CHAPTER 2

2.1
IF x < 10 THEN
IF x < 5 THEN
x =5
ELSE
PRINT x
END IF
ELSE
DO
IF x < 50 EXIT
x=x -5
END DO
END IF

2.2
Step 1: Start
Step 2: Initialize sum and count to zero
Step 3: Examine top card.
Step 4: If it says “end of data” proceed to step 9; otherwise, proceed to next step.
Step 5: Add value from top card to sum.
Step 6: Increase count by 1.
Step 7: Discard top card
Step 8: Return to Step 3.
Step 9: Is the count greater than zero?
If yes, proceed to step 10.
If no, proceed to step 11.
Step 10: Calculate average = sum/count
Step 11: End
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sum =0
count =0

sum = sum + value
count = count + 1




2.4

Students could implement the subprogram in any number of languages. The following
Fortran 90 program is one example. It should be noted that the availability of complex
variables in Fortran 90, would allow this subroutine to be made even more concise.
However, we did not exploit this feature, in order to make the code more compatible with
Visual BASIC, MATLAB, etc.

PROGRAM Rootfind
IMPLICIT NONE
INTEGER: :ier
REAL::a, b, ¢, rl, i1, r2, i2
DATA a,b,c/1.,5.,2./
CALL Roots(a, b, ¢, ier, rl, il, r2, i2)
IF (ier .EQ. 0) THEN
PRINT *, rl,il," i"
PRINT *, r2,i2," i"
ELSE
PRINT *, "No roots"
END IF
END

SUBROUTINE Roots(a, b, ¢, ier, rl, i1, r2, 12)
IMPLICIT NONE
INTEGER: :ier
REAL::a, b, ¢, d, rl1, i1, r2, i2
rl1=0.
r2=0.
i1=0.
i2=0.
IF (a .EQ. 0.) THEN
IF (b <> 0) THEN

rl = -c/b
ELSE
ier = 1
END IF
ELSE

d = b**2 - 4.*a*c
IF (d >= 0) THEN

rl = (-b + SQRT(d))/ (2*a)
r2 = (-b - SQRT(d))/ (2*a)
ELSE
rl = -b/(2*a)
r2 = rl
il = SQRT(ABS(d))/ (2*a)
i2 = -i1
END IF
END IF
END

The answers for the 3 test cases are: (a) —0.438, -4.56; (b) 0.5; (¢) —1.25 + 2.33i; —1.25 —
2.33i.

Several features of this subroutine bear mention:

¢ The subroutine does not involve input or output. Rather, information is passed in and out
via the arguments. This is often the preferred style, because the I/O is left to the
discretion of the programmer within the calling program.

* Note that an error code is passed (IER = 1) for the case where no roots are possible.



2.5 The development of the algorithm hinges on recognizing that the series approximation of the
sine can be represented concisely by the summation,

n 2i-1

i=1

X
2 (2i - 1)!

where i = the order of the approximation. The following algorithm implements this
summation:

Step 1: Start

Step 2: Input value to be evaluated x and maximum order n

Step 3: Set order (i) equal to one

Step 4: Set accumulator for approximation (approx) to zero

Step 5: Set accumulator for factorial product (fact) equal to one

Step 6: Calculate true value of sin(x)

Step 7:

Step 8:

Step 9:

If order is greater than n then proceed to step 13
Otherwise, proceed to next step

Calculate the approximation with the formula
2i-1

approx = approx + (=1)""
factor

Determine the error

%error = true—approx 100%

true

Step 10: Increment the order by one
Step 11: Determine the factorial for the next iteration

factor = factor e 2+ i —2)* (2°i—1)

Step 12: Return to step 7
Step 13: End



2.6

i=1
true = sin(x)

approx =0
factor = 1

v F

approx=approx+ (- 1)' "’

v

error = w 100%
true

X2i-1

factor

'

OUTPUT
i,approx,error,

'
| factor=factor(2i-2)(2i-1) |

R S —

end

Pseudocode:

SUBROUTINE Sincomp (n,x)

i=1

true = SIN(x)
approx = 0
factor = 1
DO

IF i > n EXIT
approx = approx + (-1)*lex*i! / factor

error = Abs(true - approx) / true) * 100

PRINT i, true, approx, error
i=1i+1
factor = factors (2¢i-2)e¢ (2°i-1)
END DO
END



2.7 The following Fortran 90 code was developed based on the pseudocode from Prob. 2.6:

PROGRAM Series
IMPLICIT NONE
INTEGER: :n
REAL::x

n = 15

x = 1.5

CALL Sincomp (n, x)
END

SUBROUTINE Sincomp (n, x)
IMPLICIT NONE
INTEGER::n, i, fac
REAL::x, tru, approx, er

i=1
tru = SIN(x)
approx = 0.
fac =1
PRINT *, " order true approx error"
DO
IF (i > n) EXIT
approx = approx + (-1) ** (i-1) * x ** (2*i - 1) / fac

er = ABS(tru - approx) / tru) * 100
PRINT *, i, tru, approx, er
i=1+1

fac = fac * (2*i-2) * (2*i-1)

END DO

END

OUTPUT:

order true approx error

1 0.9974950 1.500000 -50.37669
2 0.9974950 0.9375000 6.014566
3 0.9974950 1.000781 -0.3294555
4 0.9974950 0.9973912 1.0403229E-02
5 0.9974950 0.9974971 -2.1511559E-04
6 0.9974950 0.9974950 0.0000000E+00
7 0.9974950 0.9974951 -1.1950866E-05
8 0.9974950 0.9974949 1.1950866E-05
9 0.9974950 0.9974915 3.5255053E-04
10 0.9974950 0.9974713 2.3782223E-03
11 0.9974950 0.9974671 2.7965026E-03
12 0.9974950 0.9974541 4.0991469E-03
13 0.9974950 0.9974663 2.8801586E-03
14 0.9974950 0.9974280 6.7163869E-03
15 0.9974950 0.9973251 1.7035959E-02

Press any key to continue

The errors can be plotted versus the number of terms:

1.E+02
1.E+01
1.E+00
1.E-01
1.E-02
1.E-03
1.E-04
1.E-05




2.8

2.9

Interpretation: The absolute percent relative error drops until at n = 6, it actually yields a
perfect result (pure luck!). Beyond, n = 8, the errors starts to grow. This occurs because of
round-off error, which will be discussed in Chap. 3.

AQ=442/5=88.4
AH =548/6 =91.33

without final
_ 30(88.4) +30(91.33)
30 +30

AG =89.8667

with final
_ 30(88.4) +30(91.33) +40(91)
30+30

AG =90.32

The following pseudocode provides an algorithm to program this problem. Notice that the
input of the quizzes and homeworks is done with logical loops that terminate when the user
enters a negative grade:

INPUT number, name
INPUT WQ, WH, WF
ng =0
sumg = 0
DO
INPUT quiz (enter negative to signal end of quizzes)
IF quiz < 0 EXIT
ng = nqg + 1
sumqg = sumqg + quiz
END DO
AQ = sumq / ng
PRINT AQ
nh = 0
sumh = 0
PRINT "homeworks"
DO
INPUT homework (enter negative to signal end of homeworks)
IF homework < 0 EXIT
nh = nh + 1
sumh = sumh + homework
END DO
AH = sumh / nh
PRINT "Is there a final grade (y or n)"
INPUT answer
IF answer = "y" THEN
INPUT FE
AG = (WQ * AQ + WH * AH + WF * FE) / (WQ + WH + WF)
ELSE
AG = (WQ * AQ + WH * AH) / (WQ + WH)
END IF
PRINT number, name$, AG
END



n F

0 $100,000.00
1 $108,000.00
2 $116,640.00
3 $125,971.20
4 $136,048.90
5

$146,932.81

24 $634,118.07
25 $684,847.52

2.10 Programs vary, but results are

Bismarck = —10.842 t=0to 59

Yuma = 33.040 =180 to 242
2.11
n A
1 40,250.00
2 21,529.07
3 15,329.19
4 12,259.29
5 10,441.04
2.12
Step v(12) & (%)
2 49.96 5.2
1 48.70 2.6
0.5 48.09 -1.3

Error is halved when step is halved
2.13

Fortran 90 VBA




Subroutine BubbleFor (n, b)
Implicit None

!'sorts an array in ascending
lorder using the bubble sort

Integer(4)::m, i, n
Logical::switch

Real::a(n),b(n),dum

End Do
If (switch ==
m=m- 1

End Do

.False.) Exit

End

2.14 Here is a flowchart for the algorithm:

Function VoI(R, d)
pi = 3.141593

Vol = pi *d*3/3

A4
V1=pi*RA3/3
Vol = V2 =pi* RAz (d-R)
“Overtop”
VoI= 1+V2

| »
LAV

|

Here is a program in VBA:

Option Explicit

Function Vol (R, d)

Option Explicit
Sub Bubble (n, b)

'sorts an array in ascending
'order using the bubble sort

Dim m As Integer, i As Integer
Dim switch As Boolean
Dim dum As Single

m=n - 1
Do
switch = False
For i = 1 Tom
If b(i) > b(i + 1) Then
dum = b (i)
b(i) = b(i + 1)
b(i + 1) = dum
switch = True
End If
Next i
If switch = False Then Exit Do
m=m - 1
Loop
End Sub



Dim V1 As Single, v2 As Single,
pi =4 * Atn(l)

If d < R Then
Vol =pi *d "~ 3/ 3

ElseIf d <= 3 * R T
Vl =pi * R "~ 3/ 3
v2 = pi * R "~ 2 * (
Vol = V1 + v2

Else
Vol = "overtop"

End If

d - R)

End Function

The results are

R d Volume
1 0.3 0.028274
1 0.8 0.536165
1 1 1.047198
1 2.2 4.817109
1 3 7.330383
1 3.1 overtop

2.15 Here is a flowchart for the algorithm:

TT=3.141593
7y = x2 +y2

F

:
="

pi As Single

T

B

Polar :91§9
1!
v

End Polar

And here is a VBA function procedure to implement it:

Option Explicit

Function Polar(x, V)



Dim th As Single, r As Single
Const pi As Single = 3.141593

r =S8qgr(x ~ 2 +y ~ 2)

If x < 0 Then
If y > 0 Then

th = Atn(y / x) + pi
ElseIf y < 0 Then
th = Atn(y / x) - pi
Else
th = pi
End If
Else

If y > 0 Then
th = pi / 2
ElseIf y < 0 Then
th = -pi / 2
Else
th =0
End If
End If

Polar = th * 180 / pi

End Function

The results are:

X y 0

1 1 90
1 -1 -90
1 0 0

-1 1 135
-1 -1 -135
-1 0 180
0 1 90
0 -1 -90
0 0 0
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for A = 0.2 (.00= 0,003

A (amp = 00046

= (1+2)[1- ‘,72;_(4)]
= .672¢

TI\MW
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4.18 f(x) =x-1-1/2*sin(x)
f'(x) = 1-1/2*cos(x)
f"(x) = 1/2*sin(x)
f"(x) = 1/2*cos(x)
fV(x) = -1/2*sin(x)

Using the Taylor Series Expansion (Equation 4.5 in the book), we obtain the following
1%, 2™, 3" and 4™ Order Taylor Series functions shown below in the Matlab program-
f1, 2, f4. Note the 2" and 3" Order Taylor Series functions are the same.

From the plots below, we see that the answer is the 4™ Order Taylor Series expansion.

x=0:0.001:3.2;

f=x-1-0.5%*sin(x);

subplot(2,2,1);
plot(x,f);grid;title('f(x)=x-1-0.5*sin(x) ') ;hold on

fl=x-1.5;

el=abs (f-£f1); %Calculates the absolute value of the
difference/error

subplot (2,2,2);

plot(x,el);grid;title('lst Order Taylor Series Error');

f2=x-1.5+0.25.*%((x-0.5%pi)."2);

e2=abs (f-£2);

subplot(2,2,3);

plot (x,e2) ;grid;title('2nd/3rd Order Taylor Series Error');

f4=x-1.54+0.25.*((x-0.5%pi) ."2)-(1/48) *((x-0.5%pi)."4) ;

ed=abs (f4-f);

subplot (2,2,4);

plot(x,ed) ;grid;title('4th Order Taylor Series Error');hold off



f(x)=x-1-0.5*sin(x)

3
2 /
1
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2nd/3rd Order Taylor Series Error
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4.19 EXCEL WORKSHEET AND PLOTS

0.8

0.6

0.4

0.2

0.015

0.01

0.005

1st Order Taylor Series Error

NI

1 2 3

4th Order Taylor Series Error

First Derivative Approximations Compared to Theoretical

f'(x)

x-values

—— Theoretical
rrrrr Backward
—-—-Centered
— - Forward




-2.000
-1.750
-1.500
-1.250
-1.000
-0.750
-0.500
-0.250
0.000
0.250
0.500
0.750
1.000
1.250
1.500
1.750
2.000

-2.000
-1.750
-1.500
-1.250
-1.000
-0.750
-0.500
-0.250
0.000
0.250
0.500
0.750
1.000
1.250
1.500
1.750
2.000

Approximations of the 2nd Derivative

15.0

50

0o

(x)

2.5 2.0 1.5 1.0 0i5 110 115 20 25
Theory
0.000 -2.891 2.141 3.625 3.625 -12.000
2.141 0.000 3.625 -2.891 4.547 -10.500
3.625 2.141 4.547 0.000 5.000 -9.000
4.547 3.625 5.000 2.141 5.078 -7.500
5.000 4.547 5.078 3.625 4.875 -6.000
5.078 5.000 4.875 4.547 4.484 -4.500
4.875 5.078 4.484 5.000 4.000 -3.000
4.484 4.875 4.000 5.078 3.516 -1.500
4.000 4.484 3.516 4.875 3.125 0.000
3.516 4.000 3.125 4.484 2.922 1.500
3.125 3.516 2.922 4.000 3.000 3.000
2.922 3.125 3.000 3.516 3.453 4.500
3.000 2.922 3.453 3.125 4.375 6.000
3.453 3.000 4.375 2.922 5.859 7.500
4.375 3.453 5.859 3.000 8.000 9.000
5.859 4.375 8.000 3.453 10.891 10.500
8.000 5.859 10.891 4.375 14.625 12.000
f(x) f(x-1) f(x+1) f'(x)-Theory f'(x)-Back
0.000 -2.891 2.141 10.000 11.563
2.141 0.000 3.625 7.188 8.563
3.625 2.141 4.547 4.750 5.938
4.547 3.625 5.000 2.688 3.688
5.000 4.547 5.078 1.000 1.813
5.078 5.000 4.875 -0.313 0.313
4.875 5.078 4.484 -1.250 -0.813
4.484 4.875 4.000 -1.813 -1.563
4.000 4.484 3.516 -2.000 -1.938
3.516 4.000 3.125 -1.813 -1.938
3.125 3.516 2.922 -1.250 -1.563
2.922 3.125 3.000 -0.313 -0.813
3.000 2.922 3.453 1.000 0.313
3.453 3.000 4.375 2.688 1.813
4.375 3.453 5.859 4.750 3.688
5.859 4.375 8.000 7.188 5.938
8.000 5.859 10.891 10.000 8.563

f"x)- f"(x)-Cent

Back
150.500
-12.000
-10.500

-9.000
-7.500
-6.000
-4.500
-3.000
-1.500
0.000
1.500
3.000
4.500
6.000
7.500
9.000
10.500

f'(x)-Cent
10.063

7.250
4.813
2.750
1.063
-0.250
-1.188
-1.750
-1.938
-1.750
-1.188
-0.250
1.063
2.750
4.813
7.250
10.063

''(x)-

Forw

-12.000
-10.500
-9.000
-7.500
-6.000
-4.500
-3.000
-1.500
0.000
1.500
3.000
4.500
6.000
7.500
9.000
10.500
12.000

f'(x)-Forw
8.563
5.938
3.688
1.813
0.313
-0.813
-1.563
-1.938
-1.938
-1.563
-0.813
0.313
1.813
3.688
5.938
8.563
11.563

-10.500
-9.000
-7.500
-6.000
-4.500
-3.000
-1.500

0.000
1.500
3.000
4.500
6.000
7.500
9.000
10.500
12.000
13.500
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8.11 Substituting the parameter values yields

3 —
108 =15017¢
1-¢ 1000

+1.75

This can be rearranged and expressed as a roots problem
g3
f(€)=0.151-¢)+1.75 —101— =0
—&

A plot of the function suggests a root at about 0.45.

0 0.2 0.4 0.6

But suppose that we do not have a plot. How do we come up with a good initial guess. The void
fraction (the fraction of the volume that is not solid; i.e. consists of voids) varies between 0 and 1. As
can be seen, a value of 1 (which is physically unrealistic) causes a division by zero. Therefore, two
physically-based initial guesses can be chosen as 0 and 0.99. Note that the zero is not physically
realistic either, but since it does not cause any mathematical difficulties, it is OK. Applying bisection
yields a result of € = 0.461857 in 15 iterations with an absolute approximate relative error of 6.5x10™
%

8.12
The total pressure is equal to the partial pressures of the components:

P=Pb+Pt

According to Antoine’s equation

Combining the equations yields

4B 4o b
fry=e T v T p=g

The root of this equation can be evaluated to yield 7= 350.5.

8.13 There are a variety of ways to solve this system of 5 equations



k= [H'IHCO;]

(1)

[CO,]
K, = m (2)
K, =[H"][OH"] (3)
¢, =[CO,]+[HCO;1+[CO3] (4)
Alk =[HCO;]+2[CO; ]+[OH ]-[H"] (5)

One way is to combine the equations to produce a single polynomial. Equations 1 and 2 can be solved
for

H'[HCO; . _[H'IK

H,CO.=
(H:60;1] K [HCO; ]

These results can be substituted into Eq. 4, which can be solved for
[H,CO5] = Fyer [HCO; ] = Fier [CO3" 1= Fyer

where F, F|, and F), are the fractions of the total inorganic carbon in carbon dioxide, bicarbonate and
carbonate, respectively, where
KK,
2
[H']" +K,[H']+K K,

2

= [H+]2 F = KI[H+]
[H']? +K [H'1+ KK, ' [H]?+K[H]+KK,

0

Now these equations, along with the Eq. 3 can be substituted into Eq. 5 to give
0=Fc, +2F,c, +K,/[H ]-[H"]- Alk
Although it might not be apparent, this result is a fourth-order polynomial in [H'].

[HT* +(K, + AIK[H' ] +(K,K, + AIKK, =K, - K,c,; [H']?
+(AIKK K, - KK, —2K,K,c,JH' ]~ K,K,K, =0

Substituting parameter values gives
[H']* +2.001x107°[H ] =5.012x107"°[H"]* =1.055x 107" [H"]-2.512%x107" =0
This equation can be solved for [H"] =2.51x10"7 (pH = 6.6). This value can then be used to compute

10™
[OH ]=————— =3.98x10""
2.51x10



2.51x107)

[H,CO5]= . 3x107° :0.33304(3x10‘3) =0.001
2.51x107] +1073[2.51x107 | + 101073
6.3 -7
[HCOZ]= - 10 (2'51"10 ) 3x10‘3:0.666562(3x10‘3):0.002
(2.51x10'7) +10‘63(2.51><10'7)+10*~310‘1°‘3
-6.31~10.3
[COT 1= > 10710 3%107 :0.000133(3x10‘3):1.33x10‘4M
(2.51x10'7) +10“"’3(2.51><10'7)+10‘6~310“°~3
8.14 The integral can be evaluated as
out D D
—J'C K o U= xmFouthe —cF
Cin kmaxc kmax kmax E Hcin ’ E

Therefore, the problem amounts to finding the root of

Excel solver can be used to find the root:

=] =| =i+ kmax LN(Cout/Cing+Cout-Cin)
A | B | ¢ | b | E | F [ 6 | H | 4 [ K |

;: = | D Solver Parameters 2 x|
3 |Cin 01 M Sek Target Cell: $B$10 * Solve I
4K 0.1 b EqualToi Max Mo 0 Yalueol: [0 cose |
| 5 |kmax 1.00E-03 /= By Changing Cells:

B |V 1000 L
? T T ICout ik_] Guess |
E Cout | 0.05: -Subject to the Constraints: Optiore |
9

10]fco)  [Tieearien] I
11 | | Change |
112 Reset all |
i ;I Delete | =
14 teh |
|15 - -

A B |0 5 7 | [ |

[ 21

2 |F 80 Lfs
T Cin 01m Solver found a solution. Al constrainks and optimality
Z K 0:1 M conditions are satisfied, Reports
| 5 |kmax 1.00E-03 /s : i =
LB |V 1oL lmts
7| . | ¥
8 |Cout | 0.099375978
) ) Save Scenario... | Help |

10 |ficout) | 3.62241E-D?!

11
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8.24

%$Region from x=8 to x=10
x1=[8:.1:10];

y1=20* (x1-(x1-5))-15-57;
figure (1)

plot(xl,yl)

grid

%$Region from x=7 to x=8
x2=[7:.1:87;
y2=20* (x2-(x2-5))-57;

figure (2)
plot (x2,vy2)
grid

$Region from x=5 to x=7
x3=[5:.1:71;
y3=20* (x3-(x3-5))-57;

figure (3)
plot (x3,y3)
grid

$Region from x=0 to x=5
x4=[0:.1:57;
y4=20*x4-57;

figure (4)

plot (x4,v4)

grid

$Region from x=0 to x=10
figure (5)

plot(x1l,vyl,x2,v2,x3,y3,x4,v4)

grid
title('shear diagram')

a=[20 -57]
roots (a)
20 -57

2.8500

60

shear diagram

40

20

-20

-40

60 [

10



8.25

%$Region from x=7 to x=8
x2=[7:.1:8];
y2=-10* (x2.72-(x2-5) .72)+150+57*x2;

figure (2)
plot (x2,y2)
grid

%$Region from x=5 to x=7
x3=[5:.1:7];
y3=-10* (x3.72-(x3-5) ."2)+57*x3;

figure (3)
plot (x3,y3)
grid

%$Region from x=0 to x=5
x4=[0:.1:5];

y4=-10* (x4.72)+57*x4;
figure (4)

plot (x4,v4)

grid

$Region from x=0 to x=10
figure (5)
plot(x1l,vyl,x2,vy2,x3,y3,x4,v4)
grid

title('moment diagram')

a=[-43 250]
roots (a)

a:
-43 250

ans =
5.8140

moment diagram
100

80 —

60

40

20 \

-20

-40

-60

10



8.26 A Matlab script can be used to determine that the slope equals zero at x = 3.94 m.

8.27

%$Region from x=8 to x=10
x1=[8:.1:10];

y1=((-10/3) * (x1.73-(x1-5) ."3))+7.5* (x1-8) ."2+150* (x1-7)+(57/2) *x1.

238.25;

figure (1)

plot(xl,vyl)

grid

%$Region from x=7 to x=8

x2=[7:.1:8];

y2=((-10/3) * (x2.73-(x2-5) ."3) ) +150* (x2-7)+(57/2) *x2.72-238.25;
figure (2)

plot (x2,y2)

grid

%$Region from x=5 to x=7

x3=[5:.1:7];

y3=((-10/3) * (x3.73-(x3-5) .73))+(57/2)*x3.72-238.25;
figure (3)

plot (x3,y3)

grid

$Region from x=0 to x=5

x4=[0:.1:5];

y4=((-10/3)* (x4.73))+(57/2) *x4.72-238.25;
figure (4)

plot (x4,v4)

grid

$Region from x=0 to x=10

figure (5)

plot(x1l,vyl,x2,v2,x3,y3,x4,v4)

grid

title('slope diagram')

a=[-10/3 57/2 0 -238.25]

roots (a)

a:
-3.3333 28.5000 0 -238.2500
ans =
7.1531
3.9357
-2.5388

slope diagram

150

100

50

-50

-100

-150

-200

-250 |

~D—



$Region from x=8 to x=10

x1=[8:.1:10];
y1=(-5/6)*(x1.74-(x1-5) .74)+(15/6) * (x1-8) ."3+75* (x1-7) ."2+(57/6) *x1."3~
238.25*x1;

figure (1)
plot(x1l,y1l)
grid

$Region from x=7 to x=8

x2=[7:.1:87];

y2=(=-5/6)* (x2.%4-(x2-5) ."4)+75*% (x2-T7) ."2+(57/6) *x2.73-238.25*x2;
figure (2)

plot (x2,vy2)

grid

$Region from x=5 to x=7

x3=[5:.1:7];

y3=(-5/6)* (x3.74-(x3-5) ."4)+(57/6) *x3.73-238.25*x3;

figure (3)
plot (x3,y3)
grid

$Region from x=0 to x=5
x4=[0:.1:57;
y4=(-5/6)* (x4.74)+(57/6)*x4.73-238.25*x4;

figure (4)

plot (x4,v4)

grid

$Region from x=0 to x=10
figure (5)
plot(x1l,vyl,x2,v2,x3,y3,x4,v4)
grid

title('displacement curve')

a =
-3.3333 28.5000 0 -238.2500
ans =
7.1531
3.9357
-2.5388

Therefore, other than the end supports, there are no points of zero displacement along the beam.

displacement curve

-100

-200

-300

-400

-500

-600
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8.39 Excel Solver solution:

A [ B [ ¢ | b | B [ F | 6 [0 v [ 4 R [ L [ M [ N
| T Frab. 839
2
13 |In:
4 [TA 400
| 5 [CpA 9.909| 2 =3.381+0.01804*TA-0.0000043*TA2
i ’ 21
|8 T8 [ 600 Set Target Cell fesz0 &9
ERE: ATl — =8 59240 0125*TE-0 00004078 T6+2 EaslTor  Cux CMn Fukmor B ‘ |
5 o & i ' [
% FlowB 1 By Changing Cells: =
71_27Heat|n 50713.92| g-mer - =FlowA™ CpA TA+FlowB™CpB™TE i =l _%‘M
|13 | “Subject to the Canstraints: =
T &0 _ostins |
| 15 |CpAaut 11326 < =3 36140 01804*T-0.0000043°T2 S |
_1_?_ CpBout B2.897 = =8.592+0.0128*T-0.00004078+T~2 Change
(17 Resst Al
| 18 |Heatout: B — =Flow&™CpAout™ +F lowB*CpBout™T =l Delete
19| Help
| 20 | Net =Heatin-Heatout
A [ B [ ¢ | b [ E | F | G
1 [Prob. 8.39
B3
& in
4 |TA 400
5 CpA 9909 =—--m-m- | =3.381+0.01504"TA-0.0000043°TAR2
|6 |Flowd, b
7]
8 (18 600
|9 CpB 71.3112 #ememeemeee =B.592+40.0129°TE-0.00004078°TEA2
10 |FlowB 1
11
| 12 Heatin 5071392 e =FlowA CpA TAH lowB™CpBTE
13
14T 553.5969
| 15 | CpAaut 12.05006 <--------- ' =3.351+1.01504*T-0.0000043*T"2
| 18 | CpBout B7.50809 £---mmmmme- =8.592-+0 01297T-0.00004078%T2
17
18 Heatout: | 8071392 <-——-—- =FlowA CpAout™T+F lowBE*CpBout™T
|20 | et I FRGT= | =Heatin-Heatout




8.40 The problem reduces to finding the value of n that drives the second part of the equation to
1. In other words, finding the root of

f(”)zf_l(Rc("_W"—l)ﬂ:O

Inspection of the equation indicates that singularities occur at x = 0 and 1. A plot indicates that
otherwise, the function is smooth.

1 1.5

-1

A tool such as the Excel Solver can be used to locate the root at n = 0.8518.

8.41 The sequence of calculation need to compute the pressure drop in each pipe is

A=1(D/2)
Y
v_
A
Re = Dpv
M

5 1
f =root[@.0log|Re./f]-04-——
ro0 : og( e ) \/7

T

2
=150

The six balance equations can then be solved for the 6 unknowns.

The root location can be solved with a technique like the modified false position method. A bracketing
method is advisable since initial guesses that bound the normal range of friction factors can be readily
determined. The following VBA function procedure is designed to do this

Option Explicit

Function FalsePos (Re)

Dim iter As Integer, imax As Integer

Dim il As Integer, iu As Integer

Dim xrold As Single, fl As Single, fu As Single, fr As Single
Dim x1 As Single, xu As Single, es As Single

Dim xr As Single, ea As Single

x1
xu

0.00001
1



es = 0.01
imax = 40
iter = 0
fl = f(x1, Re)
fu = f(xu, Re)
Do
xrold = xr
xr = xu - fu * (x1 - xu) / (fl1 - fu)
fr = f(xr, Re)
iter = iter + 1
If xr <> 0 Then
ea = Abs ((xr - xrold) / xr) * 100
End If
If f1 * fr < 0 Then
XU = XI
fu = f(xu, Re)
iu =0
il = i1 + 1
If il >= 2 Then fl1 = f1 / 2
ElseIf f1 * fr > 0 Then
xl = xr
f1 = f(x1l, Re)
il =0
iu = iu + 1
If iu >= 2 Then fu = fu / 2
Else
ea = O#
End If
If ea < es Or iter >= imax Then Exit Do
Loop
FalsePos = xr
End Function
Function f(x, Re)
f =4 * Log(Re * Sgr(x)) / Log(l0) - 0.4 - 1 / Sqgr(x)

End Function

The following Excel spreadsheet can be set up to solve the problem. Note that the function call,
=falsepos (F8), is entered into cell G8 and then copied down to G9:G14. This invokes the
function procedure so that the friction factor is determined at each iteration.

The resulting final solution is

H24 =l =| =SLM{H17:H22)

A [ B T ©] b [ E T EJ & [ w®w 1T T T J [ ® [ & [T ™ T & [ @& ]
1 |Prab. 6.41
2
| 3 |Flowl 1
4 |visc 0.0001
| 5 |dens 1
[
| 7 |Pipe Diameter Area  Flow “elocity  Re f DeltaP
8| 1 1 0.7854 1 1.2732) 12732 000725 0.00588020
EN 2 1 0.7854 05 0G366 636 0.00874 0.00177053
10| 3 1 0.7854 05 06366 636 0.00874 0.00177053
(11 ] 4 1 0.7854 0.5 06366 636 0.00874 0.00177053 =
12| 5 1 0.7854 0.5 06366 6366 0.00674 0.00177053  Set Target cell I S Bl
(13 ] B 1 0.7854 05 0B366 E366 DOOGT4 DOOIF70E3 o jne o e Gymesh 0
14 il 1 0.7854 05 0B3BE 6366 000874 0.00177053 = - - dose |
15 By Changing Cells:
16 |Res Squared res | [4D39:40414 & ges
17| 0003641 ——>  =2"H10+H11-HY 12539505 e g
18| 0.003541 —— = H1Z+H13-H11 12EagE s | R tothe Sonstiants _opors_|
19 | 0003541 =TH14-H13 1 2539E-05 igﬁmii? SR = g
(20 0 =09+D10-08 0.0000E-+00 R
[21] 0.5 =D11+D12-D10 2.5000E-01 = Resetal_|
(22| 0.5 =D13+D14-D12 2.5000E-01 | | Dot
| 24| SSR [ ED004EDI:




A [T B [ ¢ [ B [ E F [ 6 [ H ]
| 1 Prob 841
| 2 |
| 3 Flowl 1
| 4 wisc 0.0001
| § dens 1
6
| 7 Pipe Diameter Area  Flow “elocity Re f DeltaP
8 1 107854 10 1.2732 12732 0.00725 000585020
I 2 107854 0656439 0.8358 8358 0.00811 000283172
|10 3 107854 0343545 04374 4374 000973 0.00093051
[ERE 4 107854 016715 02128 2128 0.01213 000027470
|12 5 107854 0176369 0.2246 2245 0.01192 0.000300652
|13 B 107854 0.0956502 01216 1216 0.01462 0.00010810
| 14 7 107854 0.080861 01030 1030 0.01550 0.00008216
15
E | | Snuared res |
i =2*H10+H11-H3 4 B441E-07 |
|18 =2*H12+H13-H11 1.8893E-07
|19 =3"H14-H13 1.9152E-08
|20 -1.7E =D9+010-D8 27258E-10)
|21 -2BE-05 =011+D12-D10 | BB336E-10)
| 22| -5.9E-05 - = =D13+D14-012 JA572E-11
23
124 | |SER I 5 9346E-D?_|

8.42 The following application of Excel Solver can be set up:

B18 hd| =| =SUM(E14:B16)
25 000 S S | = O = [ | [
_ 1 |Prob0842 |
2 |
2m 500/ | | | | |
CE % 21
E T1 200 Set Target Cell: fES1E Solve I
% T2 100| Equal To! . CMax Mo Valusof: Close I
T q1_ | T 9862. By Changing Cells:
0|2 400 [4e:36: 9897 =] &I
g3 L A111734) ~Subject ko the Canstraints: Options I
12
1 A e |
14 l{gl-g2p2 | B651.559 “h
5 (1392 | 10854.97 ﬂl Reset Al I
B | (g2-y3p2 | 1248454 = &I
az b |
8lsum [N

The solution is:

A | B [ ¢ [ D E [ F [ 6 [ H [ ¥ |
1 |Prob0842
2]
3|10 500
4|3 2|
| 5 |
BT 1669741
7 |T2 | 87.08195
8
2] IR sover Resulis 7| x
10|52 219 5665 Solver Results o s
1193 3195684 Solver has converged to the current solution. Al
ﬁ constrainks are satisfied.
13
14 |igT-g2y2 | B.75E-08 o
15 |(gl-g3y2 | 1.44E07 " Restore Criginal Yalues
1B |ig2-g3y2 | 7.05E09
17 | (6]:4 I Cancel Save SCenaria. .. Help
18 |5um I 2 39E07] |

8.43 The results are




8.44

120 -
100 - .‘““““‘““*~—l~“__“__“_“.
80 -
60 -
40 4
20 | D/D///D
0 L L L
1 2 3
% Shuttle Liftoff Engine Angle
% Newton-Raphson Method of iteratively finding a single root
format long
3 Constants
LGB = 4.0; LGS = 24.0; LTS = 38.0;
WS = 0.230E6; WB = 1.663E6;
TB = 5.3E6; TS = 1.125E6;
es = 0.5E-7; nmax = 200;
% Initial estimate in radians
x = 0.25
%Calculation loop
for i=1:nmax
fx = LGB*WB-LGB*TB-LGS*WS+LGS*TS*cos (x)-LTS*TS*sin (x) ;
dfx = -LGS*TS*sin (x)-LTS*TS*cos (x) ;
xn=x-fx/dfx;
sconvergence check
ea=abs ( (xn-x)/xn) ;
if (ea<=es)
fprintf ('convergence: Root = %f radians \n',xn)
theta = (180/pi) *x;
fprintf ('Engine Angle = $f degrees \n',theta)
break
end
X=XN;
X
end
% Shuttle Liftoff Engine Angle
% Newton-Raphson Method of iteratively finding a single root
% Plot of Resultant Moment vs Engine Anale
format long
% Constants
LGB = 4.0; LGS = 24.0; LTS = 38.0;
WS = 0.195E6; WB = 1.663E6;
TB = 5.3E6; TS = 1.125E6;
x=-5:0.1:5;
fx = LGB*WB-LGB*TB-LGS*WS+LGS*TS*cos (x)-LTS*TS*sin (x);
plot (x, £x)
grid
axis([-6 6 —-8e7 4e7])
title('Space Shuttle Resultant Moment vs Engine Angle')
xlabel ('Engine angle ~ radians')
ylabel ('Resultant Moment ~ lb-ft')
X

X

X

0.25000000000000

0.15678173034564

0.15518504730788

0.15518449747125



convergence: Root = 0.155184 radians
Engine Angle 8.891417 degrees

x 10" Space Shuttle Resultant Moment vs Engine Angle

Resultant Moment ~ Ib-ft

-6 -4 -2 0 2 4
Engine angle ~ radians

8.45 This problem was solved using the roots command in Matlab.

C =
1 -33 -704 -1859
roots (c)
ans =
48.3543
-12.2041
-3.1502
Therefore,
0,=484Mpa O,=-3.15MPa 0,=-12.20 MPa
T t
1 100 20

2 8831493 30.1157
3 80.9082  36.53126
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Here is a VBA implementation of the algorithm:

Option Explicit

Sub GetEps ()

Dim epsilon As Single

epsilon =1

Do
If epsilon + 1 <= 1 Then Exit Do
epsilon = epsilon / 2

Loop

epsilon = 2 * epsilon

MsgBox epsilon

End Sub

It yields a result of 1.19209x10™ on my desktop PC.

Here is a VBA implementation of the algorithm:

Option Explicit

Sub GetMin ()
Dim x As Single, xmin As Single
x =1
Do
If x <= 0 Then Exit Do
xmin = x
x =x / 2
Loop
MsgBox xmin
End Sub

It yields a result of 1.4013x10™* on my desktop PC.

The maximum negative value of the exponent for a computer that uses e bits to store the
exponent is

emin = ~(2°7' = 1)

. . .. . . -1 ..
Because of normalization, the minimum mantissa is 1/b =27 = 0.5. Therefore, the minimum
number is

1 _(nel_ _~e-l
Xin =2727F D =272

For example, for an 8-bit exponent

_H81 - —
Xpn =272 =272 =2.939%107%
This result contradicts the value from Prob. 3.2 (1.4013x10™*). This amounts to an additional
21 divisions (i.e., 21 orders of magnitude lower in base 2). I do not know the reason for the
discrepancy. However, the problem illustrates the value of determining such quantities via a
program rather than relying on theoretical values.
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3.5

VBA Program to compute in ascending order
Option Explicit
Sub Series|()

Dim i As Integer, n As Integer
Dim sum As Single, pi As Single

pi = 4 * Atn (1)
sum = 0
n = 10000
For i = 1 To n
sum = sum + 1 / 1 ~ 2
Next i

MsgBox sum
'Display true percent relatve error
MsgBox Abs(sum - pi ~ 2 / 6) / (pi ~ 2 / 6)

End Sub
This yields a result of 1.644725 with a true relative error of 6.086x107".

VBA Program to compute in descending order:
Option Explicit
Sub Series|()

Dim i As Integer, n As Integer
Dim sum As Single, pi As Single

pi =4 * Atn (1)

sum = 0

n = 10000

For i = n To 1 Step -1
sum = sum + 1 / 1 ~ 2

Next i

MsgBox sum
'Display true percent relatve error
MsgBox Abs(sum - pi ~ 2 / 6) / (pi ~ 2 / 6)

End Sub

This yields a result of 1.644725 with a true relative error of 1.270x10™

The latter version yields a superior result because summing in descending order mitigates the

roundoff error that occurs when adding a large and small number.

Remember that the machine epsilon is related to the number of significant digits by Eq. 3.11

E - bl—t

which can be solved for base 10 and for a machine epsilon of 1.19209%x10~ for



t =1-log;o(&) =1-log;(1.19209%x1077) = 7.92

To be conservative, assume that 7 significant figures is good enough. Recall that Eq. 3.7 can
then be used to estimate a stopping criterion,

g, =(0.5x10*™")%

Thus, for 7 significant digits, the result would be

g, =(0.5x10%77)% = 5x107%%

The total calculation can be expressed in one formula as
g, =(0.5% 102~ Int(1-log;o () )%

It should be noted that iterating to the machine precision is often overkill. Consequently,
many applications use the old engineering rule of thumb that you should iterate to 3
significant digits or better.

As an application, I used Excel to evaluate the second series from Prob. 3.6. The results are:

A | B | ¢ | D i 5 | F i G | H
8.3
nl x*ninl Series 1/5eries True Yalue et (%) ea(%)

0 1 1 1.000000E+HJ0 1.000000E+00 2.485168E-04  4.02E+05

1 1 8.3 9.300000E+00 1.075269E-01 2.485168E-04  4.32E+04 9.93E+01
2 2 34.445 4374500E+D1 2.28597GE-02 2.4851B6BE-04  9.10E+03 9.89E+01
3 5 95.29783 1.390428E+02 7.192028E-03 2.4851BBE-04  2.79E+D3 9.B5E+H]1
4 24| 197.743 3.367858E+H12 2 0B9245E-03 2.48516BE-04  1.09E+03 9.16E+1
5 1200 328.2534 B.ES0392E+H12 1.503671E-03 2.4B5168E-04  5.05E+02 8.35E+01
5 7200 454.0839 1.119123E+03 B.935565E-04 2.485168E-04  2.60E+D2 7.22E+01
7 50400 538.4137 1BE7537E+H]3 B.033049E-04 2 48516BE-04  1.43E+02 £.88E+01
g 40320 558.6042 2 216141EHI3 4.512348E-04 2.485168E-04  8.16E+D1 4. 49E+1

9 362860 5151572 2731298E+H13 3.661263E-04 2.485168E-04  4.73E+HN 321EHN
100 3628800 4275805 3.158579E+03 3.165680E-04 2.485168E-04  2.74E+D1 2.15E+11
11 39916800 322.6289 3.481508E+H03) 2.872319E-04 2.485168E-04  1.56E+D1 1.35E+
12 4. 79E+05 223.1517  3.704659E+H13) 2.699304E-04 2.485168E-04  8.62E+00 7.93EHI0
13 6.23E+09 142.4738 3.847133EH13 2.599335E-04 2.485168E-04  4.59E+00 4.39EH10
14 87ZE+10 84.46659 3931600E+H13 2.543494E-04 2 485168E-04  2.35E+H00 2.29E+10
15 1.3E+12 46.73818 3.5978335EHI3 Z.513613E-04 2 485165E-04  1.14E+00 1.13E+10
16 2.09E+13 24.24543 4.002555E+H13 2 498386E-04 2.485165E-04 5.32E-01 5.29E-01
17 356E+14 11.83747 4014421 EHIS 2421019604 2 485165E-04 2.35E-M 2.35E-01
18 BAE+15 5458331 4019379EHI3 2 487637E-04 2. 485165E-04 9.93E-02 9.92E-02
19 1.2ZE+17 2384455 4 0222RAEHIS 2 485162E-04 2.485165E-04 4.00E-02 4.00E-02
20 243E+18 0989549 4.023253E+H03 2.485551E-04 2.485165E-04 1.54E-02 1.54E-02
21 5 MEHE 0391107 4.023644E+03 2.4B5309E-04 2.485165E-04 5.67E-03 5.67E-03
22 112E+21 0147554 4.023792E+03 2. 485218E-04 2.485168E-04 2.00E-03 2.00E-03
23 2859E+22 0.053248 4.0235845E+03 2.485185E-04 2.485168E-04 5.79E-04 5.79E-04
24 B2E+Z3 0018415 4.023863E+03 2. 485174E-04 2.485168E-04 222E-04 2.22E-04
25 1.55E+25 0.006114 4.023570E+03 2. 485170E-04 2.485168E-04 5.96E-05 5.96E-05
26 4.03E+26 0001252 4.023572E+03 2. 485169E-04 2.485168E-04 2.11E-05 2.11E-05
27 1.09E+28 0.0006 4.023872E+03 2.485168E04 2.4B5168BED4 6.16E-06 6.16E.06
28 3.05E+29 0000178 4.023572E+03 2. 4B5168E-04 2.485163E-04 1.74E-06 1.74E-06
29 8.84E+30 5.09E-05 4.0253572E+03 2.4B5165E-04 2.485168E-04 4.76E-07 4.76E-07
30 2B5E+32 1.41E-05 4.023572E+03 2.4B5168E-04 2.485165E-04 1.26E-07 1.26E-07

Notice how after summing 27 terms, the result is correct to 7 significant figures. At this
point, both the true and the approximate percent relative errors are at 6.16x10° %. At this



point, the process would repeat one more time so that the error estimates would fall below
the precalculated stopping criterion of 5%x10™° %.

For the first series, after 25 terms are summed, the result is

A | B [ & | B | E | F & | H
8.3
ril ndnl Sign Series True Yalue et (%) eal%)
i] 1 1 1/ 1.000000E+00 2 485168E-04 402287 2
1 1 5.3 -1/-7.300000E+00 2 455166E-04| 2937527 100.0034
2 2 34445 11 2.714500E+ 2 485168E-04 10922702 99.99908
3 6 9529783 -1|-6.816283E+01 2.485168E-04 27423930 100.0004
4 24, 197.743 10 1.295902E+12 2. 485165E-04 52145331 99.9959581
5 1200 3252534 -1/-1.986632E+02 2 485166E-04 79935643 100.0001
B 720 454.0839 1| 2.5654206E+02 2 48516BE-04 1.03E+18  99.9999
7 5040 538.4137 -1/-2.829931E+02 2 485168E-04 1.14E+08 100.0001
] 40320 558.6042 10 2.756111E+12 2 435165E-04 1.11E+15 99.99591

9 362880 5151572 B
100 3628800 427 5805
11 399165800 3226289 =
12 4.79EH13 223.1517
13 B.23E+09| 1424735 -
14/ 8.72E+10) 84,4665
15/ 1.31E+12| 46.73818 3
16/ 2.09E+13| 24.24543
17 386E+14| 1183747 -

-2.395461E+02 2 485168E-04 96380385 100.0001
1.880344E+02 2 435168E-04 75662552 99.99957
-1.345945E+02 2 455168E-04 54159210 100.0002
8.855717E+01 | 2.485165E-04 35634175 9909972
-5.391650E+01 2 4B5168E-04 216585448 100.0005
3.055000E+11 | 2. 485166E-04 12292828 599899919
-1.618318E+01 2 4B5168E-04 B514015 100.0015
8.057248E+00 2. 435168E-04 3242034 5959692
-3.780226E+00 2 485168E-04 1521215 100.0066

18 B.4E+15 5.455391 1 1.678165E+00 2 485168E-04 6751721 59.58519
190 1.22E+17 | 2.384455 -1 -7.06B2502E-01 2.485168E-04  284302.2 100.0352
20 2.43E+18) 0.989543 1) 2.832857E-01 2.48516BE-04 1138797 5991227
21 5.11E+18) 0.391107 -1 -1.078487E-01 2 455166604 43496.95 100.2304
22 112E+21) 0.147554 1 3.970542E-02 2 4B5168E-04 1567696 99.3741
23 2.59E+22| 0.053248 -1 -1.354238E-02 2 485168E-04  5549.281 101.8351
24 B2E+23) 0.018415 11 4.872486E-03 2. 485165E-04 1860.626 54.59950
25| 1.55E+25| 0.006114 -1 -1 241248603 2 455166E-04 | 5994628 120.0215

The results are oscillating. If carried out further to n = 39, the series will eventually converge
to within 7 significant digits.

In contrast the second series converges faster. It attains 7 significant digits at n = 28.

= 70020 |

nl wtninl Series 1/Seties True Value et (%) eal%h)

1 1.000000E+00 1.000000E+00 2. 485160E-04  4.02E+05

1 5.3 9.300000E+00 1.075269E-01 2.4B5168E-04  4.32E+04 9.96E+01
2 34.445 4574500E+01 2.28597RE02 2 485166E-04  9.10E+03 9.89E+01

1}

1

2

3 6 9529783 1.3904258E+02 7.192028E-03 2.4B5168E-04  279E+03 9B5E+H
4 24 197743 3.367858EH)Z 2.960246E-03 2.4B5168E-04  1.09E+03 9.16EHM
5 1200 328.2534 B.650392E+02) 1.503671E-03 2.485165E-04  5.05E+02 8.35E+H01
5 T20) 454 0839 1.119123E+403 8.935568E-04 2 485168E-04  2B0E+HD2 T22EH
7 50400 5384137 | 1.657537E+H13 6.033049E-04 2. 465160E-04 1.43E+H02 5.88E+H1
g 40320 558.6042 2216141E+03 4512345604 2485168504  5.16E+H 4. 49E+01
9 362580 5151572 2.731295E+H03 3.661263E-04 2.4B5168E-04  4.73E+HN 321EHN
100 3628800 427 5805 3.158879E+03 3.1B5650E-04 2 485168E-04  274E+HI1 215EH
11 39916800 3226289 34815085403 2872319504 2485168504 1.56E+H 1.35E+01
12 4.79E+08 | 2231517 3.704B59E+03 2.659304E-04 2.4B5166E-04  8.E2E+I0 7.83E+0
13 B.23E+09 1424736 3.847133E+H03 2.589335E-04 2.4B5166E-04  4.89E+00 4.39E+00
14/ 8.72E+10) 84.46659 3.931600E+03 2.543454E-04 2 485168E-04  2.35E+00 229E+010
16 1.3E+12) 46.73818 3.970330E+03 2513013604 2485168504 1.14E+10 1.13E+10
16 2.09E+13 | 24.24543 4.002583E+03 2.498356E-04 2.4B5168E-04 5.32E-01 4.29E-01
17 3.86E+14 11.63747 4.014421E+03 2.491019E-04 | 2.4B5168E-04 235E-M 2.35E01
18 BAE+1S 5458391 4.019879E+03 2.487657E-04 2. 485168E-04 9.893E-02 9.92E-02
19 1.22E+17 | 2304455 4 0222646403 2486162504 2.485168E-04 4.00E-02 4.00E-02
20| 2Z43E+18| 0.989545 | 4.023263E+03 2.485551E-04 2.485166E-04 1.54E-02 1.54E-02
21/ 5.11E+189) 0.391107 | 4.023644E+03 2.485309E-04 2.485166E-04 5.67E-03 4.67E-03
22 112E421 0147554 4 023792E+03 . 2.485218E-04 2. 485168E-04 2.00E-03 200E-03
23 2.59E+22 0.053248 4.023045E+03 2485185504 2.485168E-04 B.79E-04 B.79E-04
24| B2E+23| 0.018415) 4.023863E+03 2.485174E-04 2.485166E-04 222E-04 222804
26| 1.55E+26| 0.006114 4.023870E+03 2.485170E-04 2.485166E-04 B.596E-05 B.96E-05
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3.9 Solution:

21 x 21 x 120 = 52920 words @ 64 bits/word = 8 bytes/word
52920 words @ 8 bytes/word = 423360 bytes
423360 bytes / 1024 bytes/kilobyte = 413.4 kilobytes = 0.41 M bytes

3.10 Solution:

% Given: Taylor Series Approximation for cos(x) = 1 - x"2/2! + x*4/4! -
% Find: number of terms needed to represent cos(x) to 8 significant
% figures at the point where: x=0.2 pi

%approximation
cos=1;
j=1;
% j=terms counter
fprintf ('j= %2.0f cos(x)= %0.10f\n', Jj,cos)
fact=1;
for 1i=2:2:100
j=3+1;
fact=fact*i* (i-1);
cosn=cos+ ((-1) " (j+1))* ((x)~i)/fact;
ea=abs ((cosn-cos) /cosn) ;
if ea<es
fprintf ('j= %2.0f cos (x)= %$0.10f ea = $0.1le CONVERGENCE
es= %0.le',j,cosn,ea,es)

break
end
fprintf( '"j= %$2.0f cos (x)= %0.10f ea = %0.le\n',j,cosn,ea )
cos=cosn;
end
Jg= 1 cos (x)= 1.0000000000
j= 2 cos (x)= 0.8026079120 ea = 2.5e-001
= 3 cos(x)= 0.8091018514 ea = 8.0e-003
= 4 cos (x)= 0.8090163946 ea = 1.1e-004
= 5 cos (x)= 0.8090169970 ea = 7.4e-007
Jj 6 cos (x)= 0.8090169944 ea = 3.3e-009 CONVERGENCE es = 5.0e-009»
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4.18 f(x) =x-1-1/2*sin(x)
f'(x) = 1-1/2*cos(x)
f"(x) = 1/2*sin(x)
f"(x) = 1/2*cos(x)
fV(x) = -1/2*sin(x)

Using the Taylor Series Expansion (Equation 4.5 in the book), we obtain the following 1%,
2™ 3 and 4™ Order Taylor Series functions shown below in the Matlab program-f1, £2,

f4. Note the 2" and 3™ Order Taylor Series functions are the same.

