Object) return Boolean;
procedure Suspend_Until True(S: in out Suspension_Object);
-~ raises Program_Error if more than one task tries
-- to suspend on S at once.
private
-- not specified by the language
end Ada.Synchronous_Task_Control;

is planning to suspend in the near future; any resume operation which finds that P1 is
not suspended will have a deferred effect. When P1 does suspend, it will immediately
be resumed; that is, the suspend operation itself will have no effect.

Although suspend and resume is a low-level facility, which can be error-prone
in its use, it is an efficient mechanism which can be used to construct higher-level
synchronization primitives. For this reason, Ada provides, as part of its Real-Time Annex,
a safe version of this mechanism. It is based around the concept of a suspension object,
which can hold the value True or False. Program 5.1 gives the package specification.

All four subprograms defined by the package are atomic with respect to each other.
On return from the Suspend_Until_True procedure, the referenced suspension ob-
jectisreset to False.

The simple condition synchronization problem, given earlier in this section, can,
therefore, be easily solved.

with Ada.Synchronous_Task_Control;
use Ada.Synchronous_Task_Control;
Flag : Suspension_Object;

task body Pl is
begin

Suspend_Until_True(Flag);
end P1;

task body P2 is
begin

Set_True (Flag);
end P2;

Suspension objects behave in much the same way as binary semaphores, which are
discussed in Section 5.4.4.

SEMAPHORES 145

Created

Waiting child |
initialization

Waiting dependant%
termination |

Figure 5.1 State diagram for a task.

Although suspend and resume are useful low-level primitives, no operating
system or language relies solely on these mechanisms for mutual exclusion and condition
synchronization. If present, they clearly introduce a new state into the state transition
diagram introduced in Chapter 4. The general state diagram for a task, therefore, is
extended in Figure 5.1.

5.4 Semaphores

Semaphores are a simple mechanism for programming mutual exclusion and condi-
tion synchronization. They were originally designed by Dijkstra (1968) and have the
following two benefits.

(1) They simplify the protocols for synchronization.
(2) They remove the need for busy-wait loops.

A semaphore is a non-negative integer variable that, apart from initialization, can only
be acted upon by two procedures. These procedures are called wait and signal in
this book. The semantics of wait and signal are as follows.

146 SHARED VARIABLE-BASED SYNCHRONIZATION AND COMMUNICATION

(1) wait (S) —If the value of the semaphore, S, is greater than zero then decrement
its value by one; otherwise delay the task until S is greater than zero (and then
decrement its value).

(2) signal (S) — Increment the value of the semaphore, S, by one.

General semaphores are often called counting semaphores, as their operations increment
and decrement an integer count. The additional important property of wait and signal
is that their actions are atomic (indivisible). Two tasks, both executing wait operations
on the same semaphore, cannot interfere with each other. Moreover, a task cannot fail
during the execution of a semaphore operation.

Condition synchronization and mutual exclusion can be programmed easily with
semaphores. First, consider condition synchronization:

-- pseudo code for condition synchronization
consyn : semaphore; -- initially 0
task Pl; -- walting task

&éit(consyn);

ené.él;

task P2; -- signalling task
éiénal(consyn);

ena.éZ;

When P1 executes the wait on a 0 semaphore, it will be delayed until P2 executes the

signal. This will set consyn to 1 and hence the wait can now succeed; P1 will

continue and consyn will be decremented to 0. Note that if P2 executes the signal

first, the semaphore will be set to 1, so P1 will not be delayed by the action of the wait.
Mutual exclusion is similarly straightforward:

-- pseudo code for mutual exclusion

mutex : gemaphore; —-- initially 1
task P1l;
loop
walt (mutex) ;
<critical section>
signal (mutex) ;
<non-critical section>
end
end P1;

task P2;
loop
wait (mutex);
<critical section>
signal (mutex);
<non-critical section>
end
end P2;

SEMAPHORES 147

If P1 and P2 are in contention then they will execute their wait statements simultane-
ously. However, as wait is atomic, one task will complete execution of this statement
before the other begins. One task will execute await (mutex) withmutex=1, which
will allow the task to proceed into its critical section and set mutex to 0; the other task
will execute wait (mutex) with mutex=0, and be delayed. Once the first task has
exited its critical section, it will signal (mutex). This will cause the semaphore to
become 1 again and allow the second task to enter its critical section (and set mutex to
0 again).

With a wait/signal bracket around a section of code, the initial value of the
semaphore will restrict the maximum amount of concurrent execution of the code. If
the initial value is 0, no task will ever enter; if it is 1 then a single task may enter
(that is, mutual exclusion); for values greater than one, the given number of concurrent
executions of the code is allowed.

5.4.1 Suspended tasks

In the definition of wait it is clear that if the semaphore is zero then the calling task is
delayed. One method of delay (busy waiting) has already been introduced and criticized.
A more efficient mechanism, that of suspending the task, was introduced in Section 5.3.
In fact, all synchronization primitives deal with delay by some form of suspension; the
task is removed from the set of executable tasks.

When a task executes a wait on a zero semaphore, the RTSS (run-time support
system) is invoked, the task is removed from the processor, and placed in a queue of
suspended tasks (that is a queue of tasks suspended on that particular semaphore). The
RTSS must then select another task to run. Eventually, if the program is correct, another
task will execute a signal on that semaphore. As a result, the RTSS will pick out one of
the suspended tasks awaiting a signal on that semaphore and make it executable again.

From these considerations, a slightly different definition of wait and signal
can be given. This definition is closer to what an implementation would do:

-~ pseudo code for wait(S)
if S > 0 then

S:= S-1;
else
number_suspended := number_suspended + 1

suspend_calling task;

-- pseudo code signal(S)

if number_suspended > 0 then
number_suspended := number_suspended - 1;
make_one_suspended_task_executable_again;

else
S:= S+1;

end if;

With this definition, the increment of a semaphore immediately followed by its decrement
is avoided.

Note that the above algorithm does not define the order in which tasks are released
from the suspended state. Usually, they are released in a FIFO order, although arguably

148 SHARED VARTABLE-BASED SYNCHRONIZATION AND COMMUNICATION

with a true concurrent language, the programmer should assume a non-deterministic
order (see Section 6.6). However, for a real-time programming language, the priority of
the tasks has an important role to play (see Chapter 11).

5.4.2 Implementation

The above algorithm for implementing a semaphore is quite straightforward, although
it involves the support of a queue mechanism. Where difficulty could arise is in the
requirement for indivisibility in the execution of the wait and signal operations.
Indivisibility means that once a task has started to execute one of these procedures it will
continue to execute until the operation has been completed. With the aid of the RTSS,
this is easily achieved; the scheduler is programmed so that it does not swap out a task
while it is executing a wait or a signal; they are non-preemptible operations.

Unfortunately, the RTSS is not always in full control of scheduling events. Al-
though all internal actions are under its influence, external actions happen asynchronously
and could disturb the atomicity of the semaphore operations. To prohibit this, the RTSS
will typically disable interrupts for the duration of the execution of the indivisible
sequence of statements. In this way, no external events can interfere.

This disabling of interrupts is adequate for a single processor system but not for a
multiprocessor one. With a shared-memory system, two parallel tasks may be executing
await or signal (on the same semaphore) and the RTSS is powerless to prevent it.
In these circumstances, a ‘lock” mechanism is need to protect access to the operations.
Two such mechanisms are used.

On some processors, a ‘test and set’ instruction is provided. This allows a task to
access a bit in the following way.

(1) If the bit is zero then set it to one and return zero.
(2) If the bit is one return one.

These actions are themselves indivisible. Two parallel tasks, both wishing to operate
await (for example), will do a test and set operation on the same lock bit (which is
initially zero). One task will succeed and set the bit to one; the other task will have
returned a one and will, therefore, have to loop round and retest the lock. When the first
task has completed the wait operation, it will assign the bit to zero (that is, unlock the
semaphore) and the other task will proceed to execute its wai t operation.

If no test and set instruction is available then a similar effect can be obtained by
a swap instruction. Again, the lock is associated with a bit that is initially zero. A task
wishing to execute a semaphore operation will swap a one with the lock bit. If it gets a
zero back from the lock then it can proceed; if it gets back a one then some other task is
active with the semaphore and it must retest.

As was indicated in Section 5.1, a software primitive such as a semaphore cannot
conjure up mutual exclusion out of ‘fresh air’. It is necessary for memory locations to
exhibit the essence of mutual exclusion in order for higher-level structures to be built.
Similarly, although busy-wait loops are removed from the programmer’s domain by the
use of semaphores, it may be necessary to use busy waits (as above) to implement the
wait and signal operations. It should be noted, however, that the latter use of busy-waits
is only short-lived (the time it takes ro execute a wait or signal operation), whereas their

SEMAPHORES 149

use for delaying access to the program’s critical sections could involve many seconds of
looping.

5.4.3 Liveness provision

In Section 5.2, the error condition livelock was illustrated. Unfortunately (but inevitably),
the use of synchronization primitives introduces other error conditions. Deadlock is the
most serious such condition and entails a set of tasks being in a state from which it
is impossible for any of them to proceed. This is similar to livelock but the tasks are
suspended. To illustrate this condition, consider two tasks P1 and P2 wishing to gain
access to two non-concurrent resources (that is, resources that can only be accessed by
one task at a time) that are protected by two semaphores 51 and S2. If both tasks access
the resource in the same order then no problem arises:

Pl P2
wait (S1); wait (81);
wait (S2); wait (82);
signal (8S2); signal (82);
signal (S1); signal (81);

The first task to execute the wait on S1 successfully will also successfully undertake
the wait on S2 and subsequently signal the two semaphores and allow the other
task in. A problem occurs, however, if one of the tasks wishes to use the resources in the
reverse order, for example:

Pl P2
wait (S1); wait (S2);
wait (S2); wait (S1);
signal (82); signal (81);
signal (81): signal (82);

In this case, an interleaving could allow P1 and P2 to execute successfully the wait on
S1 and S2, respectively, but then inevitably both tasks will be suspended waiting on the
other semaphore which is now zero.

It is in the nature of an interdependent concurrent program that usually once a
subset of the tasks becomes deadlocked all the other tasks will eventually become part
of the deadlocked set.

The testing of software rarely removes other than the most obvious deadlocks;
they can occur infrequently but with devastating results. This error is not isolated to
the use of semaphores and is possible in all concurrent programming languages. The
design of languages that prohibit the programming of deadlocks is a desirable, but not
yet attainable, goal. Issues relating to deadlock avoidance, detection and recovery will
be considered in Chapters 8 and 11.

150 SHARED VARIABLE-BASED SYNCHRONIZATION AND COMMUNICATION

Indefinite postponement (sometimes called lockout or starvation) is a less severe
error condition whereby a task that wishes to gain access to a resource, via a critical
section, is never allowed to do so because there are always other tasks gaining access
before it. With a semaphore system, a task may remain indefinitely suspended (that
is, queued on the semaphore) due to the way the RTSS picks tasks from this queue
when a signal arrives. Even if the delay is not in fact indefinite, but merely open ended
(indeterminate), this may give rise to an error in a real-time system.

If a task is free from livelocks, deadlocks and indefinite postponements then it is
said to possess liveness. Informally, the liveness property implies that if a task wishes to
perform some action then it will, eventually, be allowed to do so. In particular, if a task
requests access to a critical section it will gain access within a finite time.

5.4.4 Binary and quantity semaphores

The definition of a (general) semaphore is a non-negative integer; by implication its
actual value can rise to any supported positive number. However, in all the examples
given so far in this chapter (that is, for condition synchronization and mutual exclusion),
only the values 0 and 1 have been used. A simple form of semaphore, known as a binary
semaphore, can be implemented that takes only these values; that is, the signalling of
a semaphore which has the value 1 has no effect — the semaphore retains the value 1.
The construction of a general semaphore from two binary semaphores and an integer
can then be achieved, if the general form is required.

Another variation on the normal definition of a semaphore is the quantity
semaphore. With this structure, the amount to be decremented by the wait (and incre-
mented by the signal) is not fixed as 1, but is given as a parameter to the procedures:

wait(s, 1) :- if 8 »= 1 then
S := S-1
else
delay
S := S5-1
signal(S, i) :- 8 := S+i

5.4.5 Example semaphore programs in Ada

Algol-68 was the first language to introduce semaphores. It provided a type sema that
was manipulated by the operators up and down. To illustrate some simple programs
that use semaphores, an abstract data type for semaphores, in Ada, will be used.

package Semaphore_Package is
type Semaphore(Initial : Natural := 1) is limited private;
procedure Wait (S : in out Semaphore);
procedure Signal (S : in out Semaphore);
private
type Semaphore is ...
end Semaphore_Package;

Ada does not directly support semaphores, but the Wait and Signal procedures
can, however, be constructed from the Ada synchronization primitives; these have not yet

SEMAPHORES 151

been discussed, so the full definition of the type semaphore and the body of the package
will not be given here (see Section 5.8). The essence of abstract data types is, however,
that they can be used without knowledge of their implementation.

The first example is the producer/consumer system that uses a bounded buffer to
pass integers between the two tasks:

procedure Main is
package Buffer is
procedure Append (I : Integer);
procedure Take (I : out Integer);
end Buffer;
task Producer;
task Consumer;

package body Buffer is separate;
use Buffer;

task body Producer is
Item : Integer;
begin
loop
-—- produce item
Append (Item);
end loop;
end Producer;

task body Consumer is
Ttem : Integer;
begin
loop
Take (Item);
-- consume item
end loop;
end Consumer;
begin
null;
end Main;

The buffer itself must protect against concurrent access, appending to a full buffer and
taking from an empty one. This it does by the use of three semaphores:

with Semaphore_Package; use Semaphore_Package;
separate (Main)
package body Buffer is

Size : constant Natural := 32;

type Buffer_Range is mod Size;

Buf : array (Buffer_Range) of Integer;

Top, Base : Buffer Range := 0;

Mutex : Semaphore; -- default is 1
Ttem _Available : Semaphore(0);
Space_Available : Semaphore(Initial => Size);

procedure Append (I : Integer) is
begin

152 SHARED VARIABLE-BASED SYNCHRONIZATION AND COMMUNICATION

Wait (Space_Available);
Wait (Mutex) ;
Buf (Top) := I;
Top := Top + 1;
Signal (Mutex) ;
Signal {Item_Available);
end Append;

procedure Take (I : out Integer) is
begin
Wait (Item_Available);
Wait (Mutex) ;
I := Buf{(Base);
Base := Base + 1;
Signal (Mutex) ;
Signal (Space_Available);
end Take;
end Buffer;

The initial values of the three semaphores are different. Mut ex is an ordinary mutual ex-
clusion semaphore and is given the default initial value of 1; Ttem_Available protects
against taking from an empty buffer and has the initial value 0; and Space_Available
(initially Size) is used to prevent Append operations to a full buffer.

When the program starts, any consumer task that calls Take will be suspended
onWait (Item_Available); only after a producer task has called Append, and in
doing so Signal (Item_Available), will the consumer task continue.

5.4.6 Semaphore programming using Java

Although the fava language supports a monitor-like communication and synchronization
model (see Section 5.9), the Java platform provides several standard packages that support
concurrency utilities. One of these provides general-purpose classes to support different
synchronization approaches. Semaphores are included in this package.

5.4.7 Semaphore programming using C/Real-Time POSIX

Although few modern programming languages support semaphores directly, many op-
erating systems do. The POSIX API, for example, provides counting semaphores to
enable processes running in separate address spaces (or threads within the same address
space) to synchronize and communicate using shared memory. Note, however, that it
is more efficient to use mutexes and condition variables to synchronize and communi-
cate in the same address space — see Section 5.7. Program 5.2 defines the C/Real-Time
POSIX interface for semaphores (functions for naming a semaphore by a character
string are also provided but have been omitted here). The standard semaphore oper-
ations initialize, wait and signal are called sem_init, sem wait and sem post
in C/Real-Time POSIX. A non-blocking wait (sem_trywait) and a timed-version
(sem_timedwait) are also provided, as is a routine to determine the current value of
a semaphore (sem_getvalue).

Consider an example of a resource controller which appears in many forms in
real-time programs. For simplicity, the example will use threads rather than processes.
Two functions are provided: allocate and deallocate; each takes a parameter

SEMAPHORES 153

Program 5.2 The C/Real-Time POSIX interface to semaphores.

#include <time.h>
typedef ... sem_t;
int sem_init (sem_t *sem_location, int pshared, unsigned int value);
/* initializes the semaphore at location sem location to value */
/* if pshared is 1, the semaphore can be used between processes */
/* or threads */
/* if pshared is 0, the semaphore can only be used between threads */
/* of the same process */

int sem_destroy(sem_t *sem_location);
/* remove the unnamed semaphore at location sem location */

int sem_wait(sem_t *sem_location);
/* a standard wait operation on a semaphore */

int sem_trywait (sem_t *sem_location);
/* attempts to decrement the semaphore */
/* returns -1 1f the call might block the calling process */

int sem_timedwait (sem_t *sem, const struct timespec *abstime);
/* returns -1 if the semaphore could not be locked */
/* by abstime */

int sem_post (sem_t *sem_location);
/* a standard signal operation on a semaphore */

int sem_getvalue({sem t *sem_location, int *value);

/* gets the current value of the semaphore to a location */

/* pointed at by value; negative value indicates the number */
/* of threads waiting */

/* All the above functions return 0 if successful, otherwise -1. */
/* When an error condition is returned by any of the above */

/* functions, a shared variable errno contains the reason for */

/* the error */

which indicates a priority level associated with the request. It is assumed that the calling
thread deallocates the resource at the same priority with which it requested alloca-
tion. For ease of presentation, the example does not consider how the resource itself is
transferred. Moreover, the solution does not protect itself against race conditions (see
Exercise 5.21).

#include <semaphore.h>

typedef enum {high, medium, low} priority_t;
typedef enum {false, true} boolean;

sem_t mutex; /* used for mutual exclusive
access to waiting and busy */
sem_t cond([3]; /* used for condition synchronization */

154 SHARED VARIABLE-BASED SYNCHRONIZATION AND COMMUNICATION

int waiting; /* count of number of threads
waiting at a priority level */
int busy; /* indicates whether the resource is in use*/

void allocate(priority_t P)

{

SEM_WAIT{&mutex); /* lock mutex */

if(busy) {
SEM_POST (&mutex); /* release mutex */
SEM_WAIT (&cond[Pl); /* wait at correct priority level */
/* resource has been allocated */

}

busy = true;
SEM_POST (&mutex); /* release mutex */

A single semaphore, mutex, is used to ensure that all allocation and deallocation re-
quests are handled in mutual exclusion. Three condition synchronization semaphores,
cond[31], are used to queue the waiting threads at three priority levels (high,
medium and low). The allocate function allocates the resource if it is not already
in use (indicated by the busy flag).

The deallocation function simply signals the semaphore of the highest priority
waiter.

int deallocate(priority_t P)

{
SEM_WAIT(&mutex); /* lock mutex */
if (busy) {
busy = false;
/* release highest priority waiting thread */
SEM_GETVALUE (&cond [high], &waiting) ;
if (waiting < 0) {
SEM_POST {&cond[high]);
}
else {
SEM_GETVALUE (&cond [medium] , &waiting) ;
if (waiting < 0) {
SEM_POST (&cond [medium]) ;
}
else {
SEM_GETVALUE (&cond[lowl, &waiting) ;
if (waiting < 0) {
SEM_POST (&cond[lowl) ;
}
else SEM_POST (&mutex) ;
/* no one waiting, release lock */
}
}
/* resource and lock passed on to */
/* highest priority waiting thread */
return 0;
}

else return -1; /* error return */

}

SEMAPHORES 155

An initialization routine sets the busy flag to false and creates the four semaphores
used by allocate and deallocate.

void initialize() {
priority_t i;

busy = false;

SEM_INIT (&mutex, 0, 1);

for (i = high; i<= low; i++) {
SEM_INIT (&cond([i]l, 0, 0);

};

Remember that, as the C binding to Real-Time POSIX uses non-zero return values to
indicate an error has occurred, it is necessary to encapsulate every POSIX call in an if
statement. This makes the code more difficult to understand (an Ada or C++ binding
to POSIX would allow exceptions to be raised when errors occur). Consequently, as
with the other C examples used in this book, SYS_CALL is used to represent a call to
sys_call and any appropriate error recovery (see Section 3.1.1). For SEM_INIT this
might include a retry.
A thread wishing to use the resource would make the following calls:

priority_t my_priority;

allocate(my_priority); /* wait for resource */
/* use resource */
if (deallocate (my_priority) <= 0) {
/* cannot deallocate resource, */
/* undertake some recovery operation */

5.4.8 Criticisms of semaphores

Although the semaphore is an elegant low-level synchronization primitive, a real-time
program built only upon the use of semaphores is again error-prone. It needs just one
occurrence of a semaphore to be omitted or misplaced for the entire program to collapse
at run-time. Mutual exclusion may not be assured and deadlock may appear just when
the software is dealing with a rare but critical event. What is required is a more structured
synchronization primitive.