From the plots below, we see that the answer is the 4™ Order Taylor Series expansion.

x=0:0.001:3.2;

=x-1-0.5%s1in(x);

subplot(2,2,1);
plot(x,f);grid;title('f(x)=x-1-0.5*sin(x) ') ;hold on

fl=x-1.5;

el=abs (f-£f1); %Calculates the absolute value of the difference/error
subplot(2,2,2);

plot(x,el);grid;title('lst Order Taylor Series Error');

f2=x-1.5+0.25.*%((x-0.5%pi)."2);

e2=abs (f-£2);

subplot(2,2,3);

plot (x,e2) ;grid;title('2nd/3rd Order Taylor Series Error');

f4=x-1.54+0.25.*((x-0.5%pi) ."2)-(1/48) *((x-0.5%pi)."4) ;

ed=abs (fd4-f);

subplot (2,2,4);

plot(x,ed) ;grid;title('4th Order Taylor Series Error');hold off



f(x)=x-1-0.5*sin(x) 1st Order Taylor Series Error

3 0.8
2 0.6
1 0.4
0 0.2
-1 0
0 1 2 3 4 0 1 2 3 4
2nd/3rd Order Taylor Series Error 4th Order Taylor Series Error
0.2 0.015
0.15 f
0.01

0.1 /
0.05 \ 0009
AN o

0 1 2 3 4 0 1 2 3 4

4.19 EXCEL WORKSHEET AND PLOTS

X f(x) f(x-1) f(x+1) f'(x)-Theory f'(x)-Back f'(x)-Cent f'(x)-Forw
-2.000 0.000 -2.891 2.141 10.000 11.563 10.063 8.563
-1.750 2.141 0.000 3.625 7.188 8.563 7.250 5.938
-1.500 3.625 2.141 4.547 4.750 5.938 4.813 3.688
-1.250 4.547 3.625 5.000 2.688 3.688 2.750 1.813
-1.000 5.000 4.547 5.078 1.000 1.813 1.063 0.313
-0.750 5.078 5.000 4.875 -0.313 0.313 -0.250 -0.813
-0.500 4.875 5.078 4.484 -1.250 -0.813 -1.188 -1.563
-0.250 4.484 4.875 4.000 -1.813 -1.563 -1.750 -1.938
0.000 4.000 4.484 3.516 -2.000 -1.938 -1.938 -1.938
0.250 3.516 4.000 3.125 -1.813 -1.938 -1.750 -1.563
0.500 3.125 3.516 2.922 -1.250 -1.563 -1.188 -0.813
0.750 2.922 3.125 3.000 -0.313 -0.813 -0.250 0.313
1.000 3.000 2.922 3.453 1.000 0.313 1.063 1.813
1.250 3.453 3.000 4.375 2.688 1.813 2.750 3.688
1.500 4.375 3.453 5.859 4.750 3.688 4.813 5.938
1.750 5.859 4.375 8.000 7.188 5.938 7.250 8.563

2.000 8.000 5.859 10.891 10.000 8.563 10.063 11.563



First Derivative Approximations Compared to Theoretical

Theoretical
----- Backward
—-—-Centered
— = Forward

f'(x)

x-values

X f(x) f(x-1) f(x+1) f(x-2 f(x+2) f'(x)- 'x)- f'(x)-Cent f'(x)-
Theory Back Forw

-2.000 0.000 -2.891 2.141 3.625 3.625  -12.000 150.500  -12.000  -10.500
-1.750 2.141 0.000 3.625 -2.891 4.547  -10.500  -12.000  -10.500 -9.000
-1.500 3.625 2.141 4.547 0.000 5.000 -9.000  -10.500 -9.000 -7.500
-1.250 4.547 3.625 5.000 2.141 5.078 -7.500 -9.000 -7.500 -6.000
-1.000 5.000 4.547 5.078 3.625 4.875 -6.000 -7.500 -6.000 -4.500
-0.750 5.078 5.000 4.875 4.547 4.484 -4.500 -6.000 -4.500 -3.000
-0.500 4.875 5.078 4.484 5.000 4.000 -3.000 -4.500 -3.000 -1.500
-0.250 4.484 4.875 4.000 5.078 3.516 -1.500 -3.000 -1.500 0.000
0.000 4.000 4.484 3.516 4.875 3.125 0.000 -1.500 0.000 1.500
0.250 3.516 4.000 3.125 4.484 2.922 1.500 0.000 1.500 3.000
0.500 3.125 3.516 2.922 4.000 3.000 3.000 1.500 3.000 4.500
0.750 2.922 3.125 3.000 3.516 3.453 4.500 3.000 4.500 6.000
1.000 3.000 2.922 3.453 3.125 4.375 6.000 4.500 6.000 7.500
1.250 3.453 3.000 4.375 2.922 5.859 7.500 6.000 7.500 9.000
1.500 4.375 3.453 5.859 3.000 8.000 9.000 7.500 9.000 10.500
1.750 5.859 4.375 8.000 3.453 10.891 10.500 9.000 10.500 12.000
2.000 8.000 5.859 10.891 4.375 14.625 12.000 10.500 12.000 13.500

Approximations of the 2nd Derivative

f"(x)-Theory
(x)-Backward
— - —-"(x)-Centered
----- "(x)-Forward

(x)

x-values
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5.13 (a)

_ log35/.05) _ 9.45 or10 iterations

log(2)

(b)
iteration Xr
1 17.5
2 26.25
3 30.625
4 28.4375
5 27.34375
6 26.79688
7 26.52344
8 26.66016
9 26.72852
10 26.76270

for o, =8 mg/L, T'=26.7627 °C
for o, =10 mg/L, T=15.41504 °C
for o, = 14mg/L, T=1.538086 °C

5.14
Here is a VBA program to implement the Bisection function (Fig. 5.10) in a user-friendly
program:

Option Explicit

Sub TestBisect ()

Dim imax As Integer, iter As Integer

Dim x As Single, xl1 As Single, xu As Single
Dim es As Single, ea As Single, xr As Single
Dim root As Single

Sheets ("Sheetl") .Select

Range ("b4") .Select

x1 = ActiveCell.Value
ActiveCell.Offset (1, 0).Select
xu = ActiveCell.Value
ActiveCell.Offset (1, 0).Select
es = ActiveCell.Value
ActiveCell.Offset (1, 0).Select
imax = ActiveCell.Value

Range ("b4") .Select

If £f(x1) * f(xu) < 0 Then

root = Bisect(xl, xu, es, imax, xXr, iter, ea)

MsgBox "The root is: " & root

MsgBox "Iterations:" & iter

MsgBox "Estimated error: " & ea

MsgBox "f(xr) = " & f(xr)
Else

MsgBox "No sign change between initial guesses"
End If

End Sub



Function Bisect (xl, xu, es, imax, xr, iter, ea)
Dim xrold As Single, test As Single

iter = 0

Do
xrold = xr
xr = (x1 + xu) / 2
iter = iter + 1

If xr <> 0 Then
ea = Abs((xr - xrold) / xr) * 100
End If
test = f(x1) * f(xr)
If test < 0 Then

XU = XTI
ElseIf test > 0 Then
x1l = xr
Else
ea = 0
End If
If ea < es Or iter >= imax Then Exit Do
Loop

Bisect = xr
End Function

Function £ (c)

f=9.8*68.1/c* (1L - Exp(-(c / 68.1) * 10)) - 40
End Function

For Example 5.3, the Excel worksheet used for input looks like:

S EE e E T E

1 |Bisection Example

2

3

4 1zl 12

5 |xu 16 i

b |es 0.01

¥ |imax 25

g

The program yields a root of 14.78027 after 12 iterations. The approximate error at this point
is 6.63x10™ %. These results are all displayed as message boxes. For example, the solution

check is displayed as

Microsoft Excel |

Flxt) = -1, 3569950702674 3E-04

Ik

5.15 See solutions to Probs. 5.1 through 5.6 for results.

5.16 Errata in Problem statement: Test the program by duplicating Example 5.5.



Here is a VBA Sub procedure to implement the modified false position method. It is set up to
evaluate Example 5.5.

Option Explicit

Sub TestFP ()

Dim imax As Integer, iter As Integer

Dim f As Single, FalseP As Single, x As Single, x1 As Single
Dim xu As Single, es As Single, ea As Single, xr As Single

x1l = 0

xu = 1.3

es = 0.01

imax = 20

MsgBox "The root is: " & FalsePos(xl, xu, es, imax, xr, iter, ea)
MsgBox "Iterations: " & iter

MsgBox "Estimated error: " & ea

End Sub

Function FalsePos(xl, xu, es, imax, xr, iter, ea)
Dim il As Integer, iu As Integer
Dim xrold As Single, f1 As Single, fu As Single, fr As Single

xrold = xr
Xr = xu - fu * (x1 - xu) / (f1 - fu)
fr = f(xr)
iter = iter + 1
If xr <> 0 Then
ea = Abs ((xr - xrold) / xr) * 100

End If

If f1 * fr < 0 Then
Xu = Xr
fu = f(xu)
iu = 0

il = il + 1
If i1 >= 2 Then fl1 = f1 / 2
ElseIf f1 * fr > 0 Then

x1l = Xxr
£l = f(x1)
il = 0
iu = iu + 1
If iu >= 2 Then fu = fu / 2
Else
ea = 0#
End If
If ea < es Or iter >= imax Then Exit Do
Loop
FalsePos = xr

End Function
Function f (x)

f=x"10 -1
End Function

When the program is run for Example 5.5, it yields:



root = 14.7802
iterations = 5
error = 3.9x107 %

5.17 Errata in Problem statement: Use the subprogram you developed in Prob. 5.16 to
duplicate the computation from Example 5.6.

The results are plotted as

1000 .

100 ©

10 |

01 &

0.01 |

0.001 '

Interpretation: At first, the method manifests slow convergence. However, as it approaches
the root, it approaches quadratic convergence. Note also that after the first few iterations, the
approximate error estimate has the nice property that €, > €.

5.18 Here is a VBA Sub procedure to implement the false position method with minimal
function evaluations set up to evaluate Example 5.6.

Option Explicit
Sub TestFP ()
Dim imax As Integer, iter As Integer, i As Integer

Dim x1 As Single, xu As Single, es As Single, ea As Single, xr As

Single, fct As Single

MsgBox "The root is: " & FPMinFctEval (x1l, xu, es, imax, xr, iter, ea)
MsgBox "Iterations: " & iter

MsgBox "Estimated error: " & ea

End Sub

Function FPMinFctEval (x1, xu, es, imax, xr, iter, ea)
Dim xrold, test, fl1l, fu, fr

iter = 0
x1l = 0#
Xxu = 1.3
es = 0.01
imax = 50
fl = £(x1)
fu = f(xu)
xr = (x1 + xu) / 2
Do
xrold = xr
xr = xu - fu * (x1 - xu) / (fl1 - fu)

Hh
-
Il
Hh
w
[a]



iter = iter + 1
If (xr <> 0) Then
ea = Abs((xr - xrold) / xr) * 100#
End If
test = f1 * fr
If (test < 0) Then

Xu = Xr
fu = fr
ElseIf (test > 0) Then
xl = Xr
fl = fr
Else
ea = 0O#
End If
If ea < es Or iter >= imax Then Exit Do
Loop

FPMinFctEval = xr
End Function

Function f (x)
f=x"10 -1
End Function

The program yields a root of 0.9996887 after 39 iterations. The approximate error at this
point is 9.5%10™ %. These results are all displayed as message boxes. For example, the
solution check is displayed as

The number of function evaluations for this version is 2n+2. This is much smaller than the
number of function evaluations in the standard false position method (5n).

5.19 Solve for the reactions:
R;=2651bs. R,=285 Ibs.

Write beam equations:
M +(16.667x%) > =265x =0

0<x<3 3

(I) M =265-5.55x

x—3
M +100(x -3
3<x<6 ( X 2

(2) M =-50x"+415x-150

)+150(x—§(3))—265x =0

2
6<x<10 M =150(x —5(3)) +300(x —4.5) — 265x

(3) M =-185x +1650

M +100(12 -x) =0

10<x<12
X (4) M =100x —1200

Combining Equations:



Because the curve crosses the axis between 6 and 10, use (3).
(3) M =-185x+1650
Set x, =6;x, =10

M(x,) =540 7 +xU_8
M(x,)=-200 " 2

M(x,)=170 - replaces x,

M(x,)=170 _8+10_9
M(x,)=-200 o2
M(x,)=-15 - replaces x,

M(x,)=170 _8+9
M(x,)=-15 Ty T

M(x,)=715 - replaces x,

8.5

M(x,)=77.5 +

(xL) L 28519 o
M(x,)=-15 '
M(x,)=31.25 - replaces x,
M(x,)=31.25

(xL) L 287549 oo
M(x,)=-15 '
M(x,)=8.125 - replaces x,
M(x,)=8.125

(x,) L o887549 o
M(x,)=-15 :
M (x,)=-3.4375 -~ replaces x,
M(x,)=8.125 +

(x.) . = 8.875+8.9375 _ o o0 cre
M(x,)=-3.4375
M(x,)=2.34375 - replaces x,
M (x,)=2.34375

(x1) . = 890625+8.9375 _ ) ons
M(x,)=-3.4375 ' 2

M(x,)=-0.546875 - replaces x,



M(x,)=2.34375 _ 8.90625+8.921875

X, =8.9140625
M (x,) = —0.546875 2

M (x;)=0.8984 Therefore, x =8.91 feet

520 M =-185x+1650
Set x, =6;x, =10

M (x,) =540
M (x,) = =200

_ M(XU)(XL B xU)

T M () - M(xy)
0 ~200(6-10)
540 — (-200)
M(x,)=-2x10"" 00

=8.9189

Xp =

Only one iteration was necessary.

Therefore, x =8.9189 feet.
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6.16
Here is a VBA program to implement the Newton-Raphson algorithm and solve Example
6.3.

Option Explicit
Sub NewtRaph ()

Dim imax As Integer, iter As Integer
Dim x0 As Single, es As Single, ea As Single

x0 = 0#

es = 0.01

imax = 20

MsgBox "Root: " & NewtR(x0, es, imax, iter, ea)
MsgBox "Iterations: " & iter

MsgBox "Estimated error: " & ea

End Sub

Function df (x)
df = -Exp(-x) - 1#
End Function

Function f (x)
f = Exp(-x) - x
End Function

Function NewtR (x0, es, imax, iter, ea)

Dim xr As Single, xrold As Single



xrold = xr
xr = xr - f(xr) / df (xr)
iter = iter + 1
If (xr <> 0) Then
ea = Abs((xr - xrold) / xr) * 100

End If
If ea < es Or iter >= imax Then Exit Do
Loop

NewtR = xr
End Function

It’s application yields a root of 0.5671433 after 4 iterations. The approximate error at this
point is 2.1x107 %.

6.17
Here is a VBA program to implement the secant algorithm and solve Example 6.6.

Option Explicit

Sub SecMain ()

Dim imax As Integer, iter As Integer

Dim x0 As Single, x1 As Single, xr As Single
Dim es As Single, ea As Single

x0 =0

x1l =1

es = 0.01

imax = 20

MsgBox "Root: " & Secant(x0, x1, xr, es, imax, iter, ea)
MsgBox "Iterations: " & iter

MsgBox "Estimated error: " & ea

End Sub

Function f (x)
f = Exp(-x) - x
End Function

Function Secant (x0, x1, xr, es, imax, iter, ea)

Xr = x1

iter = 0

Do
xr = x1 - f£(x1) * (x0 - x1) / (£(x0) - f£(x1))
iter = iter + 1

If (xr <> 0) Then
ea = Abs((xr - x1) / xr) * 100

End If
If ea < es Or iter >= imax Then Exit Do
x0 = x1
X1l = xr
Loop

Secant = xr
End Function

It’s application yields a root of 0.5671433 after 4 iterations. The approximate error at this
point is 4.77x10™ %.

6.18



Here is a VBA program to implement the modified secant algorithm and solve Example 6.8.
Option Explicit
Sub SecMod ()

Dim imax As Integer, iter As Integer
Dim x As Single, es As Single, ea As Single

x =1

es = 0.01

imax = 20

MsgBox "Root: " & ModSecant(x, es, imax, iter, ea)
MsgBox "Iterations: " & iter

MsgBox "Estimated error: " & ea

End Sub

Function f (x)
f = Exp(-x) - x
End Function

Function ModSecant (x, es, imax, iter, ea)

Dim xr As Single, xrold As Single, fr As Single
Const del As Single = 0.01

Xr = X

iter = 0

Do

xr = xr - fr * del * xr / (f(xr + del * xr) - fr)
iter + 1
If (xr <> 0) Then

ea = Abs ((xr - xrold) / xr) * 100

'_l
o+
®
e
Il

End If
If ea < es Or iter >= imax Then Exit Do
Loop

ModSecant = xr
End Function

It’s application yields a root of 0.5671433 after 4 iterations. The approximate error at this
point is 3.15x107 %.

6.19
Here is a VBA program to implement the 2 equation Newton-Raphson method and solve
Example 6.10.

Option Explicit

Sub NewtRaphSyst ()

Dim imax As Integer, iter As Integer
Dim x0 As Single, y0 As Single

Dim xr As Single, yr As Single
Dim es As Single, ea As Single

x0 = 1.5
y0O = 3.5
es = 0.01

imax = 20



Call NR2Egs (x0, y0, xr, yr, es, imax, iter, ea)

MsgBox "x, y =" & xr & ", " & yr
MsgBox "Iterations: " & iter
MsgBox "Estimated error: " & ea
End Sub

Sub NR2Egs (x0, y0, xr, yr, es, imax, iter, ea)
Dim J As Single, eay As Single

iter = 0
Do
J = dudx(x0, y0) * dvdy(x0, y0) - dudy(x0, y0) * dvdx(x0, yO0)
xr = x0 - (u(x0, y0) * dvdy(x0, y0) - v(x0, y0) * dudy(x0, yO0))
yr = y0 - (v(x0, y0) * dudx(x0, y0) - u(x0, y0) * dvdx(x0, yO0))
iter = iter + 1
If (xr <> 0) Then
ea = Abs((xr - x0) / xr) * 100
End If
If (xr <> 0) Then
eay = Abs((yr - y0) / yr) * 100
End If
If eay > ea Then ea = eay
If ea < es Or iter >= imax Then Exit Do

/J
/J

x0 = xr
y0 = yr
Loop
End Sub

Function u(x, V)
u=x"2+x*y -10
End Function

Function v (x, V)
v=y+3*x*y”*2-57
End Function

Function dudx(x, V)
dudx = 2 * x + y
End Function

Function dudy(x, V)
dudy = x

End Function
Function dvdx (x, V)
dvdx = 3 * y ~ 2
End Function

Function dvdy (x,
dvdy = 1 + 6 * x
End Function

y)
*y

It’s application yields roots of x = 2 and y = 3 after 4 iterations. The approximate error at this
point is 1.59x107 %.

6.20
The program from Prob. 6.19 can be set up to solve Prob. 6.11, by changing the functions to



Function u(x, vy)
u=y +x "2 -0.5-x
End Function

Function v (x, V)
v=x"2-5%*x%*y -y
End Function

Function dudx (x, V)
dudx = 2 * x - 1
End Function

Function dudy(x, V)
dudy =1
End Function

Function dvdx (x, V)
dvdx = 2 * x ~ 2 - 5 * y
End Function

Function dvdy (x, V)
dvdy = -5 * x
End Function

Using a stopping criterion of 0.01%, the program yields x = 1.233318 and y = 0.212245 after
7 iterations with an approximate error of 2.2x10™.

The program from Prob. 6.19 can be set up to solve Prob. 6.12, by changing the functions to

Function u(x, y)
u=(x-4) 2+ (y -4 ~2 -4
End Function

Function v (x, V)
v=x"2+y "2 -16
End Function

Function dudx (x, V)
dudx = 2 * (x - 4)
End Function

Function dudy(x, V)
dudy = 2 * (y - 4)
End Function

Function dvdx (x, V)
dvdx = 2 * x
End Function

Function dvdy (x, V)
dvdy = 2 * y
End Function

Using a stopping criterion of 0.01% and initial guesses of 2 and 3.5, the program yields x =
2.0888542 and y = 3.411438 after 3 iterations with an approximate error of 9.8x10™".



Using a stopping criterion of 0.01% and initial guesses of 3.5 and 2, the program yields x =
3.411438 and y = 2.0888542 after 3 iterations with an approximate error of 9.8x10™".

6.21

x=-Ja

2

x“=a
f(x)= x*-a=0
S'(x) =2x
Substitute into Newton Raphson formula (Eq. 6.6),
_ x> -a
X=x-
2x

Combining terms gives

_ 2x(x)—x2 +a _ x*+alx
2 2
6.22
SOLUTION:
) = tanh( 2 - )
x ’ ech 2(x2 —9)] )
x,=3.1
N €
/(%)
iteration Xi+1
1 2.9753
2 3.2267
3 2.5774
4 7.9865

The solution diverges from its real root of x = 3. Due to the concavity of the slope, the next iteration
will always diverge. The sketch should resemble figure 6.6(a).

6.23
SOLUTION:



£(x) =0.0074x" —0.284x> +3.355x* =12.183x +5
£(x) =0.0296x> —0.852x% +6.71x—12.183

Xisg =X _M
S (x)

Xit+1
9.0767
-4.01014
-3.2726

W N =~

The solution converged on another root. The partial solutions for each iteration intersected the x-axis
along its tangent path beyond a different root, resulting in convergence elsewhere.

6.24
SOLUTION:
f)=+./16=(x+1)> +2

S )= f(x)

1* iteration
x4 =050 f(x,,)=-1.708
% =30 f(x)=2
2(0.5-3
w2320y 6si6
(-1.708 -2)
21 jteration
x; =1.6516 0 f(x;)=-0.9948
X o= 0.50 f(x,,)=-1.46
-0.9948(0.5-1.6516) _

X,y =1.6516 - =4.1142
(—1.46 — —0.9948)

The solution diverges because the secant created by the two x-values yields a solution outside the
functions domain.
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7.6 Errata in Fig. 7.4; 6th line from the bottom of the algorithm: the > should be changed to >=
IF (Hdx.0 < eps*x, OR iter >= maxit) EXIT

Here is a VBA program to implement the Miiller algorithm and solve Example 7.2.
Option Explicit
Sub TestMull ()

Dim maxit As Integer, iter As Integer
Dim h As Single, xr As Single, eps As Single

h =20.1
xr = 5
eps = 0.001
maxit = 20

Call Muller(xr, h, eps, maxit, iter)

MsgBox "root = " & xr
MsgBox "Iterations: " & iter
End Sub

Sub Muller (xr, h, eps, maxit, iter)

Dim x0 As Single, x1 As Single, x2 As Single

Dim h0O As Single, hl As Single, d0 As Single, dl As Single
Dim a As Single, b As Single, ¢ As Single

Dim den As Single, rad As Single, dxr As Single

X2 = Xr
x1l = xr + h * xr
x0 = xr - h * xr
Do

iter = iter + 1

hO = x1 - x0

hl = x2 - x1

do (f(x1) - £(x0)) / hO

dl = (f(x2) - f£f(x1)) / hl

a = (dl - d0) / (hl + hO)

b=a* hl + dl

c = f(x2)

rad = Sgqr(b * b - 4 * a * ¢)

If Abs(b + rad) > Abs(b - rad) Then
den = b + rad

Else
den = b - rad
End If
dxr = -2 * ¢ / den
xXr = x2 + dxr
If Abs(dxr) < eps * xr Or iter >= maxit Then Exit Do
x0 = x1
x1 = x2
X2 = Xr
Loop
End Sub

Function f (x)
f=x"3-13 * x - 12
End Function



7.7 The plot suggests a root at 1
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Using an initial guess of 1.5 with h=0.1 and eps = 0.001 yields the correct result of 1 in 4
iterations.

7.8 Here is a VBA program to implement the Bairstow algorithm and solve Example 7.3.

Option Explicit
Sub PolyRoot ()
Dim n As Integer, maxit As Integer, ier As Integer, i As Integer

Dim a(10) As Single, re(l1l0) As Single, im(10) As Single
Dim r As Single, s As Single, es As Single

n=>5

a(0) = 1.25: a(l) = -3.875: a(2) = 2.125: a(3) = 2.75: a(4) = -3.5: a(5) =1
maxit = 20

es = 0.01

r = -1

s = -1

Call Bairstow(a(), n, es, r, s, maxit, re(), im(), ier)
For i = 1 To n
If im(i) >= 0 Then

MsgBox re(i) & " + " & im(i) & "i"
Else
MsgBox re(i) & " - " & Abs(im(i)) & "i"
End If
Next i
End Sub

Sub Bairstow(a, nn, es, rr, ss, maxit, re, im, ier)

Dim iter As Integer, n As Integer, i As Integer

Dim r As Single, s As Single, eal As Single, ea2 As Single
Dim det As Single, dr As Single, ds As Single

Dim rl As Single, il As Single, r2 As Single, i2 As Single
Dim b (10) As Single, c¢(10) As Single

r = rr
s = ss
n = nn
ier = 0
eal =1
eaz =1
Do
If n < 3 Or iter >= maxit Then Exit Do
iter = 0
Do
iter = iter + 1
b(n) = a(n)
b(n - 1) = a(n - 1) + r * b(n)
c(n) = b(n)
c(n - 1) =b(n-1) + r * c(n)
For i = n - 2 To 0 Step -1



b(i) = a(i) + r * b(i + 1) + s * b(i + 2)
c(i) =b(i) +r * c(i + 1) + s * c(i + 2)
Next i
det = c(2) * c(2) - c(3) * c(1)
If det <> 0 Then
dr = (-b(l) * c(2) + b(0) * c(3)) / det
ds = (-b(0) * c(2) + b(l) * c(l)) / det
r =r + dr
s = s + ds
If r <> 0 Then eal = Abs(dr / r) * 100
If s <> 0 Then ea2 = Abs(ds / s) * 100
Else
r=1r +1
s =s +1
iter = 0
End If
If eal <= es And ea2 <= es Or iter >= maxit Then Exit Do
Loop
Call Quadroot(r, s, rl, i1, r2, 12)
re(n) = rl
im(n) = il
re(n - 1) = r2
im(n - 1) = i2
n=n-2
For 1 = 0 To n
a(i) = b(i + 2)
Next i
Loop
If iter < maxit Then
If n = 2 Then
r =-a(l) / a(2)
s = -a(0) / a(2)
Call Quadroot(r, s, rl, il, r2, 1i2)
re(n) = rl
im(n) = il
re(n - 1) = r2
im(n - 1) = 12
Else
re(n) = -a(0) / a(l)
im(n) = 0
End If
Else
ier =1
End If
End Sub
Sub Quadroot(r, s, rl, il, r2, i2)
Dim disc
disc = r ~ 2 + 4 * s

If disc > 0 Then

rl = (r + Sgr(disc)) / 2
r2 = (r - Sgr(disc)) / 2
il =0
i2 =0

Else
rl =1r /2
r2 = rl
il = Sgr(Abs(disc)) / 2
i2 = -1i1

End If

End Sub

7.9 See solutions to Prob. 7.5



7.10 The goal seek set up is

B1 | = =B13.3
A [ B [ ¢ [ b [ E [ *
RES ' 1
1 T — 2/
% I ] Set cell: $B$2 x
5| Ta value: |79
E By changing cell: |$B$1| ﬂi]
=
5 |
)
The result is
2 2 o [ [ i [ [ [ [ |
|1 % 3.758703
Zixa3  [7eoer]
I | | Godl Seeking with Cell B2
L5 | found a solution,
B Cancel |
_?_ Targek value: 79
g | Current value:  78.99972045 Step |
% Palise |
1
[12]

7.11 The goal seek set up is shown below. Notice that we have named the cells containing the
parameter values with the labels in column A.

m =] =| =g*mic_*{(1-EXP-c_/mtii
A | B | ¢ | o | E | F | 6 |

1 |Prob. 7.1
2| |
et 9 mis2 2
—g—f 1; :g’fs Set cell; 35510 %
E v | 3 To walue: ID
L7 | | E— By chanaging cell: |$B$8| =k]
|0 |m O UL
9 Ok I Cancel
|10 |fiw) I 4.93!]!]4_' |

1
The result is 63.649 kg as shown here

A | 8 [ ¢ [ o [T E [ F [ & [ H ]

1 [Prob.7.11 |
o | x|
3 | _ 9.8 mis2 2l _

4 ¢ 14 ky/'s Goal Seeking with Cell BLO
_E_t Is found & salution,
= Caricel
% ¥ 5| Target value: a _‘_I
3 |m | 63.64918 kg Current valus;  -0.000164362 Step |
E l l Palisa

10 | fiw) I -l].l]l]l]1ﬁ_| 4'

11




7.12 The Solver set up is shown below using initial guesses of x =y = 1. Notice that we have
rearranged the two functions so that the correct values will drive them both to zero. We then
drive the sum of their squared values to zero by varying x and y. This is done because a
straight sum would be zero if fi(x,)) = -£2(x,y).

cio o =| =c7+ca
A e e [ E e e e

1 Pob. 7.2 21
ERM 1 Set Target Cell: B Solve I
4y 1 Equal To: CoMax O Mo valug of: [o Close |
[ | rBy Changing Cells:

B function function*2
-2 - : %
7 [f(xy)=xr2ex:05y 15 225 I#E83:485¢ | ges |
| B [R2(x,y)=x"2yIxzy ] 25 [Subject to the Constraints: Gptians

H
- - Add
|10 | sum squares = _—I
KA | . changs |

12 Reset Al
o of bk ||
14 _ b |
|15

The result is

A | 8 [ € [ o | E | F | 6 | H | ]

i 20|
E X | -!].13_1_353?14 Solver Found a solution. All constraints and optimality |

4y 0.351415684 conditions are satisfied, Repotts
_5_ Answer -
6 | function function*2 | f_en_:iti\’itv

- imits

(7 [fl{x,y)=-x*2+x+0.5y 0.000110212] 1.215E-08 (" Restora Original Values =l
|8 |2(x,y)=x~2.y5xy 000015798 2.496E.08

=] T
i) (a4 I Cancel Save SCEnatio... Help
| 10| sum squares | 3.?1E-I]§.| I |

7.13 A plot of the functions indicates two real roots at about (—1.5, 1.5) and (—1.5, 1.5).

4 -




The Solver set up is shown below using initial guesses of (1.5, 1.5). Notice that we have
rearranged the two functions so that the correct values will drive them both to zero. We then
drive the sum of their squared values to zero by varying x and y. This is done because a
straight sum would be zero if fi(x,)) = -£2(x,y).

10 d| =| =C7+CH
A [ B [ C [ = ] = 5 T I = e s |

i prob. 7.1  CTTTE—— 20
% % 15 - Set Target Cell: = Solve I
4 |y | 15 | Equal Ta: CMax O M valieof: |0 s |
_-5_ By Changing Cells:

6 | function function*2 | $E57:5654 =] o

7 Flixy)=xr2y 0.25 0.0625 ! i ) _—I

| B |[R(xy)=x*2+y*25 05 0.25 —Subject to the Constraints: Options |
3 =] add
| 10| sum squares —I

11 Change |

W I I Reset All |
ke AU
14| =

15
The result is

A | E N 2 = = = | [ 4 K|

ERCTNEE | ' 20
ERM | 1.6004838 Solver Found a solution. All constraints and optimality
Ty | 1561555286 conditions are satisfied, Reparts
R | Answer a
E function function*2 fifnnitssltmw
| 7 |[Aix,y)=x"2y1 | 6.89271ED6 4.751E-11 " Restore Origingl Yalues =
| B [fR2i{x,y)=x*2+y*25  330504E06 1.092E-11
1 9 | | QK I Cancel | Save Scenario. .. | Help |
|10 | sum squares| 5.843E-11]
K _

For guesses of (1.5, 1.5) the result is (1.6004829, 1.561556).



" 7.14 First we will multiply out the polynomial so that it is in standard format
f5(0) = (x+2)(x - 6)(x - D(x +4)(x - 8) = x>~ 9x* - 20x> +204x? +208x - 384

Note this can also be done directly in MATLAB by first setting up a vector holding the roots
>> v=[~2 6 1 -4 8];

and then using the poly function

>> a=poly(v)

a =
1 -9 -20 204 208 -384

Next, we can evaluate this polynomial at a specific value. For example, at x = 1 (one of the
roots), it would evaluate to zero

>> polyval(a,l)

ans =
0

At x =0, it would evaluate to
>> polyval({a,0)

ans =
-384

The derivatives can be computed by
>> polyder(a)

ans =
5 .-36 -60 408 208

Next, a polynomial with two of the original roots can be formed

>> v=[-2 6];
>> b=poly(v)

b =
1 -4 -12

We can divide this polynomial into the original polynomial by
>> [d,el=deconv(a,b)

with the result being a quotient (a third-order polynomiai, d) and a remainder (e)
d =

o - 0 0 0 0 0

Because the polynomial is a perfect divisor, the remainder polynomial has zero coefficients.



>> roots (d)

with the expected result that the remaining roots of the original polynomial are found

ans =
8.0000
-4.0000
1.0000

We can now multiply d by b to come up with the original polynomial,
>> conv(d,b)

ans =
1 -9 -20 204 208 -384

Finally, we can determine all the roots of the original polynomial by

>> r=roots (a)

8.0000
6.0000
-4.0000
-2.0000
1.0000

7.15
p=[0.7 -4 6.2 -2];
roots (p)

ans =

3.2786

2.0000
0.4357

p=[-3.704 16.3 -21.97 9.34];
roots (p)

ans =

2.2947
1.1525
0.9535

p=[1 -2 6 -2 5];
roots (p)

ans =

1.0000
1.0000
-0.0000
-0.0000

2.00001
2.00001
1.00001
1.00001

r+ 1+

7.16 Here is a program written in Compaq Visual Fortran 90,

PROGRAM Root

Use IMSL !This establishes the link to the IMSL libraries



Implicit None !forces declaration of all variables
Integer::nroot

Parameter (nroot=1)

Integer::itmax=50
Real::errabs=0.,errrel=1.E-5,eps=0.,eta=0.

Real::f,x0 (nroot) ,x(nroot)

External f

Integer::info (nroot)

Print *, "Enter initial guess"

Read *, x0

Call ZReal (f,errabs,errrel,eps,eta,nroot,itmax,x0,x,info)
Print *, "root =", x

Print *, "iterations = ", info

End

Function f (x)
Implicit None

Real::f,x
f = x**3-x**2+2*x-2
End

The output for Prob. 7.4a would look like

Enter initial guess
.5
root = 1.000000
iterations = 7
Press any key to continue

7.17
h, =0.55-0.53 =0.02
h; =0.54 -0.55=-0.01
0 =_58-19 =1950
0.55-0.53

01 =_ 44— 58 = 1400
0.54-0.55

a=_0=0, =-55000
h; + h,

b=ah;+ & =1950
c=44

Ih? - age = 367185

¢ =054+ 249

. =0.524s
1950 +3671.85

Therefore, the pressure was zero at 0.524 seconds.



7.18
) Graphically:

EDU»C=[1 3.6 0 -36.4];roots (C)

ans = -3.0262+ 2.3843i
-3.0262- 2.38431
2.4524

The answer is 2.4524 considering it is the only real root.

II) Using the Roots Function:

EDU» x=-1:0.001:2.5;f=x."3+43.6.*x.72-36.4;plot(x,f);grid;zoom
By zooming in the plot at the desired location, we get the same answer of 2.4524.

-4
x 10

-6

2.45232.45232.45242.45242.45242.45242 .45242.45242.45242.45242.4524

7.19
Excel Solver Solution: The 3 functions can be set up as roots problems:

fila,u,v) = a’-u+3? =0
fr(a,u,v)y=u+v-2=0

fla,u,v) = a’>-2a-u=0



ch | =| =sUM(C7 C3)
T [ [ e [ e ] e e |
1 |Problem 7.19
B 21
% £l :]I Set Target Cell: CE11 3 Salve I
u
1 I i Equal To: . Copax CoMin ©ovalueol |0 Gose |
B ) Function  Function’2 By Changing Cells:
| 7 |Funcl 3 9 |$B$3:4B85 = Guess |
& |FuncZ ] u] :
797 Eonca 5] 1 Subject to the Constraints; Gptions |
o =l add |
1 Sum SquareE 13‘] =
12 Change |
EEl I T Reset 4l |
(13 ;I Delete |
l Help |
15
16
S [ T [ O =S == 2 | 4]
1 |Problem 7.18
2|
3 |a | 04190052
ENRE e 1
5 v 0.69279029 2
B Function Function'2 Solver found a solution. - All constraints and optimalicy
|7 |Funcl | 0.00012954 1EE1E-08 oo e ol Reports
|8 |Func2  -0.00012037 1.449E-08 OISRl =
9 |Func3 4. 6712E-05  2.182E-08 Lm:; ity
10| | " Restore Qriginal Values ;I
11 Sum Sguare | 3.348E-08
12 oK I Cancel Save Scenaic.., I Help |
13

Symbolic Manipulator Solution:

>>syms a u v
>>S=solve (u"2-3*v"2-a”2,ut+v-2,a"2-2*a-u)

>>double (S.a)
ans = 2.9270 + 0.30501
2.9270 - 0.30501
-0.5190
-1.3350

>>double (S.u)
ans = 2.6203 + 1.17531
2.6203 - 1.17531

1.3073
4.4522
>>double (S.v)
ans = -0.6203 + 1.17531i
-0.6203 - 1.17531
0.6297
-2.4522

Therefore, we see that the two real-valued solutions for a, u, and v are
(-0.5190,1.3073,0.6927) and (-1.3350,4.4522,-2.4522).

7.20 The roots of the numerator are: s = -2, s = -3, and s = -4.
The roots of the denominator are: s = -1, s = -3, s = -5, and s = -6.

G(s) = (s+2)(s+3)(s+4)
(s +D(s +3)(s +5)(s +6)



‘ -3 2 -
Chagte, 4 ™ B-g = [0 -l '3J

o a by 36 @ et peeatle

g 3 0 1, P 20 |5 3%
@ sB= |5 1w 3
0 A3 (10 5 o 20
W IS 13 6l
e Ex® = {32 23 &7
Q ‘g [ C) 2l 9z W
50
b o |
(&) BxE = |53 23 48
39 7 4
9,3 17 5 26
D= axy

a) A = 2\2 E= 2(3
B- 33 F = 2Zx3 38
c=3X\ (= Ix3 [ [E}{c]; 23

12

L) s , Bad E
m) C 5 ¢ = [261]
/7»044) ) C"

) Qrg, =5 (?) ‘T‘ 5 &
%zg = ( b = 4 )
dzy = doso mal enish 3 7
Loy = & °
i1 =0
Jiz =6

(& ITL = g

d)

5 ¢13
O &tE {8 39
5014



1}

{

W2
Iy

2008)-¢(62) =

=45 + 9 (c8) x

- 1%

40

% = 425 - o027 ¢y

Y, =

A
20 2




= 7
|l 2 s
[ SN
9(’*" 2 | 0
7
M= L= 0.142857)
=
Yyo=10 | 5
2 2
S 2 0

T2z L= 1570 1429
T

Y - 0 2 |
3 2 0
3 | 2
T
(Y“’Z' "é_ = “O: 4239f)'q
i

%)
Vo = 265+ 4.7
I\ 51 s
/X;‘—IZ/
1 L AMaes almesd
[ < once
|
|
\{Xl
W= 5

-.b) O'SV,—'Y—L:_CLS'

082%, — Ny = =9,y

b= =50 = .02
DOt 0ed O Lggeat Y ety
H  m=s a,=1z
e) wuh a,=0.55

’yl:—'ngB er;7'é7

MWMMQ ¢ A
%gwbﬂaﬂﬁec)«w\azw ;



9.8

C)ru,Jﬂ_%
O] A B E-Zo -2V +2 - 10 = =20
@ -2 -4 2.1 10 -—2 -8 +20 = |0
® | 2 2. 15 | +4 420 = 25
Oxt -2 % -4 -0 @
% purt do oflain
@-®
61 1 ¢ O
-2 1 -1 =20 S @
O -3 Bk /% 4 |- -2 €,
| 2 2 25
n Dx5k  aubdnad @
®X"/z_ QXY aulidrod &fw@
I - = R%Z G) 6 | | 6
o % % -l
)5, o %} -C
-l = —20/ o ,
o 1 parst 042
0 %z Yz 2802 "
N A ®
G o e @
28 =132 - y oL
0 = -7 8O @ o L -l @®@
& X Vo auhidud prom @
—@ -1z 1 -\ _zo6 D pon
o -2 % %% (o 6 11 6 @
o O 3 3¢/ D o %Y -6 @
o6 o 2 & @
Arem (3 Y2 = 10:0 ©
D Fuwo x3=|
-35 4 = - 130 : ' =-13
W 2%y ?ﬁ? 20 ot f&zbs
e =
Fa = .0
-+ = 6 Vv
W@ 5(3>~\3 +42. = 4 v
T2y, =-20+10-2 4pY-3 -1 =-2 -
90!‘2- I.0

S S



110 MV«M/(L«'D.Q 157 2ged

‘ 77— ”/7/ I/?. 0)
5 A Y -y @
) ]

) SR E)
WM Owns W @
AudrDna ot OB & Hrem @

ok -)a b

A

o - l/z 5/1 —'/7,_
mrmaling 20 heoy ©/(4)

\ =t < @

o 1 -9 13 @

o -3 % 072 ©
pbidiad Ox(L) fom @
aubidact B« (L) Jon @

[ o) /2 _,(27/2_ &

o -9 3 @

© 0 ”17(/2 20/Z

roweliny 30d a0 @ /%)

o % =%

o | -9 3 Q)

O o | . @
M@X q)%m m
W@X(8L>W

| o] | 1Y

0 ! o -3

o) O ‘ _5

Tl e s
%W%O
A AN D Qe !
%, =-0.25
%r-o.so
‘nga.o}g
9.\
50 + 0 o o|l4
g0 -1 | O 0 Ty
0 o -1 | ol]s
0 0 -1 |||%y
0 o 0D 1 T
332 )
a = 315 = \t76
T = — a5 462
3= - 2.06 TGO,
T3y = - 34.3] 92
Tyg = ~ 98- 1i



9.14
Here is a VBA program to implement matrix multiplication and solve Prob. 9.3 for the case

of [X]X[7].
Option Explicit
Sub Mult ()

Dim i As Integer, j As Integer

Dim 1 As Integer, m As Integer, n As Integer
Dim x (10, 10) As Single, y (10, 10) As Single
Dim w (10, 10) As Single

1 2

m= 2

n =3

x(1, 1) = 1: x(1, 2) = 6

x(2, 1) = 3: x(2, 2) =10
x(3, 1) = 7: x(3, 2) =4

y(l, 1) = 6: y(2, 1) =0

v(2, 1) =1: y(2, 2) =4

Call Mmult(x(), v(O, w(), m, n, 1)

For i =1 To n
For j =1 To 1
MsgBox w(i, J)

Next j
Next i

End Sub
Sub Mmult(y, z, x, n, m, p)

Dim i As Integer, j As Integer, k As Integer
Dim sum As Single

For i =1 Tom
For j =1 To p
sum = 0
For k = 1 To n
sum = sum + y(i, k) * z(k, 7J)
Next k
x(i, j) = sum
Next j
Next i
End Sub
9.15

Here is a VBA program to implement the matrix transpose and solve Prob. 9.3 for the case of
[X]".

Option Explicit

Sub Mult ()

Dim i1 As Integer, j As Integer

Dim m As Integer, n As Integer
Dim x (10, 10) As Single, y (10, 10) As Single

b
—
~
—
|
—
|
o)

x (1, 2)
x(2, 1) = 3: x(2, 2) =10



x(3, 1) = 7: x(3, 2) =4
Call MTrans(x(), y(), n, m)
For i = 1 Tom
For j = 1 To n
MsgBox y (i, 7J)
Next j
Next i

End Sub
Sub MTrans(a, b, n, m)

Dim i As Integer, J As Integer

For i = 1 Tom
For j = 1 To n
b(i, j) = a(3j, 1)
Next j
Next i
End Sub
9.16

Here is a VBA program to implement the Gauss elimination algorithm and solve the test case
in Prob. 9.16.

Option Explicit
Sub GaussElim()

Dim n As Integer, er As Integer, i As Integer
Dim a (10, 10) As Single, b(10) As Single, x(10) As Single

Range ("al") .Select

n =3

a(l, 1) =1: a(1, 2) =1: a(1, 3) = -1
a(2, 1) = 6: a(2, 2) = 2: a(2, 3) =2
a(3, 1) = -3: a(3, 2) =4: a(3, 3) =1
b(l) = 1: b(2) = 10: b(3) = 2

Call Gauss(a(), b(), n, x(), er)
If er = 0 Then

For i =1 To n
MsgBox "x (" & 1 & ") =" & x (1)
Next i
Else
MsgBox "ill-conditioned system"
End If
End Sub

Sub Gauss(a, b, n, x, er)

Dim i As Integer, J As Integer
Dim s(10) As Single
Const tol As Single = 0.000001
er = 0
For i =1 To n
s(i) = Abs(a(i, 1))
For j = 2 To n
If Abs(a(i, j)) > s(i) Then s(i) = Abs(a(i, 3J))
Next j
Next i
Call Eliminate(a, s(), n, b, tol, er)
If er <> -1 Then



Call Substitute(a, n, b, x)
End If
End Sub

Sub Pivot(a, b, s, n, k)
Dim p As Integer, ii As Integer, jj As Integer
Dim factor As Single, big As Single, dummy As Single
p =k
big = Abs(a(k, k) / s(k))
For i1 = k + 1 To n
dummy = Abs(a(ii, k) / s(ii))
If dummy > big Then
big = dummy
p = ii
End If
Next ii
If p <> k Then
For jjJ = k To n
dummy = a(p, JjJj)

a(p, 33) = a(k, 33)
a(k, 33) = dummy
Next 3jj
dummy = b (p)
b(p) = b(k)
b (k) = dummy
dummy = s (p)
s(p) = s(k)
s (k) = dummy
End If
End Sub

Sub Substitute(a, n, b, x)

Dim i As Integer, J As Integer
Dim sum As Single

x(n) = b(n) / a(n, n)

For i = n -1 To 1 Step -1

sum = 0

For j =1+ 1 Ton

sum = sum + a(i, Jj) * x(J)

Next jJ

x(i) = (b(i) - sum) / a(i, i)
Next 1
End Sub

Sub Eliminate(a, s, n, b, tol, er)

Dim i As Integer, Jj As Integer, k As Integer
Dim factor As Single
For k =1 Ton -1

Call pivot(a, b, s, n, k)

If Abs(a(k, k) / s(k)) < tol Then

er = -1
Exit For
End If

For i =k + 1 Ton
factor = a(i, k) / a(k, k)
For j =k + 1 Ton

a(i, j) = a(i, j) - factor * a(k, 7J)
Next j
b(i) = b(i) - factor * b(k)
Next i
Next k
If Abs(a(k, k) / s(k)) < tol Then er = -1
End Sub

It’s application yields a solution of (1, 1, 1).
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10.14

Option Explicit

Sub LUDTest ()

Dim n As Integer, er As Integer, i As Integer, j As Integer
Dim a (3, 3) As Single, b(3) As Single, x(3) As Single

Dim tol As Single

n =3

a(l, 1) = 3: a(l, 2) = -0.1: a(1, 3) = -0.2
a2, 1) = 0.1: a(2, 2) = 7: a(2, 3) = -0.3
a(3, 1) = 0.3: a(3, 2) = -0.2: a(3, 3) =10
b(l) = 7.85: b(2) = -19.3: b(3) = 71.4

tol = 0.000001
Call LUD(a(), b(), n, x(), tol, er)

'output results to worksheet
Sheets ("Sheetl") .Select
Range ("a3") .Select
For i =1 To n
ActiveCell.Value = x (i)
ActiveCell.Offset (1, 0).Select



Next i
Range ("a3") .Select

End Sub

Sub LUD(a, b, n, x, tol, er)
Dim i As Integer, J As Integer
Dim o(3) As Single, s(3) As Single
Call Decompose(a, n, tol, o(), s(), er)
If er = 0 Then
Call Substitute(a, o(), n, b, x)
Else
MsgBox "ill-conditioned system"
End
End If
End Sub

Sub Decompose(a, n, tol, o, s, er)
Dim i As Integer, Jj As Integer, k As Integer
Dim factor As Single
For 1 = 1 To n
o(i) =1
s (i) Abs (a (i, 1))
For j = 2 To n

If Abs(a(i, j)) > s(i) Then s(i) = Abs(a(i,

Next j
Next i
For k =1 Ton -1
Call pPivot(a, o, s, n, k)
If Abs(a(o(k), k) / s(o(k))) < tol Then

er = -1
Exit For
End If

For 1 =k + 1 Ton
factor = a(o(i), k) / a(o(k), k)
a(o(i), k) = factor
For J =k + 1 Ton

3))

a(o(i), j) = a(o(i), j) - factor * a(o(k),

Next j
Next i
Next k
If (Abs(a(o(k), k) / s(o(k))) < tol) Then er
End Sub

Sub Pivot(a, o, s, n, k)
Dim ii As Integer, p As Integer
Dim big As Single, dummy As Single
p =k
big = Abs(a(o(k), k) / s(o(k)))
For i1 = k + 1 To n
dummy = Abs(a(o(ii), k) / s(o(ii)))
If dummy > big Then
big = dummy
p = ii
End If
Next ii
dummy = o (p)
o(p) = o(k)
o (k) = dummy
End Sub

Sub Substitute(a, o, n, b, x)
Dim k As Integer, i As Integer, J As Integer
Dim sum As Single, factor As Single
For k =1 Ton -1
For i =k + 1 Ton
factor = a(o(i), k)

-1



b(o(i)) = b(o(i)) - factor * b(o(k))
Next i
Next k
x(n) = b(o(n)) / a(o(n), n)
For 1 n -1 To 1 Step -1
sum = 0
For j =1+ 1 Ton
sum = sum + a(o(i), J) * x(J)
Next jJ
x(i) = (b(o(i)) - sum) / a(o(i), 1)
Next i
End Sub
10.15

Option Explicit

j As Integer

As Single

Sub LUGaussTest ()
Dim n As Integer, er As Integer, i As Integer,
Dim a (3, 3) As Single, b(3) As Single, x(3)
Dim tol As Single, ai(3, 3) As Single
n =3
a(l, 1) = 3: a(l, 2) = -0.1: a(1, 3) = -0.2
a2, 1) = 0.1: a(2, 2) = 7: a(2, 3) = -0.3
a(3, 1) = 0.3: a(3, 2) = -0.2: a(3, 3) =10
tol = 0.000001
Call LUDminv(a(), b(), n, x(), tol, er, ai())
If er = 0 Then
Range ("al") .Select
For i =1 To n
For j = 1 To n
ActiveCell.Value = ai(i, j)
ActiveCell.Offset (0, 1) .Select
Next j
ActiveCell.Offset (1, -n).Select
Next i
Range ("al") .Select
Else

MsgBox "ill-conditioned system"
End If
End Sub

Sub LUDminv (a, b,
Dim i As Integer,
Dim o(3) As Single,
Call Decompose(a, n,
If er = 0 Then
For i =1 To n
For j = 1 To n
If i = j Then
b(j) =1
Else
b(3)
End If
Next j
Call Substitute(a,
For j = 1 To n
ai(j, i) = x(3)
Next j
Next i
End If
End Sub

n, x, tol, er,
j As Integer
tol,

o(), s(

0

o, n, b,

n, tol, o, s,
j As Integer,

Sub Decompose (a,
Dim i As Integer,

ai)

s(3) As Single

er)

)y

X)

er)
k As Integer



Dim factor As Single
For 1 = 1 To n
o(i) =1
s(i) = Abs(a(i, 1))
For j = 2 To n

If Abs(a(i, j)) > s(i) Then s(i) = Abs(al(i,

Next j
Next i
For k =1 Ton -1
Call pPivot(a, o, s, n, k)
If Abs(a(o(k), k) / s(o(k))) < tol Then

er = -1
Exit For
End If

For i =k + 1 Ton
factor = a(o(i), k) / a(o(k), k)
a(o(i), k) = factor
For j =k + 1 Ton

3))

a(o(i), j) = a(o(i), j) - factor * a(o(k),

Next j
Next i
Next k
If (Abs(a(o(k), k) / s(o(k))) < tol) Then er
End Sub

Sub Pivot(a, o, s, n, k)
Dim ii As Integer, p As Integer
Dim big As Single, dummy As Single
p =k
big = Abs(a(o(k), k) / s(o(k)))
For i1 = k + 1 To n
dummy = Abs(a(o(ii), k) / s(o(ii)))
If dummy > big Then
big = dummy
p = ii
End If
Next ii
dummy = o (p)
o(p) = o(k)
o (k) = dummy
End Sub

Sub Substitute(a, o, n, b, x)
Dim k As Integer, i1 As Integer, J As Integer
Dim sum As Single, factor As Single
For k =1 Ton -1
For i =k + 1 Ton
factor = a(o(i), k)

b(o(i)) = b(o(i)) - factor * b(o(k))
Next i
Next k
x(n) = b(o(n)) / a(o(n), n)
For 1 n -1 To 1 Step -1
sum = 0
For j =1+ 1 Ton
sum = sum + a(o(i), J) * x(j)
Next jJ
x(i) = (b(o(i)) - sum) / a(o(i), 1)
Next 1

End Sub
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10.17

AB=00 —4a+2b=3 (1)
AC=00 2a-3c=-6 (2)
BIC=203b+c=10 (3

Solve the three equations using Matlab:

>> A=[-4 2 0; 2 0 -3; 0 3 1]
b=[3; -6; 10]
x=inv (A) *b

x = 0.525
2.550
2.350

Therefore, a = 0.525, b =2.550, and ¢ = 2.350.

10.18

iJ

k
(AxB)=la b c|=(~4b-c)i —(~4a+2¢)j+(a+2b)k
4

_21_

~.|

W o
NS I S N ]

=(2b-3¢c)i —(2a—-c)j +Ba+b)k

(AxB)+(AxC) =(=2b—4c)i —=(-2a+c)j +(4a +b)k



Therefore,
(=2b=4¢)i +(=2a—c)j +(4a+b)Fi = (5a+6)i +(3b=2)] +(~4c+ D)k

We get the following set of equations [

—2b—4c=5a+6 [ —-5a-2b-4c=6 (1)
2a—c=3b-2 U 2a-3b-c=-2 )
4a+b=-4c+l1 O 4da+b-4c=1 3)
In Matlab:
A=[-5 -5 -4 ; 2 -3 -1 ; 4 1 -4
B=[ 6 ; -2 ; 1] ; x = inv (A) * b
Answer [ x = -3.6522

-3.3478

4.7391

a=-3.6522,b=-3.3478,c=4.7391
10.19

@  f0)=10 a(0)+b=10 b=1
f(2)=10 c(2)+d =10 2c+d =1

(II) If £ is continuous, then at x = 1

axtb=cx+d 0 al)+b=c()+d 0 a+b-c—-d =0

() a+b=4
1 0 o0gn QC
HEFRN L
9 02 23pa_de
o 1 -1 —IB%’B UJ)E
A1 0 050 Hr
Solve using Matlab [ a=3
b=1
c=-3
d=17

10.20 MATLAB provides a handy way to solve this problem.



(a)
>> a=hilb (3)

a:
1.0000 0.5000 0.3333
0.5000 0.3333 0.2500
0.3333 0.2500 0.2000

>> b=[11 1]'

b =
1
1
1
>> c=a*b
c:
1.8333
1.0833
0.7833

>> format long e
>> x=a\b
>> x =

9.999999999999991e-001
1.000000000000007e+000
9.999999999999926e-001

(b)

>> a=hilb(7);

> b=[1111111]"';
>> c=a*b;

>> x=a\b

x =

.999999999914417e-001
.000000000344746e+000
.999999966568566e-001
.000000013060454e+000
.999999759661609e-001
.000000020830062e+000
.999999931438059e-001

ol RNl Nl =]

(c)

>> a=hilb(10);

> b=[11111111111";
>> c=a*b;

>> x=a\b

.999999987546324e-001
.000000107466305e+000
.999977129981819%e-001
.0000207776959739e+000
.999009454847158e-001
.000272183037448e+000
.995535966572223e-001
.000431255894815e+000
.997736605804316e-001
.000049762292970e+000

P ORFW©ORF ©ORFORF o



Mll

) hha  pee L7805 = §;§
5= ——!/2:'. -6.5 [o]
$,= a-(-os)-1) = 5O fo Jrat eof o a- 1
ez= -5 = -0.667 Gureo ZD} B %a\.s %
L K= (-0.¢7)(-1)= .333 0.334
T nontfgmed) wpalon Lo wed (U] TX3 = §073
2 -1 o qores  HZ00S 1+ e
-05 5 - | ; 'L[z?o'r E "
O —04b7 [.333 X3=07% A-l
whieh 1o MMW as o ZMJCJ‘&W 06 #=!
! o 4 e (/DS = ;C/D}
L= |-0.5 ; 0] ’ Z; D
o -0.67 | whid o
2 - O } YX\; 0.5
U = o 1,5 -1 'X'L: IO
o o 1.333 Yy= 05
MWWWW b 30d columim o7 4~/
= 4= (osdzd= 4 pe by = %3%
rz= 14 = (~00tTH(66) = 58. |
24 \AM«GM.Q
Ebj: {(g&}
78 ‘ X, = 0,25
At Uﬂ'@@:igz qerts Xp= 0.50
Xzg= 0.75
K= 97,5
1237310
Yy = 4345 0,75 0.5 o025
/(‘ = ) ! 0.5
0,25 05 675



4

.3 e Prete 11 amd i.s £ Ex 11,2
FW/.Z W Choteakey W

= -0.02875/2.0145 = —0.01427 2.4495 0 o
£, = q.0143Yy L= [6.736/ 455565 o

57155~ 17/0 429
ex = =0,01427.27

Fa = 20143y

M‘U&M&V‘y\a LLT-
724 = ~0,0142727 . .
4 = 2.0/434 awm W '
_ oy W

r 4,175
T'-L = o) 0152/
g = 0.02979 .6
Fy = 20720
l)(’:_ Y+ X,
pnd) *
.7_4= I.03b (\\.L; 4‘+"X|+'X3
7-3:— O, 052 :
72= 0.0198 Y3 = M4
71= 20726 c
W=y, =2 Ay=T
2.4495 1237 22,45y . .
4877 20900 | 15T e Lo qureo
6. 1106
W= REEZ - 3
2
a.44q5 ¢ I5 5% o= dte>+7T = 37
61237 4.1832 5 55 25 &
22,954 0,91, G.06| |55 226 99 Ao = 4+27 = 55
=z

L= A5 L= 2.3/

Yo= 1075  Eg= 3:224
A= 4238 €a=241)



7

= (’S'OO +2C2 4 3(,33 /)7
Co= {200 +5¢ 4 2¢5) /a1
= (304 5S¢ 45¢, )/ 22

'(’ru& c =0J cz_:-O/ €y=0

B a T

C, =

| 29,41

Co = b,53 )(j-CJ

Ca = 1),80
21l St

C :.33'673 ea_‘: /'9 '/o
C,.-19. %6 €q= 13 oy
03../3,36 éa:!.B‘/,

. & Trua c,‘-‘o C2=D

S
c=500/11= 34, 4| | &
€, = Avofz| =9,52

Cy = 30/;2, = |36

C\= (5004 2052+ 3(130) Vi1 = 3077
Cp = (2e0+ 5 (442 (t.%))/z/:/é,éé 4
Cz = (245094045 (3.52) Ypn = 10,2

ot

C=3388 ¢4
CZ: I‘K,’I’/ 6Q
C“&: 13.'23 e«

i

wn

241 0/0

010
-0 ofs 5 sth

U x=2315 .
%, =3.844 fored

1.9 Faarnamge
2= (249, +%) /4
V= (45-¢y, ) /¢
2= (80+5%) /12
OLARNNNL. 'X,'—'—()(Z‘Sj(,szo
Firad Jonatean
N~
Xy = ~%4=-0.5

N, =04 (—0'5+ 6—0.75(&)

= -0.45%

?Z:f-— s - tCous) /o= 5.9
Yo = 04(5.46) + (1-0.4)e)=5.3¢
'Xn:;-r (30+ 5l-ou) )iz = ¢. 42
3= 0:a(ae) + (1-0)(s)=5.43

Seeomd Thornadipn,

)
%n,“- F2+536+593)/4= 2,298

L= 0.4(22%8) + 0.1 (- o.qs>=- 2.02
(5 (o ooV 01
o = 08 (111 +0.1(53)= 4235
5% (304 séz,ozD//z =75/
Wy = 0A0S) 001 (5692734

W5=7.056 values



1,10

) dar Asobt Jrom Mathead,

oAl e

amd (A1)

1

Ow‘?/‘u%ea,

1')‘7— v
S W
= | /tmiwku) w
2875 -5 2425
.-5,5' 7 ’Zv;
.25 =25 .47
I
- l-ci xlo[q, 57 X/(;L; "5‘/7)“0/’? /,‘7)(10“')
/ !
Sbxio, —1ud” 1710 570"
! ) ’
-5.6110 /Jx/o’j —h?x/o“/ 5%
' ¥
L5107 -57x0 57X0 7 =19y,4"

VWL conde (@)= 455, 4oz

()

Ered el A N (04

j /VMLH LS
T e

DO -

1

1.67E+14
-5E+14
SE+14
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4 9

9 16

16 25

25 36
-5E+14  SE+14

1.5E415 -1.5E+15
-1.5E+15 1.5E+15
5E+14  -5E+14

16
25
36
49

-1.7TE+14
S5E+14
-SE+14
1.67E+14

Sheet1

30
54
86
126

108
-56
-16



Matlab solution to Prob. 11.11 (ii):

a=[1 4 9 16;4 9 16 25;9 16 25 36;16 25 36 49]
a =

1 4 9 16
4 9 16 25
9 16 25 36
16 25 36 49

b=[30 54 86 126]

b =
30 54 86 126
b=b"
b =
30
54
86
126
x=a\b

Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = 2.092682e-018.