What the semaphore provides is a means to program mutual exclusion over a
critical section. A more structured approach would give mutual exclusion directly.
This is precisely what is provided for by the constructs discussed in Sections 5.5
to 5.9.

The examples shown in Section 5.4.5 showed that an abstract data type for
semaphores can be constructed in Ada. However, no high-level concurrent program-
ming language relies entirely on semaphores. They are important historically but are
arguably not adequate for the real-time domain.

156 SHARED VARIABLE-BASED SYNCHRONIZATION AND COMMUNICATION

5.5 Conditional critical regions

Conditional critical regions (CCRs) are an attempt to overcome some of the problems
associated with semaphores. A critical region is a section of code that is guaranteed to be
executed in mutual exclusion. This must be compared with the concept of a critical section
that should be executed under mutual exclusion (but in error may not be). Clearly, the
programming of a critical section as a critical region immediately meets the requirement
for mutual exclusion.

Variables that must be protected from concurrent usage are grouped together into
named regions and are tagged as being resources. Processes are prohibited from entering
a region in which another task is already active. Condition synchronization is provided
by guards on the regions. When a task wishes to enter a critical region, it evaluates the
guard (under mutual exclusion); if the guard evaluates true, it may enter, but if it is false,
the task is delayed. As with semaphores, the programmer should not assume any order
of access if more than one task is delayed attempting to enter the same critical region
(for whatever reason).

To illustrate the use of CCRs, an outline of the bounded buffer program is given
below.

~- pseudo code
program buffer_eg;
type buffer t is record
slots : array(l..N) of character;
size : integer range 0..N;
head, tail : integer range 1..N;
end record;

buffer : buffer_ t;
resource buf : buffer;
task producer;
Loop
region buf when buffer.size < N do

-- place char in buffer etc
end region;

end loop;
end,

task consumer;
loop
region buf when buffer.size > 0 do

-~ take char from buffer etc
end region

end loop;
end;
end;

MONITORS 157

One potential performance problem with CCRs is that tasks must re-evaluate their
guards every time a CCR naming that resource is left. A suspended task must become
executable again in order to test the gnard; if it is still false, it must return to the suspended
state. ’

A version of CCRs has been implemented in Edison (Brinch-Hansen, 1981), a
language intended for embedded applications, implemented on multiprocessor systems.
Each processor only executes a single task so that it may continually evaluate its guards
if necessary. However, this may cause excess traffic on the network.

5.6 Monitors

The main problem with conditional critical regions is that they can be dispersed through-
out the program. Monitors are intended to alleviate this problem by providing more
structured control regions. They also use a form of condition synchronization that is
more efficient to implement,

The intended critical regions are written as procedures and are encapsulated to-
gether into a single module called a monitor. As a module, all variables that must be
accessed under mutual exclusion are hidden; additionally, as a monitor, all procedure
calls into the module are guaranteed to execute with mutual exclusion.

Monitors appeared as a refinement of conditional critical regions. They can be
found in numerous programming languages including Modula-1, Concurrent Pascal and
Mesa.

To continue, for comparison, with the bounded buffer example, a buffer monitor
would have the following structure:

monitor buffer; -- pseudo code
export append, take;
-- declaration of necessary variables

procedure append (I : integer);
end;
procedure take (I : integer);

end;
begin

-- initialization of monitor variables
end

With languages that support monitors, concurrent calls to append and/or take (in
the above example) are serialized — by definition. No mutual exclusion semaphore needs
be provided by the programmer. The languages run-time support system will implement
the appropriate entry and exit protocols.

Although providing for mutual exclusion, there is still a need for condition syn-
chronization within the monitor. In theory, semaphores could still be used, but normally
a simpler synchronization primitive is introduced. In Hoare’s monitors (Hoare, 1974),
this primitive is called a condition variable and is acted upon by two operators which,

158 SHARED VARTABLE-BASED SYNCHRONIZATION AND COMMUNICATION

because of similarities with the semaphore structure, will again be called wait and
signal. When a task issues a wait operation, it is blocked (suspended) and placed
on a queue associated with that condition variable (this can be compared with a wait
on a semaphore with a value of zero; however, note that a wait on a condition variable
always blocks unlike a wait on a semaphore). A blocked task then releases its mutually
exclusive hold on the monitor, allowing another task to enter. When a task executes a
signal operation, it will release one blocked task. If no task is blocked on the spec-
ified variable then the signal has no effect. (Again note the contrast with signal on a
semaphore, which always has an effect on the semaphore. Indeed, wait and signal for
monitors are more akin to suspend and resume in their semantics.) The bounded buffer
example can now be given in full:

monitor buffer; -- pseudo code
export append, take;
constant size = 32;
buf : array[0...size-1} of integer;
top, base : 0..size-1;
SpaceAvailable, ItemAvailable : conditiomn;
NumberInBuffer : integer;

procedure append (I : integer);
begin

if NumberInBuffer = size then

wait (SpaceAvailable) ;

buftop] := I;

NumberInBuffer := NumberInBuffer+l;

top := (top+l) mod size;

signal (ItemAvailable) ;
end append;

procedure take (var I : integer);
begin
if NumberInBuffer = 0 then
wailt(ItemAvailable);
I := buflbasel;

base := (base+l) mod size;
NumberInBuffer := NumberInBuffer-1;
signal (SpaceAvailable) ;
end take;
begin -- initialization
NumberInBuffer := 0;
top = 0;
base := 0;
end;

If a task calls (for example) t ake when there is nothing in the buffer, then it will become
suspended on TtemAvailable, A task appending an item will, however, signal this
suspended task when an item does become available.

The semantics forwait and signal, given above, are not complete; as they stand,
two or more tasks could become active within a monitor. This would occur following
a signal operation in which a blocked task was freed. The freed task and the one that

MONITORS 159

freed it are then both executing inside the monitor. To prohibit this clearly undesirable
activity, the semantics of signal must be modified. Four different approaches are used
in languages.

(1) A signal is allowed only as the last action of a task before it leaves the monitor
(this is the case with the buffer example above).

(2) A signal operation has the side-effect of executing a return statement; that is, the
task is forced to leave the monitor.

(3) A signal operation which unblocks another task has the effect of blocking itself;
this task will only execute again when the monitor is free.

(4) A signal operation which unblocks another task does not block and the freed task
must compete for access to the monitor once the signalling task exits.

In case (3), which was proposed by Hoare in his original paper on monitors, the tasks
that are blocked because of a signal action are placed on a ‘ready queue’ and are chosen,
when the monitor is free, in preference to tasks blocked on entry. In case (4), it is the
freed task which is placed on the ‘ready queue’.

C/Real-Time POSIX, Ada and Java all support variation of the monitor approach
and will be considered in detail in the Sections 5.7-5.9.

5.6.1 Nested monitor calls

A nested monitor call occurs where a monitor procedure calls a procedure defined within
another monitor. This can cause problems when the nested procedure suspends on a
condition variable. The mutual exclusion in the last monitor call will be relinquished by
the task, due to the semantics of the wait and equivalent operations. However, mutual
exclusion will not be relinquished in the monitors from which the nested call has been
made. Processes that attempt to invoke procedures in these monitors will become blocked.
This can have performance implications, since blockage will decrease the amount of
concurrency exhibited by the system.

Various approaches to the nested monitor problem have been suggested. The most
popular one, adopted by Java and C/Real-Time POSIX, is to maintain the lock. Other ap-
proaches include prohibiting nested procedure calls altogether and providing constructs
which specify that certain monitor procedures may release their mutual exclusion lock
during remote calls.

5.6.2 Criticisms of monitors

The monitor gives a structured and elegant solution to mutual exclusion problems such
as the bounded buffer. It does not, however, deal well with condition synchronizations,
resorting to low-level semaphore-like primitives. All the criticisms surrounding the use
of semaphores apply equally (if not more s0) to condition variables.

In addition, although monitors encapsulate all the entities concerned with a re-
source, and provide the important mutual exclusion, their internal structure may still be
difficult to understand due to the use of condition variables.

160 SHARED VARIABLE-BASED SYNCHRONIZATION AND COMMUNICATION

5.7 Mutexes and condition variables in C/Real-Time POSIX

In Section 5.4.7, C/Real-Time POSIX semaphores were described as a mechanism for use
between processes and between threads. If the threads extension to C/Real-Time POSIX
is supported then using semaphores for communication and synchronization between
threads in the same address space is expensive as well as being unstructured. Mutexes
and condition variables, when combined, provide the functionality of a monitor but with
a procedural interface. Programs 5.3 and 5.4 define the basic C interface. Program 5.3
defines the attributes associated with mutexes and condition variables. As with pthreads,
each is defined by a separate object.

Program 5.3 The C/Real-Time POSIX interface to mutexes and condition variable
attributes.

typedef ... pthread_mutex_t;
typedef ... pthread_mutexattr_t;
typedef ... pthread_cond_t;
typedef ... pthread_condattr_t;

int pthread_mutexattr_destroy (pthread_mutexattr_t *attr);
/* destroy the mutex attribute object */

int pthread _mutexattr_init (pthread mutexattr_t *attr);
/* initialize a mutex attribute object */

int pthread_mutexattr_ getpshared{const pthread_mutexattr_t *
restrict attr, int *restrict pshared);
int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr,
int pshared); ’
/* get and set the attribute that indicates that the mutex */
/* can between threads in different processes */

int pthread mutexattr_gettype (
const pthread_mutexattr_t *restrict attr,
int *restrict type);
int pthread_mutexattr_ settype (pthread mutexattr_t *attr, int type);
/* get and set the attribute that defines the amount of */
/* error detection that is undertaken when mutexes are used. */
/* e.g unlocking a unlocked mutex */

int pthread_condattr_init();
int pthread_condattr_destroy();
/* initialize and destroy a condition attribute object */
/* undefined behaviour if threads are waiting on the */
/* condition variable when it is destroyed */
int pthread_condattr_getpshared();
int pthread_condattr_setpshared();
/* get and set the attribute that indicates that the condition */
/* can between threads in different processes */

/* other scheduling related attributes */

MUTEXES AND CONDITION VARIABLES IN C/REAL-TIME POSIX 161

Program 5.4 The C/Real-Time POSIX interface to mutexes and condition variables.

typedef ... pthread_mutex_t;
typedef ... pthread_mutexattr_t;
typedef ... pthread_cond_t;
typedef ... pthread_condattr_t;

int pthread_mutex_init (pthread_mutex_t *mutex,
const pthread_mutexattr_t *attr);
/* initializes a mutex with certain attributes */
int pthread_mutex_destroy (pthread mutex_t *mutex);
/* destroys a mutex */
/* undefined behaviour if the mutex is locked */

int pthread mutex_lock(pthread mutex_t *mutex);

/* lock the mutex; if locked already suspend calling thread */

/* the owner of the mutex is the thread which locked it */
int pthread_mutex_trylock (pthread_mutex_t *mutex);

/* as above, but gives an error return if mutex is already locked */
int pthread_mutex_timedlock (pthread _mutex_t *mutex,

const struct timespec *abstime);
/* as for lock, but return an error if the lock cannot */
/* be obtained by the timeout */

int pthread_mutex_unlock (pthread_mutex_t *mutex);
/* unlocks the mutex if called by the owning thread */
/* when successful, results in a blocked thread being released */

int pthread_cond_wait (pthread_cond_t *cond,
pthread_mutex_t *mutex);

/* called by thread which owns a locked mutex */

/* atomically blocks the calling thread on the cond variable and */

/* releases the lock on mutex */

/* a successful return indicates that the mutex has been locked */
int pthread_cond_timedwait (pthread cond_t *cond,

pthread_mutex_t *mutex, const struct timespec *abstime);
/* the same as pthread_cond wait, except that a error 1s returned */
/* 1f the timeout expires */

int pthread_cond_signal (pthread_cond_t *cond);

/* unblocks at least one blocked thread */

/* no effect if no threads are blocked */

/* unblocked threads automatically contend for the associated mutex */
int pthread_cond_broadcast (pthread_cond_t *cond);

/* unblocks all blocked threads */

/* no effect if no threads are blocked */

/* unblocked threads automatically contend for the associated mutex */

/* All the above functions return 0 if successful */

162 SHARED VARIABLE-BASED SYNCHRONIZATION AND COMMUNICATION

Each monitor has an associated (initialized) mut ex variable, and all operations on
the monitor (critical regions) are surrounded by calls to lock (pthread_mutex_lock)
and unlock (pthread mutex_unlock) the mutex.

Condition synchronization is provided by associating condition variables with the
mutex. Note that, when a thread waits on a condition variable (pt hread_cond_wait,
pthread_ceond_timedwait), its lock on the associated mutex is released. Also,
when it successfully returns from the conditional wait, it again holds the lock. However,
because more than one thread could be released (even by pthread_cond_signal),
the program must again test for the condition that caused it to wait initially.

Consider the following integer bounded buffer using mutexes and condition vari-
ables. The buffer consists of a mutex, two condition variables (buffer_not_full
and buffer not_empty), a count of the number of items in the buffer, the buffer
itself, and the positions of the first and last items in the buffer. The append routine locks
the buffer and if the buffer is full, waits on the condition variable buf fer_not_full.
When the buffer has space, the integer data item is placed in the buffer, the mutex is
unlocked and the buffer_not_empty signal sent. The take routine is similar in
structure.

#include <pthreads.h>
#define BUFF_SIZE 10

typedef struct {
pthread_mutex_t mutex;
pthread cond_t buffer_not_full;
pthread_cond_t buffer_not_empty;
int count, first, last;
int buf [BUFF_SIZE];
} buffer;

int append(int item, buffer *B) {
PTHREAD_MUTEX_LOCK (&B->mutex) ;
while (B->count == BUFF_SIZE)

PTHREAD_COND_WAIT (&B->buffer_not_full, &B->mutex);

/* put data in the buffer and update count and last */
PTHREAD_COND_SIGNAL (&B->buffer_ not_empty);
PTHREAD_MUTEX_UNLOCK (&B->mutex) ;
return 0;

}

int take(int *item, buffer *B) {
PTHREAD_MUTEX_LOCK (&B->mutex) ;
while (B->count == 0)
PTHREAD_COND_WAIT (&B->buffer_not_empty, &B->mutex);
/* get data from the buffer and update count and first */
PTHREAD_COND_SIGNAL (&B->buffer_not_full);
PTHREAD_MUTEX_UNLOCK (&B->mutex) ;
return 0;

}

/* an initialize() function is also required */

Although mutexes and condition variables act as a type of monitor, their semantics do
differ when a thread is released from a conditional wait and other threads are trying

PROTECTED OBJECTS IN ADA 163

to gain access to the critical region. With C/Real-Time POSIX, it is unspecified which
thread succeeds unless priority-based scheduling is being used (see Section 12.6).

Read/write locks and barriers

Mutexes are mutual exclusion locks that allow threads read and write access to the shared
data. On occasions more flexible locking is required. For example, a thread may only
require a lock to read the data. Hence, multiple threads that only wish to read the data can
access it concurrently. For these occasions, C/Real-Time POSIX provides read/write
locks. They are similar to mutexes except:

e the lock operation specifies whether a read or a write lock is required
(pthread rwlock.rdlock, pthread rwlock wrlock);

o the full range of attributes are not supported — for example there is no support for
priority inversion avoidance (see Section 11.8).

The other useful mechanism that supports C/Real-Time POSIX pthreads are
barriers. A barrier is a simple mechanism that allows threads to be blocked until a
number of them have arrived at the barrier. As with all pthread mechanisms they have
attributes and an initialize function. The barrier is initialized with the number of threads
required. The threads then call the pthread barrier_wait function and the function
does not return until the required number have arrived.

5.8 Protected objects in Ada

The criticism of monitors centres on their use of condition variables. By replacing this
approach to synchronization by the use of guards, a more structured abstraction is ob-
tained. This form of monitor will be termed a protected object. Ada is the only major
language that provides this mechanism, and hence it will be described in terms of Ada,

A protected object in Ada encapsulates data items and allows access to them
only via protected subprograms or protected entries. The language guarantees that these
subprograms and entries will be executed in a manner that ensures that the data is up-
dated under mutual exclusion. Condition synchronization is provided by having boolean
expressions on entries (these are guards but are termed barriers in Ada) that must eval-
uate to True before a task is allowed entry. Consequently, protected objects are rather
like monitors and conditional critical regions. They provide the structuring facility of
monitors with the high-level synchronization mechanism of conditional critical regions.

A protected unit may be declared as a type or as a single instance; it has a specifi-
cation and a body (hence it is declared in a similar way to a task). Its specification may
contain functions, procedures and entries.

The following declaration illustrates how protected types can be used to provide
simple mutual exclusion:

-- a simple integer

protected type Shared_Integer (Initial_Value : Integer) is
function Read return Integer;
procedure Write(New_Value : Integer);

164 SHARED VARIABLE-BASED SYNCHRONIZATION AND COMMUNICATION

procedure Increment (By : Integer);
private

The_Data : Integer := Initial_vValue;
end Shared_Integer;

My_Data : Shared_Integer (42);

The above protected type encapsulates a shared integer. The object declaration My_Data
declares an instance of the protected type and passes the initial value for the encapsulated
data. The encapsulated data can now only be accessed by the three subprograms: Read,
Write and Increment.

A protected procedure provides mutually exclusive read/write access to the data
encapsulated. In this case, concurrent calls to the procedure Write or Increment will
be executed in mutual exclusion; that is, only one can be executing at any one time.

Protected functions provide concurrent read-only access to the encapsulated data.
In the above example, this means that many calls to Read can be executed simultaneously.
However, calls to a protected function are still executed mutually exclusively with calls
to a protected procedure. A Read call cannot be executed if there is a currently executing
procedure call; a procedure call cannot be executed if there are one or more concurrently
executing function calls. The body of the Shared_Integer is simply:

protected body Shared_Integer is
function Read return Integer is
begin
return The_Data;
end Read;

procedure Write (New_Value : Integer) is
begin

The_Data := New_Value;
end Write;

procedure Increment (By : Integer) is
begin
The_Data := The_Data + By;
end Increment;
end Shared_Integer;

A protected entry is similar to a protected procedure in that it is guaranteed to
execute in mutual exclusion and has read/write access to the encapsulated data. However,
a protected entry is guarded by a boolean expression (the barrier) inside the body of the
protected object; if this barrier evaluates to False when the entry call is made, the
calling task is suspended until the barrier evaluates to True and no other tasks are
currently active inside the protected object. Hence protected entry calls can be used to
implement condition synchronization.