.1053
.6842
.3158
.8947

oo

x=1inv (a) *b
Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = 2.092682e-018.

loNeoNoNe)]

cond (a)
ans =

4.0221e+017



11.12

Program Linsimp

Use IMSL

Implicit None

Integer::ipath, 1da,n, ldfac

Parameter (ipath=1,1da=3, 1ldfac=3,n=3)

Integer::ipvt(n),i,]J

Real::A(lda, lda),Rcond, Res (n)

Real::Rj(n),B(n),X(n)

Data A/1.0,0.5,0.3333333,0.5,0.3333333,0.25,0.3333333,0.25,0.2/
Data B/1.833333,1.083333,0.783333/

Call linsol(n,A,B,X,Rcond)
Print *, 'Condition number = ', 1.0E0/Rcond
Print *
Print *, 'Solution:'
Do I = 1,n
Print *, X (i)
End Do
End Program

Subroutine linsol (n,A,B,X,Rcond)
Implicit none

Integer::n, ipvt(3)

Real::A(n,n), fac(n,n), Rcond, res(n)
Real::B(n), n)

X(
Call 1lfcrg(n,A,3,fac,3,ipvt,Rcond)
Call 1firg(n,A,3,fac,3,ipvt,B,1,X, res)
End

11.13

Option Explicit
Sub TestChol ()
Dim i As Integer, j As Integer

Dim n As Integer
Dim a (10, 10) As Single

n=3

a(l, 1) = 6: a(l, 2) = 15: a(1, 3) = 55
a(2, 1) = 15: a(2, 2) = 55: a(2, 3) = 225
a(3, 1) = 55: a(3, 2) 225: a(3, 3) = 979

Call Cholesky(a(), n)

'output results to worksheet
Sheets ("Sheetl") .Select
Range ("a3") .Select
For i =1 To n
For j =1 To n
ActiveCell.Value = a(i, 3J)
ActiveCell.Offset (0, 1).Select
Next j
ActiveCell.Offset (1, -n).Select
Next i
Range ("a3") .Select

End Sub
Sub Cholesky(a, n)

Dim i As Integer, j As Integer, k As Integer
Dim sum As Single



For k = 1 To n
For i =1 To k - 1
sum = 0
For 3 =1 To i -1
sum = sum + a(i, j) * a(k, 3J)
Next j
a(k, 1) = (a(k, 1) - sum) / a(i
Next i
sum = 0
For 3 =1 To k - 1
sum = sum + a(k, j) ~ 2
Next j
a(k, k) = sagr(a(k, k) - sum)
Next k
End Sub

11.14

;1)

Option Explicit

Sub
Dim

Gausseid()

n As Integer,
a(3, 3)
es As Single,
3

a(l,

As Single,

imax As Integer,
b(3)
lambda As Single

2) -0.1:

As Single,

=3
0

a(z2,

= 7:

i As Integer
x (3)

1:
3:

= 0.

.8 b(2)

ol =k

[ SRS

MsgBox x (i)
Next i
End Sub

Sub
Dim

Gseid(a, b, n,
i As Integer,

a(3,

-0.

2)
2)
-19.3:

n, x(),

X, imax, es,
j As Integer,

imax,

es, lambda)

lambda)
iter As Integer,

Dim

dummy

For 1 1
dummy =
For j

a(i,
Next j
b (i)

Next i

For i
sum
For

If
Next
x (1)

Next i

iter

Do
sentine
For i

old
sum
For

3

o

=

3

If i <> j Then sum

Next

As Single,
To n

a(i, 1)

1 Ton

Jj) = al(i,

3)

b (1)

=)

on
(1)

1 To n

<> j Then su

sum

1 =1
1 Ton
x (1)

]

sum As Single,

/ dummy

/ dummy

m sum - a(i,

sum - a(

i,

ea As Single,

* x(3)

)

J) * x(3)

As Single

sentinel As Integer
old As Single



x (1) = lambda * sum + (1# - lambda) * old
If sentinel = 1 And x (i) <> 0 Then

ea = Abs((x(1i) - old) / x(i)) * 100
If ea > es Then sentinel = 0
End If
Next i
iter = iter + 1
If sentinel = 1 Or iter >= imax Then Exit Do
Loop
End Sub

11.15 As shown, there are 4 roots, one in each quadrant.

8 -

8 (—0.618,3.236)

L (1,2)

(1.618, —1.236)
\s

(-2,-4)

e e | = 2
N

-8

It might be expected that if an initial guess was within a quadrant, the result wouls be the
root in the quadrant. However a sample of initial guesses spanning the range yield the
following roots:

6 (-2,-4) |(-0.618,3.236) (-0.618,3.236) (1,2) (-0.618,3.236)
3  (-0.618,3.236) (-0.618,3.236) (-0.618,3.236) (1,2) (-0.618,3.236)
0 (1,2)  (1.618,-1.236) (1.618, -1.236) (1.618, -1.236) (1.618, -1.236)
-3 (-2, -4) (2,-4)  (1.618,-1.236) (1.618, -1.236) (1.618, -1.236)
6 (-2, -4) (-2, -4) (-2,-4)  (1.618,-1.236) (-2, -4)

6 -3 0 3 6

We have highlighted the guesses that converge to the roots in their quadrants. Although
some follow the pattern, others jump to roots that are far away. For example, the guess of
(-6, 0) jumps to the root in the first quadrant.

This underscores the notion that root location techniques are highly sensitive to initial
guesses and that open methods like the Solver can locate roots that are not in the vicinity of
the initial guesses.

11.16

X = transistors
y = resistors
z = computer chips

System equations: 3x+3y+2z=810
x+2y+ z=410
2x+y+2z=490



3 3 2C R10C
Let A= a 2 1EandB= %IOE
2 12E H90E

Plug into Excel and use two functions- minverse mmult

Apply Ax=B
x=A'*B

Answer: x=100,y=110,z=90

11.17 As ordered, none of the sets will converge. However, if Set 1 and 3 are reordered so that
they are diagonally dominant, they will converge on the solution of (1, 1, 1).

Setl: 8x+3y+z =12
2x+4y—-z =5
—6x +7z =1

Set3: 3x+y-z =3
x+t4dy—z =4
x+y +5z =7

At face value, because it is not diagonally dominant, Set 2 would seem to be divergent.
However, since it is close to being diagonally dominant, a solution can be obtained by the
following ordering:

Set3: -2x+2y—-3z =-3
2y—z =1
-Xx +4y +5z = 8

11.18

Option Explicit

Sub TriDiag()

Dim i1 As Integer, n As Integer

Dim e(10) As Single, £(10) As Single, g(10) As Single
Dim r(10) As Single, x(10) As Single

n =4
e(2) = -1.2: e(3) = -1.2: e(4) = -1.2
f(1) = 2.04: £(2) = 2.04: £(3) = 2.04: £(4) = 2.04
g(l) = -1: g(2) = -1: g(3) = -1
r(l) = 40.8: r(2) = 0.8: r(3) = 0.8: r(4) = 200.8
Call Thomas(e(), £(), g(), r(), n, x())
For i = 1 To n
MsgBox x (1)
Next i
End Sub

Sub Thomas(e, f, g, r, n, x)

Call Decomp (e, f, g, n)

Call Substitute(e, £, g, ¥, n, x)
End Sub



Sub Decomp (e, f, g, n)
Dim k As Integer
For k = 2 To n

e(k) = e(k) / f(k - 1)

f(k) = £(k) - e(k) * g(k - 1)
Next k
End Sub

Sub Substitute(e, £, g, r, n, x)
Dim k As Integer

For k = 2 To n

= r(k) - e(k) * r(k = 1)

End Sub

11.19 The multiplies and divides are noted below

Sub Decomp (e, f, g, n)
Dim k As Integer
For k = 2 To n

e(k) = e(k) / £(k - 1) '(n - 1)
f(k) = £(k) - e(k) * g(k - 1) '(n - 1)
Next k
End Sub

Sub Substitute(e, £, g, r, n, x)

Dim k As Integer

For k = 2 To n

= r(k) - e(k) * r(k = 1) '(n - 1)

S
(k) * x(k + 1)) / f£(k) '2(n - 1)
End Sub

Sum = 5(n-1) + 1

They can be summed to yield 5(n — 1) + 1 as opposed to 7°/3 for naive Gauss elimination.
Therefore, a tridiagonal solver is well worth using.

1000000

100000 — Tridiagonal -,

— — Naive Gauss s

10000

1000

100

10

1 T 1
1 10 100



Chaplov 13

¥

B ,{Lm,uwa W

M»Cerm»_@
100
0
49
0
0
C|= 17.84
c2 = 11.99
¢z = T.32
Cq = 10120
ceo = 1789
2.4 U coephuennds 4
-
Qay = 0169%
0% = 0.0/287

AC = 0-lbAY X2 % 50
=308 0= 849
I.5
Az= 6.0]880K 0.25x 50

= 0:23b Wioo = 124 %
19.00

2.3 Q- Boa= By + Qss

2.4

Boseden, |

50 -(3+4)c, +2Co = &
Rosckon 2 7

4C) ~4C, = D
acter 2
dootey,-llcy =0
Reactn 4

dca+2acs - llcy =0

ﬁ.QAdh5;

3¢t3¢ (s To
oL
Te)p  -2zes =50
4 -Yep = O
—Cz 11 =200
| fca —-//67+zc5— =o
3C,+3£2 —écs.zo
Frte c =267
Co=12.67)
€3 = 149.33
CLi = ,?,|Z

Cs"f f2,é7



2.5 Wy /Iiw Jidonce

fov Lach Macti
M W ﬂ/"aﬂﬂ/w\ S\weo
B - =3
—_ @25 L &ZL"—&LZ =
"&3/ +&Z3 _603‘/ = —I0
+Bay 3y -0y = o
Q5 ¢ By g™ O
Cpgy *d;g = /5
u%uﬂ;am wth & Mwﬂw
.J’t"e(/./&e-ru
w.@—ywmjim meedod
2.6 Mog o dzlonce W
Joo + 300G, =C0c; t40¢
D¢, = 20¢, t &0z
4(9c_, +60C, = 10C =
oL
o -20 o], 40D
- %0 g0 O1lc=] o
~40 =60 120)(C3 200 &un ) Cyp
t1C3 +3850 = 132C4q
C,= 3.33% orﬂ%ow'.o)Cg
C3= 4.44 18aCy +4720 = ASC%
7 s Ci 7 © o o0 o ||
180 = &67¢ c % © o 6 ||q
‘ -6] -3% ll 0 o (|4
Michsgan | C2 o O -6l 92 o |lcg
710 = 36Cz O o o -1z 2z)\%
H‘ ig0
o C5 C 2—' = 710
y Cxweo 740
Cle; +36C 4740 = 16]C3 CZ:'/T/ . 3¢50



2.8

151"%

Fi¥int B =B X +FRy,
X = Ky

=i+ B K+ 2 Ky ==

Doat
FYyth Xin =FRXstRYs

- Fe = - Fz2 =
y4- (H"F-' k} ys— ?"XH’)
F/F) = 8% Jf0 =2

I+ Kk = 4+2@)= 1/
[

Iy, = 2Y2 o
—aY +llY, -2y o
= ayx tily, -2y = O
= 2Yz+lYy-2y=0
- 2}’4!—//y5-’o

W ¥,= ©.00a4|

Yo = 6,00177
Y3 = ©.0600 3 3%

Ya= 0.0000627
Ys =06,0000114

T

Ky =5 YL
12.9

-+ ZFX =0: Pcos21.5°=Mcos37° —Mcos80° =0
0.93042P-0.9723M =0 (1)

T+ ZFy =0: Psin21.5"+Msin37"° —M sin80° =0
0.3665P—-0.383M =0 (2)

Use any method to solve equations (1) and (2):

[¢0s21.5° = (cos37° +cos80°)U
A = |:| . ) . ) . |:|
[in2l.5 (sin37° —sin80°) H

00O
B=
as
Apply Ax = B where é;%
=Bw X =
L

Use Matlab or calculator for results

P=3141b
M =300 1b



12.10 Mass balances can be written for each reactor as

0=0incyin ~inCa1 ~kiVicqy

0=0icp1 +kVicy,

0=0incy1 03¢5~ (On +030)c 2 —kVoc
0=0icp1 +03c53 (O +05)cpr ThoVocy o
0=(On +O32)c 42t Ou3c g4 —(On +Os3)c 3~ ksV3c 43
0=(0mn *Os52)cp ot Ou3¢p 4 —(Oin +Ou3)cp3 th3Vse 3
0=(0n +*Ou3)cs3 = (On *Ou3)cy4 —kaVscy4

0=(0in *Os3)cp3 = (Oin *Ou3)cp s thgVacy 4

Collecting terms, the system can be expresses in matrix form as

[4]{C} = {B}

where
11.25 0 0 0 0 0 0 0C
+1.25 10 0 0 0 0 0 0rC
0-10 0 225 0 -5 0 0 0C
0o 0 =15 0 68 0 -3 or
oo 0 0 -15 -50 18 0 -3¢
oo 0 0 0 -13 0 155 O0[
50 0 0 0 0 -13 -25 13F

[B]T = [10 00000000 0] [C]T = [CA,l CB,1 C42 CB2 C43 CB3 Caa 6’314]

The system can be solved for [C]" =[0.889 0.111 0.416 0.584 0.095 0.905 0.080
0.9201].

14 —
0.8
0.6
0.4

0.2
0 u

0 1 2 3 4

12.11 Assuming a unit flow for Q,, the simultaneous equations can be written in matrix form
as



312 1 0 0 orr2E mr
00 0 -1 2 1 005 [OC
00 0 0 0 -1 30048 OC
O 1 0 0 0 00O HE
00 1 -1 -1 0 0 O CpC
0 0 0 1 -1 -1 6% HE

These equations can be solved to give [Q]" =[0.7321 0.2679 0.1964 0.0714 0.0536
0.0178].

(2412

LAt w = m 4rm ?d’l
/SL';,:

B

052 W +=02X,+ 02583 = 480
0> %, +0,5x, +O-7 X3 = 5§/0
o.lsfx, +—03y2+0§g/3 5¢0

Afo’@/\ﬂmj %M/‘fa
v, = 7162, %

Xz = &135. A
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a)

Bozm 1

0= Wopvar + Bula — Ner +E|—5 (63- C.}
R 2.
0= Guce+ BaCy~GoCa +E,, (cq-Co)
Z
Rown 3
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225 O ~a5 ] < 1400

175 - 135 Cz |5 | /90
- 225 475 -50 Co 2000
=35 =23%p ‘K75 C;l 6]

?Z,u@ <= 8.10 chuck: !50(/&,34)+/DD(/4-‘/€)=— 3499 chock
Cr=|a.%4 -
€3=16.90 10D+ 40D+ 16D0+ K000 = 3500

b) < ; 3 ngO

RHs ~1 8
quta Cy= 345
, o
?‘L«.U -1 ©
=12
%;4,@4 Cq=6.90
400
vk = ) 1co
RHS E 3 }
Cg= RO
S moken = 3'45/;2.34)“’0: 27-6"/0
w = 3.4/,2,—5(,*'90 = 55.37@
Nank = %00 = 4,29/,
A= /0D

12.20 Find the unit vectors:

01 -27-4k H A 5 ’
AT TR Bl 00187 - 0.4367 - 0.8734

: 12 +22 +42 :

O 2i+17 -4k [ A 5 :
BT T P 0.4367 +0.218 - 0.873k

: /12 +22 +42 :

Sum moments about the origin:

S M, =50(2)~0.436B(4) ~02184(4) =0
S M,, =0.4364(4)~0218B(4) =0

Solve for A & B using equations 9.10 and 9.11:

a,x, *a,x, =b,
In the form _
a,x, +ayx, =b,



-0.8724+-1.744B =-100
1.7444+-0.872B =0

Plug into equations 9.10 and 9.11:

_ apb —apb, _ 872 204 N
' a4, —ana,  3.80192
.= a,b, —a,b, _ 1744 — 4587 N
P ayay, —apa,  3.80192
12.21

FOU+6] =4k H o a0y +0.8247 —0.549k

12 +6° +47

S M, ==5(1)+-0.5497(1) = 0

T =9.107 kN

U7, =1251kN,T, =750 kN ,T. = =5 kN

S M, =-53)+-7.5(4)+-53)+B.(3) =0 B, =20 kN
S M, =7.53)+1.251(3)+B,(3) =0

B, =-3.751kN

SF ==5+-5+4_+20=0

A =-10 kN

SF =A4 +-3.751+1.251=0 A =25kN
SF,=750+4, =0 Ay =-7.5kN

12.22 This problem was solved using Matlab.

A=1100
0 01
010
-1 00
0 -10
000
0 0 -1
000
000
000

b =100 -5

0000010
00001O00O0
3/5000000
-4/5 000000
0003/5000
0 -1 0-4/5000
-3/5 010000
4/5 100000
00-1-3/5000
0 0O04/500 1];
4 0024000 01;



24.0000
-36.0000
54.0000
-30.0000
24.0000
36.0000
-60.0000
-54.0000
-24.0000
48.0000

Therefore, in kKN

AB =24 BC=-36 AD =54 BD =-30
DE =36 CE= -60 Ax= =54 Ay,= 24

2B
WA D \)‘—\0
P
YMAN. © \JZ;ZOO
580 b

WW
K= lgntls, =
‘o3 ~hsz + l4n, = O
~ L¢3 +Agy = O
A3s = hgat M,s~~}5¥‘-o

=)
P — Na-=V o V3=V
L2 = B s “3-'7—*5‘
U WgeVs . _ Yo =V
b= e e

CD =24
E, =48
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f32] = | ©
A’és‘ 0
Lsy 0
(443 L130]
,J:Ls:‘- ~-32.82
1(59 = ~0.72

A4z = —-0.72.
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I}
]

N O
%uvf‘v o
431: - 2. 40 ©
A2s= 0. 99 o
A= 3¢ 38 0
Ay = 0.99 — | ©
Lez= —].,50 o
Ly= 0,89 0
Apr= 01022 ()
Csg= |+ 00 (0]
L= - h*Yg )
i19= -2.38 ua
A= ~2:3%

.26

I5¢, + 11¢C, +19¢3 = 2./2
0:35¢, + 03¢, 404205 = 0.0434
C, + lteg +/[¢ Cz = O0,(6¢4

C/::ZO
Coe=40
Cé =60

12.27 This problem can be solved directly on a calculator capable of doing matrix operations

or on Matlab.
a=[60 -40 0

-40 150 -100

0 =100 13071;
b=[200

0

2307 ;

x=1inv (a) *b

X =

7.7901

6.6851

6.91106
Therefore,
L=779A
L=6.69 A
L=691A

12.28 This problem can be solved directly on a calculator capable of doing matrix operations
or on Matlab.

a=[17 -8 -3



% =
37.3585
16.4151

7.9245

Therefore,

V=374V

V.=1642V

V=792V

12.29 This problem can be solved directly on a calculator capable of doing matrix operations

or on Matlab.
a=[6 0 -4 1

0 8 -8 -1

-4 -8 18 0

-11 0 071;
b=[0

-20

0

10];

x=1inv (a) *b

x =
-7.7778
2.2222
-0.7407
43.7037
Therefore,
L=-77TA
L=222A
L=-741 A
V=437V

12.30 This problem can be solved directly on a calculator capable of doing matrix operations
or on Matlab.

a=[55 0 -25
0 37 -4
-25 -4 29];
b=[-200
-250
1007,

x=1inv (a) *b



X =

-4.1103

-6.8695
-1.0426
Therefore,
L =-411A
L=-687 A
I,=-1.043 A
231 o haadl, ok
q“km,u—gk“ﬁz N =‘“\\%

-k, + qu‘J@% = mes
T R+ Ryy = waq

W -0 O % 19.C
w 4do -io|| X | = |29y
O -0 p XJ M5
pdins X = 2303
Ya= 5194
1232

~AN
Z

~
fl

2X9.%i=

1Tx9.€ = { 4
2 XA.9 =



\2.33 50 (%,~%,) = I50%,
5 (%5= %) = 50( 9(7,—7«»)
25 (y-Yo) = 75 (A 3-%2)
2000= 225(Yu- ’)(3)

-260 50 0 © ™ o
50 -j25 73 O o |- |0
© 15 -3 225\ | ¥y 0

) O -225 25 'xlf 200D
%OQl\)-(m:) 8ufeo
Ai1=13.232 Ly = 80.0

N2= 53.3% 9(4: 88.89

| IZ.Z‘-})/@oa +T = 51472
Da —T +R = 216.55

250 -R =j08.37

Q’Q/\J’(Ir\gafu/‘eo

4.836
37.13¢

o
-
R [+ 379

o



123§

Q94K 540730
=147

30x%48= 294

’LH -'501(1—-1— = 300\

424,35

440

-4M.35+13.5+R = Soa

20 + T 9¢. |
D& =T +RF| 66

50a - R} |-350.85
Qute A= =257

T = 179.82

R = 2i2.99

12.37

$massspring34.m

2.38

9.9X10=9g

T+693-R—13.96 = j0A

TR
U
1 95
94x8 = 78, Y
R-74-8= Fa
fs
l
I
4747.“5: 44
S-49 =54
s | O o]|a 30.1%
0 =1 | of|T|=|55YY
8 0 -l I |R| |-y
5 O o) | N) ._9?
WW
O\:__/'O73
T= 47277
K= j3.u49
S = 43.634



k1=10;
k2=40;
k3=40;
k4=10;
ml=1;
m2=1;
m3=1;
km=[ (1/ml)* (k2+k1l),

0, -(k3/m3), (1/m3)*

X=[0.05;0.04;0.03];
kmx=km*X

kmx =
0.9000

0.0000
-0.1000

-(k2/ml1),0;

(k3+k4) 1

- (k2/m2),

Therefore, X, =-0.9, ¥,=0,and X,;=0.1 m/s’.

(1/m2) * (k2+k3),

-(k3/m2) ;



CHAPTER 16

/6.1

A= metramrrh
V= n’yzk —_.2
W Exel Sobre,

F= 0.399 43
h= 0.3999/%

A= |.502¢326

64

h= TF [Fo 4% =
V= TR /3
Ex cof Sesbren W
F=0.407/56
h= 1.152068
A= 2083753

b3 sodven gure

C=15678%9

16.4 (a) The total LP formulation is given by

Maximize C =0.15X +0.025Y + 0.05Z {Maximize profit}
subject to

X+Y+Z=26 {Material constraint}

X+Y<3 {Time constraint}

X-Y=20 {Storage constraint}
Z-05Y=20 {Positivity constraints}

(b) The simplex tableau for the problem can be set up and solved as



(c) An Excel spreadsheet can be set up to solve the problem as
The Solver can be called and set up as
The resulting solution is
In addition, a sensitivity report can be generated as

(d) The high shadow price for storage from the sensitivity analysis from (c) suggests that
increasing storage will result in the best increase in profit.

16.5 An LP formulation for this problem can be set up as

Maximize C =0.15X +0.025Y + 0.05Z {Maximize profit}

subject to

X+Y+Z26 {X material constraint}
X+Y<3 {Y material constraint}
X-Y=20 {Waste constraint}
Z-05Y=20 {Positivity constraints}

(b) An Excel spreadsheet can be set up to solve the problem as

The Solver can be called and set up as

The resulting solution is

This is an interesting result which might seem counterintuitive at first. Notice that we
create some of the unprofitable z, while producing none of the profitable z;. This occurred
because we used up all of ¥ in producing the highly profitable zi. Thus, there was none left
to produce zs.

16.6 Substitute xz = 1 —xr into the pressure equation,

(1=x,)P

satp

+x; P, =P

satp

and solve for xr,

P _P
, sat g (1)
jsat jsat
T B

where the partial pressures are computed as

S 1211

—_1n0 T+221C
])satg_lo




5 1344
=100 7+2190
: 0

P

The solution then consists of maximizing Eq. 1 by varying 7 subject to the constraint that 0
<xr< 1. The Excel solver can be used to obtain the solution of 77=111.04.



B10 =] =| =(P-PsatB)(PsatT-PsatE)

& [ B [ ¢ | B | E | F | 6 | H |
1 |Probl16.6

2]

3T 111.0439

i

L 760

B |

7 |PsatB 18108687 | <--mmmemmv =10%45.905-1211/(T+221))

| 8 |PsatT 7E0.0005 &----mmee- =10%5.953-1344/T+219))

|10 |xT f il

11

_:]%_ Solver Parameters EE
Ern Sek Target Cell: T - Solve l
it Equal Ta: & pax  CoMn O Yalueof |0 Close |
|16 -By Changing Cells:

% IT j‘J GUess |

_1_9_ —Subject to the Constraints: Options |
20

|20 $E$10 <=1 - Add

L $B$10 »=0 = _—I

_2'_2__ Change |

23 Reset All |
_?i- _'J Delete |

% __ b |

16.7 This is a straightforward problem of varying x, in order to minimize

.6
1 1
f(x,)= —x,) +5E5

(a) The function can be plotted versus x4

.6

25 -
20
15 -
10 -
5

0

0 0.2 04 0.6 0.8 1

(b) The result indicates a minimum between 0.5 and 0.6. Using Golden Section search or a
package like Excel or MATLAB yields a minimum of 0.564807.



16.8 This is a case of constrained nonlinear optimization. The conversion factors range between 0 and 1. In
addition, the cost function can not be evaluated for certain combinations of XA1 and XA2. The
problem is the second term,

Hl_XA g.()
O X0 O
E{l—xﬂ)zg
O O

If x41 > x4, the numerator will be negative and the term cannot be evaluated.

Excel Solver can be used to solve the problem:

B5 j =| =(HATLAIT-XAT 20 BHIT-CAAT AN (1A 0 B (1AX0 B
A | 8 | c [ b [ E [ F [ 6 [ H [ 1 [ J |

1
Z}{A'] D_5: Solver Parameters i _'?Jﬁl
_3_ KAD 0.6 Set Target Cell: m |_§TI
5 |Cost G a77400y  Egual To: CMax Mo vaeof [0 ol
TI E:Tj’ ~By Changing Cells: e |
[ |$B42:5E43 B Gless |

g
T -Subject to the Constrainks: Options |
_ﬁ #Al <=1 - add
?_ whl == xA2 _J ;I
12 Az = 1 _ Change_|
113 ®AZ == 0 — R—ELMHI
5 =l | = |
|15 —
15

—
=
o
=
o
w2
c
=
»

A | B | ¢ [ b | E | E [ & [ H [ 1 T 4 ]

1

2 RAT 0.342022

3 [wAZ2 0.602698

. EEERE solverResults

iy Solver Results 21|
iICDSt 9.?821?5.

G Solver has converged to the current solution. Al
| constraints are satisfied, Reparks

8|

5 @

ﬂ ™ Restore Original Yalues

11

i (04 I Cancel Sawve Scenario. .. Help |
13
| 14




16.9 Errata: Change B, to 100.

This problem can be set up on Excel and the answer generated with Solver:

Proft =] | =CARAI+CCC.
A | B | ¢ |6 [ E | F &6 | 8 U [ J |

1 [Prob. 16.9

iy 1 21

__A'Z BO 100 Set Target Cell: e Solve I

% g'g 1'& _EBuuathTo: (T; !\lax CMin O waleeof: |0 s |

T - By Changing Cells:

| B |AD 100 |$e4: et A s |

FEC 200 Subject ta the Constraints: Optioris |

1A a0 2;;00 =] Add |

% B -100 BC>: DEI Change |

] =T Reset all |

14 |Keale 22E05 K= Keale = Delete =

5 | = e

R T
The solution is

E [ B [ © [ ©® [ & [ ® [ ® [ H [ T ]
1 |Prab. 16,9
2| . .
3K . |
_4 B0 . 100 . . . . .
5 |CA -1
| o Bl L { ?
o g 21x]
7 Solver found a solution,  All constraints and optimality
8 lan | 201635 conditions are satisfied. Repoarts
glc | 99 26672,
o] !
A1A |71 63501
2B | 07338
_1§_ | | Save Scenario... Help |
14 |Keale | 1.000001
5] . .
B |Prafit | 782.4987
16.10 The problem can be set up in Excel Solver.
A | B [ E [ e F| [

SifPreb. 1810 21|
3 |Unitcost! 5 0.50 $/L St Target Cell: [Total cost =] Sobe |
{4 |Unitcost2 5 1.00 §L Equal To: Cpax FMn Cyausch |0 — |
% Unitcost3 3 1.20 %L S Cangnaels
7 lconct 135 my/L [set15.48517 Xl bl |
_8 |conc2 100 mg/L ~Subject to the Constraints: Opti |
—9—' lies i T mp/l ConcBulk. <= Concr J Aadd | —
- BT 500000 Lid fove 2t -
[ Supply Flowz »=0 Change
12 |Supply2 500000 L/d Flow3 »= 0 e | Reset Al
13 |Supply3 500000 Lid Flowt = Flowie | _ Dokt
18 |Flaw 416667 LAd
B |Flow2 0L
17 [Flow3 553333 Lid

18
19 |Flawt 1000000 Lid =Flow! +Flow2+Flow3

20
21 |Flowr 1000000 Lid
23 |ConcBulk 100.0000003  mag/L \=({Flow1*conct +FlowZ*conc2 +F low3 conc3)/Flowt

24
25 |Caner 100 mgdl
L — . - .
_2F |Total cost I $005 33333 _| (=Unitcost 1 Flow! HUnitcost Flowl HUniteost3 Flows |




The solution is

15 |Flow 416667 Ld
1B |Flow2 a LA
7 |Flow3 533333 LA
18
19 | Flowt 1000000 Lid =Flow] +Flow2 +F o3
20
21 |Flowr 1000000 Lid
22
23 |ConcBulk 100.0000003 | mg/L =(Flovel*concl +F low2*concZ +F low3 conc ) Flowt
24
'_-_2__'.5-___'Cc|nc:r 100 mogdl
25
_g_?__TDtaI cost $903 333.33 =Unitcost!*Flow! HUnitcost2*Flow2 Hnitcost3*F lowd
16.11
w
1
[}
:
1
A |
) vd
1
1
\9 |
1
e )
e

_w
e=2

2
G:tan_li

e
s=4d* +eé?
P=2s
4=
2

Q)

Then the following Excel worksheet and Solver application can be set up:

(1)

2)

)

4



A B8 1 ¢© = 0 2 = e
— o2 solverParameters 21x]
:SZ d Sm Set Target Cell: |- =k] Srilve I
i w 5m Equal To: ‘B Max * Min ‘o Yalue of: IU Close I
_5_ By Changing Cells:
B 25 m
7 |theta 1107148718 radians | £3.43495 degrees [ EE 3 ges |
_._B_ -Subject to the Constraints; :
9 s 5500169944 m - T
K | IS [ e mptsd = Adess A e |
(11 gx=0 Change
12 |Acamputed 125 m2 s»=10 '—I Reset Al |
2 = o oo |
14 _ b |
15
Note that we have named the cells with the labels in the adjacent left columns. Our goal is
to minimize the wetted perimeter by varying the depth and width. We apply positivity
constraints along with the constraint that the computed area must equal the desired area.
The result is
A 8 [ ¢ [ 6 [ E [ F ] G | I [
1 |Adesired 100/ m2
2
0 100001562 m [solver Resuits ?
4w 1999968761 m Solvcres B = 2
5 Solver Found a solution. Al constraints and optimality
_E-_ A Q999543507 m conditions are satisfied, Reports
| 7 |theta 0.785413783 radians | 45.00089 degrees
E @
9 s 1414213563 m " Restore Original Yalues
10 |F 28.268427125 | m
l 8] I Cancel Sawe SCenatio. .. Help
A2 |Acomputed I 'IDD_lmQ I I I

Thus, this specific application indicates that a 45° angle yields the minimum wetted
perimeter.

The verification of whether this result is universal can be attained inductively or
deductively. The inductive approach involves trying several different desired areas in
conjunction with our solver solution. As long as the desired area is greater than 0, the
result for the optimal design will be 45°.

The deductive verification involves calculus. The minimum wetted perimeter should occur
when the derivative of the perimeter with respect to one of the primary dimensions (i.e., w
or d) flattens out. That is, the slope is zero. In the case of the width, this would be
expressed by:

If the second derivative at this point is positive, the value of w is at a minimum. To
formulate P in terms of w, substitute Egs. 1 and 5 into 3 to yield

s=/@A/ W) +(w/2)>
(6)

Substitute this into Eq. 4 to give



16.12

P =24/ w)* +(wi2)?
(7)

Differentiating Eq. 7 yields

P _ -84 /wtw/2 _
dw 24/ w)? +(wi2)?
(8)

Therefore, at the minimum

—84% /W +w/2=0
)

which can be solved for

w:2x/2
(10)

This can be substituted back into Eq. 5 to give

d=-/4
(11)

Thus, we arrive at the general conclusion that the optimal channel occurs when w = 2d.
Inspection of Eq. 2 indicates that this corresponds to 8 = 45°.

The development of the second derivative is tedious, but results in

2 2
4
dw w

(12)

J@arw)? +(wi2)?

Since A and w are by definition positive, the second derivative will always be positive.




The following formulas can be developed:

_d
tan®
(1)
b=w-2e )
[ 2, 2 3
s=+d" +e (3)
P=2s+b 4
+
q=v b d 5)
2
Then the following Excel worksheet and Solver application can be set up:
Y
A . B [ ¢ b [ E [ F | & [ H [ 1 S
— e LA 2%
Id 10/m Sek Target Cell: I- =“] Salve I
4 |w 10/m :
|- - Equal To: C Max Mo O Yalueof: IU
_g_theta 1 radians A7 29578 degrees By changing cells: Close |
7 e | 6420326 m [$B43:4845 X e |
_8_ b -2.84185 ' m 5ubject bo the Constrainks: ;
R 11,8839 m i L_'G"'L _optons |
—m P 0. 0oR e ch;npﬂuted = Adesired - add |
l | | d==0 ch
12 | Acamputed 3579074 m2 o <=2 e Rosetal |
B = Dk
[l S j Dielete |
14 _ e |
15
Note that we have named the cells with the labels in the adjacent left columns. Our goal is
to minimize the wetted perimeter by varying the depth, width and theta (the angle). We
apply positivity constraints along with the constraint that the computed area must equal the
desired area. We also constrain e that it cannot be greater than w/2. The result is
A D 0 7 7= = [ [ | | (I
1 |Adesired 100 m2
2
3 d 7598442 m "
—_ 2
2 . 2
5 |theta 1.047219 radians 60.00124 degrees Solver found a solution, Al constraints and optimality
B | conditions are satisfied.
7 le | 4396743 m
(&b 877306/ m o
9 s 8.773815 m (" Restore Original Yalues
A0dp 2632148 m
L Ok I Cancel Save SCEnario. .. Help
12 |Acomputed I 1DD_|m2 | = | = |

Thus, this specific application indicates that a 60° angle yields the minimum wetted
perimeter.



16.13

— 2
Aends =2
Agige = 2T0h
Atotal = Aends +4
14 =2m%h
computed
Cost = F, ends Aends

+F, sideAside +F

operate““operate

side

Then the following Excel worksheet and Solver application can be set up:

CostTotal =]

=| =SUM(CostEnd: CostOp)

which results in the following solution:

CostTotal =]

=| =SUM(CastEnd: CostOp)

A B [ ¢ | b | E | | & | H [ T | [ K | L M
e ' 2]
| 3 |hside | 1m Wdegired | 10 m3 Set Target Cell tal [ [ soke |
_351_ dend 1'm veomputed | 0.785338 m3 Equal To: Cax G Mn O aluedh 0 close I
| & |dend:heide 1 Aend 1.670796 m2 [ Fiany e
7 ' ' \Aside | 3.141593 m2 saga:gm94 M aes |
% rend 05 m Atatal 4712388 “subject to the Constraints: Options I
|10, FEnd § 010 $im2  CostEnd | § 016 yeested svacomputed e |
i2iFopoie |§ 100 8m2  Cosop | 471 Bl e
% |CostTotal - &I —Iuehj

15

B e e om0 E e e [ E [ L [ ™
1 |Prab. 16.13
2 _
| 3 |hside | 2407753 m Mdesired 10/ m3
| 4 |dend 2.299564 m Yeomputed | 9.999999 m3
— SolverResults ?
6 dendheide  0.95505 end 830636 m2 Soive e Bt ik
I ) Aside | 17.3946 m2 Solvgr_FoundasoI_ution. &l constrainks and optimalicy
8 |rend 1.149782 m Atotal | 2570096 condtions are satisfied,
3
10 |FEnd § 010 $m2  CostEnd | § 083 &
11 |FSide  § 005 §m2  CostSide | § 087 [~ Rosors Orinalvekios
| 12 |FOperate  §  1.00 $/m2 CostOp § 2670
(13 Ok I Cancel Save Scenario. .. Help
14 CostTotal |§ 27401 | |

16.14 Excel Solver gives: x = 0.5, y = 0.8 and fuin = -0.85.




6. 15 | 1613 Exced Sulus, Guveo

Cost = 4 (0035)(s M)At ) P= mad

+ kd 5/3 Y
‘ . @; CBH) (.00312‘ e |
Corilrami ,03€'(|3f—244>2/3
3000 - 550 < O
H= 20/347¢
3000 _ 00,000 (434 t) _ P = 51.39339
Tot g (2752) = may |
= a< 10
ade el 2 Z&Yf>B°H)MPM
Mwu% Ex el Soline, db,weo ot =¥ 2689014
ad= 6113922 can
+ = 0.28398] o c,) MLW ahove W
v comn e urdlin
tonk. = 97,227 ofpalr com
" 2/5"
bh= conalant» (B2H
/6.16 MM? Ex el solyem, "XJ {Jf?}
7tc.: 3.39123¢ S hovd B oane /WWFWW&""Q’
a2t tee seme lme
0,= 3-332621
tus the same B ol tl
! ﬁag” A7 a/)a/w"’b)
16:17 Zuw? _Exa,g §oﬁo—(n S
L=0,57919
i/] = [0« 39728
C = 9q.0l58c

mex



16.19
3 4
100 = ™ (29)r

5 35 =1L
4L
35
417 =10 (29)r" L=—
1's
L =1.499I”2
r=1.65m
L=4.08m
1620 11:4 [2:2 [3:2 [4_0 [5:2

16.2)

5:

4 = 1O
Rse = |

Ly =405
Ly = 5.5
ix = 5.5
/{%-.:. 4.5
A;"‘ /



16.22
Total cost is
C=2p +10p, +2
Total power delivered is

P= 06p1 +0.4p2

Using the Excel Solver:

B12 d| =| =B3+B4-B3-B10
A | B | ¢ [ 0 | E | F [ & [ H [ 1 | 4 |

1P 16.2 i
2

T Pl | 2g9ggg | SetTarget Cell: i Solve I
IpE 2449592 Equal To: CMax & Mo O ¥alueoh: |0 s |
L= . | | By Changing Cells:

T suss  |PEER e |

E -Subject to the Constraints: Options |
2 L1 | 6243959 | Gesre— a0 - Add

10 |2 | 18.24696 4643 »=0 =l _—I

11 $B§4 =10 Change
ol =
13 ; j Delete

14 Cost  30B.9432 _ ek |
15 |
which yields the solution

A | B | ¢ | b | E [ F | & | H [ ¥ | J |

1 |Prob. 16.22

2 |

3 |pt 29.995

DT, s 21
| 5 | Solver found & salution. &l constraints and optimality

B |F1 £1.99 conditions are satisfied.

7 |F2 | 2449592

8 | | ___| 5

8 L £.2435959 @ e

0 |2 18 24598 estore Criginal Yalues

% p T il Ok I Cancel Sawe Scenario, .. Help |

| 14 |Cost I 306.9492!

15

16.23 This is a trick question. Because of the presence of (1 — s) in the denominator, the function will
experience a division by zero at the maximum. This can be rectified by merely canceling the (1 —s)
terms in the numerator and denominator to give

15s

T=72
45 —-3s+4

Any of the optimizers described in this section can then be used to determine that the maximum of 7
=3 occursats = 1.



16,24 Uowng Soluen g/wr\ Excel

\!\} \/ Dmfn
| R, 000 483,66 | 2339. 33
/3,000 503. 441 | 252¢4.17
14,000 5222 .4 | 2729 .10
/€,000 540,74 | 292404
16,000 58,44 | 31158,97
17,000 575,67 | 3313.9)
14,000 592. 36| 350%.%5

125 Wiy Soboen from Eneek

A= 0,2735%
D= 2
N= 2

Wy = 23,2052

16.28 Sobluen W
¢=

-qulk = 0/.300%

0.7%¢157



16.27 An LP formulation for this problem can be set up as

Maximize C =0.15X +0.025Y + 0.05Z {Minimize cost}

subject to

X+Y+7Z26 {Performance constraint}

X+Y<3 {Safety constraint}

X-Y=20 {X-Y Relationship constraint}
Z-05Y20

{Y-Z Relationship constraint}

(b) An Excel spreadsheet can be set up to solve the problem as
The Solver can be called and set up as

The resulting solution is



16.28

T =T—JC 0 20000000 =%
A

(r) ="

n =4t -1.5915x107,

o=l 0o B 500(5)

JG 180 O 77x1098r2—[@r:—ri4)
0

ro=4rt-2.8422x1077

r, =29.76 mm

r, =23.61 mm

Or, =29.76 mm, r, =21.76 mm

16.29
L=ReH (567
N
h :L2=0779
CppV-b

h=L=0.567 cm

but 7, =7, 28 mm

A \ B \ C \ D \ E \ F
1 X Y z Total Constraint
2 Amount 15 1.5 3
3 Performance 1 1 1 6 6
4 Safety 1 1 0 3 3
5 XY 1 -1 0 0 0
6 ZY 0 -0.5 1 2.25 0
7 Cost 0.15 0.025 0.05 0.4125
Set target cell: E7
Equal to 0 max e min O value of 0
By changing cells
B2:D2
Subject to constraints:
E3=F3
E4<F4
E5>F5
E62F6
E \ F




1 X Y Z Total Constraint
2 Amount 0 0 0
3 Performance 1 1 1 0 6
4 Safety 1 1 0 0 3
5 XY 1 -1 0 0 0
6 ZVY 0 -0.5 1 0 0
7 Cost 0.15 0.025 0.05 0
A B C D E F G
1 Z1 Z2 Z3 W total constraint
2 amount 4000 3500 0 500
3 amount X 1 1 0 0 7500 7500
4 amountY 2.5 0 1 0 10000 10000
5 amountW 1 -1 -1 -1 0 0
6 profit 2500 -50 200 -300 9675000
Set target cell: F6
Equal to ¢ max O min O value of 0
By changing cells
B2:E2
Subject to constraints:
B2=0
C2=0
F3<G3
F4<G4
F5=G5
A B C D E F G
1 Z1 Z2 Z3 W total constraint
2 amount 0 0 0 0
3 amount X 1 1 0 0 0 7500
4 amountY 2.5 0 1 0 0 10000
5 amountW 1 -1 -1 -1 0 0
6 profit 2500 -50 200 -300 0
Microsoft Excel 5.0c Sensitivity Report
Worksheet: [PROB1605.XLS]Sheet3
Report Created: 12/12/97 9:47
Changing Cells
Final Reduced Objective Allowable Allowable
Cell Name Value Cost Coefficient Increase Decrease
$B$2 amount Product 1 150 0 30 0.833333333 2.5
$C$2 amount Product 2 125 0 30 1.666666667 1
$D$2 amount Product 3 175 0 35 35 5
Constraints
Final Shadow Constraint Allowable Allowable
Cell Name Value Price R.H. Side Increase Decrease
$E$3 material total 3000 0.625 3000 1E+30 1E+30
$E$4 time total 55 12.5 55 1E+30 1E+30
$ES$5 storage total 450 26.25 450 1E+30 1E+30
\ A B \ C D E F \
1 Product 11 Product2 Product 3 total constraint
2 amount 150 125 175
3 material 5 4 10 3000 3000




4 time 0.05 0.1 0.2 55 55
5 storage 1 1 1 450 450
6 profit 30 30 35 14375
Set target cell: E6
Equal to ¢ max 0 min O value of 0
By changing cells
B2:D2
Subject to constraints:
E3<F3
E4<F4
E5<F5
| A \ B c \ D \ E \ F
1 Product 1 Product2 Product 3 total constraint
2 amount 0 0 0
3 material 5 4 10 0 3000
4 time 0.05 0.1 0.2 0 55
5 storage 1 1 1 0 450
6 profit 30 30 35 0
Basis P x1 x2 x3 S1 S2 S3 Solution Intercept
P 1 -30 -30 -35 0 0 0 0
S1 0 5 4 10 1 0 0 3000 300
S2 0 0.05 0.1 0.2 0 1 0 55 275
S3 0 1 1 1 0 0 1 450 450
Basis P x1 x2 x3 S1 S2 S3 Solution Intercept
P 1 -21.25 125 0 0 175 0 9625
S1 0 25 -1 0 1 -50 0 250 100
x3 0 0.25 0.5 1 0 5 0 275 1100
S3 0 0.75 0.5 0 0 -5 1 175 233.3333
Basis P x1 x2 x3 S1 S2 S3 Solution Intercept
P 1 0 -21 0 8.5 -250 0 11750
x1 0 1 -0.4 0 0.4 -20 0 100 -250
x3 0 0 0.6 1 -0.1 10 0 250 416.6667
S3 0 0 0.8 0 -0.3 10 1 100 125
Basis P x1 x2 x3 S1 S2 S3 Solution
P 1 0 0 0 0.625 125 26.25 14375
x1 0 1 0 0 0.25 -15 0.5 150
x3 0 0 0 1 0.125 25 -0.75 175
X2 0 0 1 0 -0.375 125 1.25 125
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A VBA code to do this with the computer is



Sub Splines()

Dim i As Integer, n As Integer
Dim x(100) As Single, y(100) As Single, xu As Single, yu As Single
Dim xint (100) As Single

Dim dy As Single, d2y As Single
Sheets ("Sheetl") .Select

Range ("ab5") .Select

n = ActiveCell.Row
Selection.End(x1Down) .Select

n = ActiveCell.Row - n

Range ("a5") .Select

For i = 0 To n
x (i) = ActiveCell.Value
ActiveCell.Offset (0, 1).Select
y (i) = ActiveCell.Value
ActiveCell.Offset (1, -1).Select
Next i

Range ("d5") .Select

nint = ActiveCell.Row
Selection.End (x1Down) .Select
nint = ActiveCell.Row - nint
Range ("d5") .Select

For i = 0 To nint

xint (i) = ActiveCell.Value
ActiveCell.Offset (1, 0).Select
Next i

Range ("eb5") .Select

For i = 0 To nint
Call Spline(x(), v(), n, xint(i), yu, dy, d2y)
ActiveCell.Value = yu
ActiveCell.Offset (0, 1).Select
ActiveCell.Value = dy
ActiveCell.Offset (0, 1).Select
ActiveCell.Value = d2y
ActiveCell.Offset (1, -2).Select

Next i

Range ("a5") .Select

End Sub

Sub Spline(x, vy, n, xu, yu, dy, d2y)

Dim e(10) As Single, f£(10) As Single, g(10) As Single, r(10) As Single, d2x(10) As Single
Call Tridiag(x, y, n, e, £, g, r)

Call Decomp(e(), £(), g(), n - 1)

Call Substit(e(), £, g0, r(), n - 1, d2x())

Call Interpol(x, vy, n, d2x(), xu, yu, dy, d2y)

End Sub

Sub Tridiag(x, y, n, e, f, g, r)
Dim i As Integer

£(1) =2 * (x(2) - x(0))
g(l) = x(2) - x(1)
r(l) =6/ (x(2) - x(1)) * (y(2) - y(1))
r(l) = r(l) + 6 / (x(1) - x(0)) * (y(0) - y(1))
For i = 2 Ton - 2
e(i) = x(i) - x(1 - 1)
f(i) =2 * (x(1 + 1) - x(i - 1))
g(i) = x(1 + 1) - x(1)
r(i) =6/ (x(1 +1) - x(1)) * (y(i + 1) - y(i))
r(i) = r(i) + 6/ (x(1) - x(1 - 1)) * (y(i - 1) - y(1))
Next i
e(n - 1) = x(n -1) - x(n - 2)
f(n-1) =2 * (x(n) - x(n - 2))
r(n -1) =6/ (x(n) - x(n - 1)) * (y(n) - y(n - 1))
r(in -1) =r(n-1) + 6/ (x(n - 1) - x(n - 2)) * (y(n - 2) - y(n - 1))
End Sub

Sub Interpol(x, vy, n, d2x, xu, yu, dy, d2y)
Dim i As Integer, flag As Integer
Dim cl As Single, c2 As Single, c3 As Single, c4 As Single
Dim tl As Single, t2 As Single, t3 As Single, t4 As Single
flag = 0
i =1
Do
If xu >= x(1i - 1) And xu <= x (i) Then



cl = d2x(i - 1) / 6 / (x(1) - x(1 - 1))

c2 = d2x(i) / 6 / (x(i1) - x(i - 1))

c3 =y(i-1) / (x(1) - x(1 - 1)) - d2x(i - 1) * (x(i) - x(1 - 1)) / 6
cd = y(i1) / (x(i) - x(1 - 1)) - d2x(i) * (x(i) - x(1 - 1)) / 6
tl = cl * (x(i) - xu) ~ 3

t2 = c2 * (xu - x(i - 1)) ~ 3

t3 = c3 * (x(i) - xu)

td = c4 * (xu - x(i - 1))

yu = tl + t2 + t3 + t4

tl = -3 * ¢l * (x(i) - xu) ~ 2

t2 =3 * ¢c2 * (xu - x(1 -1)) ~ 2

t3 = -c3

td = c4

dy = tl + t2 + t3 + t4

tl =6 * cl * (x(i) - xu)

t2 = 6 * c2 * (xu - x(i - 1))
d2y = tl + t2

flag = 1
Else
i=1+1
End If
If i =n+ 1 Or flag = 1 Then Exit Do

Loop

If flag = 0 Then
MsgBox "outside range"
End

End If

End Sub

Sub Decomp (e, f, g, n)
Dim k As Integer
For k = 2 To n
e(k) = e(k) / f£(k - 1)
f(k) = f(k) - e(k) * g(k - 1)
Next k
End Sub

Sub Substit(e, £, g, r, n, x)
Dim k As Integer
For k = 2 To n

r(k) = r(k) - e(k) * r(k - 1)
Next k
x(n) = r(n) / f(n)
For k = n - 1 To 1 Step -1
x(k) = (r(k) - g(k) * x(k + 1)) / f(k)
Next k

End Sub
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_:Data:

1_|Problem 20.10

Interpolate:
x ¥

0 70
0.1 69.80825
0.2 69.56443
0.3 69.21649
0.4 68.71237
0.5 68
0.6 66.99139
0.7 65.45477
0.8 63.12246
0.9 59.72677
1 55
1.1 48.83421
1.2 41.76049
1.3 34.46967
14 27.65256
15 22
1.6 18.02375
1.7 15.51926
1.8 14.10289
1.9 13.39102
2 13
2.1 12.61477
2.2 12.19446
2.3 11.76677
2.4 11.35938
2.5 1
2.6 10.70917
2.7 10.47889
2.8 10.29403
2.9 10.13945
3 10

-1.83076
-2.09107
2.872
-4.17353
-5.99569
£.33846
1228
-18.8985
-28.1939
-40.1662
54.8154
57.3489
2.9742
71.6911
£3.4997
484
-31.7643
-18.9649
-10.0018
-4.87508
-3.58461
-4.07385
4.28615
422154
-3.68
-3.26154
-2.58031
-2.05046
-1.672
-1.44492
-1.36923

5.20615
-10.4123
-15.6185
-20.8246
-26.0308
528
-79.5692
-106.338
-133.108
-159.877
-90.7938
21.7107
4737228
116.4554
185.5385
1471754
108.8123
70.44926
32.08617
£.27692
-3.5077
D0.73846
2.030768
4.800004
7.569232
6.055387
4.541538
3.027694
1.513845
0

200

-100 1} 100 200




20.11 The best fit equation can be determined by nonlinear regression as

- o,
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Disregarding the point (0, 0), The 7 can be computed as

S, =9902.274
S: = 23.36405

W2 9902.274 -23.364
9902.274

=0.9976

20.12 The Excel Solver can be used to develop a nonlinear regression to fit the parameters. The
result (along with a plot of —dA/dt calculated with the model versus the data estimates) are
shown below. Note that the 1:1 line is also displayed on the plot.