Consider a bounded buffer shared between several tasks. The specification of the
buffer is:

-- a bounded buffer

Buffer_Size : constant Integer := 10;

PROTECTED OBIJECTS IN ADA 165

type Index is mod Buffer Size ;
subtype Count is Natural range 0 .. Buffer_Size;
type Buffer is array (Index) of Data_Item;

protected type Bounded_Buffer is
entry Get (Item: out Data_Item);
entry Put (Item: in Data_Item);

private
First : Index := Index’First;
Last : Index := Index’Last;
Number_In_Buffer : Count := 0;

Buf : Buffer;
end Bounded_Buffer;

My_Buffer : Bounded_Buffer;

Two entries have been declared; these represent the public interface of the buffer. The
data items declared in the private part are those items which must be accessed under
mutual exclusion, In this case, the buffer is an array and is accessed via two indices;
there is also a count indicating the number of items in the buffer. The body of this
protected type is given below.

protected body Bounded_Buffer is
| entry Get (Item: out Data_Item)
when Number_ In_Buffer /= 0 is

begin
Item := Buf(First);
First := First + 1; -- mod types cycle around
Number_In_ Buffer := Number_ In_ Buffer - 1;

end Get;

entry Put(Item: in Data_Item)
when Number_In_Buffer /= Buffer_Size is

begin

Last := Last + 1;

Buf (Last) := Item;

Number_In_Buffer := Number_In_Buffer + 1;
end Put;

end Bounded_Buffer;

The Get entry is guarded by the barrier ‘when Number_In Buffer /= 0’; only
when this evaluates to True can a task execute the Get entry; similarly with the Put
entry. Barriers define a precondition; only when they evaluate to True can the entry be
accepted.

Although calls to a protected object can be delayed because the object is in use
(that is, they cannot be executed with the requested read or read/write access), Ada does
not view the call as being suspended. Calls which are delayed due to an entry barrier
being false are, however, considered suspended and placed on a queue. The reason for
this is:

e it is assumed that protected operations are short-lived;

166 SHARED VARIABLE-BASED SYNCHRONIZATION AND COMMUNICATION

e once started a protected operation cannot suspend its execution — all calls which are
potentially suspending are prohibitive and raise exceptions — it can only requeue
(see Section 8.4).

Hence a task should not be delayed for a significant period while attempting to access
the protected object — other than for reasons associated with the order of scheduling.
Once a procedure (or function) call has gained access it will immediately start to ex-
ecute the subprogram; an entry call will evaluate the barrier and will, of course, be
blocked if the barrier is false. In Section 12.3, the implementation strategy required by the
Real-Time Systems Annex is considered which guarantees that a task is never delayed
when trying to gain access to a protected object.

5.8.1 Entry calls and barriers

To issue a call to a protected object, a task simply names the object and the required
subprogram or entry. For example, to place some data into the above bounded buffer
requires the calling task to:

My_Buffer.Put (Some_Ttem) ;

At any instant in time, a protected entry is either open or closed. It is open if, when
checked, the boolean expression evaluates to True; otherwise it is closed. Generally,
the protected entry barriers of a protected object are evaluated when:

(1) atask calls one of its protected entries and the associated barrier references a vari-
able or an attribute which might have changed since the barrier was last evaluated;

(2) ataskleaves a protected procedure or protected entry and there are tasks queued on
entries whose barriers reference variables or attributes which might have changed
since the barriers were last evaluated.

Barriers are not evaluated as a result of a protected function call. Note that it is not
possible for two tasks to be active within a protected entry or procedure as the barriers
are only evaluated when a task leaves the object.

When a task calls a protected entry or a protected subprogram, the protected object
may already be locked: if one or more tasks are executing protected functions inside the
protected object, the object is said to have an active read lock; if a task is executing a pro-
tected procedure or a protected entry, the object is said to have an active read/write lock.

If more than one task calls the same closed barrier then the calls are queued, by
default, in a first-come, first-served fashion. However, this default can be changed (see
Section 12.3).

Two more examples will now be given. Consider first the simple resource con-
troller given earlier. When only a single resource is requested (and released) the code is
straightforward:

protected Resource_Control is
entry Allocate;
procedure Deallocate;

PROTECTED OBJECTS IN ADA 167

private
Free : Boolean := True;
end Resource_Control;

protected body Resource_Control is
entry Allocate when Free is
begin
Free := False;
end Allocate;
procedure Deallocate is
begin
Free := True;
end Deallocate;
end Resource_Control;

The resource is initially available and hence the Free flag is true. A call to Allocate
changes the flag, and therefore closes the barrier; all subsequent calls to Allocate will
be blocked. When Deallocate is called, the barrier is opened. This will allow one
of the waiting tasks to proceed by executing the body of Allocate. The effect of this
execution is to close the barrier again, and hence no further executions of the entry body
will be possible (until there is a further call of Deallocate).

Interestingly, the general resource controller (where groups of resources are re-
quested and released) is not easy to program using just guards. The reasons for this will
be explained in Chapter 8, where resource control is considered in some detail.

Each entry queue has an attribute associated with it that indicates how many tasks
are currently queued. This is used in the following example. Assume that a task wishes
to broadcast a value (of type Message) to a number of waiting tasks. The waiting tasks
will call a Receive entry which is only open when a new message has arrived. At that
time, all waiting tasks are released.

Although all tasks can now proceed, they must pass through the protected object
in strict sequence (as only one can ever be active in the object). The last task out must
then set the barrier to false again so that subsequent calls to Receive are blocked until
a new message is broadcast. This explicit setting of the barriers can be compared with
the use of condition variables which have no lasting effect (within the monitor) once
all tasks have exited. The code for the broadcast example is as follows (note that the
attribute Count indicates the number of tasks queued on an entry):

protected type Broadcast is
entry Receive(M : out Message);
procedure Send(M : Message);

private
New_Message : Message;
Message_Arrived : Boolean := False;

end Broadcast;
protected body Broadcast is

entry Receive(M : out Message) when Message Arrived is
begin

M := New_Message;

if Receive’Count = 0 then

168 SHARED VARIABLE-BASED SYNCHRONIZATION AND COMMUNICATION

Message_ Arrived := False;
end if;
end Receive;

procedure Send(M : Message) is

begin
if Receive’Count > 0 then
Message_Arrived := True;
New_Message := M;
end if;
end Send;

end Broadcast;

As there may be no tasks waiting for the message, the send procedure has to check the
Count attribute. Only if it is greater than zero will it set the barrier to true (and record

the new message).

Finally, this section gives a full Ada implementation of the semaphore package
given in Section 5.4.5. This shows that protected objects are not only an excellent struc-

turing abstraction but have the same expressive power as semaphores.

package Semaphore_Package is

type Semaphore(Initial : Natural := 1) is limited private;
procedure Wait (S : in out Semaphore);
procedure Signal (S : in out Semaphore);
private
protected type Semaphore(Initial : Natural := 1) is

entry Wait_TImp;
procedure Signal_TImp;
private
Value : Natural := Initial;
end Semaphore;
end Semaphore_Package;

package body Semaphore Package is
protected body Semaphore is
entry Wait_Imp when Value > 0 is
begin
Value := Value - 1;
end Wait_TImp;

procedure Signal_TImp is
begin
Value := Value + 1;
end Signal_Imp;
end Semaphore;

procedure Wait(S : in out Semaphore) is
begin

S.Wait_TImp;
end Wait;

procedure Signal(S : in out Semaphore) is
begin

PROTECTED OBJECTS IN ADA 169

S.Signal_TImp;
end Signal;
end Semaphore_Package;

5.8.2 Protected objects and object-oriented programming

As mentioned in Section 4.4.4 Ada 95 did not attempt to integrate the language’s support
for concurrent programming directly into the OOP model. Instead, the models were
orthogonal and paradigms had to be created to allow the benefits of OOP to be available
in a concurrent environment. These paradigms had inherent limitations and proposals
were developed to add OOP facilities directly into, for example, the protected type
mechanism. Unfortunately, these proposals added another layer of complexity to the
language and they did not receive widespread support. The introduction of inteifaces
into Ada 2005 allows the concurrency facilities to provide some limited support of
inheritance.

Interfaces in Ada 2005 are classified according to the type of object that can be
supported (‘implemented’ using the Java terminology). For the purpose of this book the
following interfaces are relevant.

o Synchronized — this specifies a collection of functions and procedures that can be
implemented by a task type or a protected type.

e Protected — this specifies a collection of functions and procedures that can only
be implemented by a protected type.

e Task — this specifies a collection of functions and procedures that can only be
implemented by a task type.

Synchronized and protected interfaces will be considered in this section; discussion
of task interfaces is deferred until Section 6.3.3.

The key idea of a synchronized interface is that there is some implied synchro-
nization between the task that calls an operation from an interface and the object that
implements the interface. Synchronization in Ada is achieved via two main mecha-
nisms: a protected action (call of an entry or protected subprogram — a shared variable-
based communication mechanism) or the rendezvous (a message-based communication
mechanism — see Chapter 6). Hence, a task type or a protected type can implement a
synchronized interface. Both protected entries and procedures can implement a synchro-
nized interface procedure. A protected function can implement a synchronized interface
function.

Where the programmer is not concerned with the form of synchronization, a syn-
chronized interface is the appropriate abstraction. For situations where the programmer
requires a particular form of synchronization, protected interfaces or task interfaces
should be used explicitly. For example, there are various communication paradigms that
all have at their heart some form of buffer. They, therefore, all have buffer-like operations
in common, Some programs will use these paradigms and will not care whether the imple-
mentation uses a mailbox, a link or whatever, Some will require a task in the implementa-
tions, others will just need a protected object. Synchronized interfaces allow the program-
mer to defer the commitment to a particular paradigm and its implementation approach.