T I I T e T e
1 |Prob20.12

2 3000 -

3R 0.00198

4| 2500 -

5 ko1 7663 477

6 |El 4498061 SSR 23813 2000 -

7

B -dAsdt data A T -d4/dt calculated SR 1500 -

9 40 200 280 456048491 240718

i 3/ 100 300 393701529 7571661 1000 -

i 950 150 3200 947.9852747 144,353 500

i 3401 B0 30 9291165318 1164499

13| 1530 RO 400 15BG52437 1464128 0 : . .

14 2485 50 450 2456787933 7959207

15| 1600 0 500 1626072627 788.0724 0 1000 2000 3000
G 1245 10 B&0 1230345152 214 7GdR




20.13 The Excel Solver can be used to develop a nonlinear regression to fit the parameters. The

result (along with a plot of the model versus the data estimates) are shown below. Note that
the 1:1 line is also displayed on the plot.

T [ & [ B [ © [ 0 ] E [ F 6 [ H_ ] [
1 |Prob. 20.13

= 0.992 -

3R 82.05

i 0.99 -

5 |A1 -226.742

B A2 0.987181 S5R 2.12245E-07 | 0.988 |

7

8 Patm)  TIK) voliml)  PVART) 1 + ALY #4292 SR 0.986

9| 0969 298 25000 0.990751 0.990930303 2.56376E-05

10 1.09 295 22200 0.989657 0989756377 1.67844E-03| 0.984 . . . .
1] 134 288 18000 0987203 0.387403199 4.01096E-08 0.984 0986 0988 099 0.992
2| 1605 288 18000 0.98524 0.334883839 1.26713E-07

20.14 The standard errors can be computed via Eq. 17.9

Thus, Model C seems best because its standard error is lower.

20.15 A plot of the natural log of cells versus time indicates two straight lines with a sharp break

at 2. Trendline can be used to fit each range separately with the exponential model as
shown in the second plot.

2 [ |
1 pun”
nn ®
0 - n B : ‘
1 m 2 4 6
-2 u
3
8 0.4000x
7 y = 0.4953e"
6 R? = 1.0000
5
4 y = 0.1000e '-200%
3 R? = 1.0000
2
1
0 —t— } |
0 1 2 3 4 5 6 7

20.16 (This problem was designed by Theresa Good of Texas A&M.) The problem can be solved
with Microsoft Excel:



B17 ;i =| =(INTERCEPT(CE: C12 A& A12)041/a)

| A | B | © B L E | F | &6 | H | 1 | 4 ] K
1
£l -
3lc t {tA0-1)/c
4 0 a3 =
5| 004 B89 1777108| g - y—29;354x+0.?017
B 0.06 951 2.429719 R°=0.9983
El 0.08 104 3 162651
5 0.1 1135 3674699 4 -
E7 012 1255 4267068
10| 014 1389 4810671
11| 016 1546 5391566 o |
12 02 1912 6518072
13
14 |K 3.90E-04 0 . . . .
16 |a 0.58
15| 0 0.05 0.1 0.15 02
17 M sz 4
20.17
Plot the data using Excel:
Surface Area vs Weight
2.35

4

8 23

[]

£ /‘//

B 2.25 >

§ 7

2 22

(7]

g 2.15 .

< *

g 5 y = 0.4149%-57%

g - R = 0.9711

® 2.05

60 70 80 90 100
Weight, kg

J’_

A =0.4149W"7 with R-squared = 0.9711. Therefore, a = 0.4149 and b = 0.3799. The
predicted surface area for a 95 kg human is approximately: A = 0.4149 (95) **7 = 2.34 m*



20.18 The Excel Trend Line tool can be used to fit a power law to the data:

6000 -
5000 -

4000 -
3000 -

2000 - y = 65.768x°74%7

1000 -| R? = 0.9935

0 100 200 300

The logarithmic slope relating the mass and metabolism is 0.75.

20.19
The solution consists of three separate Matlab programs.

1. Polynomial Regression

g=[105 126 215 315 402];
st=[3.44 4.12 7.02 10.21 13.01];
gf=0:1:450;

$Mean and St
stmean=mean (st) ;
St=sum( (st-stmean) .*(st-stmean) );

% Linear Fit

cl=polyfit(g,st,1);

stl=polyval(cl,qg);

Srl=sum((st-stl).*(st-stl));

r=sqrt ( (St-Srl)/st);

stfl=polyval (c1,gf) ;

plot(g,st,'+',g9f,stfl); grid; axis ([0 450 0 14]);
title('Shear Rate vs. Shear Stress for 40% Hct Blood')
xlabel ('Shear Rate - 1/sec');ylabel('Shear Stress - N/m"2')

fprintf ('Correlation Coefficient = %f\n', r)

fprintf ('Newtonian slope or Viscosity = %£\n’, c1(1))
K = sqgrt(cl(1));

fprintf ('Consistency index K = %f', K)



2. %Polynomial Regression

g=[105 126 215 315 402];
st=[3.44 4.12 7.02 10.21 13.01};
gf=0:1:450;

$Mean and St
stmean=mean (st) ;
St=sum( (st-stmean).* (st-stmean) );

% Linear Fit

cl=polyfit(g,st,1);

stl=polyval(cl,qg);

Srl=sum((st-stl).*(st-stl));

r=sqrt ((St-Srl)/st);

stfl=polyval(cl,gf);

plot(g,st,'+',gf,stfl); grid; axis([0 450 0 14]);
title('Shear Rate vs. Shear Stress for 40% Hct Blood')
xlabel ('Shear Rate - 1/sec');ylabel ('Shear Stress - N/m"2')
fprintf ('Correlation Coefficient = %$f\n', r)

fprintf ('Newtonian slope or Viscosity = %$f\n', c¢1(1))
K = sqgrt(cl(1));
fprintf ('Consistency index K = %f', K)

3. % casson Equation curve fit.

g=[{.91 3.3 4.1 6.3 9.6 23 36 49 65 105 126 215 315 402];
st=[.059 .15 .19 .27 .39 .87 1.33 1.65 2.11 3.44 4.12 7.02 10.21
13.01];

gsq=sqrt(g) ;

stsg=sqrt (st);

% Casson Equation segment overall curve
gasqgc=0:1:6; gasqgcd=6:1:12;

tysq = 0.065818; Kc = 0.180922;
stsge=tysqg+Kc. *gasqc;

stsqgecd=tysg+Kc. *gasged

% Newtonian segement
gasgn=6:1:15;gasqnd=0:1:10;
K=0.179474

stsqgn=K*gasqn;
stsqnd=K*gasqgnd;

plot (gasqc, stsqgc,gasqcd, stsged, ' --',gasgn, stsgn,gasqgnd, stsqgnd, ' --
',gsq,stsq, '+');

axis ([0 15 0 2.8]);

title('Casson Equation for 40% Hct Blood');

xlabel ('Square Root of Shear Rate - (1/sec)”0.5');

ylabel ('Square Root of Shear Stress - (N/m"2)"0.5');

grid



20.20

Final Results:

Correlation Coefficient = 0.999925
Casson slope Kc = 0.180922

SqgRt Yield Stress, y-intrcept = 0.065818
Yield Stress = 0.004332

Correlation Coefficient = 0.999993

Newtonian slope or Viscosity = 0.032211
Consistency index K = 0.179474

Casson Equation for 40% Hct Blood
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x 10 Soft Tissue Experimental Results
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% Raw data imput
s=[87.8 96.6 176 263 351 571 834 1229 1624 2107 2678 3380 4258]*le+3;
e=[153 204 255 306 357 408 459 510 561 612 663 714 765]*le-3;
de=5le-3; dde=2*de;
% Finite Differences
dsde(l)= (-s(3)+4*s(2)-3*s(1))/Xe; % forward difference
for i=2:12
dede(i)=(s(i+l)-s(i-1))/dde; % centered difference
ed
dsde(13)=(3*s(13)-4*s(12)+s(11)) /Ade; % lbackward difference

plot(s,dsde, '-',s,dsde, '+')
title('Soft Tissue Experimental Results')
xlabel ('stress - N/m™2 '); ylabel('DsDe - N/m*2'); grid

x10” Soft Tissue Experimental Results

1.8

1.6

1.4

DsDe - N/mn2
o =
o = [N

o
=)

0.4

0.2

0 0.5 1 1.5 2 2.5 3 35 4 45 5
stress - N/m 2 x 10°



$Raw data input
5=[87.8 96.6 176 263 351 571 834 1229 1624 2107 2678 3380 4258]*1e+3;
e=[153 204 255 306 357 408 459 510 561 612 663 714 765]*1le-3;

fRegression amalysis
fElimination of early data
id=5; % idx=starting point for data exclusion (points with subscribt above idx will be included in s)
% With this data the range idx can be  idx=3 to idx=8
rp=length(s)-idx;
for i=l:rp
sr(i)=s(idx+i); %sT = regression values for s
ed
$Constants
de=51e-3; dde=2*de;
% Finite difference
dsder(l)= (-sr(3)+4*sr(2)-3*sr(1))/dde; % forward difference
for i=2:mp-1
deder (i)=(sr(i+1)-sr(i-1))/dde; % centered difference
ed
dsder (np) =(3*sr (np) -4*sr (rp-1) +sx (1p-2) ) /dde; % backward difference
Linear Fit
cl=polyfit (sr,dsder,1) ;
a=cl(l); Bo=cl(2);
sp=0:1e6:5¢6;
dsdel=polyval (c1,sp) ;
plot (sp,dsdel, sr,dsder, '*')
title('Soft Tissue Experimental Results')
xlabel ('stress - N/m*2 '); ylabel('DsDe - N/m*2');
axis([0 5e6 0 20e6]); grid; pause

% Stress-Strain Curve Plot
% Plot the analytic expression for s vs e
% Using Eo ard a
ep=0:.005:0.8; % ep=curve plot value of e
sp=(Eo/a) * (exp (a*ep) -1) ; % sp=curve plot value of s
plot(ep,sp,e,s,'*')
title(' Soft Tissue Experimental Results');
xXlabel ('Strain ~ m/m'); ylabel ('Stress - N/m*2')
grid; gtext('E(0) and a'); pause
$ Using sStar and eStar
sStar=s(10); eStar=e(10);
shar=sStar/ (exp (a*eStar)-1) ;
sp2=shar* (exp(a*ep)-1) ;
plot (ep,sp2,e,8, '*')
title(' Soft Tissue Experimental Results');
xlabel ('Strain - m/m'); ylabel ('Stress - N/m*2')
grid; gtext('sbar ard a');
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20.21 The problem is set up as the following Excel Solver application. Notice that we have
assumed that the model consists of a constant plus two bell-shaped curves:

kle—klz(x—al) k2e—k§(x—a2)

R

The resulting solution is



G4 | =| =5UM(G7:533)

A N G s T e [ 5
o T T E— 0]
aaa e
kki@ 36.0095 Set Target Cell: X
aaa? 0.3100 ssk [ 001301 EualTor  Cmax M Cvdweoh [0 o |
const 50948 ~By Changing Cells:
osition light data belll bell2 const light fit SR
B da 5085 0OUEH 61EDS 59119 50955 00016 IS 3 e |

0.19 5086 0009256 157607 5084819 5104117 0.001428 “Subject to the Constraints: options

02 5166 0105668 3.1EDB 5084819 520048 000119 -

0.21 5837 0771991 472605 5004819 5866057 0.000891 PR

022 B.699 3625612 0.000555 5094819 8721186 0.000492 Change

0.23 16,036 10.94766 0.005035 5094819 16.04754 0.000133 Reset Al |

024 26974 21 25021 0036792 5094879 26 30026 3.92E-05 o et | o

0.25 31.790 2651723 0180211 5094878 31 60226 0.000153 _ b |

0.26 27140 2127243 0.792331| 5094815 27 15056 0.000375

027 18,597 10.97059 2506538 5094819 18.67195 0.000212

0.26 15,045 3637198 6.314005 5094819 150469 4.85E06

0.29 17.950 0775225 1200230 5004819 17.95247 311E05

03 23042 0106222 17.83656 5094818 230376 1.93E05| 30,000

0.31 25416 0009357 2031615 5004815 25 42033 5.43E-06

032 22843 000053 1785433 5094819 22 04568 4 46E-05

0.33 17.197 193605 1210645 5094819 172013 221605 20.000

0.34 11430 451E-07 6333776 5004819 114206 1.97E06

0.3 750 G79E00 25667 5084819 7E51519 SEEDS

0.3 5904 B.57E-11 0796285 5094815 5691104 poooies| 10-000

037 5302 40BE-13 019135 5094819 5206169 0.000251

0.36 5150 163E-15 0035478 5094819 5130297 0000383 ¢ 0o

0.39 5122 4.2E-18 0.005075 5084819 5099894 0.000499

0.4 5121 BO3E-21 000055 5084519 5085379 0.00055R 0.15 0.25 0.35 0.45

0.41 5123 7.36E-24 4.77E05 5084819 5094865 0.000792

0.42 5126 503E-27 313E06 5094819 5094827 0.000972 m light data belll bell2

043 5120 221E-30 1.89E07 5094819 5094819 0.001168 . in < CoRGE ——lightfit

0.44 5132 6.23E-34 B.22E09 5084819 5094519 0.001302

Thus, the retina thickness is estimated as 0.31 — 0.25 = 0.06.
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20.29 Clearly the linear model is not adequate. The second model can be fit with the Excel
Solver:



E17 Jhd =| =SUM(E7:E15)

A | B | & 1Bl E T F T & 1 A [ 1T T 4 T ® [ C [ ™ ]
ik 2 soberparmeters =S 2l
2 KK 1.0000
Bl Set Target Cell; =
4| EqualTo: (" Max 0 Mp O Vausof, |0 — |
| 5 |v0mean = 13.37535 By Changing Cells:

B S vl (D0 2 vimod (W0v0mod)*2 ;

7| 001 00000 17890 024 oos [ EHE )[R

8| 005 0.00759 17870 144 1.20 | Subject to the Constraints: Options
5| 0.1 0.06063 17728 218 450 17| add

0| 05 578633 5756 8.00 489

11 1 17.36500 1592 12.00 28.78 thangs

12 5 24.23340 117.90 20.00 17.92 Reset Al
3 10 24.30120 11937 2182 6.7 = b | =
14 50 24.31090 11959 7353 061 _ e |
15| 100 2431100 11959 2376 030

16

7] sT 1084.80 SSR

18 12 0.94053

Notice that we have reexpressed the initial rates by multiplying them by 1x10°. We did this
so that the sum of the squares of the residuals would not be miniscule. Sometimes this will
lead the Solver to conclude that it is at the minimum, even though the fit is poor. The
solution is:

Elie | =[=mirEmer
A [ B8 1 ¢ T 10T ® F T & I " [ T [ 3 [ kK T [ [ W [~

1 [k 259109
2 |Kk 0.5734
e 30
14 | |} L |
5 vmean = 13.37533 20
6 (s V0 abmean) 2 vimod (fr0mod)*2
7| 001 0.00006 17890 029 0.09 m v
B 005 000759 17870 140 195 10
R 0.1 0.06063 17728 266 677 — vOmod
KQI 05 5.76033 5756 9.43 13.20
11| 1/17.36500 1592 1383 4| : : : : ‘
12| 5 24.23340 1790 2206 473
ED 10 2430120 11837 23.03 0.2 0 20 A0 B0 20 100
14 50 24.31090 11959 2547 133
15| 100 2431100 11959 25.69 189
16
17| ST 1054.80 SSR 1276
18] 2 [_oasssl

Although the fit might appear to be OK, it is biased in that it underestimates the low values
and overestimates the high ones. The poorness of the fit is really obvious if we display the
results as a log-log plot:

1.E+02
1.E+00
1.E-02
1.E-04

1.E-06
0.01 1 100

Notice that this view illustrates that the model actually overpredicts the very lowest values.

The third and fourth models provide a means to rectify this problem. Because they raise [S]
to powers, they have more degrees of freedom to follow the underlying pattern of the data.
For example, the third model gives:



AT B T © TP P ] KT T ™ W ]
Tk 21 5A5R31 46
05638 30
i
133753 20
(0 Wmeany2 Wlimod  (v0 - ¥Imad)2
OODO0G 17RESE2ATE DOMAE 1 B4GE-06 m 0
00075 1786967647 0.108528 DOI018MSE9| 4Q
0.0B0B3  177.2317639  0.42844 0135287033 — v0-mod
578933 57 SEOAOFE3 75525 311174731
17300 1SUITHIZE 15713 27m712348| @ y
2023340 1178973428 200435 0036112918
2430120 1193742916 24 44778 D (21487106 0 20 40 ) 80 100
2431090 119 BEE3ATS 24 BAOND 0 (V2AR2046
2431100 110 5RRE345 24 BRAZE () (7ARR2DS2
1084 803441 S5R 5 ie%70dst | 1.E+02
log(SSR)  070963%74| 4 E+00
2 | EEEEE | 1.E-02
1.E-04
1.E-06
0.01 100
Finally, the cubic model results in a perfect fit:
= 1 = 5 = e P e K [ L [ M [ W
24.31096413
04000 30
8
1337535 20
] (40 - vOmeany2 W-mad 0 - WOmedy2 u vl
0.00006 178.8982473 B.0O7775E-D5 261873E-20 10 0 d
000753 178.6957R47 OOOTSOARZE 0O2550E-16 vi-mo
D0SDB3 1772817633 DOBDB2EO4S 2.1846E-14| - - : . .
G7RR3E 57 5680753 A 7GEA9SED O 13TRE-11
1TIEAN 1591734178 17 499102 6.0PISIE-11 0 20 40 60 80 100
242330 1178973420 2423341751 3ET25E10
2430120 119.3742918 2430124373 19119609
24.31090 119.5863474 243108864 1.85078E-10
2431100 1135885345 24 31095447 2OTIIREDD
T 1084 A4 SR 4PTI4ED
loglSSR)  -B33E2IM
) i
0.01 100

Thus, the best fit is
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20.49 This problem was solved using an Excel spreadsheet.

—— Series1
— Power (Series1)

0.001

creep rate

0.0001
stress

20.50 This problem was solved using an Excel spreadsheet.

rtrarr

0 1 2 3 4 5

o

shear strain rate

1 =0.685
1, = 2.779 N/m?



r=0.9771

20.51 This problem was solved using an Excel spreadsheet.

12

SRrEss
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0 20 40 60 80 100 120 140
shear strain rate
n=10.7276
n=10.543
n 15
Model A Model B Model C
S, 135 90 72
Number of model
parameters fit 2 3 4
Sy/x 3.222517 2.738613 2.558409
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13.13 Because of multiple local minima and maxima, there is no really simple means to test
whether a single maximum occurs within an interval without actually performing a search.
However, if we assume that the function has one maximum and no minima within the
interval, a check can be included. Here is a VBA program to implement the Golden
section search algorithm for maximization and solve Example 13.1.

Option Explicit

Sub GoldMax ()

Dim ier As Integer

Dim xlow As Double, xhigh As Double

Dim xopt As Double, fopt As Double

xlow = 0

xhigh = 4

Call GoldMx (xlow, xhigh, xopt, fopt, ier)
If ier = 0 Then

MsgBox "xopt = " & xopt

MsgBox "f (xopt) = " & fopt
Else

MsgBox "Does not appear to be maximum in [x1, xu]"
End If
End Sub

Sub GoldMx (xlow, xhigh, xopt, fopt, ier)

Dim iter As Integer, maxit As Integer, ea As Double, es As Double
Dim xL As Double, xU As Double, d As Double, x1 As Double

Dim x2 As Double, fl As Double, f2 As Double

Const R As Double = (5 ~ 0.5 - 1) / 2
ier = 0

maxit = 50

es = 0.001

xL = xlow

xU = xhigh

iter = 1

d =R * (xU - xL)
x1l = xL + d
x2 = xU - d
f1 = f£(x1)
f2 = f£(x2)
If f1 > £2 Then
xopt = x1
fopt = f1l
Else
xopt = x2
fopt = £2
End If
If fopt > f(xL) And fopt > f(xU) Then
Do
d=R *d
If f1 > £2 Then
xL = x2
x2 = x1
x1l = xL + d
f2 = fl
f1 = f(x1)
Else
xU = x1
x1l = x2
x2 = xU - d
fl1 = f2
f2 f(x2)
End If
iter = iter + 1
If f1 > £2 Then



xopt = x1

fopt = f1l
Else
xopt = x2
fopt = f2
End If
If xopt <> 0 Then ea = (1 - R) * Abs((xU - xL) / xopt) * 100
If ea <= es Or iter >= maxit Then Exit Do
Loop
Else
ier = 1
End If
End Sub

Function f (x)
f =-(2 * Sin(x) - x ~ 2 / 10)
End Function

13.14 The easiest way to set up a maximization algorithm so that it can do minimization is the
realize that minimizing a function is the same as maximizing its negative. Therefore, the
following algorithm minimizes or maximizes depending on the value of a user input
variable, ind, where ind = -1 and 1 correspond to minimization and maximization,
respectively.

Option Explicit

Sub GoldMinMax ()

Dim ind As Integer 'Minimization (ind = -1); Maximization (ind = 1)
Dim xlow As Double, xhigh As Double

Dim xopt As Double, fopt As Double

xlow = 0

xhigh = 4

Call GoldMnMx (xlow, xhigh, -1, xopt, fopt)
MsgBox "xopt = " & xopt

MsgBox "f (xopt) = " & fopt

End Sub

Sub GoldMnMx (xlow, xhigh, ind, xopt, fopt)

Dim iter As Integer, maxit As Integer, ea As Double, es As Double
Dim xL As Double, xU As Double, d As Double, x1 As Double

Dim x2 As Double, fl As Double, f2 As Double

Const R As Double = (5 ~ 0.5 - 1) / 2

maxit = 50

es = 0.001

xL = xlow

xU = xhigh

iter = 1

d =R * (xU - xL)
x1l = xL + d

x2 = xU - d

f1 = f(ind, x1)
f2 = f(ind, x2)
If £f1 > £2 Then

xopt = x1
fopt = f1
Else
xopt = x2
fopt = £2
End If
Do
d=R* d

If £f1 > £2 Then



xL = x2

x2 = x1
x1l = xL + d
f2 = f1
fl = f(ind, x1)
Else
xU = x1
x1l = x2
x2 = xU - d
fl = f2
f2 = f(ind, x2)
End If
iter = iter + 1
If f1 > £2 Then
xopt = x1
fopt = f1l
Else
xopt = x2
fopt = f2
End If
If xopt <> 0 Then ea = (1 - R) * Abs((xU - xL) / xopt) * 100
If ea <= es Or iter >= maxit Then Exit Do
Loop
fopt = ind * fopt
End Sub

Function f (ind, x)
f =ind * (1.1333 * x ~ 2 - 6.2667 * x + 1)
End Function

13.15 Because of multiple local minima and maxima, there is no really simple means to test
whether a single maximum occurs within an interval without actually performing a search.
However, if we assume that the function has one maximum and no minima within the
interval, a check can be included. Here is a VBA program to implement the Quadratic
Interpolation algorithm for maximization and solve Example 13.2.

Option Explicit

Sub QuadMax ()

Dim ier As Integer

Dim xlow As Double, xhigh As Double

Dim xopt As Double, fopt As Double

xlow = 0

xhigh = 4

Call QuadMx (xlow, xhigh, xopt, fopt, ier)
If ier = 0 Then

MsgBox "xopt = " & xopt

MsgBox "f (xopt) = " & fopt
Else

MsgBox "Does not appear to be maximum in [x1, xu]"
End If
End Sub

Sub QuadMx (xlow, xhigh, xopt, fopt, ier)

Dim iter As Integer, maxit As Integer, ea As Double, es As Double
Dim x0 As Double, x1 As Double, x2 As Double

Dim f0 As Double, fl As Double, f2 As Double

Dim xoptOld As Double

ier = 0

maxit = 50

es = 0.01

x0 = xlow

x2 = xhigh

xl = (x0 + x2) / 2



f0 = £(x0)
fl1 = £(x1)
f2 = £(x2)

If f1 > £f0 Or f1 > f2 Then
xoptOld = x1
Do
xopt = f0 * (x172 - x272) + f1 * (x272 - x072) + f2 * (x0"2 - x172)
xopt = xopt / (2*f0 * (x1 - x2) + 2*fl * (x2 - x0) + 2*f2 * (x0 - x1))
fopt = f (xopt)

iter = iter + 1
If xopt > x1 Then

x0 = x1

f0 = f1

x1l = xopt

fl = fopt
Else

x2 = x1

f2 = f1

x1l = xopt

fl = fopt
End If

If xopt <> 0 Then ea = Abs((xopt - xopt0Old) / xopt) * 100
xoptOld = xopt
If ea <= es Or iter >= maxit Then Exit Do
Loop
Else
ier = 1
End If
End Sub

Function f (x)

f =-(2 * Sin(x) - x ~ 2 / 10)
End Function

13.16 Here is a VBA program to implement the Newton-Raphson method for maximization.
Option Explicit
Sub NRMax ()

Dim xguess As Double
Dim xopt As Double, fopt As Double

xguess = 2.5

Call NRMx (xguess, xopt, fopt)
MsgBox "xopt = " & xopt
MsgBox "f (xopt) = " & fopt
End Sub

Sub NRMx (xguess, xopt, fopt)

Dim iter As Integer, maxit As Integer, ea As Double, es As Double
Dim x0 As Double, x1 As Double, x2 As Double

Dim fO As Double, fl As Double, f2 As Double

Dim xoptOld As Double

maxit = 50
es = 0.01
Do
xopt = xguess - df (xguess) / d2f (xguess)

fopt = f (xopt)
If xopt <> 0 Then ea = Abs((xopt - xguess) / xopt) * 100

xguess = xopt

If ea <= es Or iter >= maxit Then Exit Do
Loop
End Sub

Function f (x)
f=-(2 * Sin(x) - x ~ 2 / 10)



End Function

Function df (x)
df = 2 * Cos(x) - x / 5
End Function

Function d2f (x)
d2f = -2 * Sin(x) -1/ 5
End Function

13.17 Here is a VBA program to implement the Newton-Raphson method for maximization.

d, = 52' ! @4 -2)=1.23606

X, =2+d, =3.23606

X, =4-d, =2.76394
£(x;) = —4.69808
f(x,)=-5.55333

F()< £ O x, is new xy

d, = Ez ol @323606 -2)=0.763927

X =2+d, =2.7639

X, =3.23606 —d, =2.472133
f(x;)=-5.55331
£(x,) =-4.82656

SO <f(x)O x, isnew x,

dy = 52'1 @3.23606 - 2.472133) =0.4721

X, =2.472133 +d; =2.9442

X, =3.23606 - d; =2.7639
f(x,) =-4.9353
f(x,)=-5.55331

S <S03 isnew x,

d, = EZ‘I E2.944z ~2.472133)=0.29175

X, =2.472133+d, =2.7638
X, =2.9442 - d, =2.6524
f(x)=-5.55331
£(x,) = =5.4082
U attime ¢ =2.76, minimum pressure is —5.55331
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14.8 Errata: p. 357; The initial value of the variable maxf must be set to some ridiculously
small value before the iterations are begun. Add the following line to the beginning of
the VBA code:

maxf = -999E9

The following code implements the random search algorithm in VBA:

Option Explicit
Sub RandSearch ()

Dim n As Long
Dim xmin As Single, xmax As Single, ymin As Single, ymax As Single
Dim maxf As Single, maxx As Single, maxy As Single

xmin = -2

xmax = 2

ymin = -2

ymax = 2

n = InputBox ("n=")

Call RndSrch(n, xmin, xmax, ymin, ymax, maxy, maxx, maxf)

MsgBox maxf
MsgBox maxx
MsgBox maxy

End Sub

Sub RndSrch(n, xmin, xmax, ymin, ymax, maxy, maxx, maxf)
Dim j As Long

Dim x As Single, y As Single, fn As Single

maxf = -999E9

For 3 =1 To n
X = xmin + (xmax - xmin) * Rnd
y = ymin + (ymax - ymin) * Rnd

fn = £(x, y)
If fn > maxf Then

maxf = fn
maxx = X
maxy =y
End If
Next j
End Sub

Function f(x, vy)
f=3.5*x+2*y+x""2-x"4-2*x*y-y~"2
End Function

14.9 The following code implements the grid search algorithm in VBA:

Option Explicit
Sub GridSearch ()

Dim nx As Long, ny As Long
Dim xmin As Single, xmax As Single, ymin As Single, ymax As Single
Dim maxf As Single, maxx As Single, maxy As Single

xmin = -2
xmax = 2
ymin = -2
ymax = 2
nx = 1000

ny = 1000



Call GridSrch(nx, ny, xmin, xmax, ymin, ymax, maxy, maxx, maxf)

MsgBox maxf
MsgBox maxx
MsgBox maxy

End Sub

Sub GridSrch(nx, ny, xmin, xmax, ymin, ymax, maxy, maxx, maxf)
Dim i As Long, J As Long

Dim x As Single, y As Single, fn As Single

Dim xinc As Single, yinc As Single

xinc = (xmax - xmin) / nx
yinc = (ymax - ymin) / ny
maxf = -999000000000+#
X = xmin
For i = 0 To nx

y = ymin

For 7 = 0 To ny
fn = £(x, v)
If fn > maxf Then

maxf = fn
maxx = X
maxy =
End If
y = y + yinc
Next j
X = x + xinc
Next i
End Sub

Function f(x, vy)
f=y-x-2*x"2-2*x*xy-y"2
End Function

14.10
[(x,y)=5xy =8y =7x*

‘;f =10xy —14x 0 10(2)(4) —14(4) =24
X

gi:sz —16y 0 5(4)* —16(2) = 48
ly

Of =24i +48;

f%xo+g{ch,yo +g§:h%1f(4 +24h,2 +48h)

=5(4+24h)> (2 +48h) —8(2 +48h)> —7(4 +24h)*

2(x) =138240h° +29376h% +2880h +16
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CHAPTER 15

15.1 (Note: Although it is not really clear from the problem statement, it should be assumed that each
unit of product is equivalent to a kg.)

(a) Define x, = amount of product A produced, and x, = amount of product B produced.
The objective function is to maximize profit,

P =45x,+30x,

Subject to the following constraints

20x, +5x, <10000 {raw materials}
0.05x, +0.15x, <40 {production time}
x, +x, <550 {storage}

x,,x, 20 {positivity}

(b) To solve graphically, the constraints can be reformulated as the following straight lines

x, =2000-4x, {raw materials}
X, =266.667-0.3333x, {production time }
x, =550—-x, {storage}

The objective function can be reformulated as
x, =(1/30)P - 15x,

The constraint lines can be plotted on the x,-x, plane to define the feasible space. Then the
objective function line can be superimposed for various values of P until it reaches the
boundary. The result is P [123700 with x, 1483 and x; [167. Notice also that material and
storage are the binding constraints and that there is some slack in the time constraint.



(c) The simplex tableau for the problem can be set up and solved as

Basis P xa xb S1 S2 S3 Solution Intercept

P 1 -45 -30 0 0 0 0
material S1 0 20 5 1 0 0 10000 500
time S2 0 0.05 0.15 0 1 0 40 800
storage S3 0 1 1 0 0 1 550 550
Basis P Xa xb S1 S2 S3 Solution Intercept

P 1 0 -18.75 225 0 0 22500
xa xa 0 1 0.25 0.05 0 0 500 2000
time S2 0 0 0.1375 -0 1 0 15 109.0909
storage S3 0 0 0.75 -0.05 0 1 50 66.66667
Basis P xa xb S1 S2 S3 Solution Intercept

P 1 0 0 1 0 25 23750

xa xa 0 1 0 0.067 0 -0.333 483.33333

time S2 0 0 0 0.007 1 -0.183  5.8333333

xb xb 0 0 1 -0.07 0 1.333 66.666667

(d) An Excel spreadsheet can be set up to solve the problem as

The Solver can be called and set up as

Set target cell: D6

Equal to ¢ max 0 min O value of 0

A B € D E
1 xA xB total constraint
2 amount 0 0
3 [time 0.05 0.15 0 40
4 storage 1 1 0 550
5 raw material 20 5 0 10000
6 profit 45 30 0



By changing cells
B2:C2

Subject to constraints:
D3<E3

D4<E4

D5<E5

The resulting solution is

\ A \ B c D E
1 xA xB total constraint
2 amount 483.3333 66.66667
3 time 0.05 0.15 34.16667 40
4 storage 1 1 550 550
5 raw material 20 5 10000 10000
6 | profit 45 30 23750
In addition, a sensitivity report can be generated as
Microsoft Excel 5.0c Sensitivity Report
Worksheet: [PROB1501.XLS]Sheet2
Report Created: 12/8/97 17:06
Changing Cells
Final Reduced Objective Allowable Allowable
Cell Name Value Cost Coefficient Increase Decrease
$B$2 amount xA 483.3333333 0 45 75 15
$C$2 amount xB 66.66666667 0 30 15 18.75
Constraints
Final Shadow Constraint Allowable Allowable
Cell Name Value Price R.H. Side Increase Decrease
$D$3 time 34.16666667 0 40 1E+30 5.833333333
$D$4 storage 550 25 550 31.81818182 1E+30
$D$5 raw material 10000 1 10000 1E+30 875

(e) The high shadow price for storage from the sensitivity analysis from (d) suggests that
increasing storage will result in the best increase in profit.

15.2 (a) The total LP formulation is given by

Maximize Z =150x, + 175x, + 250x,

subject to

7x, +11x, +15x, <154
10x, +8x, +12x, <80
X <9
X, <6

x, <5

{Maximize profit}

{Material constraint}
{Time constraint}
{“Regular” storage constraint}
{“Premium” storage constraint}

{“Supreme” storage constraint}



X1, Xy,X5 2

0

{Positivity constraints}

(b) The simplex tableau for the problem can be set up and solved as

Basis P x1 X2 x3 S1 S2 S3 S4 S5 Solution Intercept
P 1 -150 -175  -250 0 0 0 0 0 0
S1 0 7 11 15 1 0 0 0 0 154  10.2667
S2 0 10 8 12 0 1 0 0 0 80 6.66667
S3 0 1 0 0 0 0 1 0 0 9 0
S4 0 0 1 0 0 0 0 1 0 6 00
S5 0 0 0 1 0 0 0 0 1 5 5
Basis P x1 x2 x3 S1 S2 S3 S4 S5 Solution Intercept
P 1 -150 -175 0 0 0 0 0 250 1250
S1 0 7 11 0 1 0 0 0 -15 79 7.18182
S2 0 10 8 0 0 1 0 0o -12 20 2.5
S3 0 1 0 0 0 0 1 0 0 9 00
S4 0 0 1 0 0 0 0 1 0 6 6
x3 0 0 0 1 0 0 0 0 1 5 I
Basis P x1 X2 x3 S1 S2 S3 S4 S5 Solution Intercept
P 1 68.75 0 0 0 21.88 0 0 -125 1687.5
S1 0 -6.75 0 0 1 -1.375 0 0 1.5 51.5 34.3333
x2 0 1.25 1 0 0 0.125 0 0 -15 25 -1.66667
S3 0 1 0 0 0 0 1 0 0 9 o
S4 0 -1.25 0 0 0 -0.125 0 1 1.5 3.5 2.33333
X3 0 0 0 1 0 0 0 0 1 5 5
Basis P x1 x2 x3 S1 S2 S3 S4 S5 Solution
P 1 58.3333 0 0 0 20.83 0 8.33 0 1716.7
S1 0 -5.5 0 0 1 -1.25 0 -1 0 48
x2 0 0 1 0 0 0 0 1 0 6
S3 0 1 0 0 0 0 1 0 0 9
S5 0 -0.8333 0 0 0 -0.083 0 0.67 1 2.3333
X3 0 0.83333 0 1 0 0.083 0 -0.67 0 2.6667
(c) An Excel spreadsheet can be set up to solve the problem as
A B ¢ | b | E | F

1 regular premium  supreme total constraint

2 amount 0 0 0

3 material 7 11 15 0 154

4 time 10 8 12 0 80

5 reg stor 1 0 0 0 9

6 prem stor 0 1 0 0 6

7 sup stor 0 0 1 0 5

8 profit 150 175 250 0

The Solver can be called and set up as

Set target cell:

E8

Equal to ¢ max 0 min O value of



By changing cells
B2:D2

Subject to constraints:
E3<F3

E4<F4

E5<F5

E6<F6

E7<F7

B2=0

C2=0

D2=0

The resulting solution is

A B C D E | F
1 regular  premium supreme total constraint
2 amount 0 6 2.666667
3 material 7 11 15 106 154
4 time 10 8 12 80 80
5 reg stor 1 0 0 0 9
6 prem stor 0 1 0 6 6
7 sup stor 0 0 1 2.666667 5
8 profit 150 175 250 1716.667
In addition, a sensitivity report can be generated as
Microsoft Excel 5.0c Sensitivity Report
Worksheet: [PROB1502.XLS]Sheet4
Report Created: 12/12/97 9:53
Changing Cells
Final Reduced Objective Allowable Allowable
Cell Name Value Cost Coefficient Increase Decrease
$B$2 amount regular 0 -58.33333333 150 58.33333333 1E+30
$C$2 amount premium 6 0 175 1E+30 8.333333333
$D$2 amount supreme 2.666666667 0 250 12.5 70
Constraints
Final Shadow Constraint Allowable Allowable
Cell Name Value Price R.H. Side Increase Decrease
$E$3 material total 106 0 154 1E+30 48
$ES$4 time total 80  20.83333333 80 28 32
$E$5 reg stor total 0 0 9 1E+30 9
$E$6 prem stor total 6  8.333333333 6 4 3.5
$ES$7 sup stor total 2.666666667 0 5 1E+30 2.333333333

(d) The high shadow price for time from the sensitivity analysis from (c) suggests that
increasing time will result in the best increase in profit.
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15.11

2
Total surface area = TDH + 2@%@

2
Minimize f(D,H) :T[DH+T[’%
Constraints:
2
o H =320
4
<D<10
<10
- A4 _D when 4 =260cm?
w2 H=8.41cm
H =40743 D2 D =6.96cm
15.12

Profit: z =13,000x, +15,000x,
Constraints: 1. 17.5x, +21x, <8000
2. 680x, +500x, < 240000
3. x, £400
4. x, <350
5,6. x;,x, <0

X, =224.2 cars

x, =188.1 cars

z =$5,810,000
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Option Explicit

17.19 Here’s VBA code to implement linear regression:

Sub Regres ()

Dim n As Integer

Dim x(20) As Single, y(20) As Single,

Dim syx As Single, r2 As Single

n =7

x(1l) = 1: x(2) = 2: x(3) = 3: x(4) = 4: x(5)
x(6) = 6: x(7) =7

y(l) = 0.5: y(2) = 2.5: y(3) = 2: y(4) = 4:
y(6) = 6: y(7) = 5.5

Call Linreg(x(), v(), n, al, a0, syx, r2)
MsgBox "slope= " & al

MsgBox "intercept= " & a0

MsgBox "standard error= " & syx

MsgBox "coefficient of determination= " & r2
MsgBox "correlation coefficient= " & Sqgr(r2)
End Sub

Sub Linreg(x, vy, n, al, a0, syx, r2)

Dim i As Integer

Dim sumx As Single, sumy As Single,

Dim
Dim

sumx2 As Single,
xm As Single,

st As Single,
ym As Single

sumx = 0

sumy = 0

sumxy = 0

sumx2 = 0

st 0

sr 0

For i =1
sumx = S
sumy = S
sumxy
sumx2

To n
umx + x (i)
umy + y(1i)

sumxy + x (i) *
sumx2 + x (i) *

Yy
2

Next
xm
ym =
al
a0
For

st =

sr
Next
SYyx
r2

End

1

sumx
sumy
(n *
ym =
=1
st
sr

/ n
/ n

i To n

+
i

(sr /
(st -

sr)

Sub

(n -2)) "

/

A

- ym)

- al * x(1i)

0.5

st

(i

sumxy - sumx * sumy) /
al * xm

2

i)

- a0) »

2

(n * sumx2

al As Single,

a0 As Single

sumxy As Single
sr As Single

sumx * sumx)



17.20

log N

log Stress

3.053463

3.024486

2.996949

2.903633

2.813581

2.749736

OO WN O

2.630428

n=7

z x;y; =58.514

zxiz =91
in =21

S 3 =20.17228

X =

3

y=2.8817

= ny %y~ Y %y _7(58.514) - (21)(20.17228) _
7091) - (21)?

! aniz —(Exi)2

a, =y—ax=2.8817-(-0.07153)(3) = 3.09629

—0.07153

Therefore, y =—0.07153x +3.0963 , Excel spreadsheet solution:

log stress

3.2

3.1

I
©

2.8

27

26

least squares fit

log cycles

4

+ Seriest
— Linear (Series1)



17.21 This problem was solved using an Excel spreadsheet and TrendLine. Linear regression
gives

0.6 [ y=0.0454x +0.1077

R? = 0.999

0.4

0.2

Forcing a zero intercept yields

0.6
y =0.061x

R?=0.8387
0.4

y = 0.1827x"4%%°
R%?=0.9024

However, this seems to represent a poor compromise since it misses the linear trend in the data.
An alternative approach would to assume that the physically-unrealistic non-zero intercept is an
artifact of the measurement method. Therefore, if the linear slope is valid, we might try y =
0.0454x.



17.22 This problem was solved using an Excel spreadsheet.

log wiscosity

log temp

17.23 Using Excel, plot a linear fit which results in R* = 0.9949. Using an exponential fit results
in R? = 1, which implies a perfect fit. Therefore, use the exponential solution.

The amount of bacteria after 30 days:

(30)=145.67 x10°



Amount of Bacteria Present over a Specified Number of Days

Amount

o
o

10 15

Days

Amount of Bacteria Present over a Specified Number of Days

Amount

0 5

10 15
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18.10 whidh cam be totied

G,=0 a,=0 6\3:—L{ Q*:-G

L x Lo b =Y b,=% by T 2% by=3g

o | I ¢ =-3 = C\3:-28’ C,_t=-%

! 2 5

2 2,5 v Jrd 3 prede o Aimu?r@&(’ L

303 9
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18,12

Ul-h-w’x

£ &)
2
2
!

o + 30, +90,=3

Ry + 4a, +loa,z 2

G, + 5a, +250,= 1
%o-(%-vr\% A= 506
Q= =23,
a,= 2.5
1IR.1> AR V'S
| 4.5
4 4
3 525
5 1975

Jo4+a, + 4y +03 = 415
Qp +20, ¥+ H4a, +%43 = 4

C\D +301 »‘M;_ 427(]3 = 5,25
dp + Sa, +2545 +15a;, = 1975

S“o—Ql\r(/M() 0= & B, ==0.:5

a :"l a3=0125

18.14 Here is a VBA program to implement Newton interpolation. It is set up to solve Example
18.5:

Option Explicit
Sub Newt ()

Dim n As Integer, i As Integer
Dim yint (10) As Single, x(10) As Single, y(10) As Single
Dim ea(10) As Single, xi As Single

Range ("ab") .Select

n = ActiveCell.Row
Selection.End(x1Down) .Select
n = ActiveCell.Row - n

Range ("ab") .Select

For i = 0 To n
x (1) = ActiveCell.Value
ActiveCell.Offset (0, 1).Select
y (i) = ActiveCell.Value
ActiveCell.Offset (1, -1).Select
Next i

Range ("e3") .Select
xi = ActiveCell.Value



Call Newtint(x(), v(), n, xi, yint, ea)

Sheets ("Sheetl") .Select

Range ("d5:£25") .ClearContents

Range ("d5") .Select

For i = 0 To n
ActiveCell.Value = i
ActiveCell.Offset (0, 1).Select
ActiveCell.Value = yint (i)
ActiveCell.Offset (0, 1).Select

ActiveCell.Value = ea(i)
ActiveCell.Offset (1, -2).Select
Next i

Range ("ab") .Select

End Sub

Sub Newtint(x, vy, n, xi, yint, ea)

Dim i As Integer, j As Integer, order As Integer

Dim fdd (10, 10) As Single, xterm As Single
Dim yint2 As Single

For i = 0 To n
fdd (i, 0) = y (i)
Next 1
For 3 = 1 To n
For 1 = 0 Ton - Jj
fdd(i, j) = (fdd(i + 1, j - 1) - fdd(i, J - 1)) / (x(i + 3) - x(1))
Next 1
Next j

xterm = 1#
yint (0) = £d4dd(0, 0)

For order = 1 To n
xterm = xterm * (xi - x(order - 1))
yint2 = yint (order - 1) + £dd (0, order) * xterm
ea(order - 1) = yint2 - yint(order - 1)

yint (order) = yint2
Next order

End Sub

18.15 Here is the solution when the program from Prob. 18.14 is run.

A [FEIT D | E e
1 |Problem 18.15
2
3 |Data: Interpolation at x = 2
4 |x ¥ order fi=) error ()
5 11 1] 0 0 0.4620981
] 4 1.386294 1 0.462098122 0.1037462 RUN
[ 6 1.791759 2 0.565844357 0.0629242
iz 5 1.609438 3 0.628768563 0.0469534
il 3 1.098612 4 0675721943 0.0217922
10 1.5 0.405465 5 0697314176 0.003616
JEE 2.5 0916291 6 0.693897784 0.000459
(12 3.5 1.252763 7 0693438709 0
13

18.16 See solutions for Probs. 18.1 through 18.3.

18.17 A plot of the error can easily be added to the Excel application. The following shows the
solution for Prob. 18.4:



& = S | D | B | F | 6 [ H
1 Problem 18.4
2
_3 Data: Interpolation at x = 34
4 = ¥ order fix) error (%)
BER 3 8 1] 8 -2.400001
[& 4 2 1 5.599999428 1.2800002 RUN
| 25 i 2 6.879999638 16768
N 5 1 3 6.203199387 0.5529599
L8 2 b 4 6.756159306 0.2204161
10 1 1 5 6.976575375 1]
1
A2
- 2 —=—error (%)
16
7 1] 1 1 /’\5- 1
: Y
iEl 1 3 4 5 6
20
21| -2
v
=
24
= 4
26
The following shows the solution for Prob. 18.5:
A A G D [ E e T

| 1 |Problem 18.5

2

i Data: Interpolation at x = 4

|4 |x Y | order fix) error (%)
= 3 5.25 0 5.25 7.25
6 5 19.75 1 12.5 2
[ 7] 2 4 2 105 05 L)
T 6 36 3 10 0
Ex 1 475 4 10 0
1o

i

12

= 8 - error (%)

RSO

| 15

i 4

17|

A 2

| 19

20

21

| 22

| 23

24

| 25

18.18
Option Explicit

Sub LagrInt ()

Dim n As Integer, i As Integer, order As Integer
Dim x(10) As Single, y(10) As Single, xi As Single

Range ("ab") .Select

n = ActiveCell.Row

Selection.End(x1Down) .Select

n = ActiveCell.Row - n

Range ("ab") .Select

For i = 0 To n
x (i) = ActiveCell.Value
ActiveCell.Offset (0, 1).Select
y (i) = ActiveCell.Value
ActiveCell.Offset (1, -1).Select

Next i

Range ("e3") .Select

order = ActiveCell.Value

ActiveCell.Offset (1, 0).Select

xi = ActiveCell.Value



ActiveCell.Offset (2, 0).Select
ActiveCell.Value = Lagrange(x(), y(), order, xi)

End Sub
Function Lagrange (x, y, order, xi)

Dim i As Integer, j As Integer
Dim sum As Single, prod As Single

sum = 0#

For i = 0 To order
prod = y (i)
For j = 0 To order

If i <> j Then
prod = prod * (xi - x(j)) / (x(i) - x(3))

End If
Next j
sum = sum + prod
Next i
Lagrange = sum

End Function

Application to Example 18.7:

A [ B [ c | D = i O
1 |Example 18.7
|l
3 |Data: Order = 2
4 |x ¥ Interpolation at x = | 10 ok
) 13 47535
(B 7 3940 fix) = 4672.813
7| 5 3090
= 3 2310
[ 1 800
10

18.19 The following VBA program uses cubic interpolation for all intervals:

Option Explicit
Sub Newt ()

Dim n As Integer, i As Integer
Dim yint (10) As Single, x(10) As Single, y(10) As Single
Dim ea (10) As Single, xi As Single

Range ("ab") .Select

n = ActiveCell.Row
Selection.End(x1Down) .Select
n = ActiveCell.Row - n

Range ("ab") .Select

For i = 0 To n
x (1) = ActiveCell.Value
ActiveCell.Offset (0, 1).Select
y (1) = ActiveCell.Value
ActiveCell.Offset (1, -1).Select
Next i

Range ("ed") .Select
xi = ActiveCell.Value

ActiveCell.Offset (2, 0).Select
ActiveCell.Value = Interp(x(), v(), n, xi)
Range ("ab") .Select



18.20

End Sub

Function Interp(x, y, n, xx)

Dim ii As Integer

If xx < x(0) Or xx > x(n) Then

Interp = "out of range"
Else
If xx <= x(ii + 1) Then
Interp = Lagrange (x, Y,

ElselIf xx <= x(n - 1) Then

0, 3, xx)

If xx >= x(1ii1) And xx <= x(ii + 1) Then

For ii = 0 To n - 2
Interp = Lagrange (x,
Exit For

End If

Next ii

Else

Interp = Lagrange (x, Y,
End If
End If
End Function

Function Lagrange(x, y, 1i0,

y, i1 - 1, 3, xx)

n - 3, 3, xx)

order, xi)

Dim i As Integer, j As Integer
Dim sum As Single, prod As Single

sum = 0#

For i = 10 To i0 + order
prod = y (i)
For j = 10 To i0 + order

If 1 <> j Then

prod = prod * (xi - x(j)) / (x(i) - x(3))

End If
Next j
sum = sum + prod
Next i
Lagrange = sum

End Function

Application to evaluate In(2.5):

Sub Splines|()

Dim i As Integer, n As Integer

A BT D | B | H
1 |Problem 18.4
2
3 |Data:
4 % ¥ | Interpolation at x = 25
7 10 |
el 2 0.693147 fix) = 0.921221316 RUN
5] 3 1.098612 _
2 4 1.386294 True value 0.916290732
3] 5 1.609438
10 6 1.791759 Error 0.53810 %
K] 7 1.945M
iz 8 2.079442
13 9 2197225
14 10 2.302585
li45]



Dim x(7)
Dim dy As Single,

As Single, y(7) As Single,
d2y As Single

xu As Single,

Range ("ab") .Select

n = ActiveCell.Row

Selection.End(x1Down) .Select

n = ActiveCell.Row - n

Range ("ab") .Select

For i = 0 To n
x (1) = ActiveCell.Value
ActiveCell.Offset (0, 1).Select

yu As Single

y (i) = ActiveCell.Value

ActiveCell.Offset (1, -1).Select
Next i
Range ("ed4") .Select
xu = ActiveCell.Value
Call Spline(x(), yv(), n, xu, yu, dy, d2y)
ActiveCell.Offset (2, 0).Select
ActiveCell.Value = yu
End Sub
Sub Spline(x, vy, n, xu, yu, dy, d2y)
Dim e(10) As Single, £f(10) As Single, g(l10) As Single, r(10) As Single,
d2x(10) As Single
Call Tridiag(x, y, n, e, £, g, r)
Call Decomp(e(), £(), g(), n - 1)
Call Substit(e(), £(), g(), (), n - 1, d2x())
Call Interpol(x, y, n, d2x(), xu, yu, dy, d2y)
End Sub
Sub Tridiag(x, v, n, e, £, g, r)
Dim i As Integer
£(1) = 2 * (x(2) - x(0))
g(l) = x(2) - x(1)
r(l) =6/ (x(2) - x(1)) * (y(2) - y(1))
r(l) = xr(l) + 6 / (x(1) - x(0)) * (y(0) - y(1))
For i = 2 Ton - 2

e(i) = x(1i) - x(1 - 1)

f(i) =2 * (x(1 + 1) - x(1 - 1))

g(i) = x(1 + 1) - x(i)

r(i) =6/ (x(1i + 1) - x(1)) * (y(i + 1) - y(1))

r(i) = r(i) + 6/ (x(i) - x(i - 1)) * (y(i - 1) - y(i))
Next i
e(n - 1) = x(n -1) - x(n - 2)
f(n - 1) =2 * (x(n) - x(n - 2))
r(n - 1) =6/ (x(n) - x(n - 1)) * (y(n) - yn - 1))
r(in - 1) =r(n-1) +6 / (x(n -1) - x(n - 2)) * (y(n -2) - y(n - 1))
End Sub
Sub Interpol(x, vy, n, d2x, xu, yu, dy, d2y)
Dim i As Integer, flag As Integer
Dim cl As Single, c2 As Single, c3 As Single, c4 As Single
Dim tl As Single, t2 As Single, t3 As Single, t4 As Single
flag = 0
i =1
Do

If xu > x(1i - 1) And xu <= x (i) Then

cl = d2x(i - 1) / 6 / (x(1) - x(1 - 1))
c2 = d2x(i) / 6 / (x(i) - x(1 - 1))



c3 =y(i-1) / (x(i) - x(1 - 1)) - d2x(1 - 1) * (x(i) - x(1i - 1)) / 6
cd = y(i) / (x(1) - x(i - 1)) - d2x(i) * (x(i) - x(i - 1)) / 6
tl = cl * (x(1) - xu) ~ 3
t2 = ¢c2 * (xu - x(1 - 1)) ~ 3
t3 = c3 * (x(i) - xu)
td = c4 * (xu - x(1i - 1))
yu = tl + t2 + t3 + t4
tl = -3 * ¢l * (x(i) - xu) »~ 2
t2 =3 * ¢c2 * (xu - x(i - 1)) " 2
t3 = -c3
td = c4
dy = tl + t2 + t3 + t4
tl = 6 * ¢l * (x(1) - xu)
t2 = 6 * ¢c2 * (xu - x(1i - 1))
d2y = tl + t2
flag = 1
Else
i=1+1
End If
If i =n+ 1 Or flag = 1 Then Exit Do
Loop

If flag = 0 Then

MsgBox "outside range"
End

End If

End Sub

Sub Decomp (e, f, g, n)

Dim k As Integer
For k = 2 To n

e(k) = e(k) / £(k - 1)

f(k) = £(k) - e(k) * g(k - 1)
Next k
End Sub

Sub Substit(e, £, g, ¥, n, x)
Dim k As Integer

For k = 2 To n

r(k) = r(k) - e(k) * r(k - 1)
Next k
x(n) = r(n) / £(n)
For k = n - 1 To 1 Step -1
x(k) = (r(k) - g(k) * x(k + 1)) / £(k)
Next k
End Sub
I | = = [ = [ A [ = [ = |

1 |[Example 18.10

2

3 |Data:

4 |z ¥ Interpolation at x= | 5

i 3 25 | | i
G 4.5 1 fix) = 1.10289

i 7 2.5

g 9 (L]
It

18.21 The following shows the solution for Prob. 18.4:



18.22

o D [ E | G
| 1 |Problem 18.4
=N
| 3 |Data:
4 = ¥ Interpolation at x = 2.25 RUN
5 1 1] _
e 2 ] fix) = 6.013615
i 2.5 7
B 3| 8
(8], L) 2
| 10| 5 1
|
The following shows the solution for Prob. 18.5:
A | B | & | D = G

1 |Problem 18.5
ba
| 3 |Data: | |

4 Ix ¥ Interpolation at x = 2.25
5| 1 4.75 i
6 | 2 3 fix) = | 3.204406
i 3 5.25
] b 19.75
E 6 36
10

£ = fx,)+ D7)
- X

1 0
B 6.7664 — 6.5453 ﬁ
[0.12547-0.11144
f1(x)=4.789107 +15.579x

(x—x,)

J1(x)=6.5453 + x=0.11144)

x=0.118, f;(x) = 6.6487

kJ
kgo K

5 =6.6487




CHAPTER 19

19.1 The normal equations can be derived as

o 11 2416183 2018098 83.9
(2416183 6.004565 0017037HDA D 543934D
£2.018098 0.017037 4995435%3 g H0.81054H

which can be solved for

Ao= 7.957538
A= -0.6278
B = -1.04853

The mean is 7.958 and the amplitude and the phase shift can be computed as

C = ~/ (-0.6278)* +(-104853)* =1222

-1[]~1.04853 ﬁ+ T =2.11 radians X 12hrs _ 8.06 hr
- 06278 n

Thus, the final model is

() =7.958 +1222 cosg;—z(t + 8.06)@

The data and the fit are displayed below:

10 +

Note that the peak occurs at 24 — 8.06 = 15.96 hrs.

19.2 The normal equations can be derived as



0890 127279 —5681870+10 350,265
oo 5 -1 Hlléfl E: %—381.864%

50 -1 5 %B:E §156.281 |

which can be solved for

Ao= 1952491
A= -73.0433
Bi= 16.64745

The mean is 195.25 and the amplitude and the phase shift can be computed as

G =// (=73.0433)% +(16.6475)* = 74916

0 =tan”' 16.6475 H+ Tt = 3.366 radians % 180d _ 192.8d
-73.0433 Tt

Thus, the final model is

2
£(1)=19525 + 74.916005% (t + 192.8)@

The data and the fit are displayed below:

300

200

100

19.3 In the following equations, oy = 2107

T . r
S -

J_OTcos(o)ot)dt wolsin(ooot)]OT _®

Wy
T T T

(sinZH—sinO) =0



- Dt_MBT T _sindm_ oo
J'O sin (wot)dt B % 4, B 2 4, _1
ro T ) r 2
Dl s1n(20)0 ) [f T sin4Tt
J'OTcosz((,oot)dt _ % 4w, 5) 27 4w, —070 _1
T ) T r 2
J'OTCOS(U)OI) sin(o)ot)dt ~ %in2((oot) ET _sin’ 2m —0=0
T - g 27w, f C 2w,
19.4a,=0
a, = 7% i —tcos(kooot) dt
0 t J"
= fDicos(k(o t) +—s1n(kw0 )
Tﬁk‘*)o) ke, /2
2 T2 ,
b, _? _m—tsm(kooot) dt
2 B g"
= fﬂism(kooo ) 7COS(k(*)0 )D
r Eﬂk(*)o) ke, Br/z

On the basis of these, all a’s = 0. For k£ = odd,

Therefore, the series is
f@= ——sm( wot) + lsin(Z(:oot) - isin(3(o0t) + Lsin(4ooot) + [T
T T T T

The first 4 terms are plotted below along with the summation:



19.5a0=0.5

a, =§§_Ol—tcos(kﬂt) dt +J'01tcos(kTrt) dté
. 0 . 10
- cos(szrt) ~ tsm(kTrt)S N El:os(kl‘zrt) . tsm(kTrt) S E
L R B TP R e
= kz)z(coskn—l)
Tt
bk:O

Substituting these coefficients into Eq. (19.17) gives

f(t)—— — s(Trt) —cos(3Trt) 122c0s(5Trz)+|]]]I

25m

This function for the first 4 terms is displayed below:




19.6

0.7
0

-0.7

19.7

19.8

19.9




19.10 Here’s a Fortran 90 code that implements the DFT. It is set up to solve Prob. 19.11.

PROGRAM DFourier
IMPLICIT NONE
INTEGER i, N
REAL £(0:127),re(0:127),im(0:127) ,0omega,pi, t,Tp,dt
pi=4.*atan(l.)
N=32
omega=2.*pi/N
t=0.
Tp=2.*pi
dt=4.*Tp/N
DO i=0,N-1
f(i)=sin(t)
if (f£(i).LT.0.) f(i)=0.
t=t+dt
END DO
CALL DFT (f,N,re,im, omega)
OPEN (UNIT=1,FILE='Probl9ll.dat',STATUS="unknown')
DO i=0,N-1
WRITE(1,*) 1i,f(i),re(i),im(1)
END DO
CLOSE (1)
END

SUBROUTINE DFT(f,N,re,im,omega)
IMPLICIT NONE
INTEGER k,nn,N
REAL £(0:127),re(0:127),im(0:127) ,angle, omega
DO k=0,N-1
DO nn=0,N-1
angle=k*omega*nn
re (k) =re (k) +f (nn) *cos (angle) /N
im(k)=im (k) -f (nn) *sin (angle) /N
END DO
END DO
END

19.11 The results for the n = 32 case are displayed below:

index f(t) real imaginary
0 0 0.3018 0
1 0.7071 0 0
2 1 0 0
3 0.7071 0 0
4 0 0 -0.25
5 0 0 0
6 0 0 0
7 0 0 0
8 0 -0.125 0
9 0.7071 0 0
10 1 0 0
11 0.7071 0 0
12 0 0 0
13 0 0 0
14 0 0 0
15 0 0 0
16 0 -0.0518 0
17 0.7071 0 0
18 1 0 0
19 0.7071 0 0
20 0 0 0



21 0 0 0
22 0 0 0
23 0 0 0
24 0 -0.125 0
25 0.7071 0 0
26 1 0 0
27 0.7071 0 0
28 0 0 0.25
29 0 0 0
30 0 0 0
31 0 0 0

The runs for N =32, 64 and 128 were performed with the following results obtained. (Note
that even though we used a slow PC, we had to call the function numerous times to obtain
measurable times. These times were then divided by the number of function calls to
determine the time per call shown below)

N time (s)
32 0.09
64 0.37
128 1.48

A power (log-log) model was fit (see plot below) to this data to yield log(time) = —4.08 +
2.02 log(N). Thus, the result verifies that the execution time [ N°.

10
time
1 b
10 100 1000
0.1 N
0.01 -

19.12 Here’s a Fortran 90 code that implements the FFT. It is set up to solve Prob. 19.13.

PROGRAM FFourier
IMPLICIT NONE
INTEGER i, N
REAL £(0:127),re(0:127),im(0:127),omega,pi, t,Tp,dt
pi=4.*ATAN(1.)
N=32
t=0.
Tp=2.*pi
dt=4.*Tp/N
DO i=0,N-1
re(i)=sin(t)
if (re(i).LT.0.) re(i)=0.
f(i)=re (1)
t=t+dt
END DO
CALL FFT (N, re,im)
DO i=0,N-1



PRINT *, i,f(i),re(i),im(1)
END DO
CLOSE (1)
END

SUBROUTINE FFT (N, x, V)
IMPLICIT NONE

INTEGER :: i,3,N,m,N2,N1,k,1

REAL :: £(0:127),re(0:127),im(0:127),0omega,pi, t,Tp,dt,xN,angle
REAL :: arg,c,s,xt,x(0:n),y(0:n),yt

xN=N

m = INT(LOG(xN) / LOG(2.))

pi = 4. * ATAN(1l.)

N2 = N
=1, m
= N2

angle = 0.
arg = 2 * pi / N1
DO j =0, N2 -1

c = COS(angle)
s = —-SIN(angle)
poi=3j, N-1, N1
1 =1+ N2
xt = x(i) - x(1)
x(1i) = x(1) + x(1)
vyt = y(1) - y(1)
y(i) = y(1) + y(1)
x(l) = xt * ¢ - yt * s
y(l) =yt * ¢ + xt * s
END DO
angle = (j + 1) * arg
END DO
END DO
3 =0

DO i =0, N- 2
IF (i.LT.j) THEN

xt = x(3)
x(J) = x(1)
x (1) = xt
yt = y(3)
y(J) = y(i)
y(i) = yt
END IF
k =N/ 2
DO
IF (k.GE.j+1) EXIT
j =3 -k
k=%k/ 2
END DO
J =3 +k
END DO
DO 1 =0, N -1
x (1) = x(i) / N
y(i) = y(i) / N
END DO

19.13 Note that the results for the n = 32 case should be the same as for the DFT as in the first
part of the solution of Prob. 19.11 as shown above. The runs for N =32, 64 and 128 were
performed with the following results obtained. (Note that even though we used a slow PC,
we had to call the function numerous times to obtain measurable times. These times were
then divided by the number of function calls to determine the time per call shown below)

N time (s)



32 0.0135
64 0.031
128 0.068

A plot of time versus N log,N yielded a straight line (see plot below). Thus, the result

verifies that the execution time [J N log, V.

time +
0.05 +

Nlog,N

19.14 Using a similar approach to that described in Example 19.3, the Excel Chart Wizard and

the Trendline tool can be used to create the following fit:

8 _
1 . y =10.051x%%3%
+ R?=0.9515

4 1

0 1 1 1 1 } 1 1 1 1 |
0 10 20

19.15 Using a similar approach to Example 19.4, the following spreadsheet can be set up:

T TA2 TA3 T4 o
0 0 0 0  14.621
8 64 512 4096  11.843

16 256 4096 65536 9.87

24 576 13824 331776 8.418

32 1024 32768 1048576 7.305

40 1600 64000 2560000 6.413

The Data Analysis Toolpack can then be used to generate

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.99999994




R Square 0.99999988
Adjusted R Square  0.99999939
Standard Error 0.00239377
Observations 6
ANOVA

df SS MS F Significance F
Regression 4 47.0093523 11.75234 2050962 0.0005237
Residual 1 5.7302E-06 5.73E-06
Total 5 47.009358

Coefficients  Std Error t Stat P-value Lower 95%  Upper 95%

Intercept 14.6208492 0.00238902 6120.018 0.000104 14.59049395 14.6512
X Variable 1 -0.4113267 0.0011012 -373.527 0.001704 -0.425318685 -0.39733
X Variable 2 0.0090115 0.00013149 68.53234 0.009289 0.007340736 0.010682
X Variable 3 -0.0001302 5.1867E-06 -25.1078 0.025342 -0.000196129 -6.4E-05
X Variable 4 8.4432E-07 6.4426E-08 13.10526 0.048483 2.57132E-08 1.66E-06

The polynomial along with the data can be plotted as

10

15 ¢

19.16 Linear regression can be implemented with the Data Analysis Toolpack in a fashion
similar to Example 19.4. After setting the data ranges, the confidence interval box should
be checked an set to 90% in order to generate 90% confidence intervals for the
coefficients. The result is

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.98465

R Square 0.969535

Adjusted R 0.963442
Square

Standard 1.625489
Error

Observations 7
ANOVA

df SS MS F Significance F
Regression 1 420.4375 420.4375 159.1232 5.56E-05




Residual 5 13.21107 2.642214
Total 6 433.6486
Coefficients  Standard t Stat P-value Lower 95% Upper 95% Lower Upper
Error 90.0% 90.0%
Intercept 0.714286 1.373789 0.519938 0.625298 -2.81715 4.245717 -2.05397 3.482538
X Variable 1 1.9375 0.153594  12.6144 5.56E-05 1.542674 2.332326 1.628 2.247

The 90% confidence interval for the intercept is from -2.05 to 3.48, which encompasses
zero. The regression can be performed again, but with the “Constant is Zero” box checked
on the regression dialogue box. The result is

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.983813
R Square 0.967888

Adjusted R 0.801221

Square
Standard 1.523448
Error
Observations 7
ANOVA
df SS MS F Significance F
Regression 1 419.7232 419.7232 180.8456 4.07E-05
Residual 6 13.92536 2.320893
Total 7 433.6486
Coefficients  Standard t Stat P-value Lower 95% Upper 95% Lower Upper
Error 90.0% 90.0%
Intercept 0 #N/A #N/A #N/A #N/A #N/A #N/A #N/A
X Variable 1 2.008929 0.064377 31.20549 7.19E-08 1.851403 2.166455 1.883832 2.134026

The data along with both fits is shown below:

30

20

10

19.17 Using MATLAB:

>> x=[0 2 4 7 10 12];
>> y=[20 20 12 7 6 5.61;




>> xi=0:.25:12;
>> yi=spline(x,vy,x1i);
>> plot(x,y,'o',xi,yi)

.} Figure No_ 1 H[=] E3

File Edit Wiew Insett Toolz ‘Window Help

lczma|lyarrs®p0

22 T T T T T

20 B

>> spline(x,y,3)

ans =
16.0669

19.18 Using Mathcad

1.=0..63

¢ = ffi(x)
j:=0..20



19.19 As in Example 19.5, the data can be entered as

>> x=[0 2 4 7 10 12];
>> y=[20 20 12 7 6 5.6];

Then, a set of x values can be generated and the interp1 function used to generate the
linear interpolation

>> xi=0:.25:12;
>> yi=interpl (x,vy,x1);

These points can then be plotted with

>> plot (x,y,'o',xi,yi)

20 @

15 +

10 +

0 2 4 6 8 10 12

The Sth-order interpolating polynomial and plot can be generated with

>> p=polyfit(x,y,5)

0.0021 -0.0712 0.8909 -4.5982 6.1695 20.0000
>> yi=polyval (p, x1i);
>> plot (x,y,'o"',xi,yi)
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The cubic spline and plot can be generated with

>> yi=spline(x,y,xi);
>> plot(x,y,'o',xi,vi)
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19.20 The following MATLAB session develops the fft along with a plot of the power spectral
density versus frequency.

>> t=0:63;

>> y=cos (3*2*pi*t/63)+sin(10*2*pi*t/63)+randn (size(t));
>> Y=fft(y,64);

>> Pyy=Y.*conj (Y)/64;

>> £=1000*(0:31)/64;

>> plot(f,Pyy(1:32))
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19.21
PROGRAM Fitpoly
Use IMSL

Implicit NONE
Integer::ndeg,nobs, i,
Parameter (ndeg=4, nobs=6)
Real:: b (ndeg + 1), sspoly(ndeg + 1), stat(l10), X(nobs), y(nobs), ycalc
(nobs)
Data x/0,8,16,24,32,40/
Data y/14.621,11.843,9.870,8.418,7.305,6.413/
Call Rcurv(nobs, X, vy, ndeg, b, sspoly, stat)
Print *, 'Fitted polynomial is'
Do i = 1,ndeg+l
Print 10, i - 1, b(i)

End Do
Print *
Print 20, stat(5)
Print *
Print *, ! No. X Y YCALC'
Do i = 1,nobs
ycalc = 0
Do j = 1,ndeg+l
ycalc (i) = ycalc(i) + b(J)*x(i)**(j-1)
End Do
Print 30, i, X(i), y(i), ycalc(i)
End Do

10 Format (1X, 'X~',I1,' TERM: ',F8.4)
20 Format (1X,'R"2: ',F8.3,'%")

30 Format (1X,I8,3(5X,F8.4))

End

Output:

Fitted polynomial is
X~0 TERM: 14.6208

X~1 TERM: -0.4113
X*2 TERM: 0.0090
X*3 TERM: -0.0001
X~4 TERM: 0.0000

R*2: 100.000%

No. X Y YCALC
1 0.0000 14.6210 14.6208
2 8.0000 11.8430 11.8438
3 16.0000 9.8700 9.8685
4 24.0000 8.4180 8.4195
5 32.0000 7.3050 7.3042



6 40.0000 6.4130 6.4132

19.22 Using Excel, plot the data and use the trend line function to fit a polynomial of specific
order. Obtain the R — squared value to determine the goodness of fit.

Dye Concentraion vs. Time

Dye Concentration

Seconds after injection

Dye Concentraion vs. Time

Dye Concentration

Seconds after injection

Use the 4™ order polynomial:

C =0.0003¢t* —0.01512> +0.2092¢% —0.5741¢ +0.3917

Integrate to find the area under the curve:
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Io.ooo3z4 —0.0151¢£> +0.2092¢% —0.5741¢ +0.3917 dt =33.225
2

Area under curve:
33.225 mgsec/L

Smg
33.225 mg sec/ L

Cardiac output = =0.15049 L/sec =9 L/ min

Cardiac output U 9 L/min

19.23 Plugin A, =1 and T = % O

_<H 44, . n(2n—1)t
f(t)_,;g(zn—l)n%n@z T E

Make table and plot in Excel [J
Shown on the following pages
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21.22 Here is a VBA code to implement the multi-segment trapezoidal rule for equally-spaced
segments:

Option Explicit

Sub TestTrapm/()

Dim n As Integer, i As Integer, ind As Integer
Dim label As String

Dim a As Single, b As Single, h As Single

Dim x(100) As Single, £(100) As Single

'Enter data and integration parameters
ind = InputBox ("Functional (1) or Tabulated (2) data?")

a = InputBox ("Lower bound = ")

b = InputBox ("Upper bound = ")

n = InputBox ("Number of segments = ")
h= (kb -a) /n

If ind = 1 Then
'generate data from function

x(0) = a
£(0) = fx(a)
For i = 1 To n
Xx(i) = x(1 - 1) + h
f(i) = fx(x(1))
Next i
Else
'user input table of data
x(0) = a
label = "f(" & x(0) & ") ="
f(i) = Val (InputBox(label))
For i = 1 To n
x(i) = x(1 - 1) + h
label = "f(" & x(1) & ") ="
f(i) = InputBox(label)
Next i
End If

'invoke function to determine and display integral
MsgBox "The integral is " & Trapm(h, n, £())

End Sub

Function Trapm(h, n, f)
Dim i As Integer
Dim sum As Single
sum = £ (0)
For i =1 Ton -1

sum = sum + 2 * £ (i)
Next i
sum = sum + £ (n)
Trapm = h * sum / 2
End Function

Function fx (x)

fx = 0.2 + 25 * x - 200 * x ~ 2+ 675 * x ~ 3 -900 * x ~ 4 + 400 * x ~ 5
End Function

21.23 Here is a VBA code to implement the multi-segment Simpson’s 1/3 rule algorithm from
Fig. 21.13¢:

Option Explicit

Sub TestSimpm ()



Dim n As Integer, i As Integer

Dim label As String

Dim a As Single, b As Single, h As Single
Dim x(100) As Single, £(100) As Single

'Enter data and integration parameters

a = InputBox ("Lower bound = ")

b = InputBox ("Upper bound = ")

n = InputBox ("Number of segments = ")
h= (b -a) / n

'generate data from function fx

x(0) = a
£f(0) = fx(a)
For i = 1 To n
x(i) = x(1 - 1) + h
f(i) = fx(x(1))
Next i

'invoke function Simpl3m to determine and display integral
MsgBox "The integral is " & Simpl3m(h, n, £())

End Sub

Function Simpl3m(h, n, f)
Dim i As Integer
Dim sum As Single
sum = £ (0)
For i = 1 Ton - 2 Step 2
sum = sum + 4 * f£(i) + 2 * £(i + 1)
Next i
sum = sum + 4 * £f(n - 1) + f(n)
Simpl3m = h * sum / 3
End Function

Function fx(x)
fx = 0.2 + 25 * x = 200 * x ~ 2 + 675 * x ~ 3 -900 * x ~ 4 + 400 * x ~ 5
End Function

21.24
Option Explicit

Sub TestUneven ()

Dim n As Integer, i As Integer

Dim label As String

Dim a As Single, b As Single, h As Single
Dim x(100) As Single, £(100) As Single

'Enter data

Range ("a6") .Select

n = ActiveCell.Row
Selection.End (x1Down) .Select
n = ActiveCell.Row - n

'Input data from sheet
Range ("a6") .Select

For i = 0 To n
x (1) = ActiveCell.Value
ActiveCell.Offset (0, 1).Select
f(i) = ActiveCell.Value
ActiveCell.Offset (1, -1).Select
Next i

'invoke function to determine and display integral



MsgBox "The integral is " & Uneven(n, x(), £())
End Sub

Function Uneven (n, x, f)
Dim k As Integer, j As Integer
Dim h As Single, sum As Single, hf As Single
h = x(1) - x(0)
k=1
sum = O#
For 3 = 1 To n
hf = x(J + 1) - x(3)
If Abs(h - hf) < 0.000001 Then
If k = 3 Then
sum = sum + Simpl3(h, £(3 - 3), £(3 - 2), £(3 - 1))

k =%k -1
Else
k =k + 1
End If
Else

If k = 1 Then
sum = sum + Trap(h, £(j - 1), £(3))
Else
If k = 2 Then
sum = sum + Simpl3(h, £(3 - 2), £(J - 1), £(3))
Else
sum = sum + Simp38(h, £(3 - 3), £(3 - 2), £(3 - 1), £(3))
End If
k=1
End If
End If
h = hf
Next j
Uneven = sum
End Function
Function Trap(h, £f0, f1l
Trap = h * (f0 + f1) /
End Function

)
2

Function Simpl3(h, £f0, f1, £2)
Simpl3 = 2 * h * (f0 + 4 * f1 + f2) / 6
End Function

Function Simp38(h, £f0, f1, f2, £3)
Simp38 = 3 * h * (f0 + 3 * (fl1 + f2) + £3) / 8
End Function

Function fx(x)
fx = 0.2 + 25 * x - 200 * x ~ 2 + 675 * x ~ 3 -900 * x ~ 4 + 400 * x ~ 5
End Function

21.25 (a)
S 23 )+ /)
M =(b-a) ]
2n
_ 4+2(4.15+4.6+535+64+7.75+9.4+11.35+13.6+16.15+19)+22.150
M =(11-0)7 0
0 2(11) i
=110.825Ib-ft

(b) The 1/3 rule can only be applied to the first 10 panels. The trapezoidal rule can be
applied to the 11"



4+4(4.15+535+7.75+11.35+16.15) + 2(4.6 +6.4+9.4+13.6) +19
3(10)

M =(10-0)[ ]

+(12—11)19+§2'15=110.825 Ib- ft

(c) The 3/8 rule can only be applied to the first 9 panels and the 1/3 rule applied to the last
2:

4+3(4.15+4.6)+5.35 535+3(64+7.75)+9.4
V1333, (g-3y2 32X ) 494,
8 8
9.4 +3(11.35 +13.6) +16.15 16.15+ 4(19) +22.15

+(9-06) i J+A1-9) P

M =(3-0)

1=110.551b- ft

This result is exact because we’re integrating a quadratic. The results of (a) and (b) are not
exact because they include trapezoidal rule evaluations.

Divide the curve into sections according to dV changes and use appropriate rules.

420 +368
L=15C ) =591

1
I, = (368+4(333) +326) = 675.33

I, = 2(326 +3(326) +3(312) +242) =930.75

242 +20
I, :1(%) =2245
W =1, +1,+I,+1, =2421.583

Therefore, the work done is 2420 kJ.

21.27 (a) The trapezoidal rule yields 60.425.

(b) A parabola can be fit to the data to give

10 | y=-0.11829x* + 1.40701x + 3.36800
R? = 0.60901

0 2 4 6 8 10 12

The parabola can be integrated and evaluated from 1 to 10 to give 60.565.



(c¢) A cubic can be fit to the data to give

10 . ¥ = 0.01672x® + 0.16015x* + 0.10764x + 4.81478
R? = 0.67487

0 2 4 6 8 10 12

The cubic can be integrated and evaluated from 1 to 10 to give 60.195.

Although it’s not asked in the problem statement, the algorithm from Fig. 21.15b can also
be applied (see Solution to Prob. 20.24 for code) to yield 60.258.

21.28 (a) The following 2 equations must hold:

f(a)=Qe™ (1)
f(b)=0e" )

Take the natural log of Eq. 1 and solve for

InQ=In f(a)-ra 3)
or
0= f(a)e™ (4)

Substituting (3) into the natural log of Eq. 2 gives
In f(b)=1In f(a)—ra+rb (5)
and solve for

L _nlr@/ r®) ©)
a-b

These results can be verified for the case where Q=3 and r=-0.5. Ifa =2 and b =4, f(a)
= 1.1036 and f{b) = 0.406. Substituting these values into Egs. 6 and 4 gives

= In(1.0136/0.406) _ _
2-4

0.5

0= n1:1036)~(-0.5)2) =1 10360~ (092 =3



(b)
= J— Qerxdx Q ( —e )
Substituting Eq. 4

I :M(erb _em)=M(er(b—a) _1)

r r

Substituting Eq. 6

@ @Fm (a)/f(b) (b-a) 15
bl (e) /B D
Simplifying

_(b-alf®) - f(a))
Inf(b)/ f(a))

This result can be verified for the case where Q=3 andr=-0.5. Ifa=2 and b =4, fla) =
1.1036 and f{b) = 0.406. Substituting these values into the integral equation gives

_ (4-2)(0.406 -1.1036) _
In(0.406 /1.1036)

1.9353

which matches the analytical integral

=2 (e‘°~5<4> - e‘°~5<2)) =1.9353
-0.5
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22.11
Option Explicit

Sub RhombTest ()
Dim maxit As Integer
Dim a As Single, b As Single, es As Single

a=20

b =10.8

maxit = 3

es = 0.001

MsgBox Rhomberg(a, b, maxit, es)
End Sub

Function Rhomberg(a, b, maxit, es)
Dim n As Integer, j As Integer, k As Integer, iter As Integer
Dim i(10, 10) As Single, ea As Single

n =1
i(l, 1) = TrapEg(n, a, b)
iter = 0
Do
iter = iter + 1
n =2 " iter
i(iter + 1, 1) = TrapEg(n, a, b)

For k = 2 To iter + 1
j =2 + iter - k

i(g, k) = 4"~ (k-1) *i(3 +1, k- 1) - i3, k- 1)) / (4 "~ (k -
- 1)
Next k
ea = Abs((i(1, iter + 1) - i(1l, diter)) / i(1l, diter + 1)) * 100
If (iter >= maxit Or ea <= es) Then Exit Do
Loop

Rhomberg = i(1, iter + 1)
End Function

Function TrapEqg(n, a, b)

Dim i As Integer

Dim h As Single, x As Single, sum As Single

h=(b-a) /n

x =

sum

For
X
sum

Next i

sum = sum + £ (b)

o~

f(x)

=1 Ton -1

+ h

sum + 2 * f(x)

I
I



TrapkEq = (b - a) * sum / (2 * n)
End Function

Function f (x)
f=0.2+4+25* x -200 **x "~ 2+ 675 * x "~ 3 -2900 * x ~ 4 + 400 * x ~ 5
End Function

22.12
Option Explicit

Sub GaussQuadTest ()

Dim i As Integer, j As Integer, k As Integer

Dim a As Single, b As Single, a0 As Single, al As Single, sum As Single
Dim c(11) As Single, x(11) As Single, jO(5) As Single, j1(5) As Single

'set constants

c(l) = 1#: c(2) = 0.888888889: c(3) = 0.555555556: c(4) = 0.652145155
c(5) = 0.347854845: c(6) = 0.568888889: «c(7) = 0.478628671: <c(8) =
0.236926885

c(9) = 0.467913935: c(10) = 0.360761573: c(11) = 0.171324492

x (1) = 0.577350269: x(2) = 0: x(3) = 0.774596669: x(4) = 0.339981044
x(5) = 0.861136312: x(6) = 0: x(7) = 0.53846931: x(8) = 0.906179846
x(9) = 0.238619186: x(10) = 0.661209386: x(11) = 0.932469514

J0(1) = 1: j0(2) = 3: j0(3) = 4: j0(4) = 7: 50(5) = 9

J1(1) = 1: §1(2) = 3: 3§1(3) = 5: j1(4) = 8: §1(5) = 11

a=20

b =10.8

Sheets ("Sheetl") .Select

Range ("al") .Select

For i = 1 To 5
ActiveCell.Value = GaussQuad(i, a, b, c(), x(O), joO, 31(0))
ActiveCell.Offset (1, 0).Select

Next i

End Sub

Function GaussQuad(n, a, b, ¢, x, jo0, jl)

Dim k As Integer, j As Integer
Dim a0 As Single, al As Single
Dim sum As Single

a0 = (b + a)

al = (b - a)

sum = 0

If Int(n / 2) - n / 2# = 0 Then
k= (n-1) * 2

/2
/2

sum sum + c(k) * al * f(fc(x(k), a0, al))
End If
For 7 = jO0(n) To jl(n)

sum = sum + c(j) * al * f£(fc(-x(j), a0, al))

sum = sum + c(j) * al * f£(fc(x(j), a0, al))
Next j
GaussQuad = sum
End Function

Function fc(xd, a0, al)
fc = a0 + al * xd
End Function

Function f (x)
f=0.2+4+25* x -200 * x "~ 2+ 675 * x ~ 3 -900 * x ~ 4 + 400 * x ~ 5
End Function



22.13
See solutions for Probs. 22.1, 22.2 and 22.3 for answers

22.14
See solutions for Probs. 22.4, 22.5 and 22.6 for answers

22.15
Option Explicit

Sub TestMidPoint ()

Dim i As Integer, J As Integer, d As Integer

Dim a As Single, b As Single, h As Single, x As Single
Dim sum As Single, ea As Single, es As Single

Dim integral As Single, integralold As Single

a -0.5
b 0
es = 0.01

Range ("ab") .Select
Sheets ("Sheetl") .Range ("a5:d25") .ClearContents

Do
integralold = integral
d=3"1
h=(b-a) /d
x=a-h/2
sum = 0

ActiveCell.Value d

ActiveCell.Offset (0, 1).Select
= h
0, 1).Select

ActiveCell.Value
ActiveCell.Offset (
For j = 1 To d

X =x + h

sum = sum + f (x)
Next j
integral = sum * h

i=1+1

ActiveCell.Value = integral

ActiveCell.Offset (0, 1).Select

ea = Abs((integral - integralold) / integral) * 100
ActiveCell.Value = ea

ActiveCell.Offset (1, -3).Select

If ea < es Then Exit Do

Function f (x)
f=1/x"2*Exp(-1/ (2 * x * 2))
End Function

) - T ) i [ =
1 |Prob. 22.15
i
3 |d h Integral eal %)
En 1 05 0.002883701 100 R
= 3 0.168667 0.054783922 95.1013
i S [0.055555 0.056747258 3.45979
£l 27 0018513 0.056995228 0435072
i 51 0005173 0.057022724 0.04822
9| 243 0002058 0057025763 0.005363
10
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23.10

Option Explicit

Sub RhombTest ()

Dim maxit As Integer

Dim a As Single, b As Single, es As Single
Dim x As Single

x = 0.5

maxit = 3

es = 0.001

MsgBox RhomDiff (x, maxit, es)

End Sub

Function RhomDiff (x, maxit, es)
Dim n As Integer, j As Integer, k As Integer, iter As Integer

Dim 1(10, 10) As Single, ea As Single, del As Single, a As Single, b As Single

n=1
i(l, 1) = DyDx(x, n)
iter = 0
Do
iter = iter + 1
n =2 " iter
i(iter + 1, 1) = DyDx(x, n)
For k = 2 To iter + 1
J =2 + iter - k
i(3, k) = (4~ (k-1) *i(3 + 1, k-1) - i3, k-1)) / (4~ (k- 1)
Next k
ea = Abs((i(1l, iter + 1) - i(1, diter)) / i(1, iter + 1)) * 100
If (iter >= maxit Or ea <= es) Then Exit Do

Loop
RhomDiff = 1i(1, iter + 1)
End Function

Function DyDx(x, n)
Dim a As Single, b As Single

a=x-x/n
b=x+x/n
Dybx = (f(b) - f(a)) / (b - a)

End Function

Function f (x)
f=-0.1 *x "4 -20.15*x "3 -0.5*x"2-20.25*x+ 1.2
End Function

23.11 The following program implements Eq. 23.9.

Option Explicit
Sub TestDerivUnequal ()

Dim n As Integer, i As Integer
Dim x(100) As Single, y(100) As Single, dy(100) As Single

Range ("ab") .Select

n = ActiveCell.Row

Selection.End (x1Down) .Select

n = ActiveCell.Row - n

Range ("ab") .Select

For i = 0 To n
x (1) = ActiveCell.Value
ActiveCell.Offset (0, 1) .Select
y(i) = ActiveCell.Value



ActiveCell.Offset (1, -1).Select

Next i
For i = 0 To n

dy (i) = DerivUnequal(x(), y(), n, x(i))
Next i

Range ("c5H") .Select
For i = 0 To n
ActiveCell.Value = dy (i)
ActiveCell.Offset (1, 0).Select
Next i
End Sub

Function DerivUnequal (x, y, n, Xx)
Dim ii As Integer

If xx < x(0) Or xx > x(n) Then
DerivUnequal = "out of range"
Else
If xx < x(1) Then
DerivUnequal = DyDx(xx, x(0), x(1), x(2), y(0), y(1), y(2))
ElseIf xx > x(n - 1) Then

DerivUnequal = DyDx (xx, xXx(n - 2), x(n - 1), x(n), y(n - 2), y(n - 1),
y(n))
Else
For ii = 1 Ton - 2
If xx >= x(ii) And xx <= x(ii + 1) Then
If xx - x(11i - 1) < x(i1i) - xx Then
'If the unknown is closer to the lower end of the range,
'x(ii1) will be chosen as the middle point
DerivUnequal = DyDx(xx, x(ii - 1), x(ii), x(ii + 1), y(ii - 1),
y(ii), y(ii + 1))
Else
'Otherwise, if the unknown is closer to the upper end,
'x(1ii+1) will be chosen as the middle point
DerivUnequal = DyDx (xx, x(ii), x(ii + 1), x(ii + 2), y(ii), y(ii
+ 1), y(ii + 2))
End If
Exit For
End If
Next ii
End If
End If

End Function

Function DyDx (x, x0, x1, x2, y0, yl, y2)

DyDx = y0 * (2 * x - x1 - x2) / (x0 - x1) / (x0 - x2) _
+yl * (2 * x - x0 - x2) / (x1 - x0) / (x1 - x2) _
+ y2 * (2 * x - x0 - x1) / (x2 - x0) / (x2 - x1)

End Function

The result is
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1 |Prob 23.11
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3

4 |x f)  Tx) B °

5 | 12 1807 0.6835 1

6 | 3 0.7468 10.50564 o

i 32 065 046236 i

5 5  0.1684 0.17314 0 ; .

_%_ 7 003192 0.036663 BE 1 6
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o | o f(x) (x|
An even more elegant approach is to put cubic splines through the data (recall Sec. 20.2

and the solution for Prob. 20.10) to evaluate the derivatives.

A [ B [ ¢ | b [ E [ F [ &6 [ H [+ [ & T K J L [ ™
| 1 |Problem 23.10
2 RUN 2
___3_ Data: Interpolate:
4 |x ¥ % ¥ '8 ¥ 15
5 12 1807 12 1807 0.63211 0 1
5 3 0.7468 3 07468 050278 0.143695
i3 3.2 0.65 32 0.65 0.4608 0.276099 035
5 5 0.1684 5 01684 0.12955 0.091963 0
ED 7 0.03192 7 003192 0.03759 0
10 05 }
1
i !
13 = -
14 -y -y
23.12
(a) Create the following M function:
function y=f (x)
y=9.8*68.1/12.5* (1-exp (-12.5/68.1*x));
Then implement the following MATLAB session:
>> Q=quad('f',0,10)
Q =
289.4351
(b)
m _
d(t)zgr(l—e (C/m)t)dt
c JO
d(t)=ﬂm+ﬂe‘(”’””d
c H c
9.8(68.1) 68.1 68.101"
d(t)= o) J0 4+ o U2S6DI0 g 290 = =989 4351

12.5 12.5

(c) Create the following M function:

>> function y=f (x)

55



>> y=9.8%68.1/12.5* (1-exp(-12.5/68.1*x)) ;

Then implement the following MATLAB session:

>> x=[9.99 10.01]
>> y=f (x)
>> d=diff (y)./diff (x)

d =
1.5634

(d)
_gmd ~(c/m)t
a(t)==——\1-e
® c dt( )
a(t) - ge—(c/m)t
a(r) =9.8¢” (125768010 = _1 56337

23.13 (a) Create the following M function:

function y=fn (x)
y=1/sqrt (2*pi) *exp (- (x."2)/2);

Then implement the following MATLAB session:

>> x=-2:.1:2;
>> y=fn (x);
>> Q=quad('fn',-1,1)

0 =
0.6827

>> Q=quad('fn',-2,2)

0 =
0.9545

Thus, about 68.3% of the area under the curve falls between —1 and 1 and about 95.45%
falls between —2 and 2.

()

>> x=-2:.1:2

>> y=fn (x)

>> d=diff (y)./diff (x)
>> x=-1.95:.1:1.95

>> d2=diff (d)./diff (x)
>> x=-1.9:.1:1.9

>> plot(x,d2,'o")



4 Figure No. 1 [_[O] =]
File Edt Wiew Insel Took Window Help
[IsR=0 == A IRl

0.3

02t 1

oOT0, £09%0
o
o o
o1} o o
o o
ot o o
o o
01 F O o
o o
0zt 5 5
o <
03t o °
o o
1 © Fisl ©
0.4 . .
2 15 - 05 a 05 1 15 2

Thus, inflection points (d*y/dx* = 0) occur at —1 and 1.

23.14 (a) Create the following M function:

function y=fn (x)
y=1/sqrt (2*pi) *exp (- (x."2)/2);

Then implement the following MATLAB session:

>> x=-2:.5:2;
>> y=fn(x);
>> Q=quad('fn',-1,1)

Q:
0.6827

>> Q=quad('fn',-2,2)

0 =
0.9545

Thus, about 68.3% of the area under the curve falls between —1 and 1 and about 95.45%
falls between —2 and 2.

()

>> d=diff (y)./diff (x);
>> x=-1.75:.5:1.75;

>> d2=diff(d)./diff (x);
>> x=-1.5:.5:1.5;

>> plot(x,d2,'o")
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Thus, inflection points (d*y/dx* = 0) occur at —1 and 1.

23.15
Program Integrate
Use imsl
Implicit None
Integer::irule=1
Real::a=-1.,b=1,errabs=0.0,errrel=0.001
Real::errest, res, £
External f
Call QDAG(f,a,b,errabs,errrel,irule, res, errest)
Print '('' Computed = '',F8.4)"',res
Print '('' Error estimate ='',1PE10.3)"',errest
End Program

Function f (x)

Implicit None

Real:: x , £

Real::pi

Parameter (pi=3.1415927)
f=1/sqrt (2*pi) *exp (-x**2/2)
End Function

Answers:

b4 -1 to 1: Computed 0.6827 Error estimate 4.069E-06
x = -2 to 2: Computed = 0.9545 Error estimate = 7.975E-06
b4 -3 to 3: Computed 0.9973 Error estimate 5.944E-06

23.16 MATLAB Script:

% Prob2316 Integration program
a=0;

b=pi/2;
integral=quad('ff',a,b)

end



function y=£ff (x);
y=sin (sin(x));

>> prob2316

integral =
0.8932

23.17 MATLAB Script:

$Numerical Integration of sin(t)/t = function sint (t)
%$Limits: a=0, b=2pi

%Using the "quad" and "quadl" function for numerical integration
%$Plot of function

£t=0.01:0.01:2*p1i;

y=£ff2(t);

plot(t,y); grid

%$Integration

format long

a=0.01;

b=2*pi;

Iquad=quad('ff2',a,b)

Iquadl=quadl ('ff2',a,b)

function y=£ff2(t);
y=sin(t)./t;

MATLAB execution:
>> prob2317
Iquad =

1.40815164305082

Iquadl =
1.40815163168846
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%Centered Finite Difference First & Second Derivatives of Order

%Using diff (y)

dx=0.5;
y=[1.4 2.1 3.3 4.7 7.1 6.4 8.8 7.2 8.9 10.7 9.8];
dyf=diff (y);

% First Derivative Centered FD using diff
n=length(y);
for i=1:n-2
dydxc (1) =(dyf (i+1)+dyf (1)) / (2*dx);
end

%$Second Derivative Centered FD using diff
dy2dx2c=diff (dyf) / (dx*dx) ;

fprintf ('first derivative \n'); fprintf('$f\n', dydxc)

fprintf ('second derivative \n'); fprintf('$f\n', dy2dx2c)

first derivative
.900000

.600000

.800000

.700000

.700000

.800000

.100000

.500000

.900000

second derivative
2.000000
0.800000
4.000000
-12.400000
12.400000
-16.000000
13.200000
0.400000
-10.800000

OQOwWookrFrwNEF

O (dx"2)



23.19
% Finite Difference Approximation of slope
% For f(x)=exp(-x)-x
% f'(x)=—exp(-x)-1
% Centered diff. df/dx=(f(i+1)-£f(i-1))/2dx + O (dx"2)
% Fwd. diff. df/dx=(-f (i+2)+4£f (i+1)-3f (1)) /2dx + O (dx"2)
% Bkwd. diff. df/dx=(3f (1) -4f(i-1)+£f(i-2))/2dx + 0O(dx"2)
x=2;

fx=exp (-x)-x;
dfdx2=-exp (-x)-1;

%approximation
dx=0.5:-0.01:.01;
for i=1:length (dx)
$x-values at i+-dx and +-2dx
xp (i) =x+dx (1) ;
xX2p (1) =x+2*dx (1) ;
xn (1)=x-dx (1) ;
x2n (1) =x-2*dx (1) ;
$f(x)-values at i+-dx and +-2dx
fp (i) =exp (-xp (1)) -xp (1) ;
f2p (i) =exp (-x2p (1)) -x2p (1) ;
fn(i)=exp(-xn(i))-xn(i);
f2n (i) =exp (-x2n (i) )-x2n (i) ;
$Finite Diff. Approximations
Cdfdx (1)=(fp(i)-fn(i))/(2*dx (1))

Fdfdx (i) =(-f2p (i) +4*fp (i) -3*fx)/ (2*dx (1)) ;
Bdfdx (1) =(3*fx-4*fn(1)+£f2n(i))/ (2*dx (1)) ;
end
dx0=0;
plot (dx,Fdfdx, '--',dx,Bdfdx, '-."',dx,Cdfdx, '-',dx0,dfdx2, '*")
grid
title('Forward, Backward, and Centered Finite Difference approximation - 2nd

Order Correct')
xlabel ('Delta x')
ylabel ('df/dx")
gtext ('Centered'); gtext('Forward'); gtext('Backward')



df/dx

Forward, Backward, and Centered Finite Difference approximation - 2nd Order Correct

-1.11
-1.115
-1.12
-1.125
Backward |
/////
-1.13 -~
Forward
-1.135 [ _
-1.14
Centered
-1.145
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Delta x

0.5
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23.21

a)
V:dl:x'(ti) — x(ti+1) _x(tl'_l) — 7.3-5.1 =11 m/s
dt 2h 2
2
)= 2x(t) + x(¢ —
p =L; =¥t = x(t;4y) x(ztl) x(ti-) _7.3 2(62.5)+5.1 =206 m/ s>
dt h 1
b)
- —x(f42) +4x(i41) = 3x(5;) _ —8+4(7.3)=3(6.5) _ 0.85 m/s
2h 2
—x(t.,,)+ )= )+ ) —8.4+ - +
4= X(t;43) 4x(tl+2)2 5x(t;41) + 2x(t;) _ —8.4+4(8) 2(7.3) 2(6.3) =03 m/s>
h 1
¢)
= 3x(t;) = 4x(ti—y) + x(f;—p) _ 3(6.5)—4(5.1) +3.4 —125 m/s
2h 2
2x(t;) = Sx(t;) +4x(t;_5) — x(t;,_3) _ 2(6.5)—5(5.1)+4(3.4)-1.8 2
a= : : L =22 = =-0.7 m/s

n? 12

23.22

) _d8 _0(t1)=0(-) _ 0.67-0.70 =—0.015 rad/s
dt 2h

_dr _ () = r(timy) _ 6030 5560 _ o fys
dt 2h

§ = d’0 _6 (1) =20(6) +6(t) _ 0.67 =2(0.68) +0.70 —0.0] rad/s?
dr? h? 1)?

P d’r _ r(tiv) —2r(t) +r(t;o) _ 6030 —2(5800) +5560 - 10 ft/s?
dr* W2 (1)?

v=235¢, 87 &

a=-8.695¢, +50.95 5

23.23 Use the same program as was developed in the solution of Prob. 23.11



Prob 23.23
6
¥ fix) f{x) 5
0 0 o0s00 4
1 0.7 0.850 3
2 1.8 1.350 2
3 34 1.650 1
4 5.1 1.550
5 65  1.100 0 !
6 7.3 0.750 5
¥ g 0.550
i 8.4 0.250
23.24
_ A | B c [ B | E G | H ] 1 | F T
1 |Prob. 23.24 i
2 -
[ dhvelt et dhvelt &
At W 2nd-order | 3rd-order | 4th-order 6 -
5 1 5 117043 037778 -0.262% 5
& 2 6| 0393385 05476 0.449255 y = 0.118295° + 1.40701x + 3.36800
7 328 55 0639125 06188 0791259 2 2
7 R? = 0.60901
8 45 7 03424 053325 0E7BS7Y i , , : ;
ER B 85 001247 02736 0.167215 0 ) R . 0
10 7 B 024905 01081 0268
I B B 048563 -0.5402 06821 10
12 85 7 DE0392 079357 -0.85514 -
13 53 7 -079318 -1.25191 -1.05156 8
i 10 5 055679 170596 -1.11298 6 & -
i ;
—1? 1.5 - ; y = 0016725 + 0.16015% + 0.10764% + 4.81478
5l 14 R’ = 0.67487
19 f ' ' '
Bl 0.5 0 4 6 10
21 o i
22
o5 0510 8 | -
_gg A 4 6 |
% 45 4 y=0.003479x% . 0.093893%° + 0.729640x - 1.453677x +
— 5 6.024351
28| 2-° | dvdt2nd-order —m— dvdt 3rd-order i | R° = 0.689554 ,
2 —=dvdt 4th-order 0 4 6 10
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x 10° Soft Tissue Experimental Results

DsDe - N/mA2

3 1 1 ) L 1 i
0 0.5 1 1.5 2 25 3 35 4 4.5
stress - N/mA2 x1 oa



% Raw data imput
s=[87.8 96.6 176 263 351 571 834 1229 1624 2107 2678 3380 4258]*le+3;
e=[153 204 255 306 357 408 459 510 561 612 663 714 765]*le-3;
de=5le-3; dde=2*de;
% Finite Differences
dsde(l)= (-s(3)+4*s(2)-3*s(1))/Xe; % forward difference
for i=2:12
dede(i)=(s(i+l)-s(i-1))/dde; % centered difference
ed
dsde(13)=(3*s(13)-4*s(12)+s(11)) /Ade; % lbackward difference

plot(s,dsde, '-',s,dsde, '+')
title('Soft Tissue Experimental Results')
xlabel ('stress - N/m™2 '); ylabel('DsDe - N/m*2'); grid

x10” Soft Tissue Experimental Results

1.8

1.6

1.4

DsDe - N/mn2
o =
o = [N

o
=)

0.4

0.2

0 0.5 1 1.5 2 2.5 3 35 4 45 5
stress - N/m 2 x 10°



$Raw data input
s=[87.8 96.6 176 263 351 571 834 1229 1624 2107 2678 3380 4258]*1e+3;
e=[153 204 255 306 357 408 459 510 561 612 663 714 765]*le-3;

fRegression analysis

4Elimination of early data
idx=5; % idx=starting point for data exclusion (points with subscribt above idx will be included in s)

% With this data the range idx can be  idx=3 to idx=8

np=length(s)-idx;
for i=l:np

sr(i)=s(idx+i); %sr = regression values for s
ad

fConstants
de=5le-3; dde=2*de;

% Finite difference

dsder(l)= (-sr(3)+d*sr(2)-3*sr(1))/&e; % forward difference
for i=2:np-1
deder (i)=(sr(i+l)-sr(i-1))/dde; % centered difference
ed
dsder (np)=(3*sr (np) -4*sr (rp-1) +sr (1p-2) )-/&de; % backward difference
fLinear Fit

cl=polyfit (sr,dsder,1);

a=cl(l); Bo=cl(2):

sp=0:1e6:5e6;

dsdel=polyval (cl,sp) ;

plot (sp,dsdel, sr,dsder, ' **)
title('Soft Tissue Experimental Results')
Xlabel (‘stress - N/m*2 *); ylabel('DsDe - N/m*2');
axis([0 5e6 0 20e6]); grid; pause

% Stress-Strain Curve Plot
% Plot the analytic expression for s vs e
% Using Eo and a
ep=0:.005:0.8; % ep=curve plot value of e
sp=(Eo/a) * (exp (a*ep) -1) ; % sp=curve plot value of s
plot(ep,sp,e,s,'*')
title(' Soft Tissue Experimental Results');
Xlabel ('Strain - mvm'); ylabel ('Stress - N/m"2')
grid; gtext('‘E(0) and a'); pause
% Using sStar and eStar
sStar=s(10); eStar=e(10);
shar=sStar/ (exp(a*estar)-1) ;
sp2=shar* (exp (a*ep)-1) ;
plot(ep,sp2,e,s, '*')
title(' Soft Tissue Experimental Results');
xlabel ('Strain - m/m'); ylabel ('Stress - N/m"2')
grid; gtext('shar and a');



x 10° Soft Tissue Experimental Results
14 T T T T T T

E(0) andé a

Stress - N'm"2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Strain - m/m
x10° Soft Tissue Experimental Results
5 T T T T T T T
45 :
4
3.5
o 3
£
225
2
[
n 2
1.5
1
0.5
0
24.10
Time After Injection (sec) Semilog Dye Concentration Constant Product
9 0.11 1 0.11
9.5 0.14 2 0.28
10 0.18 2 0.36
10.5 0.25 2 0.5
11 04 2 0.8
11.5 0.7 2 14
12 14 2 2.8
12.5 24 2 4.8
13 4 2 8
13.5 5.5 2 11
14 6.85 2 13.7
14.5 8 2 16



15 9 2 18
15.5 9.35 2 18.7
16 9.2 2 18.4
16.5 8.7 2 17.4
17 7.95 2 15.9
17.5 7 2 14
18 5.95 2 11.9
18.5 4.85 2 9.7
19 4.1 2 8.2
19.5 3.5 2 7
20 3 2 6
20.5 2.55 2 5.1
21 2.2 2 4.4
21.5 1.8 2 3.6
22 1.5 2 3
22.5 1.3 2 2.6
23 1.1 2 2.2
23.5 0.9 2 1.8
24 0.8 2 1.6
24.5 0.64 2 1.28
25 0.55 2 1.1
25.5 0.47 2 0.94
26 0.4 2 0.8
26.5 0.34 2 0.68
27 0.29 2 0.58
27.5 0.24 2 0.48
28 0.2 2 0.4
28.5 0.16 2 0.32
29 0.14 2 0.28
29.5 0.125 2 0.25
30 0.1 1 0.1
Sum of Products = 236.46
Trapezoidal Approximation 59.115

Cardiac Output = [56 mg/59.115 mg*sec/L]*60 = 5.68 L/min




24.11 The following Excel Solver application can be used to estimate: £ = 0.09915 and A4

L20 i =| =D15+H15+L18
A B (6] o | t | E | G | H | | J | K L |

1k 0.009915

2 A 6.983009

=
4 |Patient A Patient B Patient C
5 |Age B5 43 80
B |vL ED 40 30
7 |agelyrs) P (mmHG) P - 13 Trap Age (yrst) P (rmmHG) P - 13 Trap Age (yest) P (mmHG) P -13 Trap
(8| 25 13 i} 25 1" 2 25 13 o
S 40 15 2 15 40 30 17 1125 40 14 1 78
10 50 22 9 58 H 32 19 13 50 15 2 15
11 B0 23 10 95 42 33 20 19.5 60 17 4 30
12 B5 24 1 525 43 35 22 21 50 19 B 100
13
14 Integral 2178 Integral 171 Integral 1626
15

16| Wlp 60.3459 “Lp 38.0547 Wlp 31.6762
17

18 oL -Wlpr2 0.1196 /L - Wlp2 | 3.7844 L-Slpy2  2.8120

[SumSy [ 67159

24.12 The following Excel spreadsheet is set up to use (left) a combination of the trapezoidal and
Simpsons rules and (right) just the trapezoidal rule:

c20 Jid =] =C1624710
A | B | e | o | E | FE | B | H |

1 |Prob 24.12

2
3 | Simp1/3-38-Trap Trap
4 | Time Flux Integral  Rule Time Flux Trapezoidal
[ n 14 o 18
B 1 14 1 14 14.5
i 2 12 27 BBEGY 1/3 rule 2 12 13
LB 3 11 3 1 11.5
IS 4 9 4 ) 10
10 ] ] 30 .3/8 rule 5 g 8.5
11 10 ] 10 5 325
12 15 25 15 25 18.75
(el 20 2 B0.9375 38 rule 20 2 11.25
14 24 1 6 Trap rule 24 1 &
15
16 Integral 124 6042 111.4
17
18 Awerane 5.19184 Awerage | 4 B4583333
19

20 |Mass deliverad [299051 26760




24.13

D6 Jid| =| =(-BB+3"B7-8*B5+B4)/1 2/(AE-AE)
A [ B | c D | F J K
1 _|Prob. 24.13
2 50
3 |Distance Density Centered Ofh2) Centered Ofhd)
4] 0 26035 40
B 4 %98 0.0% \
6 | 8 2639 0.16975_Dizizroeasl 90
7 12| 28326 0.592375 DEZB15| 5
E 16 31.078 0.793375| 0.530729167
9 20 34673 077025 06819729167 10 -
10 24 772 045025 0.433479167
2| 3|FE 0230875 0217541667 O . : =S
32 39.087 0.0915 0.0758125 20 40 80 80 100
3| 39.007 0.04625) 0.042833333
40| 39457 00215 0031729167
44] 39179 0064625 -0.0780625 1 — Centered 0{h2)
48 3894 0070125 -0.086729167
52| 3BEIE 0.024  0.039708333 —— Centered O{hd)
56| 39132 0.023575|  0.032291667
B0 3\8.809 002675 -0.039166EE7
64 38918 -0.002875 0.00275
FB 3R8.78R 001275 -0.013875
72| 38816 0015875 -0.0154375
76| 3BE52 0021625  0.001791667
80| 38643 -0.167875 -0.1645
84 37316 -0.334375] -0,305645833
88| 35968 -0.67325| -0693333333
92| 3193 -0.891625 -0.9595
9| 28.835 -0.70275| -0.7328125
E=h| 100 26.308 -0.3335
30 104 26.167

The extremes for both cases are at 16 and 92

—4/is
ag4 [ zeo fa[ﬁ—»] e dz
=3
O
16440, |5 260374, b2 19520.57  19245.74%
1763¢ .0/ 19453.67 19 248,47
190673, 5x (936, 3¢

/9289 .31
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N\ 3/15
S zoo( ESg

CEEVE N
%

242, 0pS 1219, 64
Joo .73 1826, 87
1320 5¢S 1973 .14 ¢
435007

1Y 0., 6%5 1976797
1476 » 232

d= 1134574 — [2.099¢
476,797

\= 147¢,197 (13.0998)
3

(4449 .58

]

T= ¢4ys.se
6448 .5¢
0.99¢%

= ¢ 4%¢0. 985

N g
{

- 476,797 — 648.%3‘@,0799

231 .94

I



24.15 Y 5 pront” Gaues 29,14
Quadiato

-3/

o Tnapespidad Bude éfbfré’o
5 200 % (52:73 e’ ds

T= éo-o)[o +2(¢892 +57.48

T = 0.2309269 (8,%4.257+ 10852, 94) +39.94 + 26,02 + [L.5T)
+ 04754287 (7401 072+ 12217, Lf?) + 10.377
12
v 0.56epe29 (12415 93)
= 1070.0577
= 19320, 4/
S SMV\JPA&A.,O '/3 M
%\ =15
[ 2o (a)e"" s T = (30-0)[044 (6892 + 39,94
[»)

F1e.55)+2(57.98+ 24,@
023692¢9 (599.9124 + 399, 5668)

+ 1037 ]
+ 0.4186247 (1047, 96 + 527. 4212) 7e
F o5 e89sT ((927.726¢) = 1/31,098
= M9l ges Swpronls s Cuds
A= 193241 /MlLeLs = 13.03% I:(so-o)[o+3(:3,qz+

V= WELUS (303805 = (HYO. 195 B74¢+ 26,02+ [6.SE)

T= t4d0.155 foq7s = (472,595 +2(39.34)+ 10.37)
TG

Ho= 161,465 — (472,548 (0.0995)

= |19, 38|
— 837,340



2407

with d=4, (TrepBul)
T =20 [0+2(3+4+443¢4>t2:(

VO

= 53.6

Wtk %:2) (TWM\)

T =0 | 0F2(18+244 444444434
+3.4 42,¢) 40 7]

20

= 3.2

Wt A=2 (Semp [ bule)

I=20]0+4(8+4+46+ 3,6+2:9)

L2214 4+443.9) + 0 j
20

= 6.9

4, 1%

Distarce (N%oS)  Ondunate (whE)
0 o

2D b
40D 148)
0D 950
FoD 110D
\oov 160D
1200 190D
IheD QU6
b 6D 236D
(86D 266D

2050 2950
Z2w 3150
L) 3250
20D 2250
280 2SO
360 3570

320D 28

3% 2702
36w 266D

380 2525
4ovp X525
4 3430

o oA aMO

Sunrap 3/@ Rt e daot

1= (3602)—0)[0+ 4 (tov 4950

+160D + 21D+ 26D+ 350 + 3200

+ 3w + 27 )+ 2 (980+ (10D

+ 19D+ 23 + 2450 + 320D

315D 12400 & 2660 |

I

5%

= 7917333,33

T = (20 _%@[zwus(:szs—-{—
2525 + 3430 ]

?