170 SHARED VARIABLE-BASED SYNCHRONIZATION AND COMMUNICATION

Consider the operations that can be performed on all integer buffers:

package Integer_Buffers is
type Buffer is synchronized interface;
procedure Put (Buf : in out Buffer; Item : in Integer)
is abstract;
procedure Get (Buf : in out Buffer; Item : out Integer)
is abstract;
end Integer_Buffers;

In the above code, the Buf fer type declaration indicates that it a synchronized interface,
which supports the Put and Get procedures.
Now consider a protected type that can implement this interface.

with Integer_Buffers;
package Integer_Buffers.MailBoxes is
subtype Capacity_Range is range ...;
subtype Count is Integer range ...;
type Buffer_Store is array(Capacity_Range) of Integer;

protected type Mailbox is new Buffer with
overriding entry Put(Item : in Integer);
overriding entry Get(Item : out Integer);

priva;e
First : Capacity_Range := Capacity_Range’first;
Last : Capacity_Range := Capacity_Range’last;
Number_In_Buffer : Count := 0;

Box_Store : Buffer_ Store;
end Mailbox;
end Integer Buffers.Mailboxes;

Here, the declaration of the Mailbox protected type indicates that it implements the
Buffer interface by being derived from that type. The ‘overriding’ keyword on the
entries indicates that these entries implement the interface’s procedures. The name
of the entry and its parameter type must match the interface’s. Note, however, be-
cause of the way OOP is supported in Ada, the Buf parameter is not required as
its type is the same as the type that the Mailbox is derived from. Hence, it is an
implicit parameter that is generated when an instance of the mailbox is used. For
example, in

with Integer_ Buffers.Mailboxes;
use Integer_ Buffers.Mailboxes;

Mail : Mailbox;
Mail.Put(42);
the Mail object provides the implicit first parameter.

The main limitations with the Ada approach is that you cannot derive one protected
type from another.

SYNCHRONIZED METHODS IN JAVA 171

5.9 Synchronized methods in Java

In many ways, Ada’s protected objects are like objects in a class-based object-oriented
programming language. The main difference, of course, is that they do not support a full
inheritance relationship. Java, having a fully integrated concurrency and object-oriented
model, provides a mechanism by which monitors can be implemented in the context of
classes and objects.

In Java, there is a lock associated with each object. This lock cannot be accessed
directly by the application, but it is affected by:

e the method modifier synchronized; and

e block synchronization.

When a method is labelled with the synchronized modifier, access to the
method can only proceed once the lock associated with the object has been obtained.
Hence synchronized methods have mutnally exclusive access to the data encapsulated by
the object, if that data is only accessed by other synchronized methods. Non-synchronized
methods do not require the lock, and can therefore be called at any time. Hence to obtain
full mutual exclusion, every method has to be labelled synchronized. A simple shared
integer is therefore represented by:

class SharedInteger

{

private int theData;

public SharedInteger (int initialvValue) {
theData = initialvalue;

}

public synchronized int read() {
return thebata;

}

public synchronized void write(int newValue) {
theData = newValue;

}

public synchronized void incrementBy (int by) {
theData = theData + by;

}
}

SharedInteger myData = new SharedInteger (42);

Block synchronization provides a mechanism whereby a block can be labelled as
synchronized. The synchronized keyword takes as a parameter an object whose lock
it needs to obtain before it can continue. Hence synchronized methods are effectively
implementable as:

public int read() {
synchronized(this) {

172 SHARED VARIABLE-BASED SYNCHRONIZATION AND COMMUNICATION

return theData;

}
}

where this is the Java mechanism for obtaining the current object.

Used in its full generality, the synchronized block can undermine one of the ad-
vantages of monitor-like mechanisms: that of encapsulating synchronization constraints
associated with an object into a single place in the program. This is because it is not
possible to understand the synchronization associated with a particular object by just
looking at the object itself when other objects can name that object in a synchronized
statement. However, with careful use this facility augments the basic model and al-
lows more expressive synchronization constraints to be programmed, as will be shown
shortly.

Although synchronized methods or blocks allow mutually exclusive access to data
in an object, this is not adequate if that data is static. Static data is shared between all
objects created from the class. To obtain mutually exclusive access to this data requires
access to a different lock.

In Java, classes themselves are also objects and therefore there is a lock associated
with the class. This lock may be accessed either by labelling a static method with
the synchronized modifier or by identifying the class’s object in a synchronized block
statement. The latter can be obtained from the Object class associated with the object.
Note, however, that this class-wide lock is not obtained when synchronizing on the
object. Hence to obtain mutual exclusion over a static variable requires the following
(for example):

class StaticSharedvariable

{

private static int shared;

public synchronized static int Read() {
return shared;

public synchronized static void Write(int T) {
shared = I;

}

5.9.1 Waiting and notifying

To obtain conditional synchronization requires further support. This again comes
from methods provided in the predefined Object class as illustrated in Program 5.5.
These methods are designed to be used only from within methods that hold the
object lock (i.e. they are synchronized). If called without the lock, the exception
IllegalMonitorStateException is thrown.

The wait method always blocks the calling thread and releases the lock associated
with the object. If the call is made from within a nested monitor then only the lock
associated with the wait is released.

SYNCHRONIZED METHODS IN JAVA 173

Program 5.5 Support for waiting and notifying in the Object class.

package java.lang;
public class Object {

// The following methods all throw the unchecked

// IllegalMonitorStateException.

public final void notify();

public final void notifyAll();

public final void wait () throws InterruptedException;

The not i fy method wakes up one waiting thread; the one woken is not defined
by the Java language (however, it is defined by Real-Time Java; see Section 12.7). Note
that not i fy does not release the lock, and hence the woken thread must still wait until
it can obtain the lock before it can continue. To wake up all waiting threads requires
use of the not 1 fyAll method; again this does not release the lock and all the awoken
threads must contend for the lock when it becomes free. If no thread is waiting, then
notify and notifyAll have no effect.

A waiting thread can also be awoken if it is interrupted by another thread. In this
case the InterruptedException is thrown. This situation will be ignored in this
chapter (the exception will be allowed to propagate), but discussed fully in Section 7.7.2.

Although it appears that Java provides the equivalent facilities to other languages
supporting monitors, there is one important difference. There are no explicit condition
variables. Hence, when a thread is awoken, it cannot necessarily assume that its ‘condi-
tion’ is true, as all threads are potentially awoken irrespective of what conditions they
were waiting on. For many algorithms this limitation is not a problem, as the conditions
under which tasks are waiting are mutually exclusive.

For example, the bounded buffer traditionally has two condition variables:
BufferNotFull and Buf ferNotEmpty, each associated with the corresponding
buffer state. If a thread is waiting for one condition, no other thread can be waiting
for the other condition as the buffer cannot be both full and empty at the same time.
Hence, one would expect that the thread can assume that when it wakes, the buffer is in
the appropriate state. Unfortunately, this is not always the case. Java, in common with
other monitor-like approaches (for example, C/Real-Time POSIX mutexes), makes no
guarantee that a thread woken from a wait will gain immediate access to the lock, Fur-
thermore, a Java implementation is allowed to generate spurious wake-ups not related
to the application.

Consider a thread that is woken after waiting on the Buf ferNotFull condition.
Another thread could call the put method, find that the buffer has space and insert data
into the buffer, When the woken thread eventually gains access to the lock, the buffer
will again be full. Hence, it is usually essential for threads to re-evaluate their conditions,
as illustrated in the integer bounded buffer example below.

public class BoundedBuffer {
public BoundedBuffer (int length) {

174 SHARED VARIABLE-BASED SYNCHRONIZATION AND COMMUNICATION

size = length;
buffer = new int[size];
last = 0;
first = 0;
}
public synchronized void put (int item)
throws InterruptedException {
while (numberInBuffer == gize) wait();
last = (last + 1) % size;
numberInBuffer++;
buffer[last] = item;
notifyAll();
}
public synchronized int get ()
throws InterruptedException {

while (numberInBuffer == 0) wait();
first = (first + 1) % size;
numberInBuffer--;

notifyall();

return buffer[first];

}

private int buffer(];

private int first;

private int last;

private int numberInBuffer = 0;
private int size;

Of course, if not i fyAll is used to wake up threads, then it is more obvious that those
threads must always re-evaluate their conditions before proceeding.

In general, many simple synchronization errors can be avoided in Java if all wa it
method calls are enclosed in while loops that evaluate the waiting conditions and the
notifyAll method is used to signal changes to each object’s state. This approach,
while safe, is potentially inefficient as spurious wake-ups will occur. To improve perfor-
mance, the not i £y method may be used when:

o all threads are waiting for the same condition;
e at most one waiting thread can benefit from the state change;

e the JVM does not generate any wake-ups without an associated call to the not i fy
and notifyAll methods on the corresponding object.

The readers—writers problem

One of the standard concurrency control problems is the readers—writers problem. In
this, many readers and many writers are attempting to access a large data structure.
Readers can read concurrently, as they do not alter the data; however, writers require
mutual exclusion over the data both from other writers and from readers. There are
different variations on this scheme; the one considered here is where priority is always
given to waiting writers. Hence, as soon as a writer is available, all new readers will be
blocked until all writers have finished. Of course, in extreme situations this may lead to
starvation of readers.

SYNCHRONIZED METHODS IN JAVA 175

The solution to the readers—writers problem using standard monitors requires four
monitor procedures — startRead, stopRead, startWriteand stopWrite. The
readers are structured:

startRead();
// read data structure
stopRead () ;

Similarly, the writers are structured:

startWrite () ;
// write data structure
stopWrite();

The code inside the monitor provides the necessary synchronization using two condition
variables: OkToRead and OkToWrite. In Java, the approach is as follows.

public class ReadersWriters {
// Preference is given to waiting writers.
public synchronized void startWrite()
throws InterruptedException {
// Wait until it is ok to write.

while(readers > 0 || writing) {
waitingWriters++;
try {
wait ();
} finally { waitingWriters--; }

writing = true;
public synchronized void stopWrite() {
writing = false;
notifyali();
public synchronized void startRead()
throws InterruptedException {
// Wait until it is ok to read.

while (writing || waitingWriters > 0) wait();
readers++;

}

public synchronized void stopRead() {
readers--;
if (readers == 0) notifyall();

}

private int readers = 0;

private int waitingWriters = 0;
private boolean writing = false;

}

In this solution, on awaking after the wait request, the thread must re-evaluate the condi-
tions under which it can proceed. Although this approach will allow multiple readers or
a single writer, arguably it is inefficient, as all threads are woken up every time the data
becomes available. Many of these threads, when they finally gain access to the monitor,
will find that they still cannot continue and therefore will have to wait again.