= 513560

Torad = 9,420,833 4;\2-
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Euly wMyvu% I =10875
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2(22+GI+8> + 3—.]
4

= /07.33

Ty, = 575 2o hr

IW ! 7$ min

C = Q545 can hk y 14do
“min

C = 2pg9%6 cms/di.j
24,20
L FU AF()
, o
30 350 16,500
60 Iors) 60,000
90 1S 60 135,000
20 Q660 312,000
Isp 3000 450,000
190 330 S94,000
210 3spo  T3S,000
340 34,00 9@4)300






WAL 4 oppliealico of Sunpsens 5
Rule

T= (240_(5[% 410,500+ 135500 + 45p000

+T35,00p) + 2 (@o,@ + 312,000 * 5‘1L),g@“+ 8(9%;0]
24 -

= 13,404,000

T= (2%_0) [0 +4Gso+ 1S +30m + 3500)

24
I = 508,000
d= 7344 000 = 44,496 M

508, 000

4.7

W) m%&@)}&u} Sxla).
[~

bo 2® . O 0

so 190 L8C2XI0 9,30y I?

40 175 2,93 xs 1372 1o
30 (6O 4.704 X 1o Lz Xl
20 |35 52716’ 10594 X100
|0 |30 03T %10 €31 x 1o
0 22 7 1130% 10 e

L7 1736 + 4 (0374 4,704 +1.862)

13

= 2.54%539 qu

+2(5292+3.43) +2 ]  xlo
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e

0
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1o
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1Taws and 31 e io
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z
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5% 20
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24.43

500
450
400
350

300

stress amplitude
N
()]
o

N
o
o

150
100

50

0 50 100 150 200 250
mean stress

Finding roots in Matlab:

a=[-0.0005 -0.3154 472.24];
roots (a)

b=[7E-05 -0.3918 372.41];
roots (b)

c=[-0.0004 -0.0947 286.211];
roots (c)

d=[-0.0003 -0.0404 256.9];
roots (d)

e=[ -0.0003 -0.0491 238.62];
roots (e)

Roots: 706.3, 1213.7,735.75, 860.5, 813.77

300

350

400

—+— 10”4 cycles
—m— 1075 cycles

1076 cycles
1077 cycles
—x— 10”8 cycles
—— Poly. (104 cycles)
—— Poly. (1075 cycles)
—— Poly. (1076 cycles)
—— Poly. (1077 cycles)
—— Poly. (1078 cycles)

-0.0947x + 286.21
=0.9645

3% - 0.0404x + 256.9
% = 0.9463

450

Using the AVERAGE command in Excel, the ultimate strength, O, , was 866 MPa.

Plot with o, included:



+285.51

—e— 1074 cycles
—m— 1075 cycles

1076 cycles
— 1077 cycles
—%— 10”8 cycles
—— Poly. (10”4 cycles)
— Poly. (10”5 cycles)
—— Poly. (10”6 cycles)
—— Poly. (1077 cycles)
—— Poly. (10”8 cycles)

stress amplitude

mean stress

It can be seen from the higher R? values that the polynomial fit including the ultimate
stress, O, , is more accurate than the fit without including O ,, .

24.44
This problem was solved using Excel.

0 2 4 6 8

10 12

time, min

The
following values were calculated beginning with the ninth data point of the series.

Mean = 0.045305
Standard Deviation = 0.003716



24.45 This problem was solved using Excel.

a) Find the equation for velocity using Excel.

walmcity,

radius, r

R
O=|2ntrudr
I
Integrate according to the equation above, using R = 8 in.

0=2.12ft'/s

b)
n-1 n—2
S *4 S fE)+2 Y fa)* ()

10(-a) i=13,5 . j=2.4.6
n

0*3+4(1*2.92+3*2.61+5*1.78+7*0.67)+2(2*2.78+4*2.36+6*1.4)+8*0

1021 *(8) Tes

IL12.097 ft'/s

2.097-2.12

¢) % error =
2.12

*100/=1.10%

24.46 a) Find the equation for velocity using Excel.



relocity, =

0

0 1 2 radids, r 4 5

)
O=(2ntrudr
4
To find the volume flow rate in the region around the plug, integrate according to the

equation above, using /=1 in. and r,= 6 in.

0,=2.073 ft'/s
To find the volume flow rate of the plug, use O, =u A4,

0,=0.1091 ft'/s
0=01+0:=2.182 ft'fs
0 =2.182 ft'/s

b) Integral for the outer region:

n—1 n—=2
Fe)+4 S fE)+2 S fGe)+ f(x,)

10(-a) i=1,3,5 : j=2,4.6
n

1%5+4(2%4.62 +4%3.42)+2(3*4.01+ 5% 1.69) +0*6

102m*(5
) 35

112.002 ft*/s



Inner region Q2 = 0.1091 ft’/s remains the same.

Therefore, the volume flow rate Q = 2.111 ft*/s.

2.111-2.182
2.111

=3.36%

¢) % error =

24.47 The following Excel worksheet solves the problem. Note that the derivative is calculated
with a centered difference,

dT 100K
F4 = =| =C4-450°E4
7 = o =S| F | 6 | H |

| 1 |Prob. 24 47
2
|3 |Patm  T=350K  T=400K  T=450K  dvidT - T [dvidTip) Integral
| 4 | 01 220 250 2825 062 31251
(5 | 5 41 47 523 00113 0,385 -77.5058 Trap
5 10 i3 25 27 0005 025  -0.3375 Trap
7 20 135 1.49 155 0.002 0.59 4.2 Trap
B | 25 1.1 1.2 124 00014 0.57
ER 0 03 099 103 00013 0,405 5458333 Simpl/3
10 40 0.58 0.7s 078 0.0M 0.3 3.525 Trap
K 45 0Bl 0675 07 00009 027 1425 Trap
12| 50 054 06 062 00008 024 1275 Trap

13

(14| Total Integral = | 61.9599

24.48 A single application of the trapezoidal rule yields:

12.2+1.11
1=(22-2)" =133

A 2-segment trapezoidal rule gives

122+2(2.04) +1.11
1=(22-2) (4 ) =86.95

A 4-segment trapezoidal rule gives

122+2(349+2.04+1.44)+1.11
1=22-2) (349 o ) =68.125

Because we do not know the true value, it it would seem impossible to estimate the error.
However, we can try to fit different order polynomials to see if we can get a decent fit to
the data. This yields the surprising result that a 4"-order polynomial results in almost a
perfect fit. For example, using the Excel trend line gives:



r y= 3.88667E-04x" - 2.33160E-02x" +

12 5.10851E-01x” - 4.96288E+00x +
L 2.02627E+01

8 - R? = 1.00000E+00

4 -

0\\\\\\\\\\\\\\\\\\\\\\\\
0 6 12 18 24

This can be integrated analytically to give 61.20365. Note that the same result would result
from using Boole’s rule, Rhomberg integration or Gauss quadrature.’

Therefore, we can estimate the errors as

61.20365 —133.1|

I- x100% =117.47%
6120365 |

;2[61.20365-86.95] o
61.20365 |

61.20365 - 68.125|

I= x100% =11.31%
61.20365 |

The ratio of these is 117.47:42.07:11.31 = 10.4:3.7:1. Thus it approximates the quartering
of the error that we would expect according to Eq. 21.13.

24.49 (b) This problem can be solved in a number of ways. One approach is to set up Excel with
a series of equally-spaced x values from 0 to 100. Then one of the formulas described in
this Part of the book can be used to numerically compute the derivative. For example, I
used x values with an interval of 1 and Eq. 23.9. The resulting plot of the function and its
derivative is

I There might be a slight discrepancy due to roundoff.



1 - -+ 0.03
0.8 r i
06 | 1 0.02
0.4 <1 0.01
0.2 - i
0 e Ty 0
0 20 40 60 80 100

(b) Inspection of this plot indicates that the maximum derivative occurs at about a diameter
of 13.3.

(c) The function to be integrated looks like

0.012 - f(x)/x

0.008

0.004

0 |
20 40 60 80 100

o

This can be integrated from 1 to a high number using any of the methods provided in this
book. For example, the Trapezoidal rule can be used to integrate from 1 to 100, 1 to 200
and 1 to 300 using /2 = 1. The results are:

h 1

100 0.073599883
200 0.073632607
300 0.073632609

Thus, the integral seems to be converging to a value of 0.073633. S, can be computed as
6%0.073633 = 0.4418.



CHAPTER 28

28.1 The solution with the 2"-order RK (Heun without corrector) can be laid out as
For the 4™-order RK, the solution is

A plot of both solutions along with the analytical result is displayed below:

50 |
j — Analytica
25 T O RK-4y
B RK-2
0 | | | | |
0 20 40

28.2 The mass-balance equations can be written as

d
= _0.14¢, +0.04c,
dt
d
%2 = 02¢, -02¢,
dt
d
95 2 0.025¢, - 0275¢,
dt
dey
94 2 01125¢, - 0175¢, +0.025¢
d
d
% = 0.03¢, +0.03¢, - 0.06¢
t

Selected solution results (Euler’s method) are displayed below, along with a plot of the results.

20 T
10 +
: ":’(:,/ - -
0 - } 1 } 1 } 1 |
0 20 40 60 80
------- (] ----c2 c3 c4 — -c5

Finally, MATLAB can be used to determine the eigenvalues and eigenvectors:



>> a=[.14 -.04 0 0 0;-.2 .2 0 0 0;0 -.025 .275 0 0;0 O -.1125 .175 -.025;-.03

-.03 0 0 .06]
a =
0.1400 -0.0400 0 0 0
-0.2000 0.2000 0 0 0
0 -0.0250 0.2750 0 0
0 0 -0.1125 0.1750 -0.0250
-0.0300 -0.0300 0 0 0.0600
>> [v,d]=eig(a)
v =
0 0 0 -0.1836 0.0826
0 0 0 -0.2954 -0.2567
0 0.6644 0 -0.0370 -0.6021
1.0000 -0.7474 0.2124 0.1890 0.7510
0 0 0.9772 0.9176 0.0256
d =
0.1750 0 0 0 0
0 0.2750 0 0 0
0 0 0.0600 0 0
0 0 0 0.0757 0
0 0 0 0 0.2643

28.3 Substituting the parameters into the differential equation gives

@220—0.10—0.102
dt

The mid-point method can be applied with the result:

A [T B [ & [ O [ E F [ 6 [ H ] [

_;__t 0 - 0 15 ¢

= Run [

e 05 8.5 C

S 1 11.33498 10 [

B 1.5 12.45029

Bl 2| 1299069 -

i 25| 13.27729 5 [

(6] 3| 13.43624 i

R 35 1352653

10 4] 13.57851 0 b
1 45 13 B0966

R 5| 1362623 0 ! 2 3 4 5

The results are approaching a value of 13.6351

Challenge question:

The steady state form (i.e., dc/dt = 0) of the equation is ( = 200 - ¢ — ¢Z, which can be solved
for 13.65097141 and -14.65097141. Thus, there is a negative root.

If we put in the initial y value as —=14.650971 (or higher precision, the solution will stay at the
negative root. However, if we pick a value that is slightly higher (a per machine precision), it
will gravitate towards the positive root. For example if we use —14.65097
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Conversely, if we use a slightly lower value, it will go unstable
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28.4 The first steps of the solution are shown below along with a plot. Notice that the a value of the
inflow concentration at the end of the interval (cin-end) is required to calculate the k,’s correctly.

0 1 1
0 50 100

28.5 The system is as depicted below:

Gevap = 0.5 kg/min
¢in = 10 kg/min Goue = 10 kg/min
-

. ]
sin =8 g/kg M, =1000 kg
so=38 g/kg

(a) The mass of water in the tank can be modeled with a simple mass balance

am
7 = 9in ~ Gout _Qevap =10-10-05=-05

With the initial condition that M = 1000 at ¢ = 0, this equation can be integrated to yield,



M =1000 - 0.5¢
Thus, the time to empty the tank (M = 0) can be calculated as ¢ = 1000/0.5 = 2000 minutes.

(b) The concentration in the tank over this period can be computed in several ways. The simplest
is to compute the mass of salt in the tank over time by solving the following differential
equation:

dm _
= 9inSin _CIOutS

dt

where m = the mass of salt in the tank. The salt concentration in the tank, s, is the ratio of the
mass of salt to the mass of water

m m

M 1000 —05¢

The first few steps of the solution of this ODE with Euler’s method is tabulated below. In
addition, a graph of the entire solution is also displayed.

8.6 T

8.4

8.2 +

8 1 1 1 1
0 500 1000 1500 2000

Recognize that a singularity occurs at £ = 2000, because the tank would be totally empty at this
point.

28.6 A heat balance for the sphere can be written as

aH _ hA(T, = T)
dt
The heat gain can be transformed into a volume loss by considering the latent heat of fusion.
Thus,
dv hA
——=-——(T,-T) (1
dt pL,

where p = density [J1 kg/m® and L, = latent heat of fusion (1333 kJ/kg. The volume and area of a
sphere are computed by

V::w3 A =41

These can be combined with (1) to yield,



vir”
. h4n& E

T, -T
dr PL, o, )
This equation can be integrated along with the initial condition,

4
= E11(0.05)3 =0.000524 m*

to yield the resulting volume as a function of time.

) 0.0006

0.0003

1(s)
0 |+ttt —
0 100000 200000 300000
This result can be converted into diameter using (2)

d 0.1

0.05

0 100000 200000 300000

28.7 The system for this problem is stiff. Thus, the use of a simple explicit Runge-Kutta scheme
would involve using a very small time step in order to maintain a stable solution. A solver
designed for stiff systems was used to generate the solution shown below. Two views of the
solution are given. The first is for the entire solution domain.
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In addition, we can enlarge the initial part of the solution to illustrate the fast transients that
occur as the solution moves from its initial conditions to its dominant trajectories.
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28.8 Several methods could be used to obtain a solution for this problem (e.g., finite-difference,
shooting method, finite-element). The finite-difference approach is straightforward:

Ao —24; + Ay

D
Ax?

—kd, =0
Substituting parameter values and collecting terms gives
—1x107°4,_, +2%x10°+4x10°Ax*)-1x10° 4, =0

Using a Ax = 0.2 cm this equation can be written for all the interior nodes. The resulting linear
system can be solved with an approach like the Gauss-Seidel method. The following table and
graph summarize the results.

0.1

0.05

28.9 The ODE to be solved is

dP b Asinwt
dt a a

Substituting the parameters, it becomes
aP _ .

— =sint — P

dt

The following Matlab script uses Euler’s method to solve the problem.

dt=0.05;
max=>5;
n=max/dt+1;
t=zeros (1,n);
p=zeros (1l,n);

t(1)=0;

p(1)=90;

for i=1:n
p(i+l)=p (i) +dydt(t(i),p(i))*dt;
t(i+1l)=t (i) +dt;

end



plot(t,p)

grid

xlabel ('Time-sec')

ylabel ('Pressure-mmHg"')
title ('Pressure vs Time')
zZoom

function s=dydt(t,p):;
A=1;

w=1;

s=A*sin(w*t)-p;

Pressure vs Time
90

80

70

60

50

40

30

Pressure-mmHg

20

10

0 4\

-10

0 1 2 3 4 5 6
Time-sec

28.10 Excel can be used to compute the basic results. As can be seen, the person died 1.13 hrs prior to
being discovered. The non-self-starting Heun yielded the following time series of temperature:

Bl | =| =1 A¢LN(Tempd-Tempal/TermpO-Tempal)
A | B | e [ o | E [F | & |

1 |Prob 25.10

2

3 |Tempa G5 oF

4 |TempD 85 oF

5t 2 hr

B |Templ 74 oF

7 |Tempd 936 oF

]

3 |K 0620727 | fhr

10

| 11 |td -1.128780hr

120 -

100

80 -

60 ‘ ‘ ; ‘
0 1 2 3 4

28.11 The classical 4™ order RK method yields



28.12 The classical 4™ order RK method yields
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28.13 (a) The first few steps of Euler’s method are shown in the following table

A plot of the entire simulation is shown below:

Notice that because the Euler method is lower order, the peaks are increasing, rather than
repeating in a stable manner as time progresses. This result is reinforced when a state-space plot
of the calculation is displayed.

A [ 8 | ¢ [ B | E | G I J Tk [t M [ N [ @
10t CAl CB1 ca2 CE2
E 1] 1] 1] 1] 1] RUN 7
E 0.5 0928609 0.023016 0.045281 0.00075 L
4 11727872 008482 0.164179  0.00548 6 g TSRS
| 5 | 1.5 2.415603 0176013 0.335308| 0.016718 5 s
| 6 | 2| 3007912 0.280885 0.541809] 0.035962 4 b
[ 7| 25 3517545 0.417146 0770508 0063783
8 3 3.956191 055569 1.011215 0.100165 3
N 3.5 4333736 0.700407 1.25B147 0.144665 2
0 4| 4558624 0.848013 1.499457 0.19657
EXl 4.5 4938387 0.995913| 1735845 0.254981 1
12 5 5179121 1.142081 1.965239 0.318922 0
13 55 5306324 1204952 218254 0.367384
N 6 5564665 142339 2387406 0459374 0 2 4 6 3 10
15| 6.5 5718164 1.558515 2575086 0.533944
i 7 B.B50263 1683745 2757278 0BI0212. | || e CA1 —CB1---- CA2 —CB2
|17 7.5 5963995 1.804698 2922021 0687375
EE] 8 6.051873 1.919158 3.073603 0.764714
19 8.5 B.146116 2.027046 3212496 0.841596
20 9 £.218624 2.128384 3339293 0917476
21 | 95 5261033 2273279 3.454669) 0.991689
|22 10, 6.334748) 2.311897 3555345 1.064449




(b) The first few steps of the Heun method is shown in the following table

A plot of the entire simulation is shown below:

8,,

Notice that in contrast to the Euler method, the peaks are stable manner as time progresses. This
result is also reinforced when a state-space plot of the calculation is displayed.

4,,

(¢) The first few steps of the 4™-order RK method is shown in the following table

The results are quite close to those obtained with the Heun method in part (). In fact, both the
time series and state-space plots are indistinguishable from each other.

28.14 Using the step size of 0.1, (a) and (b) both give unstable results. The 4™-order RK method
yields a stable solution. The first few values are shown in the following table. A plot of the
result for x is also shown below. Notice how after about ¢ = 6, this solution diverges from the
double precision version in Fig. 28.9.



28.15 The second-order equation can be reexpressed as a pair of first-order equations,

dy _
dz
dz 2EI

We used Euler’s method with 2 = 1 to obtain the solution:

7 307

HHHHH
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28.16 The second-order equation can be reexpressed as a pair of first-order equations,

@ . diw _ 20026_22/30 (L _2)2
dz dz (5+z)2EI

We used Euler’s method with 2 = 1 to obtain the solution:
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28.17 This problem was solved using the Excel spreadsheet in a fashion similar to the last example in

Sec. 28.1. We set up Euler’s method to solve the 3 ODEs using guesses for the diffusion
coefficients. Then we formed a column containing the squared residuals between our
predictions and the measured values. Adjusting the diffusion coefficients with the Solver tool
minimized the sum of the squares. At first, we assumed that the diffusion coefficients were
zero. For this case the Solver did not converge on a credible answer. We then made guesses of
1x107 for both. This magnitude was based on the fact that the volumes were of this order of
magnitude. The resulting simulation did not fit the data very well, but was much better than
when we had guessed zero. When we used Solver, it converged on Ej; = 9.22x10° and E); =
2.19x10° which corresponded to a sum of the squares of residuals of 2.007. Some of the Euler
calculations are displayed below along with a plot of the fit.
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I e,
0 1 \—T— f T
0 5 10 15 20

It should be noted that we made up the “measurements” for this problem using the 4"-order RK
method with values for diffusive mixing of £, = 1x10° and E; = 2x10°. We then used a random
number generator to add some error to this “data.”

28.18 The Heun method can be used to compute

The results can be plotted. In addition, linear regression can be used to fit a straight line to Inp
versus ¢ to give Inp = 8.52 + 0.07¢. Thus, as would be expected from a first-order model, the
slope is equal to the growth rate of the population.
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28.19 The Heun method can be used to compute

20

The results can be plotted.

]np 10
1 /
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The curve is s-shaped. This shape occurs because initially the population is increasing
exponentially since p is much less than pm... However, as p approaches pma, the growth rate
decreases and the population levels off.

28.20 (a) Nonlinear regression (e.g., using the Excel solver option) can be used to minimize the sum
of the squares of the residuals between the data and the simulation. The resulting estimates are: a
=0.32823, 5 =0.01231, ¢ = 0.22445, and d = 0.00029. The fit is:
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(b) The results in state space are,
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28.21 Main Program:

Hanging static cable - w=w(x)
Parabolic solution w=w (x)
CUS Units (1lb, ft,s)

w = wo (l+sin(pi/2*x/1)

s=0.5e-7

Independent Variable x, xs=start x, xf=end x xs=0; xf=200;
%$initial conditions [y (l)=cable y-coordinate, y(2)=cable slope];
ic=[0 01];

o° @ o o° d° o°

global wToP

wToP=0.0025;
[x,y]=0ded5('slp',xs,xf,ic, .5e-7);
yf (1)=y(length (x));

wTo (1)=wToP;

ea(l)=1;

wToP=0.002;
[x,y]=0ded5('slp',xs,xf,ic, .5e-7);
yE(2)=y(length (x));

wTo (2)=wToP;

ea(2)=abs( (yf(2)-yf(1))/yf(2) );

for k=3:10
wTo (k) =wTo (k=1)+ (wTo (k=1) -wTo (k=-2) )/ (yf (k=1) -yf (k=2) ) * (50-yf (k=-1));
wToP=wTo (k) ;
[x,y]=0ded5('slp',xs,xf,ic, .5e-7);
vyt (k) =y (length (x));
ea(k)=abs( (yf(k)-yf(k-1))/yf(k) );
if (ea(k)<=es)
$Analytic Solution with constant w (for Comparison)
xa=xs:.01:xf;
ya=(0.00125) * (xa.*xa) ;
plot(x,y(:,1),xa,ya,'-="); grid;
xlabel ('x-coordinate - ft'); ylabel ('y-coordinate - ft');
title('Cable - w=wo (l+sin(pi/2*x/1))");
fprintf ('wTo $f\n', wTo)
fprintf ('yvf $f\n', yf)
fprintf('ea S%$f\n', ea)
break
end
end

Function ‘slp’:
function dxy=slp(x,Vy)

global wToP
dxy=[y (2); (WToP) * (1+sin (pi/2*x/200)) ]



Cable - w=wo(1l+sin(pi/2*x/1))
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28.22

Analvtic Solution for f here b=0

Substituting into the analytic solution the end point dimensions gives
3§-cosh(§9)+ 1=0
To TO

This equation can be solved using a root finding numerical method which gives T, = 53.7 1bs.
Numerical Solut

In this solution the ratio of w/T, is first estimated for two values and these results are used to make the next
estimate using a method similar to the shooting method. The convergence goal is to make the final y-value
ya=1,=50 ft. The MATLAB program for execution is listed below.



% Hanging static cable

% Catenary w=w(s)

% Weight/unit length w=wo(l+b*s)
es=0.5e-5;

% Irdeperdent Variable X, Xs=start x, xf=end X
xs=0; xf=100;

finitial coditions
%[y (1)=cable y-coordinate, y(2)=cable slope, y(3)=cable length];
ic={0 0 0];

glabal wIoP

wWIoP=0.0093;

[x,¥]=03e45 ('slc' ,xs,xf, ic, .5e-7);
y£(1)=y (length(x));

wlo (1) =wIoP;

ea(l)=1;

wIoP=0.002;

[%x,¥]=0ded5('slc' ,xs,xf, ic, .5e-7);
y£(2)=y (length(x));

wWIo (2)=wToP;

ea(2)=abe( (YE(2)-yE(1))/vE(2) );

for k=3:10
WwIo (K) =wTo (k-1) + (Wwlb (k-1) -wTo (k-2) ) / (v (k-1) -y £ (k-2) ) * (50-y£ (k-1) ) ;
wIoP=wTo(K) ;
[x,y]=0ded5('slc’! ,xe,xf, ic, .5e~7);
yE(k)=y (length(x)) ;
ea(k)=abe( (YL (k)-yf(k-1))/yL(k) );
if (ea(k)<=es)
%Analytic Solution with constant w
xa=xs:.01:xf;
va=(107.432018) * (cosh (0.009308212*xa) -1) ;
plot(x,y(:,1),xa,ya,'--'); grid;
xlabel ('x-coordinate - ft'); ylabel ('y-coordinate - ft');
title('Cable -~ w=wo(1l+bs)');
fomat long
fprintf (‘wlo = %e\n', wlo)
fprintf ('yf = $f\n', yf)
fprintf('ea = %e\n', ea)
break
ed
end

function dwy=slc(x,y)

glcbal wIcP

&y (1)=y(2);

@y (2) = (WIoP) * (140.05%y (3) ) *sqrt 14y (2) . *¥ (2) ) ;
axy (3)=eqrt (14y (2) .*y (2)) ;



»

wIo = 9.300000e-03
wIo = 2.000000e-03
wlo = 2.167663e-03
wlo = 3.447873e-03
wTo = 3.302391e-03
wIo = 3.317200e-03
wlo = 3.317416e-03
= 3.317415e-03

5 5

9.715274
9.995924
50.000007
50.000000
1.000000e+00
.466327e+01
.440943e-02
.210120e-01
.626225e-02
.613466e-03
.164681e-05
.328803e-07

W

P oo Ut s oW

YEEREBBBEBRNRRNNNNS

Cable - w=wo(1+bs)

50

H
(=]

y-coordinate - ft
8

N
o

10

0 10 20 30 40 50 60 70 80 90 100
x-coordinate - ft

28.23 The second-order equation can be reexpressed as a pair of first-order equations,

=1

dq
di
di

Z

=—0.05 — 4¢ + sin 1.8708¢



The parameters can be substituted and the system solved with the 4™-order RK method in
double-precision with # = 0.1. A table showing the first few steps and a graph of the entire
solution are shown below.
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28.24 The second-order equation can be reexpressed as a pair of first-order equations,

dq _ .
E_l
di _ R. ¢
a1

The parameters can be substituted and the system solved with the 4"-order RK method with 4 =
0.005. A table showing the first few steps and a graph of the entire solution are shown below.
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28.25 The equation can be solved analytically as



di R,
— =1
dt L
ﬂ:—ﬁd}‘
i L
Ini=—(R/L)t+C
C =0.001
i=0.001e” ¥

The numerical solution can be obtained by expressing the equation as

by
dt

and using Euler’s method with # = 0.05 to solve for the current. Some selected values are
shown, along with a plot of both the analytical and numerical result. A better match would be
obtained by using a smaller step or a higher-order method.
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28.26 The numerical solution can be obtained by expressing the equation as

di .3
—=—(-1+i")2
" ( )

and using Euler’s method with 2 = 0.05 to solve for the current. Some selected values are
shown, along with a plot of the numerical result. Note that the table and plot also show the
analytical solution for the linear case computed in Prob. 28.19.
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0.2 +
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28.27 Using an approach similar to Sec. 28.3, the system can be expressed in matrix form as

25 AR o

A package like MATLAB can be used to evaluate the eigenvalues and eigenvectors as in

>> a=[1 -1;-1 271;
>> [v,d]=eig(a)

V:
0.8507 -0.5257
0.5257 0.8507

d =
0.3820 0
0 2.6180

Thus, we can see that the eigenvalues are A = 0.382 and 2.618 or natural frequencies of w=
0.618//1C and 1.618/-/LC . The eigenvectors tell us that these correspond to oscillations that
coincide (0.8507 0.5257) and which run counter to each other (—0.5257 0.8507).

$O10140101

28.28 The differential equations to be solved are

linear: ronlinear:

do _ do _

PR — V RS —

dt dt

dv _32.2e dl_ 322 sin
dt 4 dt 4

A few steps for the 4™-order RK solution of the nonlinear system are contained in the following
table and a plot of both solutions is shown below.
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28.29 The differential equations to be solved are

dx

dt

dv _ ¢ k

—=——vy——v
dt m m

A few steps for the 2™-order RK solution (Heun without iteration) are shown in the following
table and a plot of displacement is shown below.
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28.30 The differential equation to be solved is

4T~ 0240-T)
dt

A few steps for the 2™-order RK solution (Heun without iteration) are shown in the following
table and a plot of temperature versus time is shown below. The temperature will drop 95% of
the way to the new temperature in 3/0.2 = 15 minutes.
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28.31 The differential equation to be solved is

0 _ 410) 10020~ 2.5)20 - 1
dt 100 —2.5¢

A few steps for the 2™-order RK solution (Heun without iteration) are shown in the following
table and a plot of heat flow versus time is shown below.
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28.32 The differential equations to be solved are

nonlinear:

dv _go_ 0235 ,

—=98-—v
dt 68.1
linear:

ﬂ =98 - 12—'5\/
dt 68.1

A few steps for the solution (Euler) are shown in the following table, which also includes the
analytical solution from Example 1.1. A plot of the result is also shown below. Note, the
nonlinear solution is the bolder line.
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28.33 The differential equations to be solved are

t<15s: ﬂ=9.8—12—'5v
dt 68.1

t=15s: @=9.8—ﬂv

dt 68.1

The first few steps for the solution (Euler) are shown in the following table, along with the
steps when the parachute opens. A plot of the result is also shown below.
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28.34
$Damped spring mass system
%mass: m=1 kg
%$damping, nonlinear: a sgn(dx/dt) (dx/dt)”"2, a=2 N/ (m/s)"2
%$spring, nonlinear: bx”"3, b=5 N/m"3
% MATLAB 5 version

%$Independent Variable t, tspan=[tstart tstop]
%$initial conditions [x(l)=velocity, x(2)=displacement];

£t0=0;
tf=8;
tspan=[0 8]; ic=[1 0.5];

% a) linear solution
[t,x]=0ded5 ('kc', tspan,ic);

subplot (221)

plot(t,x); grid; xlabel ('time - sec.');
ylabel ('displacement - m; velocity - m/s');
title ('d2x/dt2+2 (dx/dt)+5x=0")

subplot (222)

$Phase-plane portrait

plot(x(:,2),x(:,1)); grid;

xlabel ('displacement - m'); ylabel('velocity - m/s');
title ('d2x/dt2+2 (dx/dt)+5x=0");



% b) nonlinear spring

[t,x]=0ded5('nlk"', tspan,ic);

subplot (223)

plot(t,x); grid;

xlabel ('time - sec.'); vylabel('displacement - m; velocity - m/s');
title ('d2x/dt2+2 (dx/dt)+5x"3=0")

$Phase-plane portrait

subplot (224)

plot(x(:,2),x(:,1)); grid;

xlabel ('displacement - m'); ylabel('velocity - m/s');
title ('d2x/dt2+2 (dx/dt)+5x=0") ;

pause

% c¢) nonlinear damping

[t,x]=0ded45("'nlc',tspan,ic);

subplot (221)

plot(t,x); grid;

xlabel ('time - sec.'); vylabel('displacement - m; velocity - m/s');
title ('d2x/dt2+2sign (dx/dt) (dx/dt) *"2+5x=0")
$Phase-plane portrait

subplot (222)

plot(x(:,2),x(:,1)); grid;

xlabel ('displacement - m'); ylabel('velocity - m/s');
title ('d2x/dt2+2sign (dx/dt) (dx/dt) "2+5x=0") ;

% d) nonlinear damping and spring

[t,x]=0ded5('nlck', tspan,ic);

subplot (223)

plot(t,x); grid;

xlabel ('time - sec.'); vylabel('displacement - m; velocity - m/s');
title ('d2x/dt2+2sign (dx/dt) (dx/dt) "2+5x"3=0")
$Phase-plane portrait

subplot (224)

plot(x(:,2),x(:,1)); grid;

xlabel ('displacement - m'); ylabel('velocity - m/s');
title('d2x/dt2+2sign (dx/dt) (dx/dt) *2+5x"3=0");

Functions:

oe

Damped spring mass system - m d2x/dt2 + c dx/dt + k x =0

Fmass: m=1 kg
% linear- c=2 N/ (m/s)
% linear- k=5 N/m

oe

x(1l)=velocity, x(2)=displacement

function dx=kc(t,x);
dx=[-2*x(1)-5*x(2); x(1)]

$Damped spring mass system - m d2x/dt2 + ¢ dx/dt + k x =0

Imass: m=1 kg
$damping: linear- c=2 N/ (m/s)
$spring: nonlinear- kx=bx"3, b=5 N/m"3

function dx=nlk(t,x);
dx=[-2*x(1)=-5*x(2) .*x(2) .*x(2); x(1)]

$Damped spring mass system - m d2x/dt2 + ¢ dx/dt + k x =0

Imass: m=1 kg
%$damping: nonlinear- ¢ dx/dt = a sgn(dx/dt) (dx/dt)”"2, a=2 N/ (m/s)"2
$spring: linear- kx=5x

$x (1l)=velocity, x(2)=dispacement

function dx=nlc(t, x);
dx (1)=-2*sign(x (1)) *x(1l)*x(1l)-5*x(2);

dx (2)= x(1);

$Damped spring mass system - m d2x/dt2 + ¢ dx/dt + k x =0

Imass: m=1 kg

%$damping: nonlinear- ¢ dx/dt = a sgn(dx/dt) (dx/dt)”"2, a=2 N/ (m/s)"2
$spring: nonlinear- k x = bx"3, b=5 N/m"3

$x (1l)=velocity, x(2)=dispacement

function dx=nlck(t,x);
dx=[-2*sign(x (1)) .*x (1) .*x(1)=-5*x(2) .*x(2) .*x(2); x(1)]
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28.35
$Forced damped spring-mass system w/ material damping
tmass: m=2 kg
%damping, nonlinear material: b sgn(dx/dt) abs(x), b=1 N/m
%spring, linear: kx = 6x
$forcing function: F=Fo(sin(wt)), Fo=2 N, w=0.5 rad/s



o
°

$Independent Variable t,
[x(1l)=velocity,

o)

tspan=[0 15];

MATLAB 5 version

%$initial conditions

ic=1[

0 11;

[t,x]=0ded5('nlF"',tspan,ic);

ts=0:.01:15;
Sin=2*sin(0.5*ts) ;

plot(t,x,ts,Sin, '--");
ylabel ('displacement - m; velocity - m/s;
forced, damped spring-mass system,

title('non-linear,

grid;

xlabel ('time -

tspan=[tstart tstop]
x (2)=displacement];

sec.");
force - N'")

Function ‘nlF’:

$Forced damped spring-mass system w/ material damping
tmass: m=2 kg

$damping, nonlinear air: b sgn(dx/dt) (dx/dt)”2, b=1 N/m
$spring, linear: kx = 6x

$forcing function: F=Fo(sin (wt), Fo=2 N, w=0.5 rad/s

% x(1)= velocity, x(2)= displacement

function dx=nlF(t, x);

dx=[-0.5*sign(x (1))

28.36

(L) o*x (1) -3*x(2)+sin(0.5*%t) ;

x(1)]

non-linear, forced,damped spring-mass system, time response
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displacement - m; velocity - m/s; force - N
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o o o

oe

BC. u(x=0

o oe

oe

u(i=1)=0 and

R=21;
%$Constants
dx=1/(R-1);
dx2=dx*dx;
$Parameters
p(1)=10;
%$sizing matrices
u=zeros(1l,R);
a=zeros (1l,R);
ba=zeros (1,R);

i=spatial index,

p(2)=20;

10

time - sec.

)=0

u(i=R)=1

p(3)=50;

x=zeros (1,R);
b=zeros(1l,R);
ga=zeros (1,R);

%$Independent Variable

x=0:dx:1;

%$Boundary Conditions

u(l)=0; u(R)=1;

ODE Boundary Value Problem
Tapered conical cooling fin
ul[xx]+(2/x) (u[x]-pu)=0

u(x=1)=1
from 1 to R
numbering for points is i=1 to i=R for

p(4)=100;

c=zeros (1,R);

(R-1)

’

time response')

dx spaces

d=zeros (1,R);



for k=1:4;
%/Coefficients
b (2)=-2-2*p (k) *dx2/dx;
c(2)=2;
for i=3:R-2,
a(i)=1-dx/ (dx*(i-1));
b(i)=-2-2*p (k) *dx2/ (dx* (i-1)) ;
c(i)=1+1/(i-1);
end
a(R-1)=1-dx/ (dx* (R-2)) ;
b(R-1)=-2-2*p (k) *dx2/ (dx* (R=-2)) ;
d(R-1)=-(1+1/(R-2));
$Solution by Thomas Algorithm
ba (2)=b(2);
ga(2)=d(2)/b(2);
for i=3:R-1,
ba(i)=b(i)-a(i)*c(i-1) /ba(i-1);
ga(i)=(d(i)-a(i)*ga(i-1))/ba(i);
end
$back substitution step
u(R-1)=ga(R-1);
for i=R-2:-1:2,
u(i)=ga(i)-c(i)*u(i+l)/ba(i);
end
$Plot
plot (x,u)
title('ul[xx]+(2/x) (u[x]-pu)=0; u(x=0)=0, u(x=1l)=1")
xlabel ('x -ND Length'")
ylabel ('u - ND Temperature')
hold on
end
grid
hold off
gtext ("p=10") ;gtext ('p=20") ;gtext ("p=50") ;gtext ('p=100");

u[xx]+(2/x)(u[x]-pu)=0; u(x=0)=0, u(x=1)=1

0.9

0.8

0.7

0.6

\s\

0.5

0.4

- ND Temperature

u

0.3

0.2

0.1

////

e e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
x -ND Length

t v dvdt

0 0 9.8
0.1 0.98 9.620117
0.2 1.942012 9.443537
0.3 2.886365 9.270197
0.4  3.813385 9.100039
0.5 4.723389 8.933005




149  50.01245 0.620036
15 50.07445 -26.9654
15.1 47.37791 -24.9855
152 44.87936 -23.1511
153 42.56425 -21.4513
154 40.41912 -19.8763
155  38.43149 -18.417
linear nonlinear analytical
t v dvdt v dvdt
0 0 9.8 0 9.8 0
0.1 0.98 9.620117 0.98 9.796686 0.971061
0.2 1.942012 9.443537 1.959669 9.786748 1.92446
0.3  2.886365 9.270197 2.938343 9.770206 2.860518
0.4  3.813385 9.100039 3.915364 9.747099 3.779552
0.5  4.723389 8.933005 4.890074 9.717481 4.681871
t T k11 T-end k21 phil
0 0 1598 159.8 1602.005 1600.003
0.1 160.0003 1593.995 319.3997 1598 1595.997
0.2 319.6 1589.97 478.597 1593.975 1591.972
0.3 478.7972 1585.924 637.3897 1589.929 1587.927
0.4 637.5899 1581.859 795.7758 1585.863 1583.861
0.5 795.976 1577.772 953.7532 1581.777 1579.774
t T k11 T-end k21 phil
0 90 -10 89 -9.8 -9.9
0.1 89.01 -9.802 88.0298  -9.60596  -9.70398
0.2 88.0396 -9.60792 87.07881 -9.41576 -9.51184
0.3 87.08842 -9.41768 86.14665 -9.22933  -9.32351
04 86.15607 -9.23121 85.23295  -9.04659 -9.1389
0.5 8524218 -9.04844 84.33733  -8.86747 -8.95795
X v k11 k12 X v k21 k22 phil phi2
0.3 0 0 -312.5 0.3 -0.3125 -0.3125 -308.854 -0.15625 -310.677
0.299844 -0.31068 -0.31068 -308.713 0.299533 -0.61939 -0.61939 -304.787 -0.46503 -306.75
0.299379 -0.61743 -0.61743 -304.65 0.298761 -0.92208 -0.92208 -300.452 -0.76975 -302.551
0.298609 -0.91998 -0.91998 -300.318 0.297689 -1.2203 -1.2203 -295.856 -1.07014 -298.087
0.297539 -1.21806 -1.21806 -295.726 0.296321 -1.51379 -1.51379 -291.007 -1.36593 -293.366
t thet v ki1l k12  thet v k21 k22  thet v k31 k32 thet v k41 k42 phil| phi2
0 0.785| 0.000 0.000 -5.692 0.785 -0.028 -0.028 -5.692 0.785 -0.028 -0.028 -5.691 0.785 -0.057 -0.057 -5.691 -0.028 -5.692
0.01 0.785 -0.057-0.057 -5.691 0.785|-0.085 -0.085 -5.689 0.785 -0.085 -0.085 -5.688 0.784|-0.114 -0.114 -5.686 -0.085 -5.688
0.02' 0.784/-0.114 -0.114 -5.686 0.784|-0.142 -0.142|-5.682 0.784 -0.142|-0.142|-5.682 0.783 -0.171 -0.171 -5.678 -0.142| -5.682
0.03 0.783 -0.171-0.171 -5.678 0.782|-0.199 -0.199 -5.673 0.782 -0.199 -0.199 -5.672 0.781|-0.227 -0.227 -5.666 -0.199 -5.672
0.04 0.781 -0.227 -0.227 -5.666 0.780 -0.256|-0.256 -5.660 0.780 -0.256 -0.256 -5.659 0.778|-0.284 -0.284|-5.652 -0.256 -5.659

t
0

0.05

0.1

0.15

0.2

0.25

(analytical) (Euler)
0.600000 0.600000
0.542902 0.561600

0.49123
0.44449
0.40219
0.36391

8 0.523153
1 0.485155
2 0.448059
8 0.412248

didt
-0.768000
-0.768949
-0.759943
-0.741923
-0.716216
-0.684375



t (analytical) (Euler) didt
0 0.600000 0.600000 -1.200000
0.05 0.542902 0.540000 -1.080000
0.1 0.491238 0.486000 -0.972000
0.15 0.444491 0.437400 -0.874800
0.2 0.402192 0.393660 -0.787320
0.25 0.363918 0.354294 -0.708588
t i q k11 k12 imid | qmid k21 k22 imid | qmid k31 k32 iend| qend k41 k42  phil  phi2
0 -3.282 0.100 -134.37/-3.282 -3.617 0.092| -111.24| -3.617 -3.560 0.091 -110.7 -3.560 -3.835 0.082| -87.70 -3.835 -111.0 -3.578
0.005 -3.837 0.082 -87.485 -3.837 -4.055 0.073 -63.93 -4.055 -3.996 0.072 -64.01 -3.996 -4.157 0.062 -41.12 -4.157 -64.08 -4.016
0.01 -4.157 0.062 -40.917 -4.157 -4.259 0.052 -18.09| -4.259 -4202/ 0.051 -18.72 -4202 -4251 0.041 2976 -4.251 -18.59 -4.222
0.015| -4.250 0.041 3.159-4.250 -4.242 0.030 2425 -4.242 -4.189/0.030 23.16 -4.189 -4.134 0.020 42.736| -4.134 23.45 -4.208
2
0.02 -4.133| 0.020 42.892 -4.133 -4.025 0.010 61.41 -4.025 -3.979/0.010 59.95 -3.979 -3.833 0.000 76.688 -3.833 60.38 -3.996
3
t i q k11 k12 imid qmid k21 k22 imid qmid k31 k32 iend qend k41 k42 phil  phi2
0/ 0.000 0.000 0.000/ 0.000 0.000 0.000 0.093 0.000 0.004 0.000 0.093 0.004/ 0.009 0.000 0.183 0.009 0.092 0.0031
0 0 0 0 0 0 4 0 7 0 2 7 3 5 7 3 8
0.1/ 0.009 0.000 0.184 0.009 0.018 0.000 0.272 0.018 0.022| 0.001 0.270| 0.022 0.036 0.002 0.353 0.036 0.270 0.0214
3 3 3 3 5 8 9 5 9 2 9 9 4 6 3 4 9
0.2/ 0.036 0.002 0.353 0.036 0.054 0.004 0.431 0.054 0.057| 0.005 0.427| 0.057 0.079 0.008 0.495 0.079 0.427 0.0566
4 5 9 4 1 3 1 1 9 2 3 9 1 2 3 1 7
0.3/ 0.079 0.008 0.495 0.079 0.103 0.012 0.555 0.103/ 0.106/ 0.013 0.550| 0.106 0.134 0.018 0.598 0.134 0.551 0.1058
1 1 8 1 9 1 5 9 9 3 4 9 2 8 5 2 0
0.4/ 0.134 0.018 0.598 0.134 0.164 0.025 0.636 0.164 0.166/ 0.026 0.630| 0.166 0.197 0.035 0.653 0.197 0.630 0.1653
2 7 9 2 2 4 1 2 0 9 0 0 2 3 8 2 8
t D k1 pend k2 phi
0 5000 750 5375 786.0938  768.0469
0.5 5384.023 786.9276 5777.487 821.7039 804.3157
1 5786.181 822.4373 6197.4 855.4023 838.9198
1.5 6205.641 856.0284 6633.655 886.6772 871.3528
18 18480.96 280.733 18621.33 256.7271 268.7301
185 18615.33 257.7616 1874421 235.3885 246.575
19 18738.61 236.3663 18856.8 215.5715 225.9689
19.5 18851.6 216.4921 18959.84 197.2119 206.852
20 18955.02 198.0754 19054.06 180.2397 189.1575
t D k1 pend k2 phi
0 5000 350 5175 362.25 356.125
0.5 5178.063 362.4644 5359.295 375.1506 368.8075
1 5362.466 375.3726 5550.153 388.5107 381.9417
1.5 5553.437 388.7406 5747.807 402.3465 395.5436
2 5751.209 402.5846 5952.501 416.6751 409.6299
18 17622.69 1233.588 18239.48 1276.764 1255.176
18.5 1825028 1277.52 18889.04 1322.233 1299.876
19 18900.22 1323.015 19561.72 1369.321 1346.168
19.5 19573.3 1370.131 20258.37 1418.086 1394.108
20 20270.36 1418.925 20979.82 1468.587 1443.756
t cl c2 c3 dcl/dt dc2/dt dc3/dt
0 0 0 100 21.93515 0 -43.8703
0.1 2.193515 0 9561297 19.41211 0.252723  -40.9834
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4.134726
5.848151
7.356012
8.678451

y
0

0

0.0036
0.010564
0.020664
0.03368

0.676
0.7137
0.751464
0.789264
0.82708

JG)
0

31.18357

50.0099
61.40481
68.08252
71.65313

29.63907
27.89419
26.24164
24.67818
23.20033

y
0

0

0.0036
0.010564
0.020664
0.03368

0.676
0.7137
0.751464
0.789264
0.82708

X
5
9.78147
17.70297

0.025272
0.072619
0.139161
0.222309

w
0

0.0036
0.006964
0.0101
0.013016
0.01572

0.0377
0.037764
0.0378
0.037816
0.03782

coc o«

0.002098
0.007333
0.016148

0.700979
0.741693
0.782444
0.823216
0.863995

w

0

0.0036
0.006964
0.0101
0.013016
0.01572

0.0377
0.037764
0.0378
0.037816
0.03782

y
5

17.07946
20.8741

91.51463
87.68125
84.09121
80.72481

dydz

0

0.0036
0.006964
0.0101
0.013016
0.01572

0.0377
0.037764
0.0378
0.037816
0.03782

w

0

0
0.002098
0.005235
0.008816
0.012498

0.040713
0.040751
0.040771

0.04078
0.040782

dydz

0

0.0036
0.006964
0.0101
0.013016
0.01572

0.0377
0.037764
0.0378
0.037816
0.03782

zZ
5
10.43947
35.89688

17.13425
15.07861
13.22439
11.55268

dwdz
0.0036
0.003364
0.003136
0.002916
0.002704
0.0025

0.000064
0.000036
0.000016
0.000004

0

dydz

0

0
0.002098
0.005235
0.008816
0.012498

0.040713
0.040751
0.040771

0.04078
0.040782

dwdz
0.0036
0.003364
0.003136
0.002916
0.002704
0.0025

0.000064
0.000036
0.000016
0.000004

0

0.473465
0.66542
0.83148

0.974263

dwdz

0
0.002098
0.003137
0.003581
0.003682
0.003583

3.79E-05
2.01E-05
8.4E-06
1.97E-06
0

-38.3338
-35.9004
-33.664
-31.607



0.3
04
0.5
0.6
0.7
0.8
0.9

0.1
0.2
0.3
0.4
0.5

0.1

10.81088  -2.52924  39.30744
0.549577  -5.54419 28.07461
-3.16461  -5.84129  22.36888
-5.57588  -8.42037 19.92312
-8.88719  -12.6789  22.14149
-11.9142 -13.43  29.80001
-10.6668  -7.21784  33.39903
-6.84678  -3.43018 29.30716

2

3

1.887095 2.935517
1.787897 2.863301
1.701588 2.785107
1.627287 2.702536
1.564109 2.617016

2

3

1.886984 2.935308

0.2 1.787729 2.862899
0.3 1.701406 2.784535
04 1.627125 2.701821
0.5 1.56399 2.616185
t X y
0 2 3
0.1 1.88 2.94
0.2 1.773968 2.870616
0.3 1.681301 2.793738
0.4 1.601231 2.711153
0.5 1.532907 2.624496
t C Te
0 1 25
0.0625 0.941218 66.18648
0.125 0.885749 85.80247
0.1875 0.833497 93.93385
0.25 0.784309 96.02265
0.3125 0.738024 94.99472
0.375 0.694475 92.41801
0.4375 0.653506 89.12894
0.5 0.614963 85.57041
0.5625 0.578703 81.97385
0.625 0.54459 78.45733
0.6875 0.512497 75.07829
0.75 0.482304 71.86194
0.8125 0.453896 68.81648
0.875 0.427168 65.9413
0.9375 0.40202 63.23134
1 0.378358 60.67946
x A x A
0 0.1
0.2  0.067208 1.2 0.009215
0.4  0.045169 1.4  0.006193

X

2.2
24

A

0.001263
0.000848

X

32
34

A

0.000166
0.000106



t M

0 1000
5 997.5
10 995
15 992.5
20 990
25 987.5

0.030357
0.020402
1 0.013712

1.6
1.8
2

m
8000

8000

7998.997
7997.038
7994.164
7990.419

s

8
8.02005
8.039193
8.057469
8.074914
8.091563

0.004162
0.002797
0.00188

dmdt

0
-0.2005
-0.39193
-0.57469
-0.74914
-0.91563

2.6
2.8

0.000569
0.00038

3 0.000253

3.6  6.23E-05
3.8  2.88E-05
4 0

cin

0
9.063462
16.484
22.55942
27.53355
31.60603

S0 RO~

c
10
9.503173
9.832427
10.7681
12.13698
13.80328

ki1

-0.5
-0.02199
0.332579
0.589566
0.769829
0.890138

cend

9
9.459202
10.49758
11.94723
13.67664
15.58355

cin-end
9.063462
16.484
22.55942
27.53355
31.60603
34.94029

k2
0.003173
0.35124
0.603092
0.779316
0.89647
0.967837

phi
-0.24841
0.164627
0.467835
0.684441
0.833149
0.928987

c1
0.0000
1.0000
1.8600
2.5996
3.2357
3.7827

e e TP WN-2Om

~
(2}

7.1428
7.1428
7.1428
7.1428
7.1428

™~ N~
S ©®~

c2
0.0000
0.0000
0.2000
0.5320
0.9455
1.4035

7.1426
7.1426
7.1427
7.1427
7.1427

c3
0.0000
5.0000
8.6250
11.2581
13.1754
14.5758

18.8311
18.8311
18.8311
18.8311
18.8311

c4
0.0000
0.0000
0.5625
1.4351
2.4528
3.5102

13.0962
13.0980
13.0997
13.1013
13.1028

c5
0.0000
0.0000
0.0300
0.0900
0.1785
0.2933

7.0053
7.0135
7.0213
7.0286
7.0354

dc1dt
1.0000
0.8600
0.7396
0.6361
0.5470
0.4704

0.0000
0.0000
0.0000
0.0000
0.0000

dc2dt
0.0000
0.2000
0.3320
0.4135
0.4580
0.4758

0.0000
0.0000
0.0000
0.0000
0.0000

dc3dt
5.0000
3.6250
2.6331
1.9173
1.4004
1.0267

0.0000
0.0000
0.0000
0.0000
0.0000

dc4dt
0.0000
0.5625
0.8726
1.0176
1.0575
1.0328

0.0018
0.0017
0.0016
0.0015
0.0014

dcbdt
0.0000
0.0300
0.0600
0.0885
0.1147
0.1380

0.0082
0.0078
0.0073
0.0069
0.0064

0

c
10

k1
2

cmid
20

k2
1.5

cmid
17.5

k3
1.625

cend
26.25

k4
1.1875

phi
1.572917

10
20
30
40
50

25.72917
35.27317
41.06419
44.57801
46.71009

1.213542
0.736342
0.446791

0.2711
0.164495

31.79688
38.95487
43.29814
45.93351
47.53257

0.910156
0.552256
0.335093
0.203325
0.123371

30.27995
38.03445
42.73965
45.59463
47.32695

0.986003
0.598278
0.363017
0.220268
0.133652

35.58919
41.25594
44.69436
46.78069
48.04662

0.72054
0.437203
0.265282
0.160965
0.097669

0.9544
0.579102
0.351382
0.213208
0.129369

0
10

c
10
25

k1
2
1.25

c
30
37.5

k2
1
0.625

phi
1.5
0.9375

20 34.375

0.78125

42.1875

0.390625

0.585938

30
40
50

40.23438
43.89648
46.1853

0.488281
0.305176
0.190735

45.11719
46.94824
48.09265

0.244141
0.152588
0.095367

0.366211
0.228882
0.143051




CHAPTER 32

32.1 First equation
6.075¢, = 3.2¢, = 262.5
Middle equations (i = 1 to 8)
—2lc; , +345¢c; —11c;;; =0
Last equation
=32¢g +345¢, =0
The solution is
32.2 Element equation: (See solution for Prob. 31.4 for derivation of element equation.)

0 0= % O
@2 dndF20 2 [

1 02 -2 1
a4, =——-——+-—""(25)=055 4, =—+—=-03
25 2 2( ) 2925 2
-2 1 2 1 02
a4, =—=-—=-13 a,, =—+—+—""(25)=155
25 2 2 25 2 2( )
dc dc
b, :_Za(xl) b, :Za(xz)
Assembly:
O dc O
|])55 -03 DDC‘OD D‘g(xl)lj
13 21 03 Dﬂlg 0% O
O -13 21 -03 %zmzm 0 O
. -13 21 —0.3%35 00 3
H -13 155H%,8 D@(xz) d
Odx O

Boundary conditions:

Inlet:

d
Uc, =Uc, —Dd—C(O)
X

Ucy — Ucy,

dc
7O=
dx() D

Substitute into first equation



155¢, - 0.3¢, = 100

Outlet:

dc
—@10)=0
dx( )
Solution:

co=74.4 c1=51.08 c2=35.15 c3=24.72 c2=20.74

32.3 According to Fick’s first law, the diffusive flux is
d
J(x) = =D (x)
dx

where J(x) = flux at position x. If ¢ has units of g/m’, D has units of m*/d and x is measured
in m, flux has units of g/m?/d. In addition, there will be an advective flux which can be

calculated as
J(x) = Uc(x)

Finite divided differences can be used to approximate the derivatives. For example, for the
point at the beginning of the tank, a forward difference can be used to calculate

5247-76.44 g/m’

=-0.9588

dc
—(0) O
dx() m

Thus, the flux at the head of the tank is

g/m’

J(x) = —2(-09588) +1(76.44) = 19.176 + 7644 = 95.616
m

The remasinder of the values can be calculated in a similar fashion using centered (middle
nodes) and backward differences (the end node):



32.4 Segmentation scheme:

deldy =10

1,2 2,2 3,2 42 52 6,2

40

1}
40 1,1 2.1 3.1 41 5,1 6,1 g
40 1,0 (2,0 3,0 =
deldy = 0 100 100 100
Nodes 1,1 through 5,1
Cirl,j _201‘,/ teiy, Ci j+1 _Zci,j *C
04 52 +04 52 =0.2¢,

Collecting terms gives

0.264¢, ; —0.016¢;,,; = 0.016c;_, ; = 0.016¢, ;,; = 0.016¢, ;,; =0
Node 6,1 would be modified to reflect the no flow condition in x and the Dirichlet condition
at 6,0:

0.264c¢4, —0.032¢5, —0.016¢, —0.016(100) =0

The nodes along the upper edge (1,2 through 5,2) would be generally written to reflect the
no-flow condition in y as
=0

0.264c,; -0.016¢,,, , —0.016¢,_, , —0.032,

i+l,j N i,j+1

The node at the upper right edge (6,2) would be generally written to reflect the no-flow
condition in x and y as

0.264¢, , = 0.032¢5, = 0.032¢,, =0

Finally, the nodes along the lower edge (1,0 through 3,0) would be generally written to
reflect the no-flow condition in y as

0.264c,, —0.016¢,,, , ~0.016¢,_, , =0.032¢, ., =0

These equations can be solved for



32.5 For simplicity, we will use a very coarse grid to solve this problem. Thus, we place nodes as
in the following diagram.

XA
Véo - Yew [T -~~~ """ °-TTTTTTTTToTTTToo
v4w
water
v2w
0 — Vow

A simple explicit solution can be developed by substituting finite-differences for the second
derivative terms in the motion equations. This is done for the three non-boundary nodes,

deW - u VOW B 2v2w + V4W
dt " Ax?

dv4w — V2W 2v4w + V6W
dt " Ax?

dvg, _ Ve, ~2vg, TV,
dt ? Ax?

These three equations have 7 unknowns (Vow, Vaw, Vaw, Vew, Véos Vso» Vioo). The boundary
conditions at the plates effectively specify v, = 0 and vy, = 7. The former is called a “no
slip” condition because it specifies that the velocity at the lower plate is zero.

The relationships at the oil-water interface can be used to used to eliminate two of the
remaining unknowns. The first condition states that

Veo = Vew (l)

The second can be rearrange to yield

. — UOVSO + UWV4W (”)
M, 1,

Ve

These, along with the wall boundary conditions can be substituted into the differential
equations

dew — IJ' B 2v2w + v4w

dt v Ax?

v, =2y, +HoVso THWNaw
dv4w - u p‘o + p‘w
dt " Ax?




+
HOVSU uwv4w _ 2V80 +7
deo — u p’o + l“lw

o

dt Ax?

These equations can now be integrated to determine the velocities as a function of time.
Equations (7) and (i7) can be used to determine vs, and ve,. The results are plotted below:

877

32.6 Using a similar approach to Sec. 32.2, the following nodal equation can be developed for
node 11:

4uy, —121954u,, —121954u,, - 0.78049u,, — 0.78049u,, = 0.357866
Similar equations can be written for the other nodes and the resulting equations solved for

A graphical comparison of the results from Sec. 32.2 can be made with these results by
developing a plot along the y dimension in the middle of the plate:

-0.3

-0.6 -

These results can then be used as input to the right-hand side of Eq. 32.14 and the resulting
simultaneous equations solved for

Again the comparison is good



0.12

0.08

0.04

32.7 Grid scheme

0,2 1,2 2,2 3,2
@ @ @

0,1 1,1 2,1 3,1
o € O

0,0 1,0 2,0
o € o

All nodes in the above scheme can be modeled with the following general difference
equation

hi+1,_,' - 2hi,j + hi—l,j + hi,j+1 - 2hi,j + hi,j—l -0

Ax? Ay?
Node 0,0:

hio = 2hoy +hoy + hoy = 2hoo + ho _
Ax? Ay?

The external nodes can be approximated with finite differences

dh _ hoy = ho
dy 20y

dh
ho-y = hoy — ZAJ/OT = hy,
y

dh _ hyo=h_yy
dx 20x

dh
h_oyg =hyo —20x % =ho =21 =hy =2

which can be substituted into the difference equation to give



2hy o = 2hyy =2 2hy, — 2y,
: : + . 0 _
Ax? Ay?
4hy o = 2hy o = 2hy, =2

Node 1,0:

4hyo =20y =gy =y =0

Node 2,0:

4hyo=2h 5= 2hy, =0

Node 0,1:

4oy = 2hy = hog = hoy =2

Node 1,1:

4hyy =hyg=hoy=hyy =hy; =0

Node 2,1:

4hyy =hyy—hyy =hyy —hy =0

Node 0,2:

4hy, = 2hy, = 2h, =2

Node 1,2:

Ahyy =hoy —hyy =20, =0

Node 2,2:

4hy, =hy, =2hy; =20

The equations can be solved simultaneously for
More refined results can be obtained by using a finer grid spacing.

32.8 The fluxes can be determined using finite divided differences as

32.9 Because of the equi-spaced grid, the domain can be modeled with simple Laplacians. The
resulting solution is

32.10 A convenient segmentation scheme can be developed as



Simple Laplacians reflecting the boundary conditions can be developed and solved for

32.11 The system to be solved is

27 -2 My, 0 00
=2 275 075 , @: Ep@
0 -075 225 1Sy 20
0 -15  15HuH BH

which can be solved for x; = 2.857, x, = 3.857, x3 = 6.5238, and x4 = 7.857.

32.12 The system to be solved is

00.6 -0.4 v, 0 000
F04 18 -4 %25 @E
E -14 21 -07 ;0= 000

_ _ 0 G0
0 0.7 09%@ 25
5 sB HIB

which can be solved for x; =5, x, = 7.5, x; = 8.214286, x4 = 9.64286, and xs = 10.75397.

32.13 Substituting the Crank-Nicolson finite difference analogues to the derivatives

2 _ _
0u _1 g”iﬂ,nﬂ Ui pat T Uy e L Wit Uiy tui g, E
a2 20 Ax? Ax? O
al _ ui,n+1 - Z'{i,n
ot At

into the governing equations gives the following finite difference equations:

O Ax? O O a?0 1
[l]ui—l,nﬂ +F2- 27E‘i,n+l +[1]ui+1,n+l =Tl +2- 27@‘1’,11 T Uitin Osx<—

8 At H 8 JAYS 2

O Ax2 O Ax? O 1
[ttt + 527 =250 @+t = =i, +|:2r—27|]l1n My, Sx<1

§ At 3 § At 5 2

Substitute for the end point boundary conditions to get the end point finite difference equations.
Substitute the first order Crank Nicolson analogues to the derivatives



into the midpoint boundary condition and get

Ou 1 DMjug pat ~Ujmg et Ujrpy ~ Uiy, O
—=—0 + 0
o 2p 20\r 20r 0

a a b b —
u it YU Lt T Lt YU L) Ty gy Yoy, T g YU ,)

where ;% and y” are fictitious points located in the opposite side of the midpoint from their
half. Write out the two finite difference equations from above for the point i = L (the midpoint)
then combine these two equations with the midpoint boundary condition to obtain the midpoint
finite difference equation:

0 A2 O A2 O

[2]uL—l,n+1 HE2(04r) =4[ [2]”L+1n+1 2up ., t @(l tr)y=4——;, ~(+rug,,
§ Ar g § A g

%$PDE Parabolic Problem - Transient Heat conduction in a composite rod

% ulxx]=ult] 0<x<0.5

% r(ulxx])=ult] 0.5<x<1

% BC u(0,t)=1 u(l,t)=1

% ulx]= ( [x]) x=0.5

$ IC u(x,0)=0 0<x<1

o\°

i=spatial index, from 1 to imax
R = no. of x points (R=21 for 20 dx spaces)
n=time index from 1 to N
N = no. of time steps,
Crank-Nicolson Formulation

o o oo

o\°

R=41; % (imax must be odd for point L to be correct)
N=69; % last time step = nmax+1

L=(R-1)/2+1; % L = midpoint of point no. (for R=41, L=21)
% Constants

r=0.01;

dx=1/(R-1)

dx2=dx*dx;

dt=dx2; % Setting dt to dx2 for good stabilility and results

o

Independent space variable
x=0:dx:1;

o

Sizing matrices
u=zeros (R,N+1); t=zeros(l,N+1);
a=zeros(1l,R); b=zeros(l,R);
c=zeros(1,R); d=zeros(l,R);
ba=zeros(1l,R); ga=zeros(l,R);
up=zeros (1,R);

o

Boundary Conditions at t=0
u(l,1)=1;
u(R,1)=1;

Time step loop
n=1 represents 0 time, next time = n+l
t(1)=0;
for n=1:N
t(n+l)=t (n)+dt;

o o

% Boundary conditions & Constants
u(l,n+l)=1;
u(R,n+1)=1;
dx2dt=dx2/dt;



Q

% coefficients

b(2)=-2-2*dx2dt;

c(2)=1;

d(2)=(2-2*dx2dt) *u(2,n)-u(3,n)-2;

a(i)=1;

b(i)=-2-2*dx2dt;

c(i)=1;

d(i)=-u(i-1,n)+(2-2*dx2dt) *u(i,n)-u(i+l,n);

end

a(L)=2;
b(L)=-2* (1+r)-4*dx2dt;

c(L)=2*r;
d(L)=-2*u(L-1,n)+(2* (1+r) -4*dx2dt) *u(L,n)-2*r*u(L+1,n) ;

for i=L+1:R-2

a(i)=r;

b(i)=-2*r-2*dx2dt;

c(i)=r;

d(i)=-r*u(i-1,n)+(2*r-2*dx2dt) *u(i,n)-r*u(i+l,n);

end
a(R-1)=r;
b(R-1)=-2*r-2*dx2dt;
d(R-1)=-r*u(R-2,n)+ (2*r-2*dx2dt) *u(R-1,n) -2*r;
% Solution by Thomas Algorithm
ba(2)=b(2);
ga(2)=d(2) /b(2);
for i=3:R-1
ba(i)=b(i)-a(i)*c(i-1)/ba(i-1);
ga(i)=(d(i)-a(i)*ga(i-1)) /ba(i);
end
% Back substitution step
u(R-1,n+l)=ga(R-1);
for i=R-2:-1:2
u(i,n+l)=ga(i)-c(i)*u(i+l,n+1) /ba(i);
end
dt=1.1*dt;

end
% end of time step loop

Plot

Storing plot value of u as up, at every 5 time steps
j=time index

i=space index

o o

o o

for §=5:5:N+1

for i=1:R
up (i) =u(i,J);

end

plot (x,up)

hold on
end
grid
title('ul[xx]=ult] 0<x<0.5; r(ul[xx])=ul[t] 0.5<x<1; u(0,t)=1, u(l,t)=1,
u(x,0)=0; ul[x]=r(u[x]) x=0.5")

xlabel ('x - ND Space')
ylabel ('u - ND Temperature')
hold off

gtext ('r=0.01")



o©

o°

tp

Storing times for temp. profiles
These can be saved in a data file or examined in the command file

tp=zeros (1, (N-1)/5);

i=1;
tp (1) =0;
for k=5:5:N+1
i=i+1;
tp (i) =t (k);
end
tp
Columns 1 through 7
0 0.0029 0.0085 0.0175 0.0320 0.0553
Columns 8 through 14
0.1534 0.2509 0.4079 0.6607 1.0679 1.7238
Column 15
4.4809

0.0929

2.7799

u[xx]=u[t] 0<x<0.5; r(u[xx])=u[t] 0.5<x<1; u(0,t)=1, u(1,t)=1, u(x,0)=0; u[x]=r(u[x]) x=0.5

- ND Temperature

u
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X - ND Space



u[xx]=u[t] 0<x<0.5; r(u[xx])=u[t] 0.5<x<1; u(0,t)=1, u(l,t)=1, u(x,0)=0; u[x]=r(u[x]) x=0.5
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u[xx]=u[t] 0<x<0.5; r(u[xx])=u[t] 0.5<x<1; u(0,t)=1, u(l,t)=1, u(x,0)=0; u[x]=r(u[x]) x=0.5
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32.14

$PDE Parabolic Prcblem - Heat conduction in a rod
% ufxx]+ulyy]=u(t]
$ BC u(0,y,t)=0 u{l,y,t)=l
% u(x,0,t)=0 u(x,1,t)=1
$ I u(x,y,0)=0 O<=x<l O<=y<1
% Crark-Nicolson Formulation
% Altemating-Direction-Inplicit Solution Method
% Intemediate values of u stored as ul
$ MATIAB 5.x Verson with multidimensional arays
% i=spatial index in x-direction, fram 1 to R
% j=spatial index in y-direction, fram 1 to S
% n=time index framl to N
R=21; % last x-point
s=21; % last y-point
N=20; % last time step = M+l
% Constants
ax=1/(R-1);
A2=x*dAx;
dy=1/(s-1);
Qy2=dy*dy;
dxdy=2/dy2;
dydx=dy2/&2;
a=a2; % Settine dt to dx2 for good stabilility and results
% Independent space variables
*=0:dx:1;
y=0:dy:1;
% Sizing matrices
u=zeros (R,S,N); ul=zeros(R,S);
$ u(i,j,n) = present time, ul=first pass intermediate results, u(i,j,n+l) = next time step
t=zeros(1,N+1);
a=zeros (1,R); bezeros(l,R); c=zeros(l,R); d=zeros(l,R);
ba=zeros (1,R); ga=zeros(1,R);
% Boundary Conditions
for n=1:N
for i=1:R
u(i,s,n)=1
ed
far j=1:8
u(R'jln)=1;
ed
ad
% Intermediate Values
for i=1:R
ul(i,S)=1;
ad
for j=1:S
ul(R,j)=1;
ad
$Plot Initial Conditions
mesh(x,y,u(:,:,1))
title('ulxx)+ulyyl=ult); u(0,y,t)=0, u(l,y,t)=1, ux0,t)=0,u(x,1,t)=1 ulx,y,0)=0')
xlabel ('x-coordinate'); ylabel ('y-coordinate’); zlabel (‘u - Temperature')
?ﬁ*********************;k*************************************
% Time step loop
% n=1 represents 0 time, n+l = next time step
t(1)=0;
for n=1:N
t(n+l)=t (n)+2*%dt;



% First mss in x_djr&tim KhEERARTRREAE R hkkhkkdkhhkkhkdkikkk
% first time step - intemediate valus at ul(i,j) are calculated
% Constants
drd=ax2/At;
% Coefficients
for j=2:5-1
b(2)=-2-dRdt;
c(2)=1; ,
4(2)=—dxdy*u(2,j-1,n)+ (2*d&xdy-d2dt) *u(2,j,n) -dxy*u(2,j+1,n);
for i=3:R-2
a(i):l;
b(i)=-2-&dt;
c(i)=1;
d(i)=—dxdy*u(i, j-1,n)+(2*adxdy-dx2dt) *u(i,j,n) -d&xdy*u(i,j+1,n);
ed
a(R-1)=1;
b(R-1)=-2-&2dt;
dA(R-1)=-1-&xdy*u (i, j~1,n) + (2*daly-d2dc) *u (i, j ,n) -ddy*u (i, j+1,n) ;
% Solution by Thamas Algorithm
ba(2)=b(2);
ga(2)=d(2)/b(2);
for i=3:R-1
ba(i)=b(i)-a(i)*c(i-1) /ba(i-1);
ga(i)=(d(i)-a(i)*ga(i-1))/Mba(i);
ad

A

% Back substitution step
S ulRLI)=ga®l;
- for i=R-2:~1:2 - =
: ul(i,j)=ga(i)-c(i)*ul(i+l,j,n) Ma(i);
C wd = : ;
ad
% m mss in y_dimtion hhkkhkkhkkhhkhkkhkhkkdkhkrkhhkhhhhkkkhkkkhkhbktdh
% Secard time step - final valus at u(i,j,n+l) are calculated
dy2dt=dy2/dt;
% Coefficients
for i=2:R-1
b(2)=—2-dy2dt;
c(2)=1;
d(2) =-dydx*ul (i-1,2)+ (2*dydx-dy2dt) *ul (i,2) dydx*ul (1+1,2) ;
for j=3:8-2
a(j)=1;
b(j)=-2-dyadt;
c(j)=1;
A(j)=—ydc*ul (i-1,7) + (2*dydx-dy2dt) *ul (i, j) -dydx*ul (i+1,3) ;
ed
a(s-1)=1;
b(s-1)=-2-dy2dt; .
d(s-1)=-1-dyadx*ul (i-1, S-1) + (2*dydx-dy2dt) *ul (i,S-1) -dydx*ul (i+1,s-1);
% Solution by Thamas Algoritlm
ba(2)=b(2);
ga(2)=d(2) /b(2);
for j=3:s8-1
ba(j)=b(j)-a(j)*c(j-1) /ba(j-1);
ga(j)=(da(d)-ad) *ea(j-1)) Ma(j);
ed
% Back substitution step
u(i,s-1,n+l)=ga(s-1);
for j=S-2:-1:2
u(i,j,n+l)=ga(j)—c(j) *u(i, j+1,n+1)/ba(j) ;



ed
qd .
% dt can be incremented at this point if desired as de=1.1*t
ed % End time step loop
%**************************************************************************
% Plot Results
mesh (x,y,u(z, :,10) ‘

title ("ulsx]+ufyyl=ult]; u(0,y,t)=0, u(l,y,t)=1, u(x0,t)=0,u(x,1,t)=1 u(x,y,0)=0')

xlabel ('x-coordinate’) ; ylabel ('y-coordinate'); zlabel('u - Tarperature')

pause

£(10)

mesh(x,y,u(:,:,20))
title (*ufxx)+ulyyl=uftl; u(0,y,t)=0, u@l,y,t)=1, u(x0,t)=0,u(x,1,t)=1 u(x,y,0)=0"')
xlabel (*x-coordinate') ; ylabel ('y-coordinate'); zlabel('u - Temperature’)
t(20)

upxx]+ulyyl=ult]; u(0,y,t)=0, u(1,y,t)=1, u(x,0,t)=0,u(x,1,t)=1 u(x,y,0)=0

u - ND Temperature

o
Y
V]

y - ND Space x - ND Space

ubxx+ulyyl=ult]; u(0,y,t)=0, u(1.y.t)=1, u(x,0,)=0,u(x,1,t}=1 u(x,y,0)=0

u - Temperature

y - coordinate x - coordinate



99.27296 99.15714 98.55306 96.07795 85.75874 69.00866
99.38879 99.40126 99.48858 100 88.97417 70.13795
99.47967 99.57055 100 100 100 72.56898
99.38879 99.40126 99.48858 100 88.97417 70.13795
99.27296 99.15714 98.55306 96.07795 85.75874 69.00866
25 40 40 30
10 21.87149 24.04033 20 15
10 13.44564 14.28983  12.63401 10 7.5
10 7.62124 | 7.039322 | 6.246222 @ 5.311556 5
5 0 0 0 0 25
dhldx
1.040287 1.106512 1.311258 1.449779
1.014349 1.057395 1.344371 1.5883
0.931015 0.778698 0.62638
dhidy
0.040287 0.066225 0.138521 0
0.054636 0.109272 0.38245 0
0.068985 0.152318 0.62638
dhidn
1.041067 1.108492 1.318555 1.449779
1.015819 1.063026 1.397713 1.5883
0.933568 0.793455 0.885835
0 (radians)
0.038707 0.059779 0.105249 0
0.053811 0.102975 0.277161 0
0.073961 0.193167 0.785398
0 (degrees)
2.217773 3.425088 6.030345 0
3.083137 5.90002 15.88014 0
4.237646 11.06765 45
16.3372 17.37748 18.55022 20
16.29691 17.31126 18.4117 20
16.22792 17.15894 17.78532
0 0 0 0 0
0 0.052697  0.072156 0.052697 0
0 0.082316  0.113101 0.082316 0
0 0.082316  0.113101 0.082316 0
0 0.052697  0.072156 0.052697 0
0 0 0 0 0
0 0 0 0 0
0 -0.27719 -0.35074 -0.27719 0
0 -0.39124 -0.50218 -0.39124 0
0 -0.39124 -0.50218 -0.39124 0
0 -0.27719 -0.35074 -0.27719 0
0 0 0 0 0
20 1.387741 | 0.113952 0.155496 0.864874 0.951623 @ 0.958962
20 1.391891 | 0.168488 0.793428 6.581653 6.938975 6.959813
20 1.409973 | 0.48078  6.185917 100 100 100
c dcdx J-diff J-adv J
76.44 -9.588  19.176 76.44  95.616
52.47 -8.076  16.152 52.47 68.622
36.06 -5.484  10.968 36.06 47.028
25.05 -3.394 6.788 25.05 31.838
19.09 -2.384 4.768 19.09  23.858

50

50
50
50



Co
Ci
2
C3
C4

76.53
63.25
52.28
43.22
35.75

Cs
Cé
C7
Cs
Co

29.61
24.62
20.69
17.88
16.58



CHAPTER 25

25.1 The analytical solution can be derived by separation of variables

J'dy :J'x2 -12dx
y

3
lny=%—l.2x+C

Substituting the initial conditions yields C = 0. Taking the exponential give the final result

3
x——1.2x
3

y=e€

The result can be plotted as

25.2 Euler’s method with 2= 0.5

X y dyldx
0 1 -1.2
0.5 0.4 -0.38
1 0.21 -0.042
1.5 0.189 0.19845
2 0.288225 0.80703

Euler’s method with /2 = 0.25 gives

x y dyldx
0 1 -1.2
0.25 0.7 -0.79625

0.5 0.500938 -0.47589
0.75  0.381965 -0.2435
1| 0321089 -0.06422
1.25  0.305035  0.110575
1.5 0332679 0.349312
1.75  0.420007  0.782262
2 0.615572  1.723602

The results can be plotted along with the analytical solution as



25.3 For Heun’s method, the value of the slope at x = 0 can be computed as —0.6 which can be used to
compute the value of y at the end of the interval as

»(0.5)=1+(0-12(1))05=04

The slope at the end of the interval can be computed as
y'(05) =0.4(0.5)> —12(0.4) = —0.38

which can be averaged with the initial slope to predict

$(0.5)=1+ ‘0'62‘0-380.5 = 0.605

This formula can then be iterated to yield

iyl €, |
0 04
1 0.605 33.9
2 0.5563124 8.75
3 | 0.5678757 2.036
4 | 0.5651295 0.4859

The remaining steps can be implemented with the result

Xi Vi

0.5  0.5651295
1.0  0.4104059
1.5  0.5279021
2.0 2.181574

The results along with the analytical solution are displayed below:



25.4 The midpoint method with 4 = 0.5

X y dyldx ym dyldx-mid
0 1 -1.2 0.7 -0.79625
0.5 0.601875 -0.57178| 0.45893 -0.29257
1 0455591 -0.09112 0.432812 0.156894
1.5 0.534038  0.56074| 0.674223 1.255741
2/ 1.161909 3.253344 1.975245 7.629383

with 4 = 0.25 gives

X y dyldx ym dyldx-mid

0 1 -1.2 0.85 -1.00672
0.25 0.74832 -0.85121 0.641919 -0.68003
0.5/ 0.578312 -0.5494| 0.509638 -0.41249
0.75  0.47519 -0.30293 0.437323 -0.18996

1 0.4277 -0.08554 0.417007 0.027366
1.25 0.434541 0.157521 0.454231 0.313703
1.5 0.512967 0.538615 0.580294 0.835986
1.75  0.721963 1.344657 0.890046 2.061012
2| 1.237216 3.464206 1.670242 5.537897

The results can be plotted along with the analytical solution as




25.5 The 4™-order RK method with z = 0.5 gives

X y k1 ym k2
0 1 -1.2 0.7 -0.79625
0.5 0.572344 -0.54373) 0.436412 -0.27821
1 0.420375 -0.08407 0.399356 0.144767
1.5 0.509104 0.534559 0.642744 1.197111
2 129855 3.635941 2.207535 8.526606

ym
0.800938

0.50279
0.456567
0.808382
3.430202

k3
-0.91107
-0.32053
0.165505
1.505611
13.24915

ye
0.544467
0.412079
0.503128

1.26191
7.923127

7]
10.51724

-0.08242
0.528284
3.533348
40.01179

phi
-0.85531
-0.30394
0.177459
1.578892
14.53321

25.6 (a) The analytical solution can be derived by separation of variables

dy
—— =1+ xdx
o

2
2/ﬁ=x+%+C

Substituting the initial conditions yields C = 2. Substituting this value and solving for y gives the

final result

_ (x* +2x +4)?
16

The result can be plotted as

4,,

(b) Euler’s method with 2 = 0.5

I x y dyldx|




0 1 1
0.5 1.5 1.837117
1] 2.418559 3.110343

Euler’s method with 4 = 0.25 gives

X y dyldx
0 1 1
0.25 1.25 1.397542

0.5 1.599386 1.897002
0.75, 2.073636 2.520022
1] 2.703642 3.288551

The results can be plotted along with the analytical solution as

4,,

(c) For Heun’s method, the first step along with the associated iterations is

i €, |

0 1.500000

1 1.709279 12.243720

2 1.740273 1.780954

3 1.744698 2.536284E-01

The remaining steps can be implemented with the result

Xi Vi
0.00E+00 1
5.00E-01 1.744698
1 3.122586

The results along with the analytical solution are displayed below:



0 —t
0.0 0.5 1.0
(d) The midpoint method with 2= 0.5
X y dyldx ym  dyldx-mid
0 1 1 1.25 1397542
0.5 1.698771 1955054 2.187535 2.588305
1 29929241 3.460014 3.857927 4.419362
with & =0.25 gives
X y dyldx ym | dyldx-mid
0 1 1 1.125  1.193243
0.25 1.298311 1.424293 1.476347 1.67069%4
0.5 1.715984 1.964934 1.961601 2.275929
0.75 2.284966, 2.645318 2.615631 3.032421
1 3.043072  3.48888 3.479182 3.96367

The results can be plotted along with the analytical solution as

4,,

(e) The 4™-order RK method with 2 = 0.5 gives

y

k1

ym k2 ym k3 ye k4 phi

X
0
0.5
1

1

1

1.25 1.397542 1.349386| 1.452038 1.726019 1.970671 1.444972

1.722486| 1.968653 2.214649 2.604297 2.37356 2.696114 3.070543 3.504593 2.679011
3.061992 3.499709 3.936919 4.464376 4.178086 4.599082 5.361533 5.788746 4.569229




25.7 The second-order ODE is transformed into a pair of first-order ODEs as in

dy

~~ = 0)=2
PRk »(0)
dz

e 0)=0
e xX—y z(0)

(a) The first few steps of Euler’s method are

X y Z dyldx dz/dx

0 2 0 0 -2
0.1 2 -0.2 -0.2 -1.9
0.2 1.98 -0.39 -0.39 -1.78
0.3 1.941 -0.568 -0.568 -1.641
0.4 1.8842  -0.7321 -0.7321  -1.4842
0.5 1.81099 -0.88052 -0.88052 -1.31099

(b) For Heun (without iterating the corrector) the first few steps are

X y zZ dy/dx dz/dx yend zend dy/dx dz/dx ave slope

0 2 0 0 -2 2 -0.2 -0.2 -1.9 -0.1
0.1 1.99 -0.195 -0.195 -1.89 1.9705 -0.384 -0.384 -1.7705  -0.2895
0.2 196105 -0.37803 -0.37803 -1.76105 1.923248 -0.55413 -0.55413 -1.62325 -0.46608
0.3 1.914442 -0.54724 -0.54724 -1.61444 1.859718 -0.70868 -0.70868 -1.45972 -0.62796
0.4 1.851646 -0.70095 -0.70095 -1.45165 1.781551 -0.84611 -0.84611 -1.28155 -0.77353
0.5 1.774293 -0.83761 -0.83761 -1.27429 1.690532 -0.96504 -0.96504 -1.09053 -0.90132

Both results are plotted below:

4 —

Heun

| I r—Y
———

-2

25.8 The second-order ODE is transformed into a pair of first-order ODEs as in

< Euler




dy _

— =Z

dt

dj =-0.5z
dt

_Sy

y(0)=4

2(0)=0

The results for the 4™-order RK method are tabulated and plotted below:

t y z k11| k12 ymid zmid k21 k22 ymid zmid k31 k32 yend =zend k41 k42 phil| phi2
0 4.0000 0.0000 0.00 -20.00/ 4.00 -5.00 -5.00 -17.50/ 2.75 -4.38 -4.38 -11.56 1.81 -1.78 -1.78 -8.17 -3.42 -14.38
0.5 2.2891 -7.1914| -7.19 -7.85 0.49 -9.15 -9.15 2.12) 0.00 -6.66 -6.66 3.33 -1.04 3.95 395 323 -581| 1.05
1-0.6167-6.6682 -6.67 6.42 -2.28 -5.06 -5.06 13.95 -1.88 -3.18 -3.18 11.00 -2.21 4.89 4.89 8.59 -3.05 10.82
1.5-2.1393 -1.2584 -1.26| 11.33| -2.45 1.57 1.57 1148 -1.75 161 1.61 792 -1.33] 182 1.82 575 1.16 932
2/-1.5614 3.3995| 3.40 6.11 -0.71 493 493 1.09/ -0.33 3.67 3.67 -0.19 0.28 -1.66 -1.66 -0.55 3.16 1.23
2.5 0.0172 4.0139 4.01 -2.09 1.02| 349 349 -6.85 0.89 230 230 -560 1.17 -2.78 -2.78 -4.45 2.14| -524
3/ 1.0852 1.3939 139 -6.12 1.43 -0.14 -0.14] -7.10 1.05 -0.38] -0.38 -5.06 0.89 -1.45 -1.45| -3.75 -0.18 -5.70
3.5/ 0.9945/-1.4562| -1.46/ -424 0.63 -2.52 -2.52| -1.89 0.37 -1.93 -193 -0.86/ 0.03 0.56, 0.56 -0.43 -1.63 -1.70
4/ 0.1790 -2.3048| -2.30  0.26 -0.40 -2.24 -2.24| 3.11| -0.38 -1.53 -1.53 2.67 -0.59 1.51 1.51 2.17 -139 233
4.5-0.5150 -1.1399 -1.14 3.15 -0.80 -0.35 -0.35 4.18 -0.60 -0.10| -0.10 3.07 -0.56 1.02 1.02| 2.31 -0.17 3.32
5/-0.6001 0.5213 0.52/ 2.74 -0.47 121 121 1.75 -030 0.96/ 0.96 1.01 -0.12 -0.09 -0.09| 0.65 0.79 1.49

8,,

25.9 (a) The Heun method without iteration can be implemented as in the following table:

t y

0 1
0.1 1.000498
0.2 1.002971
03 1.00933
04 1.021391
0.5 1.040874
2.9 4.527257

3 4.544722

ky yend
0 1

0.009972  1.001496

0.039587

1.00693

0.088147 1.018145

0.15489

1.03688

0.239244  1.064798

0.259141 4.553171
0.090507  4.553773

ks
0.009967
0.039489
0.087592
0.153062
0.234765
0.331852

0.09016
0.007858

phi
0.004983
0.02473
0.063589
0.120604
0.194828
0.285548

0.17465
0.049183

(b) The Ralston 2™ order RK method can be implemented as in the following table:

t

y

ky yint

k»

phi




0 1 0 1 0.005614 0.003743
0.1 1.000374  0.00997 1.001122 0.030348 0.023555
0.2 1.00273  0.039577 1.005698 0.074158 0.062631
0.3 1.008993 0.088118 1.015602 0.136249 0.120205
04 1.021013 0.154833 1.032626 0.215982  0.195599
0.5 1.040573 0.239175 1.058511 0.313061 0.288432

2.9 4.779856 0.2736  4.800376 0.131997 0.179198
3 4797775 0.095547 4.804941 0.021276  0.046033

Both methods are displayed on the following plot along with the exact solution. The Ralston
method performs much better for this case.

T Ralston

4 1
1 Heun

2 1

0 1 | 1 | 1 |
0 1 2 3

25.10 The solution results are as in the following table and plot:

t y 7] K2 K3 phi
0 1 -1 06875  -0.5625 -0.71875
0.5 0.640625 -0.39063 0.019531 0.144531  -0.02799
1 0.626628 0.373372 0.842529 0.967529  0.78517

1.5 1.019213] 1.230787 1.735591 1.860591 1.67229
2 1.855358 2.144642 2.670982 2.795982  2.604092
2.5 3.157404 3.092596 3.631947 3.756947 3.562889
3 4938848 4.061152 4.608364 4.733364  4.537995

25.11 (a) Euler

x y 7 dydx dzy/dx
0 2.0000 4.0000 1.00 -16.00



0.2/ 2.2000 0.8000 -0.31 -0.70
04 2.1387 0.6592 -0.93 -0.46
0.6/ 1.9536 0.5663| -1.16 -0.31
0.8 1.7209 0.5036 -1.20 -0.22

1] 14819 0.4600 -1.12 -0.16

(b) 4th-order RK

x y z k11 k12 k21 k22 k31 k32 k41 k42  phil  phi2
0 2.0000 4.000 1.000 -16.000 0.324| -6.048 0.459 -11.714 -0.090 -0.123 0.413 -8.608

0.2 2083 2278 -0.071 -5.406 -0.447 -3.134 -0.372 -3.934 -0.665 -1.686 -0.396 -3.538
0.4 2003 1.571 -0.655 -2.472 -0.843 -1.698 -0.806 -1.884 -0.941 -2.438 -0.816 -2.012
0.6 1840 1.168 -0.937 -1.256 -1.010 -0.950 -0.996 -1.002 -1.036 -2.207 -0.997 -1.228
0.8 1.641 0923 -1.035 -0.699 -1.042 -0.559 -1.040 -0.577 -1.026 -1.667 -1.038 -0.773

1] 1433 0.768 -1.027 -0.423 -0.997 -0.351 -1.003 -0.358 -0.960 -1.143 -0.998 -0.497

Both methods are plotted on the same graph below. Notice how Euler’s method (particularly for
z) is very inaccurate for this step size. The 4™-order RK is much closer to the exact solution.

4th_order RK Euler

(2
2512 W _ 0, 20057 _ ¢,
X

4t order RK method:

One step (2= 0.5): y1=0.3704188
Two steps (A =0.25): > =0.3704096

Apresent = _9. 1 19)( 1 0_6

correction = é =-608x1077
15

1 =0.370409

d

Y =03

dx

Y scale =05+ ‘05(_03)‘ =0.65



Duew = 0.001(0.65) = 0.00065

Since Apresent < Anew, therefore, increase step.

0.2

0.00065 ~ 11737

9.119x107°

new ~ -

25.13 We will look at the first step only
Apresent =)= —-0.24335

Y _ g0 - 0.5(2) =3
dx

Vscale = 2+ (2(3)) =8
Dvew = 0.001(8) = 0.008
Because Apresent > Anew, decrease step.

25.14 The calculation of the k£’s can be summarized in the following table:

x y Jx.y) k
k1 0 2 3 3
k2 0.25 275 3.510611 3.510611
k3 0.375 3.268609 3.765131 3.765131
k4 0923077 5.636774 5.552467 5.552467
k5 1 5.878223 5.963052 5.963052
k6 0.5 3.805418  4.06459  4.06459

These can then be used to compute the 4™-order prediction

y =2+ @2275% 1408 5 765131 + 217
16~ 2565 4104

along with a fifth-order formula:

5552467 - ;5.963052@ =6.193807

H16 3+ 0656 3.765131 + M5552467 - i5.963052 + i4.06459@ =6.194339
135 12,825 56,430 50 55

B

=2+

The error estimate is obtained by subtracting these two equations to give

E, =6.194339 - 6.193807 = 0.000532

25.15
Option Explicit

Sub EulerTest ()

Dim i As Integer, m As Integer

Dim xi As Single, yi As Single, xf As Single, dx As Single, xout As Single
Dim xp (200) As Single, yp(200) As Single

'Assign values

yi 1

xi 0



xf =
dx = 0.5

xout 0.5

'Perform numerical Integration of ODE

Call ODESolver (xi, yi, xf, dx, xout, xp(), yp(), m)
'Display results

Sheets ("Sheetl") .Select

Range ("a5:b205") .ClearContents

Range ("ab") .Select

For i = 0 Tom

I oW

ActiveCell.Value = xp (i)
ActiveCell.Offset (0, 1).Select
ActiveCell.Value = yp (i)

(

ActiveCell.Offset
Next i
Range ("ab") .Select
End Sub

1, -1).Select

Sub ODESolver (xi, yi, xf, dx, xout, xp, yp, m)
'Generate an array that holds the solution
Dim x As Single, y As Single, xend As Single
Dim h As Single

m= 0

Xp(m) = xi

yp(m) = yi

x = xi

y = yi

Do 'Print loop

xend = x + xout

If (xend > xf) Then xend = xf 'Trim step if increment exceeds end
h = dx

Call Integrator(x, y, h, xend)

m=m+ 1

xp(m) = x

yp(m) =y

If (x >= xf) Then Exit Do
Loop
End Sub

Sub Integrator(x, vy, h, xend)

Dim ynew As Single

Do 'Calculation loop
If (xend - x < h) Then h = xend - x 'Trim step if increment exceeds end
Call Euler(x, vy, h, ynew)

y = ynew

If (x >= xend) Then Exit Do
Loop
End Sub

Sub Euler(x, y, h, ynew)
Dim dydx As Single
'Implement Euler's method
Call Derivs(x, y, dydx)
ynew = y + dydx * h

x =x + h

End Sub

Sub Derivs(x, y, dydx)

'Define ODE

dydx = -2 * x ~ 3 + 12 * x ~ 2 - 20 * x + 8.5
End Sub



25.16 Example 25.1:

A [ B [ ¢ [ B [ E F [ & [ H =
4 |x ¥
EN 8-
3 ] 1
B 0s 526 L 7
X 1 &&75 6
Bl 15 5125 5
ER 2 45 1
10 26 475 3
[ 3 5675
12| 38 7425 23
EE 4 7 11
|14 0 T T T T ]
15 ] 1 2 3 4 5
|16 |

Example 25.4 (nonlinear model). Change time steps and initial conditions to

'Assign values

yvi
xi

xf
dx
xout

|l o oo
.o

= o1

Change Derivs Sub to

Sub Derivs(t, dvdt)
'Define ODE
dvdt 9.8

End Sub

"

12.5 / 68.1 *

(v + 8.3 *

(v / 46) *

2.2)

25.17

"
12
13
14
15

00~ @ e L = O

9.34477
16.968754

23.1603
2608875
31.98533
3604111
3742184
39.26696
4069109
41.78674
42 62757

432716
4376415
4414042
44 42762

Option Explicit

Sub
Dim
Dim

50

40

30

20

10

RK4Test ()
i As Integer,
xi As Single,

m As Integer
yi As Single,

xf As Single,

Dim

xp (200)

As Single,

'Assign values

yvi =1

xi =0

xf = 4

dx = 0.5
xout = 0.5

'Perform numerical Inte
Call ODESolver (xi, vi,

'Display results
Sheets ("Sheetl") .Select
Range ("a5:b205") .ClearC
Range ("ab") .Select
For i 0 Tom
ActiveCell.Value

yp (200) As Single

gration of ODE

xf, dx, xout, xp(),

ontents

xp (1)

yp (),

dx As Single,

m)

xout As Single



ActiveCell.Offset (0, 1).Select
ActiveCell.Value = yp (i)
ActiveCell.Offset (1, -1).Select

Next i

Range ("ab") .Select

End Sub

Sub ODESolver (xi, yi, xf, dx, xout, xp, yp, m)
'Generate an array that holds the solution
Dim x As Single, y As Single, xend As Single
Dim h As Single

m =0

xp(m) = xi

yp(m) = yi

x = xi

y = yi

Do 'Print loop

xend = x + xout

If (xend > xf) Then xend = xf 'Trim step if increment exceeds end
h = dx

Call Integrator(x, y, h, xend)

m=m+ 1

xp(m) = x

yp(m) =y

If (x >= xf) Then Exit Do
Loop
End Sub

Sub Integrator(x, vy, h, xend)

Dim ynew As Single

Do 'Calculation loop
If (xend - x < h) Then h = xend - x 'Trim step if increment exceeds end
Call RK4(x, y, h, ynew)

y = ynew
If (x >= xend) Then Exit Do

Loop

End Sub

Sub RK4 (x, vy, h, ynew)

'Implement RK4 method

Dim k1 As Single, k2 As Single, k3 As Single, k4 As Single
Dim ym As Single, ye As Single, slope As Single

Call Derivs(x, vy, kl)

ym =y + k1l * h / 2

Call Derivs(x + h / 2, ym, k2)
ym =y + k2 * h / 2

Call Derivs(x + h / 2, ym, k3)
ye =y + k3 * h

Call Derivs(x + h, vye, k4)

slope = (k1 + 2 * (k2 + k3) + k4) / 6
ynew = y + slope * h

x =x + h

End Sub

Sub Derivs(x, y, dydx)

'Define ODE

dydx = -2 * x ~ 3 + 12 * x ~ 2 - 20 * x + 8.5
End Sub

25.18 Example 25.1:

A | B [ ¢ | b | E F I &6 [ H | [
4 1% y
5 ol 1 3
R 05 321975 Hod 1
|7 1 3
=R 15 221875 3
9 | 2 2| |
10 25 271875 2
(L] 3 4
12 35 471875 1
13| 4 3
14 0 - ! ; ! ! ;
|15 0 1 2 3 4 5
16




25.19

Example 25.5 Change time steps and initial conditions to

'Assign values
yi =
xi =
xf =
dx =
xout

> oN

Change Derivs Sub to

Sub Derivs (x,
'Define ODE

dydx = 4 * Exp (0.8 * x)
End Sub

Yr dde)

- 0.5 *

y

8.940161
16 30683
2231247
2716182
31.04566
34.13524
36.67547
35.50458
40.01546
41.19793
4212132
42.84114
43.40151
43.83729

44.1758

Option Explicit

Sub RK4SysTest ()

Dim i As Integer,
Dim xi As Single,
Dim xp (200) As Single,
'Assign values

n =2

xi = 0

xf = 2

yi(l) = 4

yvi(2) = 6

dx = 0.5

xout = 0.5

50

40

30

20

m As Integer,
yi(10) As Single,

yp (200,

n As Integer,
xf As Single,
10) As Single

'Perform numerical Integration of ODE

Call ODESolver (xi, vyil()

'Display results

Sheets ("Sheetl") .Select

Range ("a5:n205") .ClearC

Range ("ab") .Select

For i = 0 To m
ActiveCell.Value =
For j =1 To n

Xp

ActiveCell.Offset (0, 1).Select

ActiveCell.Value =
Next j
ActiveCell.Offset (1,

Next i
Range ("ab") .Select
End Sub

Sub ODESolver (xi, yi, x

, xf, dx, xout, xp(), yp(),
ontents

(1)

yp (i, 3J)

-n) .Select

f, dx, xout, xp, yp, m, n)

'Generate an array that holds the solution

Dim i As Integer

j As Integer

dx As Single,

m, n)

xout As Single



Dim x As Single, y(10) As Single, xend As Single
Dim h As Single

m= 0
x = xi
'set initial conditions
For i =1 To n
y (i) = yi(i)
Next i
'save output values
xp (m) = x
For i =1 To n
yp(m, 1) = y(i)
Next i
Do 'Print loop

xend = x + xout

If (xend > xf) Then xend = xf 'Trim step if increment exceeds end
h = dx

Call Integrator(x, y(), h, n, xend)

m=m+ 1

'save output values

xp(m) = x
For i =1 To n
yp(m, 1) = y(i)
Next i
If (x >= xf) Then Exit Do
Loop
End Sub

Sub Integrator(x, vy, h, n, xend)
Dim j As Integer
Dim ynew (10) As Single
Do 'Calculation loop
If (xend - x < h) Then h = xend - x 'Trim step if increment exceeds end
Call RK4Sys(x, vy, h, n, ynew())
For j =1 To n
y(3) = ynew(Jj)
Next j
If (x >= xend) Then Exit Do
Loop
End Sub

Sub RK4Sys(x, y, h, n, ynew)
Dim j As Integer
Dim dydx (10) As Single

Dim ym(10), ye(10)
Dim k1(10), k2(10), k3(10), k4(10)
Dim slope (10)
'Implement RK4 method for systems of ODEs
Call Derivs(x, vy, k1())
For j =1 To n

ym(3) = y(3) + k1(3) * h / 2
Next j
Call Derivs(x + h / 2, ym, k2())
For j =1 To n

yn(3) = y(3) + k2(3) * h / 2
Next j
Call Derivs(x + h / 2, ym, k3())
For j =1 To n

ve(j) = y(3) + k3(3) * h
Next j
Call Derivs(x + h, vye, k4())
For j =1 To n

slope(j) = (k1(j) + 2 * (k2(3) + k3(3)) + k4(3)) / 6
Next jJ
For j =1 To n

ynew (j) = y(j) + slope(j) * h
Next jJ

X = x + h

End Sub



Sub Derivs(x, y, dydx)

'Define ODE

dydx (1) = -0.5 * y (1)

dydx(2) =4 - 0.3 * y(2) - 0.1 * y(1)
End Sub

Application to Example 25.10:

& | B | © [ B [ E [ F G [ H [ 1 [ 4 [ K
Example 25.10

% iy 12 .
0 4 &

05 3115234 B.8B57ET

1 2426171 7 B32M068

1.5 1.889523 8.326006

2 1.471577 8.94b065

L e

[}

B
|
i| B
%

|

25.20 Main Program:

$Damped spring mass system
tmass: m=10 kg
$damping: c=5,40,200 N/ (m/s)
$spring: k=40 N/m
% MATLAB 5 version
%Independent Variable t, tspan=[tstart tstop]
%initial conditions [x(l)=velocity, x(2)=displacement];

tspan=[0 15]; ic=[0 1];

global cm km
m=10; c(1)=5; c(2)=40; c(3)=200; k=40;
km=k/m;

for n=1:3

cm=c (n) /m
[t,x]=0ded5("kc',tspan,ic);
plot(t,x(:,2)); grid;

xlabel ('time - sec.'); ylabel ('displacement - m');
title('m(d2x/dt2)+c (dx/dt)+kx=0; m=10 kg, k= 40 N/m'")
hold on

end
gtext ('c=5") ;gtext ('cc=40") ;gtext ('c=200 N/ (m/s)")

Function ‘kc’:

$Damped spring mass system - m d2x/dt2 + ¢ dx/dt + k x =0
gmass: m=10 kg
$damping: c=5,40,200 N/ (m/s)
$spring: k=40 N/m

$x(l)=velocity, x(2)=dispacement

function dx=kc(t,x);
global cm km
dx=[-cm*x (1) -km*x (2); x(1)]1;



m (d2x/dt2)+c(dx/dt)+kx=0; m=10 kg, k= 40 N/m

0.8

\\ c=200 N/(m/s)
0.6

\\cc=40
0.4

S,
NNV —
R

ol |
MV

time - sec.

25.21 The Matlab program on the following pages performs the Euler Method and the plots
shows the depth of the water vs. time. From the plot, we approximate that it takes about
58 minutes to drain the cylindrical tank.

%euler.m

dt=0.5;

max=60;

n=max/dt+1;

t=zeros(l,n);

y=zeros (1l,n);

t(1)=0;

y(1)=9;

for i=1:n
y (i+1)=y (i) +dydt(t(1),y (1)) *dt;
t(i+1)=t (i) +dt;

end

plot(t,y)

grid

xlabel ('Time-minutes')

ylabel ('Depth of the Water-ft')

title('How Long Does it Take to Drain a 9-ft high Cylindrical

Tank?')

Zoom

function dy=dydt (t,y);
dy=-0.1*sqgrt (y);
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x =x(1)
dx
v=—=x(2)
dt

dv _d [dx[] d’x
dt  dtdt 0 dr?
dx(1) _

o @
dx;tz) = =5x(1)x(2) = (x(1) +7)sin(?)
x()(t=0)=6

x2)(t=0)=15

tspan=[0,15]";

x0=[6,1.5]";

[t,x]=0ded5 ('dxdt', tspan,x0);
plOt(tIX(:ll)ltIX(:l2)l‘__‘)

grid

title('Displacement and Velocity Versus Time')
xlabel ('Time, t')

ylabel ('Displacement and Velocity')

gtext ('displacement')

gtext ('velocity')

function dx=dxdt (t, x)
dx=[x(2);-5*x (1) *x(2)+ (x(1)+7) *sin(1*t) ];



Displacement and Velocity

Displacement and Velocity Versus Time
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CHAPTER 26
26.1 (a) h < 2/100,000 = 2x107".

(b) The implicit Euler can be written for this problem as
Vis =¥; +[—100,000y,,, +100,000e " — e "1 |k
which can be solved for

- Vi + 100,0006_)(”]]1 —e N p
T 1+100,000/

The results of applying this formula for the first few steps are shown below. A plot of the entire
solution is also displayed

X y
0 0
0.1 1904638
02 1818731
0.3 1740819
04  1.67032
0.5 1.606531
2 —
1 4
0 1 1 1 |
0 1 2

26.2 The implicit Euler can be written for this problem as
Vi =¥ +(30Gsint,,; = y,.) +3cost,, |
which can be solved for

yo = v; +30sint,, h +3cost,, h
i+l 1+30h

The results of applying this formula are tabulated and graphed below.

X y X y X y X y
0 0 1.2 0.952306 2.4 0.622925 3.6 -0.50089
0.4 0.444484 1.6 0.993242 2.8 0.270163 4 -0.79745

0.8 0.760677 2 0.877341 3.2 -0.12525
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26.3 (a) The explicit Euler can be written for this problem as

Xy =%, +(999x,; +1999x, )k
Xy = Xy; +(=1000x,, —2000x, )

Because the step-size is much too large for the stability requirements, the solution is unstable,

t x1 x2 dx1 dx2
0 1 1 2998 -3000
0.05 150.9 -149 -147102 147100
0.1 -7204.2 7206 7207803 -7207805
0.15 353186 -353184 -3.5E+08 3.53E+08

0.2 -1.7E+07 17305943 1.73E+10 -1.7E+10
(b) The implicit Euler can be written for this problem as

Xrien =X, +(999x1,i+1 + 1999x2,i+1)h
Xoiv1 = X2 +(_ 1000x, ;,, = 2000x2,i+1)h

or collecting terms

(1=999h)x, ) = 1999, ,, = x,,
1000/, ,, + (1 +2000h)x, ., = x,,

or substituting 4 = 0.05 and expressing in matrix format

4895 - 99.95%1,”1 E= 3y %
g 50 101 Bav,ng B0

Thus, to solve for the first time step, we substitute the initial conditions for the right-hand side
and solve the 2x2 system of equations. The best way to do this is with LU decomposition since
we will have to solve the system repeatedly. For the present case, because its easier to display,
we will use the matrix inverse to obtain the solution. Thus, if the matrix is inverted, the solution
for the first step amounts to the matrix multiplication,

00y 41 Dz [1.886088  1.86648 [J1| _| 3752568
E‘z 4 £ 093371 -0914151 - 1.84781
i+ [

For the second step (from x = 0.05 to 0.1),



LIy 41 E: [1.886088
e, B 5093371 -09141

186648 g 3.752568] _{

362878
— 184781

— 181472

The remaining steps can be implemented in a similar fashion to give

t

0
0.05
0.1
0.15
0.2

x1

1
3.752568
3.62878
3.457057
3.292457

x2

1
-1.84781
-1.81472
-1.72938
-1.64705

The results are plotted below, along with a solution with the explicit Euler using a step of 0.0005.