176 SHARED VARIABLE-BASED SYNCHRONIZATION AND COMMUNICATION

Program 5.6 An abridged Java Lock interface.

package java.util.concurrent.locks;
public interface Lock {
public void lock();
// Uninterruptibly wait for the lock to be acquired.
public void lockInterruptibly ()
throws InterruptedException;
// As above but interruptible.
public Condition newCondition();
// Create a new condition variable for use with the Lock.
public boolean tryLock();
// Returns true is lock is available immediately.
public void unlock();

Program 5.7 An abridged Java Condition interface.

package java.util.concurrent.locks;
public interface Condition {
public void await () throws InterruptedException;
/* Atomically releases the associated lock and
* causes the current thread to wait until
* 1. another thread invokes the signal method
and the current thread happens to be chosen
as the thread to be awakened; or
2. another thread invokes the signalAll method;
3. another thread interrupts the thread; or
4. a spurious wake-up occurs.
* When the method returns it is guaranteed to hold the
* associated lock.
*/

L R R

public void awaitUninterruptible();

// As for await, but not interruptible.
public void signal();

// Wake up one waiting thread.
public void signalAll();

// Wake up all waiting threads.

5.9.2 Synchronizers and locks

The Java concurrency utilities provide a range of support packages aimed at eas-
ing the burden of concurrent programming. These expand the built-in facilities that
have been discussed above. The package that is most relevant to this section is
java.util.concurrent.locks. It main goal is to provide efficient support for

SYNCHRONIZED METHODS IN JAVA

177

Program 5.8 An abridged Java ReentrantLock class.

package java.util.concurrent.locks;

public class ReentrantLock implements Lock, java.io.Serializable {
public ReentrantLock();

public void lock(); .
public void lockInterruptibly () throws InterruptedException;
public Condition newCondition();

// Create a new condition variable and associated it

// with this lock object.
public boolean tryLock();
public void unlock{();

various locking approaches including locks that support explicit condition variables.
Programs 5.6 and 5.7 show the Java interfaces that support these abstractions. Various
types of lock are provided, including mutual exclusion locks (the ReentrantLock

class shown in Program 5.8) and read/write locks.

Using these facilities it is possible to implement the bounded buffer using the

familiar algorithm with two condition variables.

import java.util.concurrent.locks.*;
public class BoundedBuffer2 {
public BoundedBuffer2(int length) {
size = length;
buffer = new int[size];
last = 0;
first = 0;
numberInBuffer = 0;
lock = new ReentrantLock();
notFull = lock.newCondition();
notEmpty = lock.newCondition();
}
public void put (int item)
throws InterruptedException {

lock.lock();

try {
while (numberInBuffer == size) notFull.await();
last = (last + 1) % size;
numberInBuffer++;

bufferflast] = item;
notEmpty.signal (};
} finally {
lock.unlock();
}

}

178 SHARED VARIABLE-BASED SYNCHRONIZATION AND COMMUNICATION

public synchronized int get ()
throws InterruptedException {

lock.lock () ;

try {
while (numberInBuffer == 0) notEmpty.await{);
first = (first + 1) % size ;
numberInBuffer--;

notFull.signal ();
return buffer[first];
} finally {
lock.unlock () ;
}

}

private int buffer(];

private int first;

private int last;

private int numberInBuffer;
private int size;

private Lock lock;

private final Condition notFull;
private final Condition notEmpty;

Note the use of a finally clause to ensure the unlock method is always called
before the method exits.

5.9.3 Inheritance and synchronization

The combination of the object-oriented paradigm with mechanisms for concurrent
programming may give rise to the so-called inheritance anomaly (Matsuoka and
Yonezawa, 1993). An inheritance anomaly exists if the synchronization between op-
erations of a class is not local but may depend on the whole set of operations present for
the class. When a subclass adds new operations, it may become necessary to change the
synchronization defined in the parent class to account for these new operations.

For example, consider the bounded buffer presented earlier in this section. With
Java, the code that tests the conditions (Buf ferNotFull and Buf ferNotEmpty)is
embedded in the methods. It will be shown in Chapter 8 that, in general, this approach
has many advantages as it allows the methods to access the parameters to the method as
well as the object attributes. However, it does cause some problems when inheritance is
considered. Suppose that the bounded buffer is to be subclassed so that all accesses can
be prohibited. Two new methods are added, prohibitAccess and allowAccess.
A naive extension might include the following code:

public class LockableBoundedBuffer extends BoundedBuffer {
boolean prohibited ;

// Incorrect Code

LockableBoundedBuffer (int length) {
super (length) ;
prohibited = false;

}

SHARED MEMORY MULTIPROCESSORS 179

public synchronized void prohibitAccess() throws InterruptedException {
while (prohibited) wait();
prohibited = true;

}

public synchronized void allowAccess() throws AccessError {
if (!prohibited) throw new AccessError();
prohibited = false;
notifyAll();

}

public synchronized void put (int item) throws InterruptedException {
while (prohibited) wait();
super .put (item) ;

}

public synchronized int get() throws InterruptedException {
while (prohibited) wait();
return (guper.get ());

}
}

Unfortunately, there is a subtle bug with this approach. Consider the case where a
producer is attempting to put data into a full buffer. Access to the buffer is not pro-
hibited so super.put (item) is invoked where the call is blocked waiting for the
Buf ferNotEmpty condition. Now access to the buffer is prohibited. Any further
calls to get-and put are held in the overridden subclass methods, as will be further
calls to the prohibitAccess method, Now a call to the allowAccess method is
made; this results in all waiting threads being released. Suppose the order in which the
released threads acquire the monitor lock is: the consumer thread, the thread attempting
to prohibit access to the buffer, the producer thread. The consumer finds that access to the
buffer is not prohibited and takes data from the buffer. It issues a not 1 £yAll request,
but no threads are now currently waiting. The next thread which runs now prohibits
access to the buffer. The producer thread runs next and places an item into the buffer
although access is prohibited!

Although this example might seem contrived, it does illustrate the subtle bugs that
can occur due to the inheritance anomaly.

5.10 Shared memory multiprocessors

Multiprocessor systems are becoming more prevalent. In particular symmetric multi-
processor (SMP) systems, where processors have shared access to the main memory,
are often the default platform for large real-time systems rather than a single processor
system. From a theoretical concurrent programming viewpoint, a program that is prop-
erly synchronized and executes successfully on a single processor systems will execute
successfully on a SMP system. Programs that are not properly synchronized may suffer
from data race conditions (see Section 5.3). Even properly synchronized programs can
suffer from deadlocks. Consequently, a program that appears to execute correctly on
a single processor cannot be guaranteed to work correctly on a multiprocessor as it is
doubtful that all possible interleaving of task executions will have been exercised on

180 SHARED VARTABLE-BASED SYNCHRONIZATION AND COMMUNICATION

the single processor system. As a result, concurrency-related faults/bugs will remain
dormant,

In order to understand how a concurrent program executes on a SMP system it is
necessary to understand the memory consistency model provided by the machine. The
simplest model is sequential consistency. An SMP system is sequentially consistent if
the result of any execution of a program is the same as if the instructions of all the
processors are executed in some sequential order, and the instructions of any thread
within the sequence is the same as that specified by its program logic (Lamport, 1997).
Hence, both atomicity of instructions and the maintenance of task instruction sequences
are required.

Sequential consistency is a very restrictive property, and if rigidly supported would
disallow many optimizations that are typically performed by compilers and modern
multiprocessors. For example, a compiler would not be able to reorder the instructions
and the hardware would not be able to execute instructions out of order, The presence of
hardware caches exacerbates these problems.

To overcome the severe constraints imposed by the requirement of sequential con-
sistency, relaxed memory models can be used. These either relax the instruction order
or the atomicity requirements. Different SMP architectures adopt different approaches —
see Adve and Gharachorloo (1996) for a classification.

From the programmer’s perspective, it is crucial to understand what guarantees a
programming language provides when a shared variable is updated, in particular, when
that update becomes visible to other tasks potentially executing on other Processors.
The remainder of this section considers the guarantees provided by Java and Ada. It
is the compiler and the run-time systems that must implement these guarantees on the
underlying architecture’s memory model irrespective of the memory model it provides.

5.10.1 The Java memory model

Early versions of the Java language were criticized because its semantics on multipro-
cessors were ill defined and had serious problems (Pugh, 2000). The Java 5 language
has corrected this with a new memory model (the Java Memory Model, JMM) that, on
the one hand allows both compiler and hardware optimization, but, on the other hand,
gives intuitive semantics to program code.

From a language semantics view point, a concurrent program can be defined using
a trace model. A trace model defines the meaning of a thread as the set of sequences of
events (traces) that the thread can be observed to perform. Hence, a program’s execution
is the set of all possible thread traces. The language’s memory model describes, given
a program and an execution trace of that program, whether the execution trace is a legal
execution of the program,

The JMM is concerned with memory actions, which are defined to be reads and
writes to memory locations shared between threads. Local variables, formal method
parameters and exception handler parameters are never shared, and consequently fall
outside the model. Given two actions A and B, the results of action A is visible to action
B if there is a happens-before relation between them. The following defines the relation:

e if A and B are in the same thread and A comes before B in the program order then
A happens-before B,

SHARED MEMORY MULTIPROCESSORS 181

e an unlock monitor action happens-before all subsequent lock actions on the same
monitor;

e awrite to a volatile' variable V happens-before all subsequent reads from V in any
thread;

e an action that starts a thread happens-before the first action of the thread it starts;

e the final action of a thread happens-before any action in any other thread that
determines that it has terminated (using 1sAlive or the Join methods in the
Thread class);

o the interruption of a thread T (via the interrupt method in the Thread
class) happens-before any thread that detects that T has been interrupted (via the
interrupted and isInterrupt methods in the Thread class or by having
the InterruptedException thrown);

e if A happens-before B and B happens-before C, then A happens-before C.

The formal semantics of the JMM are complex; however, they can be approximated by
the following two rules.

e The actions of each thread in isolation are defined by the action of its code (in
program order) in isolation, with the exception that the values seen by each read
variable action are determined by the JMM.,

e A read operation on variable A must return the value written to it by the previous
write operation that happened before it.

From this, the following points need to be emphasized when accessing variables
shared between threads.

e When one thread starts another — changes made by the parent thread before the
start requests are visible to the child thread when it executes.

e When one thread waits for the termination of another — changes made by the termi-
nating thread before it terminates are visible to the waiting thread once termination
has been detected.

o When one thread interrupts another — changes made by the interrupting thread
before the interrupt request are made visible to the interrupted thread when the
interruption is detected by the interrupted thread.

e When threads read and write to the same volatile field — changes made by the
writer thread to shared data (before it writes to the volatile field) are made visible
to a subsequent reader of the same volatile field.

Any implementation of Java on a SMP system must respect the Java Memory
Model, and where the architecture potentially performs optimization that might under-
mine it, code must be executed to ensure that this does not occur (for example memory
fences or barriers must be inserted).

! A volatile variable is one that cannot be held in local registers or caches. All read and write operations go
directly to the memory.

182 SHARED VARIABLE-BASED SYNCHRONIZATION AND COMMUNICATION

5.10.2 Ada and shared variables

Ada has no explicit memory model but, like Java, the Ada language defines the conditions
under which it is safe to read and write to shared variables outside the rendezvous or
protected objects. Hence, the model is implicit.

The safe conditions are as follows:

e where one task writes a variable before activating another task that reads the
variable;

e where the activation of one task writes the variable and the task awaiting completion
of the activation reads the variable;

e where one task writes the variable and another task waits for the termination of
the task and then reads the variable;

e where one task writes the variable before making an entry call on another task,
and the other task reads the variable during the corresponding entry body or accept
statement;

e where one task writes a shared variable during an accept statement and the calling
task reads the variable after the corresponding entry call has returned;

e where one task writes a variable whilst executing a protected procedure body or
entry, and the other task reads the variable, for example as part of a later execution
of an entry body of the same protected body.

If the Systems Programming Annex is supported, there are extra facilities that can
be used to control shared variables between unsynchronized tasks. They come in the
form of extra pragmas which can be applied to certain objects or type declarations.

e Pragma Volatile — pragma Volatile ensures that all reads and writes go
directly to memory.

o Pragma Volatile Components - pragma Volatile Components
applies to components of an array.

e Pragma Atomic and pragma Atomic_Components — whilst pragma
Volatile indicates that all reads and writes must be directed straight to mem-
ory, pragma Atomic imposes the further restriction that they must be indivisible.
That is, if two tasks attempt to read and write the shared variable at the same time,
then the result must be internally consistent. An implementation is not required to
support atomic operations for all types of variable; however, if not supported for
a particular object, the pragma (and hence the program) must be rejected by the
compiler.

The language defines accesses to volatile and atomic variables to be interactions
with the external environment, and hence compilers must ensure that no reordering of
instructions occurs across their use.

Unlike Java, which attempts to define the semantics of a program that is not
properly synchronized, Ada simply defines these situations to result in erroneous program
execution.

SIMPLE EMBEDDED SYSTEM REVISITED 183

5.11 Simple embedded system revisited

In Section 4.8, a simple embedded system was introduced and a concurrent solution
was proposed. The Ada solution is now updated to illustrate communication with the
operator console. Recall that the structure of the controller is as below:

with Data_Types; use Data_Types;
with I0; use I0;
with Control_Procedures; use Control_Procedures;

procedure Controller is
task Temp_Controller;
task Pressure_Controller;

task body Temp_Controller is
TR : Temp_Reading; HS : Heater_Setting;

begin
loop
Read (TR} ;
Temp_Convert (TR, HS) ;
Write (HS);
Write (TR} ;
end loop;

end Temp_Controller;

task body Pressure_Controller is
PR : Pressure_Reading; PS : Pressure_Setting;
begin
loop
Read (PR) ;
Pressure_Convert (PR, PS) ;
Write (PS);
Write (PR) ;
end loop;
end Pressure_Controller;

begin
null; -— Temp_Controller and Pressure_Controller
-- have started their executions
end Controller;

and that the interfaces to the I/O routines were:

- with Data_Types; use Data_Types;
package IO is
-- procedures for data exchange with the environment

procedure Read (TR : out Temp_Reading); -- from DAC
procedure Read (PR : out Pressure_Reading); -- from DAC
procedure Write(HS : Heater_Setting); ~-- to switch.
procedure Write(PS : Pressure Setting); -- to DAC
procedure Write(TR : Temp_Reading); -- to console
procedure Write (PR : Pressure_Reading); -- to console

end I0;

184 SHARED VARIABLE-BASED SYNCHRONIZATION AND COMMUNICATION

The body of the 1/0 routines can now be completed. The data to be sent to the console
is stored in a monitor (in this case using an Ada protected object). The console task will

call the entry to get the new data,

package body IO is
task Console;
protected Console_Data is
procedure Write(R : Temp_Reading);
procedure Write(R : Pressure_Reading);
entry Read(TR : out Temp_Reading;
PR : out Pressure_Reading);
private
Last_Temperature : Temp_Reading;
Last_Pressure :Pressure_Reading;
New_Reading : Boolean := False;
end Console_bata;

-—- procedures for data exchange with the environment

procedure Read(TR : out Temp_Reading) is geparate; -- from DAC

procedure Read (PR : out Pressure_Reading) is separate;
procedure Write(HS : Heater_Setting) is separate; ——
procedure Write(PS : Pressure_Setting) is separate; --

task body Console is

TR : Temp_Reading;.

PR : Pressure_Reading;
begin

loop

Console_Data.Read (TR, PR);
-~ Display new readings
end loop;
end Console;

protected body Console_Data is
procedure Write(R : Temp_Reading) is

begin
Last_Temperature := R;
New_Reading := True;

end Write;

procedure Write(R : Pressure_Reading) is

begin
Last_Pressure := R;
New_Reading := True;

end Write;

entry Read(TR : out Temp_Reading;
PR : out Pressure_Reading)
when New_Reading is
begin
TR := Last_Temperature;
PR := Last_Pressure;
New_Reading := False;
end Read;
end Console Data;

-~ from DAC
to switch.
to DAC

SUMMARY 185

procedure Write(TR : Temp_Reading) is

begin
Console_Data.Write(TR) ;
end Write; -- to screen

procedure Write (PR : Pressure_ Reading) is

begin
Console_Data.Write(PR);
end Write; -- to screen
end I0;
Summary

Process interactions require operating systems and concurrent programming
languages to support synchronization and inter-task communication. Commu-
nication can be based on either shared variables or message passing. This
chapter has been concerned with shared variables, the multiple update difficul-
ties they present and the mutual exclusion synchronizations needed to counter
these difficulties. In this discussion, the following terms were introduced:

e critical section — code that must be executed under mutual exclusion;

o producer — consumer system — two or more tasks exchanging data via
a finite buffer;

¢ busy waiting — a task continually checking a condition to see if it is now
able to proceed;

e livelock — an error condition in which one or more tasks are prohibited
from progressing whilst using up processing cycles.

Examples were used to show how difficult it is to program mutual exclusion using
only shared variables. Semaphores were introduced to simplify these algorithms
and to remove busy waiting. A semaphore is a non-negative integer that can
only be acted upon by wait and signal procedures. The executions of these
procedures are atomic.

The provision of a semaphore primitive has the consequence of introducing
a new state for a task; namely, suspended. It also introduces two new error
conditions:

e deadlock — a collection of suspended tasks that cannot proceed,;

¢ indefinite postponement — a task being unable to proceed as resources
are not made available for it (also called lockout or starvation).

Semaphores can be criticized as being too low-level and error-prone in use.
Following their development, five more structured primitives were introduced:

e conditional critical regions
e monitors
e Mmutexes

186 SHARED VARIABLE-BASED SYNCHRONIZATION AND COMMUNICATION

e protected objects
e synchronized methods.

Monitors are an important language feature. They consist of a module, entry to
which is assured (by definition) to be under mutual exclusion. Within the body
of a monitor, a task can suspend itself if the conditions are not appropriate for
it to proceed. This suspension is achieved using a condition variable. When a
suspended task is awoken (by a signal operation on the condition variable), it
is imperative that this does not result in two tasks being active in the module at
the same time.

A form of monitor can be implemented using a procedural interface.
Such a facility is provided by mutexes and condition variables in C/Real-Time
POSIX.

Although monitors provide a high-level structure for mutual exclusion, other
synchronizations must be programmed using very low-level condition variables.
This gives an unfortunate mix of primitives in the language design. Ada’s pro-
tected objects give the structuring advantages of monitors and the high-ievel
synchronization mechanisms of conditional critical regions.

Integrating concurrency and OOP is fraught with difficulties. Ada tries
to simplify the problem by supporting interfaces but not inheritance with pro-
tected types. Java, however, addresses the problem by providing synchronized
member methods for classes. This facility (along with the synchronized state-
ment and wait and notify primitives) provides a flexible object-oriented based
monitor-like facility. Unfortunately, the inheritance anomaly is present with this
approach.

The next chapter considers message-based synchronization and commu-
nication primitives. Languages that use these have, in effect, elevated the mon-
itor to an active task in its own right. As a task can only be doing one thing at
a time, mutual exclusion is assured. Tasks no longer communicate with shared
variables but directly. It is therefore possible to construct a single high-level prim-
itive that combines communication and synchronization. This concept was first
considered by Conway (1963) and has been employed in high-level real-time
programming languages. It forms the basis of the rendezvous in Ada.

Further reading

Ben-Ari, M. (2005) Principles of Concurrent and Distributed Programming. New York:
Prentice Hall.

Burns, A. and Wellings, A. I. (2007) Concurrent and Real-time Programming in Ada.
Cambridge: Cambridge University Press.

Butenhof, D. R. (1997) Programming With Posix Threads. Reading, MA: Addison-
Wesley.

Goetz, B. (2006) Java: Concurrency in Practice. Reading, MA: Addison-Wesley.

Hyde, P. (1999) Java Thread Programming. Indianapolis, IN: Sams Publishing.

Lea, D. (1999) Concurrent Programming in Java: Design Principles and Patterns. Read-
ing, MA: Addison-Wesley.