4 —

X1

-2 e O AT e

26.4 First step:
Predictor:
y1°=5.222138+[—0.5(4.143883)+e'2]1 =3.285532

Corrector:

—0.5(4.143883) + e —0.5(3285532) + e >

y, =4143883 + 5

0.5=3269562

The corrector can be iterated to yield

j y[+1j
1 3.269562
2 3.271558

ea

,%

0.061

Second step:

Predictor:

12°=4.143883+[~0.5(3.271558)+¢ |1 = 2.590189
Predictor Modifier:

12" =2.590189+4/5(3.271558-3.285532) = 2.579010



Corrector:

- 0.5(3271558) + e >° —05(2.579010) + ¢
2

0.5=2573205

y, =3271558 +

The corrector can be iterated to yield

j Virt! ‘ga
1 2.573205
2 2.573931 0.0282

%

26.5
predictor = 3.270674927
Corrector Iteration
v ea
.5 3.274330476 1.12E-01
.5 3.273987768 1.05E-02
.5 3.274019897 9.81E-04

N NN X

predictor = 2.576436209
Corrector Iteration

ea
.57830404 7.24E-02
.578128931 6.79E-03
.377128276 3.32E-02
.377202366 3.12E-03

wwwwX
NN N N

26.6

(@) WAA){—SM\)W\A@ Huars
predieln.

o
Bog = 018570429 + 'F(4, 07?)(!) = 0. 6696429

ca’uwcjlou
1
Mas = 605+ ECWZQ)] (5)= 0.665922¢
¢ 0.6b5922% - @¢eqL4zﬂI - ’ 2 .
a TYTIETA % 100 6.56 Yo < |9,
N ok A}tbp
[ _£ > the
Y. = 015 + (45,0659228) () = 0.6020172 wemsdsfasd
(2]
gg = 0.602.0/72 +% [o,usqz% - a.aeqwzcﬁ
= 0599041 msdufied
oo
ys = oksIZC + Flr50u51220s £5,0 57704) (5)
s = {
= 0.59897¢+ 9
eq::ors"yo
=1
()
predictor = 0.669232229

Corrector Iteration



X vy ea et

4.5 0.666462335 4.16E-01 0.030654791

4.5 0.666577747 1.73E-02 0.013342954

4.5 0.666572938 7.21E-04 0.014064281
predictor = 0.601036948

Corrector Iteration

X y ea et

5 0.599829531 2.01E-01 0.028411529
5 0.599874809 7.55E-03 0.020865171

26,7 tae 4 ondon KK 15 ?W

.3 JL7 2
-0.25 /.277355"
o] /. 00000(

025 2.,78287468
0.50 0. 6323447

de Waa 4(5)—~/oaoeo G
(az;) /:77355’

1o }4%4szuﬂut Men - Z;vé?? Mo
praddie

(]

‘%d.z’:; 1,277355 + 'F/OJ /,oooooé>(0/5>= 0.777352

el
4 = 1.000006 + [’F("J""””‘)-l- f oz, 0177735:2)‘] (4725)
0.2 5~ =
= 0.7837093
Mo Jluxtu
‘302; = o.783/405
70'25_ = 07832309
Lérozs = ©.7832214

NEYS WD 38
padis, um meddiad
»&:'5_ = 000006 + #@.15} o.75322,'4b(0,5>: 0.6323%709

© —
%e.s = 0.631%709 4—4? (a.7¢3zz/4f—0.7773; = 0:6T75¢0 ¢

covregion
o = 67!3322“-}4'{-‘;(0'25)0'78322’4)+ -f(mgo-éﬂssé@-_ 8.631L65§
0.5 L )

5
- = 63217
Dty 4,5 = 0oe3/7I5

26.8
predictor = 0.737731653
Corrector Iteration
X % ea
2 0.660789924 1.16E+01
2 0.665598782 7.22E-01
2 0.665298229 4.52E-02
2 0.665317013 0.002823406
predictor = 0.585786168

Corrector Iteration
X % ea



2.5 0.569067395 2.94E+00
2.5 0.569963043 1.57E-01
2.5 0.569915062 8.42E-03

26.9
Option Explicit

Sub SimpImplTest ()

Dim i As Integer, m As Integer

Dim xi As Single, yi As Single, xf As Single, dx As Single, xout As Single
Dim xp (200) As Single, yp(200) As Single

'Assign values

yi =0

xi =0

xf = 0.4

dx = 0.05
xout = 0.05

'Perform numerical Integration of ODE
Call ODESolver (xi, vyi, xf, dx, xout, xp(), yp(), m)

'Display results

Sheets ("Sheetl") .Select

Range ("a5:b205") .ClearContents
Range ("ab") .Select

For i = 0 To m

ActiveCell.Value = xp (i)
ActiveCell.Offset (0, 1).Select
ActiveCell.Value = yp (i)

(

ActiveCell.Offset
Next i
Range ("ab") .Select
End Sub

1, -1).Select

Sub ODESolver (xi, yi, xf, dx, xout, xp, yp, m)
'Generate an array that holds the solution
Dim x As Single, y As Single, xend As Single
Dim h As Single

m =0

Xxp(m) = xi

yp(m) = yi

x = xi

y = vi

Do 'Print loop
xend = x + xout
If (xend > xf) Then xend = xf 'Trim step if increment exceeds end
h = dx

Call Integrator(x, y, h, xend)
m=m+ 1

xp (m) = x

yp(m) =y

If (x >= xf) Then Exit Do
Loop
End Sub

Sub Integrator(x, vy, h, xend)

Dim ynew As Single

Do 'Calculation loop
If (xend - x < h) Then h = xend - x 'Trim step if increment exceeds end
Call SimpImpl (x, vy, h, ynew)

y = ynew
If (x >= xend) Then Exit Do

Loop

End Sub

Sub SimpImpl (x, y, h, ynew)

'Implement Simple Implicit method

ynew = (y + h * FF(x)) / (1 + 1000 * h)
x = x + h

End Sub



Function FF (t)
'Define Forcing Function
FF = 3000 - 2000 * Exp(-t)
End Function
A | B | &6 | b | E 7 - [
4 |x
5 ol 0 RUN 40
B | 005 0980392 16 1
D 0.1 1095244 1.4 1
5 015 1188461 1.2 4
(9 02 1.276817 11
10 0.25 1.350858 0.8
11 0.3 1.4408 0.6 -
12| 035 1516843 0.4 A
EED 04 1589177 0.2 -
14 0 ; ; ; ; .
15 0 01 02 03 04 05
|16
26.10 All linear systems are of the form
dyy
=apy tapy, tF
dt
dy,
Sayy taypy, +F
dt
As shown in the book (p. 730), the implicit approach amounts to solving
D—a“h —dapp myll+1[| |:lyll-'-}?lh[j
H-ay  1-ayh 21+1[] %’21+Fh[j
Therefore for Eq 26.6: an = =5, an= 3 ax = 100 axn = —301 Fi= and = 0,

0+5h
{100

-3
1+301A

%)y/l g+ d_ v, 0

21+1[| E%ZZD

A VBA program written in these terms is

Opti
Sub
Dim
Dim

Dim

'Ass

on Explicit

StiffSysTest ()
i As Integer,
xi As Single,
xp (200)

ign values
2

As Single,

m As Integer,

yi(10) As Single,

P (200,

n As Integer,

10) As Single

'Perform numerical Integration of ODE

Call

'Dis
Shee

ODESolver (xi,

play results
ts ("Sheetl")

viQ),

.Select

Range ("a5:n205") .ClearContents

Rang
For

e("a5")
i 0 Tom

.Select

xf, dx,

xout, xp(),

j As Integer

xf As Single,

yp (),

dx As Single,

m, n)

xout As Single



ActiveCell.Value = xp (i)

For j =1 To n
ActiveCell.Offset (0, 1).Select
ActiveCell.Value = yp(i, J)

Next j

ActiveCell.Offset (1, -n).Select

Next i
Range ("ab") .Select
End Sub

Sub ODESolver (xi, yi, xf, dx, =xout,

yp, m, n)

'Generate an array that holds the solution

Dim i As Integer

Dim x As Single, y(10) As Single, xend As Single

Dim h As Single

m= 0
x = xi
'set initial conditions
For i =1 To n
y (i) = yi(i)
Next i
'save output values
xp(m) = x
For i =1 To n
yp(m, 1) = y(i)
Next i
Do 'Print loop

xend = x + xout
If (xend > xf) Then xend = xf
h = dx

Call Integrator(x, y(), h, n, xend)

m=m+ 1
'save output values

xp(m) = x
For i =1 To n
yp(m, 1) = y(i)
Next i
If (x >= xf) Then Exit Do
Loop
End Sub

Sub Integrator(x, vy, h, n, xend)
Dim j As Integer

Dim ynew (10) As Single

Do 'Calculation loop

If (xend - x < h) Then h = xend - x

Call StiffSys(x, y, h, n, ynew())
For j =1 To n
y(3) = ynew(Jj)
Next j
If (x >= xend) Then Exit Do
Loop
End Sub

Sub StiffSys(x, vy, h, n, ynew)
Dim j As Integer

Dim FF(2) As Single, b (2, 2) As Single,

Call Force(x, FF())
'MsgBox "pause"

'Trim step if increment exceeds end

'Trim step if increment exceeds end

c(2) As Single, den As Single

b(l, 1) =1 + 5 * h
b(l, 2) = -3 * h
b(2, 1) = -100 * h
b(2, 2) =1 + 301 * h
For j =1 To n
c(j) = y(J) + FF(3) * h
Next j
den = b(1, 1) * b(2, 2) - b(l, 2) * b(2, 1)
ynew (1) = (c(1l) * b(2, 2) - c(2) * b(l, 2)) / den
ynew (2) = (c(2) * b(l, 1) - c(1) * b(2, 1)) / den

X = x + h
End Sub



Sub Force (t,
'Define
FF(0) =0
FF(1) =0
End Sub

FF)
Forcing Function

The result compares well with the analytical solution. If a smaller step size were used, the
solution would improve

A | B |

| |Example 25.10

i

_2_

(%

4 x il

57 ] 52.29
KR 43.39626
[ 355619
&) 29.1419
9 23.86091
19.56968
16.03671
13.14156
10.765908

26.11 (Errata for first printing) Last sentence of problem statement should read: Test the program

y2

§3.82
1461116
11.9733
9.811745
8.0404358
5.585894
5399354
4424619
3.625831

RUN

100 -

by duplicating Example 26.4. Later printings should have this correction.

Option Explicit

Sub NonSelfStartHeun ()

Dim n As Integer,

Dim iterp(1000)

Dim xi As Single,

Dim x As Single

Dim xp (1000) As Single,

xi = -1
xf = 4

yi = .3929953

- xi) /

xp (m) = x
Yy

g

3

2
I

Call RK4(x, vy,

xp (m

yp (m
For 1 =

m=m +
)
)

KX

2 To n

Call NSSHeun(xp(i - 2),

m=m+ 1

xp (m) = x

yp(m) =y

iterp(m) =
Next i

m As Integer,

As Integer

xf
, Y As

n

h)

iter

As Single,
Single

yp(i - 2),

i As Integer,

yi As Single,

Sheets ("NSS Heun") .Select
Range ("ab") .Select

For 1 =

0 To m

ActiveCell

ActiveCell. t
.Value =
t

ActiveCell

ActiveCell.

ActiveCell

ActiveCell.

Next i

.Value

.Value

Offset (0
Offset (0
1

Offset (

xp (1)

, 1) .Select
yp (1)

, 1) .Select
iterp (i)

, —2).Select

yp (1000) As Single

xp(i - 1),

h As Single

yp(i - 1),

iter As Integer

Xy

Y

h,

iter)



Range ("ab") .Select
End Sub

Sub RK4 (x, vy, h)

'Implement RK4 method

Dim k1 As Single, k2 As Single, k3 As Single, k4 As Single
Dim ym As Single, ye As Single, slope As Single

Call Derivs(x, vy, kl)

ym =y + k1l * h / 2

Call Derivs(x + h / 2, ym, k2)

ym =y + k2 * h / 2

Call Derivs(x + h / 2, ym, k3)

ye =y + k3 * h

Call Derivs(x + h, vye, k4)

slope = (k1 + 2 * (k2 + k3) + k4) / 6
y =y + slope * h

X = x + h
End Sub

Sub NSSHeun (x0, vy0, x1, vyl1, x, y, h, iter)
'Implement Non Self-Starting Heun
Dim i As Integer
Dim y2 As Single
Dim slope As Single, kl As Single, k2 As Single
Dim ea As Single
Dim y2p As Single
Static y2o0ld As Single, y2pold As Single
Call Derivs(xl, yl1l, k1)
y2 = y0 + k1 * 2 * h
y2p = y2
If iter > 0 Then
y2 = y2 + 4 * (y20ld - y2pold) / 5
End If
x =x + h
iter = 0
Do
y2o0ld = y2
Call Derivs(x, y2, k2)
slope = (k1 + k2) / 2
y2 = yl + slope * h
iter = iter + 1
ea = Abs ((y2 - y2o0ld) / y2) * 100
If ea < 0.01 Then Exit Do

Loop

y = y2 - (y2 - y2p) / 5
y2o0ld = y2

y2pold = y2p

End Sub

Sub Derivs(x, y, dydx)
'Define ODE
dydx = 4 * Exp(0.8 * x) - 0.5 * vy

End Sub
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26.13 Use Matlab to solve

tspan=[0,5]";

x0=[0,0.51";

[t,x]=0ded5 ('dxdt', tspan,x0);
plot(t,x(:,1),t,x(:,2),"'--")

grid

title('Angle Theta and Angular Velocity Versus Time')
xlabel ('Time, t')

ylabel ('Theta (Solid) and Angular Velocity (Dashed)')
axis ([0 2 0 1071)

zoom

function dx=dxdt (t, x)
dx=[x(2);(9.8/0.5)*x(1)];

Angle Theta and Angular Velocity Versus Time

10 |
9 /

Theta (Solid) and Angular Velocity (Dashed)
(6]

4 //
/
//
3 /
/
/
2
1
0 I
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time, t
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2.5

1.5
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0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
Time, t

26.14 Analytic solution: y =6.004¢ % =2 .004¢ ™"

t=[0:.01:.027];
x=6.004%exp (-500*t) -2.004*exp (-t) ;

plot (t, x)

grid

xlabel ('t")

ylabel ('x")

title('Analytic Solution:Fast Transient')
gtext ('6.004e7-500t-2.004 e~-t")

t=[0.02:.01:5];
x=6.004*exp (-500*t)-2.004*exp (-t) ;

plot (t, x)
grid
xlabel ('t")
ylabel ('x")

title('Analytic Solution: Slow Transition')
gtext ('6.004e"-500t-2.004 e~-t")

1.4

1.5
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Numerical solution:

tspan=[0 5];

xo=[41];

[t,x]=0de23s('egn', tspan, x0) ;

plot (t, x)

grid

xlabel ('t")

ylabel ('x")

title ('Numerical Solution: Fast Transient')
axis ([0 .02 -2 47])

tspan=[0 5];

xo=[4];

[t,x]=0de23s('eqgn', tspan, xo) ;

plot (t, x)

grid

xlabel ('t")

ylabel ("x")

title ('Numerical Solution: Slow Transition')
axis ([0.02 5 =2 01)
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CHAPTER 27

27.1 The solution can be assumed to be 7= €. This, along with the second derivative 7 = A%",

be substituted into the differential equation to give

can

MM -01eM =0
which can be used to solve for

A -01=0
)\=i/\m

Therefore, the general solution is

T= Ae™ + e~/

The constants can be evaluated by substituting each of the boundary conditions to generate two
equations with two unknowns,

200=4+8B
100 =23.62434 4 + 0.042329B

which can be solved for 4 = 3.881524 and B = 196.1185. The final solution is, therefore,

T=3881524¢" +196.1185¢ 1

which can be used to generate the values below:

T

200
148.2747
111.5008
85.97028
69.10864
59.21565
55.29373
56.94741
64.34346
78.22764

100

O WOWNOUANWN-= OX

200

100

o
N
=N
2]
=]
-
o

27.2 Reexpress the second-order equation as a pair of ODEs:



ar _
dx
dz

—=0I1T
dx

y4

The solution was then generated on the Excel spreadsheet using the Heun method (without
iteration) with a step-size of 0.01. An initial condition of z = =55 was chosen for the first shot.

The first few calculation results are shown below.

X T z k11 k12 Tend
0 200.000 -55.000 -55.000 20.000 194.500
0.1 194.600 -53.028 -53.028 19.460 189.297
0.2 189.395 -51.108 -51.108 18.939 184.284
0.3 184.378 -49.240 -49.240 18.438 179.454
0.4/ 179.547 -47.420 -47.420 17.955 174.805
0.5 174.894| -45.649 -45.649 17.489 170.330

zend
-53.000
-51.082
-49.214
-47.396
-45.625
-43.900

k21

-53.000
-51.082
-49.214
-47.396
-45.625
-43.900

k22
19.450
18.930
18.428
17.945
17.480
17.033

phit
-54.000
-52.055
-50.161
-48.318
-46.523
-44.774

phi2
19.725
19.195
18.684
18.192
17.718
17.261

The resulting value at x = 10 was 7(10) = 315.759. A second shot using an initial condition of z
(0) = =70 was attempted with the result at x = 10 of 7(10) = —243.249. These values can then be

used to derive the correct initial condition,

-70+55

2(0)= =55+
—243.249 - 315.759

(100 - 315.759) = —60.79

The resulting fit, along with the two “shots” are displayed below:

400
300
200
100

0 1 1 1 \ 1 1
-100
-200
-300

27.3 A centered finite difference can be substituted for the second derivative to give,

T_,-2T +T

i—-1 hzz i+l _01]: =O
orforh=1,
-T_,+21T -T_ ., =0

The first node would be
217, - T, =200

and the last node would be




— T, +2.1T;, =100

The tridiagonal system can be solved with the Thomas algorithm or Gauss-Seidel for (the
analytical solution is also included)

T  Analytical

200 200
148.4838 148.2747
111.816 111.5008
86.32978 85.97028
69.47655 69.10864
59.57097 59.21565
55.62249 55.29373
57.23625 56.94741
64.57365 64.34346
78.3684 78.22764
100 100

O WONOOURAWN-=OX

—_

27.4 The second-order ODE can be expressed as the following pair of first-order ODEzs,

dy _

——=z

dx

dz _2z+y-x
dx 8

These can be solved for two guesses for the initial condition of z. For our cases we used

z(0) -1 -0.5
¥(20) -6523.000507 7935.937904

Clearly, the solution is quite sensitive to the initial conditions. These values can then be used to
derive the correct initial condition,

-05+1

2(0)= -1+
7935.937904 + 6523.000507

(8 +6523.000507) = —0.774154

The resulting fit is displayed below:

0 1 1 i |
0 5 10 15 20

27.5 Centered finite differences can be substituted for the second and first derivatives to give,



8yi+l -2y, vy _2yi+1 ~ Vi
Ax? Ax

-y, +x;=0

or substituting Ax = 2 and collecting terms yields
25y — 5y, +15y,, +x,=0

This equation can be written for each node and solved with either the Gauss-Seidel method or a
tridiagonal solver to give

T

5
4.287065
4.623551
5.600062
6.960955
8.536414
10.18645
11.72749
12.78088
12.39044

8

27.6 The second-order ODE can be expressed as the following pair of first-order ODEs,

dT

—=z

dx

;’Z =12 %107 (T +273)* =5(150 - T
X

The solution was then generated on the Excel spreadsheet using the Heun method (without
iteration) with a step-size of 0.01. The Excel Solver was used to adjust the initial condition of z
until the value of 7(0.5) = 100. Part of the resulting spreadsheet is shown below along with a
graph of the final solution.

X T z k11 k12
0 200.000 -927.673| -927.673 6256.560
0.01 191.036| -867.627 -867.627 5769.196

Tend zend k21 k22 ol (0]
190.723| -865.107 -865.107|5752.643 -896.390 6004.601
182.360 -809.935 -809.935 5321.210 -838.781 5545.203




0.02
0.03
0.04
0.05

182.648
174.793
167.433
160.532

-812.175
-760.816
-713.115
-668.694

-812.175/ 5335.738
-760.816| 4948.905
-713.115 4602.594
-668.694| 4291.667

174.527
167.185
160.301
153.845

-758.817
-711.327
-667.089
-625.778

-758.817| 4936.083
-711.327 4591.217
-667.089 4281.522
-625.778| 4002.685

-785.496 5135910
-736.071 4770.061
-690.102| 4442.058
-647.236 4147.176

200 -

100 -

27.7 The second-order ODE can be linearized as in

2
‘;czT—l.zmeT,, +273)* =48 x107(T, +273)°(T - T,) +5(150 = T) =0

Substituting 7, = 150 and collecting terms gives

d*T
2

—-41.32974T +2357591=0
dx

Substituting a centered-difference approximation of the second derivative gives
— T, +(2 +4132974Ax) T, = Ty, = 2357591 A%

We used the Gauss-Seidel method to solve these equations. The results for a few selected points
are:

0 0.1
200 134.2765

0.2 0.3 0.4
101.5758 87.91595 87.45616

0.5

X
T 100

A graph of the entire solution along with the nonlinear result from Prob. 27.7 is shown below:

200
100 ; Linear
E Nonlinear
0+ | | | | |
0 0.1 0.2 0.3 04 0.5



27.8 For three springs

[(Rk 4 k
0 1 _(02 DAI —71142 = 0
Dml O my
(R U
_ﬁAl +Dk1_w2DA2 _£A3 = 0
m, Um, U m,
[(Rk 0
—ﬁA2 +0 L -w’id = 0
m; Umy, U

Substituting m = 40 kg and & = 240 gives

(12—m2)A1 — 64, = 0
64, +[12-w?)4, — 64, = 0
~ 64, +(12—oo2)A3 = 0

The determinant is

-0 +36w* -360w” +864 =0

which can be solved for & = 20.4853, 12, and 3.5147 s™. Therefore the frequencies are w =
4.526, 3.464, and 1.875 s™'. Substituting these values into the original equations yields for & =
20.4853,

A1 =-0.7074> = 43

for w* =12

A1 =-A4s,and =4,=0

for w? = 3.5147

A1 =0.7074, = 45

Plots:

0

NN
AL

NN NN



27.9 For 5 interior points (A = 3/6 = 0.5), the result is Eq. (27.19) with 2 — 0.25p* on the diagonal.
Dividing by 0.25 gives,

R :
- -2 -
O-4 8-p 4 0
0 -4 8-p* -4 =0
B -4 8-p* -4 g
2
O -4 8-p [

The determinant can be expanded (e.g., with Fadeev-Leverrier or the MATLAB poly function) to
give

0=—-p" +40p® -576p° +3,584p" —8960p° + 6,144
The roots of this polynomial can be determined as (e.g., with Bairstow’s methods or the
MATLAB roots function) p* = 1.072, 4, 8, 12, 14.94. The square root of these roots yields p =
1.035, 2, 2.828, 3.464, and 3.864.

27.10 Minors:

8 3-A
10 4

8§ 4

— 33 2
10 7=\ =-A° +10A° +101A + 18

e 54,2

+10

27.11 Although the following computation can be implemented on a pocket calculator, a spreadsheet
or with a program, we’ve used MATLAB.

>> a=[2 2 10;8 3 4;10 4 5]

2 2 10
8 3 4
10 4 5

First iteration:

>> x=a*x
x =
14
15
19

>> e=max (x)
e =
19

>> x=x/e

x =
0.7368
0.7895
1.0000

Second iteration:

>> x=a*x
x =
13.0526



12.2632
15.5263

>> e=max (x)
e =
15.5263

>> x=x/e

x =
0.8407
0.7898
1.0000

Third iteration:

>> x=a*x

x =
13.2610
13.0949
16.5661

>> e=max (x)
e =
16.5661

>> x=x/e

x =
0.8005
0.7905
1.0000

Fourth iteration:

>> x=a*x

x =
13.1819
12.7753
16.1668

>> e=max (x)
e =
16.1668

>> x=x/e

x =
0.8154
0.7902
1.0000

Thus, after four iterations, the result is converging on a highest eigenvalue of 16.2741 with a
corresponding eigenvector of [0.811 0.790 1].

27.12 As in Example 27.10, the computation can be laid out as

2 2 10

[A] = 8 3 4

10 4 5
First iteration: eigenvalue eigenvector
-0.05556 1.666667 -1.22222 1 0.388889 -0.3888889
0 -5 4 1 = -1 -1 1
0.111111 0.666667 -0.55556 1 0.222222 -0.2222222

Second iteration:

-0.05556 1.666667 -1.22222 -0.38889 1.959877 -0.3328092
0 -5 4 1 = -5.88889 -5.88889 1




0.111111 0.666667 -0.55556 -0.22222 0.746914 -0.1268344

Third iteration:

-0.05556 1.666667 -1.22222| -0.33281 1.840176 -0.3341317
0 -5 4 1 = -5.50734 -5.50734 1
0.111111 0.666667 -0.55556 -0.12683 0.700151 -0.1271307
Fourth iteration:
-0.05556 1.666667 -1.22222 -0.33413 1.840611 -0.3341389
0 -5 4 1 = -5.50852 -5.50852 1
0.111111 0.666667 -0.55556 -0.12713 0.700169 -0.1271065

Thus, after four iterations, the estimate of the lowest eigenvalue is 1/(—=5.5085) = —0.1815 with
an eigenvector of [-0.3341 1 -0.1271].

27.13 Here is VBA Code to implement the shooting method:

Public hp As Single, Ta As Single
Option Explicit
Sub Shoot ()

Dim n As Integer, m As Integer, i As Integer, j As Integer

Dim x0 As Single, xf As Single

Dim x As Single, y(2) As Single, h As Single, dx As Single, xend As Single
Dim xp (200) As Single, yp(2, 200) As Single, xout As Single

Dim z01 As Single, z02 As Single, TOl As Single, T02 As Single

Dim TO As Single, Tf As Single

Dim Tfl As Single, Tf2 As Single

'set parameters

n =2

hp = 0.01
Ta = 20
x0 = 0

TO = 40
xf = 10
Tf = 200
dx = 2
xend = xf
xout = 2
'first shot
x = x0
y(1l) = TO
y(2) =10

Call RKsystems(x, y, n, dx, xf, xout, xp(), yp(), m)
z01 = yp(2, 0)

Tfl = yp (1, m)

'second shot

x = x0
y(1l) = TO
yv(2) = 20

Call RKsystems(x, y, n, dx, xf, xout, xp(), yp(), m)
202 = yp(2, 0)
Tf2 = yp(1, m)
'last shot
x = x0
y(1l) = TO
'linear interpolation
y(2) = z01 + (z02 - z01) / (Tf2 - Tfl) * (Tf - Tfl)
Call RKsystems(x, y, n, dx, xf, xout, xp(), yp(), m)
'output results
Range ("a4:C1004") .ClearContents
Range ("A4") .Select
For 7 =0 Tom
ActiveCell.Value = xp(j)



For i =1 To n
ActiveCell.Offset (0, 1).Select
ActiveCell.Value = yp (i, 7J)

Next i

ActiveCell.Offset (1, -n).Select
Next j
Range ("A4") .Select
End Sub

Sub RKsystems(x, y, n, dx, xf, xout, xp, yp, m)
Dim i As Integer
Dim xend As Single, h As Single

m= 0

For i =1 To n
yp (i, m) = y(i)

Next i

Do

xend = x + xout

If xend > xf Then xend = xf

h = dx

Do
If xend - x < h Then h = xend - x
Call RK4(x, y, n, h)
If x >= xend Then Exit Do

Loop

m=m+ 1

xp(m) = x

For i =1 To n

yp (i, m) = y(i)

Next i

If x >= xf Then Exit Do
Loop
End Sub

Sub RK4 (x, y, n, h)

Dim i

Dim ynew, dydx(10), ym(10), ye(10)
Dim k1 (10), k2(10), k3(10), k4(10)
Dim slope (10)

Call Derivs(x, vy, kl)

For i =1 To n

ym(i) = y(i) + k1(i) * h / 2
Next i
Call Derivs(x + h / 2, ym, k2)
For i =1 To n

ym(i) = y(i) + k2(i) * h / 2
Next i
Call Derivs(x + h / 2, ym, k3)
For i =1 To n

ye(i) = y(i) + k3(i) * h
Next i
Call Derivs(x + h, vye, k4)
For i =1 To n

slope (i) = (kl1(i) + 2 * (k2(i) + k3(i)) + k4(i)) / 6
Next i
For i =1 To n

y(i) = y(i) + slope(i) * h
Next i
X = x + h
End Sub

Sub Derivs(x, y, dydx)

dydx (1) = y(2)
dydx (2) hp *
End Sub

(y(1) - Ta)
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27.15 A general formulation that describes Example 27.3 as well as Probs. 27.3 and 27.5 is

d’y
dx?

a

Y rept f(0)=0
dx

Finite difference approximations can be substituted for the derivatives:

=2V,
ay1+1 Ai/;

Collecting terms

2Ax

+ y. A VS
yz—l +byz+1 yz—l +Cy,-+f(x,-):()

~(a=-0.5b0)y,, +(2a+cix? |y, —(a+0.5bAx)y,,, = f(x,)Dx>

The following VBA code implants this equation as applied to Example 27.3.




Publ
Opti
Sub
Dim
Dim
Dim
Dim
Dim

ic hp As Single,
on Explicit

FDBoundaryValue ()
ns As Integer,
a As Single, b As
e (100) As Single,
r(100) As Single,

dx As Sing

i As Integer

Single, c
£(100) As
y(100) As

le

As Single

Single,
Single

g(100) As Single

Lx As Single,

xx As Single,

x(100) As Single

Lx
dx

10

= 2

ns Lx / dx
xx = 0

hp = 0.01

a =1

b =20

c

(2 * dx))
~2 4+ Db/

r(ns - ff(x(ns - 1))
Sheets ("Sheet2") .Select
Range ("a5:d105") .ClearContents
Range ("ab") .Select
For i 1 To ns - 1
ActiveCell.Value =
ActiveCell.Offset (0
ActiveCell.Value =
ActiveCell.Offset (0
ActiveCell.Value =
£t (0
1

/ dx

(0]

R Dy =

W= — — — — — —

.Select

Hh ~

.Select

ActiveCell.Offse

ActiveCell.Value

ActiveCell.Offset (
Next i
Range ("ab") .Select
Call Tridiag(e, £, g, r,
Sheets ("Sheetl") .Select
Range ("a5:b105") .ClearContents
Range ("ab") .Select

.Select

K~ Q-

) .Select

4

ns - 1, vy)

For i = 0 To ns
ActiveCell.Value = x (i)
ActiveCell.Offset (0, 1).Select
ActiveCell.Value = y (i)
ActiveCell.Offset (1, -1).Select
Next i
Range ("ab") .Select
End Sub
Sub Tridiag(e, £, g, r, n, x)
Dim k As Integer
For k = 2 To n
e(k) = e(k) / f£f(k - 1)
f(k) = £(k) - e(k) * gk - 1)
Next k
For k = 2 To n
r(k) = r(k) - e(k) * r(k - 1)
Next k
x(n) = r(n) / f(n)

(2 * dx))
* dx))

* dx))

(2 * dx))

N2

* y(0)

- b/ (2 * dx))

* y(ns)



For k = n - 1 To 1 Step -1

x(k) = (r(k) - g(k) * x(k + 1)) / £(k)
Next k
End Sub
Function ff (x)
ff = hp * 20
End Function
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1 |Example 27.3
]
=
|4 1x ¥
= a 40 250
B 2 B5.969583
i 4] 89377847 R an
E8:] 6 1245382 150
9 8 1589.4795
0 10 20 100
11 50
EE
EER 0+ T T T T T ]
14 0 2 4 [ i} 10 12
G
27.16
&L | B ] D e |
| 1 Prob. 273
B
D
4 gx ¥ |
5 i 200 250
53 1 1454833
S 2 111816 R 2l
RN 3 86.32983 150
3 4 B9 47659
Ecl 5 5957101 100
il 6 5562252 50
12 7| 5723628
13 B 6457366 0 - ; ; ; ; ' '
14 g 7835842 0 2z 4 6 8 10 12
15| 10 100
A i B D F [ G [ H | | J | K [
| 1 |Prob. 27 5
0
N
4 s ¥ |
B 0 5 1
B 2 4257066 12 §
ES 4 462351 RO 104
8 6 5 EON062 8
S35 g B.960925 6 4
10 10 8.536414 4|E
il 12 10.18645
13 14 11.72749 2
13 16 1278088 0 ' - ' ' '
14 18 12.39044 0 H] 10 13 20 25
|15 20 8
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Option Explicit
Sub Power ()
Dim n As Integer, i As Integer, iter As Integer
Dim aa As Single, bb As Single
Dim a (10, 10) As Single, c(10) As Single
Dim lam As Single, lamold As Single, v (10) As Single

Dim

es As Single,

ea As Single




es = 0.001

aa = 2 / 0.5625
bb = -1 / 0.5625

a(l, 1) = aa

a(l, 2) = bb

For i =2 Ton -1
a(i, 1 - 1) = bb
a(i, 1) = aa
a(i, 1 + 1) = bb

Next i

a(i, 1 - 1) = bb

a(i, 1) = aa

lam = 1

For i =1 To n
v(i) = lam

Next i

Sheets ("sheetl") .Select
Range ("a3:b1000") .ClearContents
Range ("a3") .Select
Do
iter = iter + 1
Call Mmult(a(), (v()), v(), n, n, 1)
lam = Abs (v (1))
For i = 2 To n
If Abs(v(i)) > lam Then lam = Abs(v(i))
Next i

ActiveCell.Value = "iteration: "
ActiveCell.Offset (0, 1).Select
ActiveCell.Value = iter
ActiveCell.Offset (1, -1).Select
ActiveCell.Value = "eigenvalue: "
ActiveCell.Offset (0, 1).Select
ActiveCell.Value = lam
ActiveCell.Offset (1, -1).Select
For i =1 To n

v(i) = v(i) / lam
Next i
ActiveCell.Value = "eigenvector:"
ActiveCell.Offset (0, 1).Select
For i =1 To n

ActiveCell.Value = v (i)
ActiveCell.Offset (1, 0).Select
Next i
ActiveCell.Offset (1, -1).Select
ea = Abs((lam - lamold) / lam) * 100
lamold = lam
If ea <= es Then Exit Do
Loop

End Sub
Sub Mmult(a, b, ¢, m, n, 1)

Dim i As Integer, j As Integer, k As Integer
Dim sum As Single

For i =1 To n
sum = 0
For k = 1 Tom
sum = sum + a(i, k) * b (k)
Next k
c (i) = sum
Next i

End Sub
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j As Integer

A B | € | B | |
1 |Example 27.7
2
3 literation: 1
: RUN
4 leigenvalue: 1.777778
5 leigenvector: 1
B 1]
i 1
5]
3 |iteration: 2
10 |eigenvalue: = 3.555556
11 |eigenvector: 1
e 1
13 1
14
15 |iteration: 3
1B |eigenvalue:  7.111111
17 |eigenvector: 0.75
18 -1
19 0.75
°
[ ]
[ ]
a7 |iteration: 10
55 |eigenvalue: | 6.069717
od leigenvector: | 0707107
B0 1
BT 0.707107
Option Explicit
Sub Power ()
Dim n As Integer, i As Integer, iter As Integer,
Dim aa As Single, bb As Single
Dim a (10, 10) As Single, c(10) As Single
Dim lam As Single, lamold As Single, v (10) As Single
Dim es As Single, ea As Single
Dim x(10) As Single, ai(10, 10) As Single
es = 0.0000011
n =3
aa =2 / 0.5625
bb = -1 / 0.5625
a(l, 1) = aa
a(l, 2) = bb
For i = 2 Ton -1
a(i, 1 - 1) = bb
a(i, 1) = aa
a(i, 1 + 1) = bb
Next i
a(i, 1 - 1) = bb
a(i, 1) = aa
Call LUDminv(a(), n, x())
lam =1
For 1 =1 To n
v(i) = lam



Sheets ("sheetl") .Select
Range ("a3:371000") .ClearContents
Range ("a3") .Select

ActiveCell.Value = "Matrix inverse:"
ActiveCell.Offset (1, 0).Select
For i =1 To n

For j =1 To n
ActiveCell.Value = a(i, 3J)
ActiveCell.Offset (0, 1).Select
Next j
ActiveCell.Offset (1, -n).Select
Next i
ActiveCell.Offset (1, 0).Select

Do
iter = iter + 1
Call Mmult(a(), (v()), v(), n, n, 1)
lam = Abs (v (1))
For i = 2 To n
If Abs(v(i)) > lam Then lam = Abs(v(i))
Next i

ActiveCell.Value = "iteration: "
ActiveCell.Offset (0, 1).Select
ActiveCell.Value = iter
ActiveCell.Offset (1, -1).Select
ActiveCell.Value = "eigenvalue: "
ActiveCell.Offset (0, 1).Select
ActiveCell.Value = lam
ActiveCell.Offset (1, -1).Select
For i =1 To n

v(i) = v(i) / lam
Next i
ActiveCell.Value = "eigenvector:"
ActiveCell.Offset (0, 1).Select
For i =1 To n

ActiveCell.Value = v (i)
ActiveCell.Offset (1, 0).Select
Next i
ActiveCell.Offset (1, -1).Select
ea = Abs((lam - lamold) / lam) * 100
lamold = lam
If ea <= es Then Exit Do
Loop

End Sub
Sub Mmult(a, b, ¢, m, n, 1)

Dim i As Integer, j As Integer, k As Integer
Dim sum As Single

For 1 =
sum =
For k

sum

Next k

c (i) = sum
Next i

| ©or

I
0
o
3
+
QO

Pi
z

*

o
z

End Sub

Sub LUDminv(a, n, Xx)

Dim i As Integer, j As Integer, er As Integer

Dim o(3) As Single, s(3) As Single, b(3) As Single
Dim ai (10, 10) As Single, tol As Single

tol = 0.00001
Call Decompose(a, n, tol, o(), s(), er)
If er = 0 Then
For i =1 To n
For j =1 To n
If i = j Then



b(j) =1
Else
b(j) =0
End If
Next j
Call Substitute(a, o, n, b, x)
For j =1 To n
ai(3, i) = x(3)
Next jJ
Next i
End If
For i =1
For j =
a(i,
Next j
Next i
End Sub

To n
1 To n
j) = ai(i, J)

Sub Decompose(a, n, tol, o, s, er)
Dim i As Integer, j As Integer, k As Integer
Dim factor As Single
For i =1 To n
o(i) = 1
s(i) = Abs(a(i, 1))
For j = 2 To n
If Abs(a(i, j)) > s(i) Then s(i) = Abs(a(i, 3J))
Next j
Next i
For k =1 Ton -1
Call pivot(a, o, s, n, k)
If Abs(a(o(k), k) / s(o(k))) < tol Then

er = -1
Exit For
End If

For i =k + 1 Ton
factor = a(o(i), k) / a(o(k), k)

a(o(i), k) = factor
For J =k + 1 Ton
a(o(i), j) = a(o(i), 3J) - factor * a(o(k), 3J)
Next j
Next i
Next k
If (Abs(a(o(k), k) / s(o(k))) < tol) Then er = -1
End Sub

Sub Pivot(a, o, s, n, k)
Dim ii As Integer, p As Integer
Dim big As Single, dummy As Single

p =k
big = Abs(a(o(k), k) / s(o(k)))
For ii = k 1 Ton

+
dummy = Abs(a(o(ii), k) / s(o(ii)))
If dummy > big Then
big = dummy
p = ii
End If
Next ii
dummy = o (p)
o(p) = o(k)
o (k) = dummy
End Sub

Sub Substitute(a, o, n, b, x)
Dim k As Integer, i As Integer, j As Integer
Dim sum As Single, factor As Single
For k =1 Ton -1
For i =k + 1 Ton
factor = a(o(i), k)
b(o(i)) = b(o(i)) - factor * b(o(k))
Next i
Next k
x(n) = b(o(n)) / a(o(n), n)
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For i = n - 1 To 1 Step -1
sum = 0
For J =1+ 1 Ton
sum = sum + a(o(i), J) * x(J)
Next J
x(i) = (b(o(i)) - sum) / a(o(i), i)
Next 1
End Sub
| A [ 8 [ ¢ | b | E | E |
1 |Example 27.8
|z
3 |Matrix inverse: RUN
4 0.421875 0.28125 0.140625
L 0.28125 05625 0.28125
B | 0.140624985 0.28125 0.421875
{
g |iteration: 1.0000
9 |eigenvalue: 1.125
10 |eigenvector: 0.75
A1 1
iz d 0.75
13
14 |iteration: 2
15 eigenvalue: 0.984375
16 |eigenvector:  0.714286
e 1
18 0.714286
__E_EII iteration: ]

51 |eigenvalue: = 0.960248

_":.'fleigenuemur: 0707107

53 | 1

a4 | 0.707107

This problem can be solved by recognizing that the solution corresponds to driving the
differential equation to zero. To do this, a finite difference approximation can be substituted for
the second derivative to give

T_, -2T +T B}
R="EL =00 TR 12 x1077(T +273)* +5(150 - T)

where R = the residual, which is equal to zero when the equation is satisfied. Next, a
spreadsheet can be set up as below. Guesses for 7' can be entered in cells B11:B14. Then, the
residual equation can be written in cells C11:C14 and referenced to the temperatures in column
B. The square of the R’s can then be entered in column D and summed (D17). The Solver can
then be invoked to drive cell D17 to zero by varying B11:B14. The result is as shown in the
spreadsheet. A plot is also displayed below.



A B C D
1 |E 1
2 |sigma 1.20E-07
3 |k 5
4 |Ta 150
5 |10 200
6 [Tn 100
7 [dx 0.1
8
9 X T R RA2
10 0 200
11 0.1] 133.015] 4.32E-05] 1.87E-09
12 0.2| 97.79076|40.000185| 3.42E-08
13 0.3] 82.63883] -0.00076] 5.8E-07
14 0.4| 83.31515] 0.001114| 1.24E-06
15 0.5 100
16
17 SSR 1.86E-06

=sum(D11:D14)

=(B10-2*B11+B12)/$B$7/2-$B$2*(B11+273)"4+$B$3*($B$4-B11)

200

150

100

50

0

o

0.1

0.2

0.3

04 0.5



27.20 First, an m-file containing the system of ODEs can be created and saved (in this case as
odesys.m),

function dy = predprey(t,y)
dy=[0.3*y(1)-1.5*y (1) *y(2);-0.1*y (2)+0.036*y (1) *y(2)];

Then, the following MATLAB session is used to generate the solution:
>> [t,y]=0ded5('odesys', [0 100],[1;.05]1);
A plot of the solution along with the state-space plot are generated with

>> plot (t,y)
>> plot(y(:,1),v(:,2))

These plots are displayed below

0.5+

60 80 100 0 10

27.21 First, the 2nd-order ODE can be reexpressed as the following system of 1st-order ODE’s

d _
dt

LZ =—-8.333333z -1166.667x

Next, we create an m-file to hold the ODEs:

function dx=spring(t,y)
dx=[y(2);-8.333333*y(2)-1166.667*y (1) ]

Then we enter the following commands into MATLAB

[t,y]=0ded5('spring', [0 .4],[0.3;0])
plot(t,y(:,1));

The following plot results:



0 0.1 0.2 0.3 04
(b) The eigenvalues and eigenvectors can be determined with the following commands:

>> a=[0 -1;8.333333 1166.667];
>> format short e
>> [v,d]=eig(a)

v =
-9.9997e-001 8.5715e-004
7.1427e-003 -1.0000e+000

d =

7.1429e-003 0
0 1.1667e+003

27.22 This problem is solved in an identical fashion to that employed in Example 27.12. For part (a),
the solution is as displayed in the following plot:

6,,

(b) The solution for this set of equations is laid out in Sec. 28.2 (Fig. 28.9).
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Boundary Value Problem
1. x-spacing

at x=0, i=1;and at x=2, i=n

[
|
(=]

Ax =

S
I
—_

2. Finite Difference Equation
2
d—u2 + 6% —u=2
dx d
Substitute in finite difference approximations
"i+1‘“i2+“i—1 Pt bl | Cu=2
Ax - 2Ax

[1-3(Ax)Ju;_y + [—2—Ax2]uz+ [1+3Ax]u;, = 2457
Coefficients
a;=1-3(A%) b =-2-Ax" ¢ =1+3Ax d; =244

3. End point equations

i=2 [1-3(Ax)]10 + [- 2 — Ax*Ju, + [1 + 3Ax]u, = 2Ax°
Coefficients
a,=0 by = -2-A% ¢, =1+3Ax  d, = 2Ax* - 10(1-3(Ax))

i=n-1 [1-3(Ax)Ju,_,+[-2 —Ax2]u,,_1 +[1+3Ax]1 = 2Ax2
Coefficients

a,_; = 1-3(Ax) b, , = -2-Ax ¢, =0 d,_, = 2Ax* —(1-3(Ax))

n-1 n

$Bourdary Value Probleam
u[xx]+6ufx]-u=2
BC. u(x=0)=10 u(x=2)=1
i=gpatial index, fram 1 ton
nabering for points is i=1 to i=21 for 20 dx spaces
u(1)=10 argd u(n)=1

00 9P I I oP

n=41; Xspan=2.0;
% Constants

dx=xspan/ (n-1) ;

AR2=A*AX;

% sizing matrices
u=zeros(l,n); x=zeros(l,n);
a=zeros(1l,n); b=zeros(l,n); c=zeros(l,n); dJd=zeros(l,n);
ba=zeros(l,n); ga=zeros(l,n);



$Coefficients and Boundary Conditions
X=0:ax:2;
u(l)=10; u(n)=1l;
b(2)=-2-d2;
c(2) =143*&x;
d(2) =2*a&x2~ (1-3*ax) *10;

for i=3:n-2,

a(i)=1-3*ax;
b(i)=2-ax2;
c(i)=1+3*ax;
d(i)=2*ax2;

ed
a(n-1)=1-3*dx;
b(n-1)=-2-&2;
d(n-1) =2*&R2- (1+3*AxX) ;

$Solution by Thamas Algorithm
ba(2)=b(2);
ga(2)=d(2) /b(2};
for i=3:n-1,
ba(i)=b(i)-a(i)*c(i-1)/ba(i-1);
ga(i)=(d(i)-a(i)*ga(i-1))/ma(i);
end
$hack substitution step
u(n-1)=ga(n-1);
for i=n-2:-1:2,
u(i)=ga(i)-c(i)*u(i+l) /ka(i);
end

$Plot
plot (x,u)
title('u[xx}+6u[x]-u=2; u(x=0)=10, u(x=2)=1')
xlabel ('x -Independent Variable Range 0 to 2'); ylabel('u - Deperdent Variable')
grid

u[xx}+6u[x]-u=2; u(x=0)=10, u(x=2)=1

10 ! ! ! ! T ; ! ; !
L ] O R U SR ........ -
st ........ R
b\
° :
S .
'% 6_‘.-..‘»‘« ........ -
> :
T :
3 5—-... ..............A...‘..“....................‘...,‘...........‘.‘....,........-......‘...: ........ -
[ = :
g :
a :
a 4_,,..,..., ........ -
> §
3..... ........ -
P AU OO SUNOOONS SOPOTON PO SRS OSSRV NS T
USRI S N SRS NSNS SANSNE SNONS NSNS SN N
0 1 1 l 1 l

1 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x -Independent Variable Range 0 to 2
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1. Divide the radial coordinate into n finite points,
Ar = 1
. n-1
2. The finite difference approximations for the general point i
2
dT _Ti—2T;+T;_,

dr? - At
ar _ Ti1-Ti_4
dr 2Ar
= Ar(i-1)
3. Substituting in the finite difference approximations for the derivatives
d ,f+ LU
di rdr
Ti+_1“2T2i+Ti-1 +( 1 )(Ti+l"Ti—1)+S =0
Ar Ar(i-1) 2Ar
4. Collecting like terms results in the general finite difference equation at pint i
1 1 2
1-=——|T + 2T+[1+ ]T =-A
[ 2(;-1)] i =21 2(i-1) rs
5. End point equationat i=1
dT
E(r =0)=0
Substituting in the FD approximation gives
Ty-Ty _ 0
2Ar

where T, is a fictitious point, however we see that T, = T, for zero slope at r=0. Writing out the general
equation at point i=1 gives:

[1 (_1)}1 +[-21T, + [ 2(1_1)]T—ArS

and noting the two undefined terms 1/(2(i - 1)) add out of the equation gives (see not at end)
[-2]T, +[2]T, = -Ar’S
6. End point equation at i=n-1

[1 ’2_01——1_)}T,_2+ [-21T,_,= -A'ZS'[I + 2(i1— 1)]

7. Solve the resulting tridiagonal system of algebraic equations using the Thomas Algorithm.
8. Following program in MATLAB.

Note: An alternate solution method is to move the first point i =1 over half a Ar step. This avoids the unde-
fined quantities at the point r = 0.



%Solutions of the CCE Boaurdary Value Problem

% Trr)+(1/x)T[r]+S=0

% BC. T(r=1)=1 T[xr] (r=0)=0

% i=gpatial index, fram 1l ton

% rnurbering for points : i=1 to i=21 for 20 dr spaces

% i=1 (r=0), and i=n (r=1)

% T(n)=1 and T' (0)=0
%Constants

n=21;

dr=1/(n-1);

dr2=dr*dr;

s=1;

$sizing matrices
r=0:ar:1;
T=zeros(l,n);
a=zeros(l,n); b=zeros(l,n); c=zeros(l,n); d=zeros(l,n);
a=zeros (1,n); ga=zeros(l,n);

$Coefficients and Boundary Caditions
b(l)=-2;
c(l)=2;
d(l)=—Gr2*s
for i=2:n-2,
a(i)=1-1/(2*(i-1));
b{i)=-2;
c(i)=141/(2*(i-1));
d(i)=—ar2+*s;
ed
a(n-1)=1-1/(2* (n-2) ) ;
b(n-1)=-2;
d(n-1)=—dr2*s- (1+1/(2* (n-2)) ) ;
T(n)=1;
%$Solution by Thamas Algorithm
ba(1l)=b(l);
ga(l)=d(1) /b(1);
for i=2:n-1,
ba(i)=b(i)-a(i)*c(i-1) /ba(i-1);
ga(i)=(d(i)-a(i)*ga(i-1))/ba(i);
ed
fhack substitution step
T(n-1)=ga(n-1);
for i=n-2:-1:1,
T(i)=ga(i)-c(i)*T(i+l) /ka(i);
ed
$Plot
plot(r,T)
title('"T[rr]+(1/r)T[r1+s=0; T(1)=1, TIr](0)=0")
xlabel ('r - Radius'); ylabel('T - Tenperature')
grid
hold an
gtestt ('S=20'); gtext('S=10'); gtext('s=1')



Tlrr+-(1/0)T[r}+S=0; T(1)=1, T[r}(0)=0

7 L I 1 ! l l ! ! !
] U SO S SR SO .......... ....................................... i
=20 |
Bl ...................................... .
o E
2 E
«© .
8 b e e D e e i
5 s
i §
+ S=10 :
3.. ......................................................... ..................................... -
] S St S .................................... i
=1 :
1 1 1 | 1 1 ‘; L 1 +
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
r - Radius
27.25
By summing forces on each mass and equating that to the mass times acceleration, the resulting differential
equations are
k +k k
fl +( ! 2)xl —(—2)x2 =
m; m,
k, ky +ky ks
a0
my) 1 my my/ 3
k ks +k
G
ms/ 2 my
In matrix form
k, +k k
) ) o
* ' : 1l |0
. ky\ (ky+ ks k,
A ) G ) |
B my m, my 0
e me
my my

The k/m matrix becomes with: k; =k, = 10 N/m, k, = k; =40 N/m, and m;, = m, =m; = 1 kg

. 50 -40 0

[;l] = |-40 80 -40

0 -40 50

Solve for the eigenvalues/natural frequencies using MATLAB.



% 3 mass - 4 spring system
™ matural frequencies

kl=kd4= 10 N/m k2=k3= 40 N/m
$ mlan=ms=md = 1 kg

k=[50 -40 0; -40 80 -40; 0 -40 50]
w2=eig (km)

w=sqrt (W2)
kn =

50 -40 0
-40 80 -40
0 -40 50

6.4765
50.0000
123.5235

2.5449
7.0711
11.1141

27.26

k=1;
kmw2=[2*k, -k, -k;-k,2*k,-k; -k, -k, 2*%k];
[v,d]=eig (kmw2)

V =

0.8034 0.1456 0.5774
-0.2757 -0.7686 0.5774
-0.5278 0.6230 0.5774

d=
3.0000 0 0
0 3.0000 0
0 0 0.0000

Therefore, the eigenvalues are 0, 3, and 3. Setting these eigenvalues equal to mw?, the
three frequencies can be obtained.

m(;ol2 =00 w, =0 (Hz) I* mode of oscillation
mw,” =00 w, =-/3 (Hz) 2™ mode
mw," =00 w, =/3 (Hz) 3" mode



27.7 (a) The exact solution is
y=de” +t> +0.4¢t+0.08
If the initial condition at t=01s 0.8, A= 0,
y=t>+0.4t+0.08

Note that even though the choice of the initial condition removes the positive exponential terms,
it still lurks in the background. Very tiny round off errors in the numerical solutions bring it to
the fore. Hence all of the following solutions eventually diverge from the analytical solution.

(b) 4™ order RK. The plot shows the numerical solution (bold line) along with the exact solution
(fine line).
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()
function yp=dy (t,y)
yp=5* (y-t*2);

>> tspan=[0,5];

>> y0=0.08;

>> [t,y]=0ded5('dyl"',tspan,y0);
>> [t,y]=o0de23S('dyl',tspan,y0);
(e)

>> [t,y]=0de23TB('dyl', tspan,y0);
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CHAPTER

29.1

First iteration:

7.

9.

55.
Error:

100.

100.

100.

Second iteration:

9.

26.

68.
Error:

21.

62.

18.

Seventh iteration:

25.

46.

78.
Error:

29

500000
750000
425000

000000
000000
000000

600000
137500
068500

875000
697270
574660

013610
216590
575310

2.954020E-01
2.267362E-02
2.165254E-03

100.
100.
100.

72.
89.
29.

28.
56.
93.

.250000
.600000
.707500

000000
000000
000000

.212501
34.
88.

632000
782750

602740
604990
369720

806340
257030
082440

2.531316E-02
2.082395E-02
3.590016E-03

15
20
85

100.
100.
100.

20.
52.
85.

23.
60.

.675000
.782500
.047000

000000
000000
000000

563500
916250
500310

772710
725670

5.301830E-01

33
56
87

.932440
.921290
.501180

1.679560E-02

=

.041445E-02

1.743838E-03

29.2 The fluxes for Prob. 29.1 can be calculated as

ax=

-9.325527E-02
-7.657973E-01

-1.

aQy=
-1.
-1.
-2.

an=
1.
1.
3.

theta=

-94.
-120.
-123.

668020

132306
312262
542694

136140
519367
040984

708180
266600
265100

-2.185114E-01
-2.622653E-01
-2.186839E-01

-1.
-1.
-2.

1.
1.
2.

-99.
-99.
-95.

378297
574765
296703

395511
596454
307091

008540
455400
439100

-5.192447E-01
1.532972E-01

1.

-1.
-1.
-2.

1.
1.
2.

-110.
-83.
-65.

055520

394572
312434
280428

488101
321357
512862

421900
337820
162450



29.3 The plate is redrawn below

100°C

75°C 50 °C

0°Cc
After 15 iterations of the Liebmann method, the result is

0 100 100 100 100 100 100 100 0
50 73.6954  82.3973 86.06219 87.7991 88.54443 88.19118 85.32617 75
50 62.3814  69.8296  74.0507 76.58772 78.18341 78.8869 78.10995 75
50 55.9987 60.4898 63.72554 66.32058 68.71677 71.06672 73.23512 75
50 51.1222 524078 54.04625 56.25934 59.3027 63.42793 68.75568 75
50 46.0804  43.9764 43.79945 4537425 48.80563 54.57569 63.33804 75

50 39.2206  33.6217 31.80514 32.62971 35.95756 42.71618  54.995 75
50 271773  19.4897 17.16646 17.3681 19.66293 25.31308 38.86852 75
0 0 0 0 0 0 0 0 0

with percent approximate errors of

0 0 0 0 0 0 0
0.0030 0.0040 0.0043 0.0049 0.0070 0.0114 0.0120
0.0050 0.0062 0.0057 0.0055 0.0079 0.0120 0.0109
0.0062 0.0067 0.0036 0.0007 0.0007 0.0097 0.0241
0.0076 0.0066 0.0020 0.0106 0.0067 0.0164 0.0542
0.0106 0.0079 0.0033 0.0074 0.0077 0.0400 0.1005
0.0149 0.0099 0.0119 0.0327 0.0630 0.1192 0.2343
0.0136 0.0013 0.0302 0.1259 0.2194 0.2925 0.7119

0 0 0 0 0 0 0

OO OO0 O0OO0OO0OO0o
O OO 0000 OoOOo

29.4 The solution is identical to Prob. 29.3, except that now the top edge must be modeled.
This means that the nodes along the top edge are simulated with equations of the form

4T - T,

i,j i-1,j

-T

i+,

The resulting simulation (after 14 iterations) yields

50 50.38683 51.16385 52.6796 55.17802 58.7692 63.41846 68.9398 75
50 50.17211 50.76425 52.15054 54.58934 58.20129 62.96008 68.67918 75
50 49.51849 49.56564 50.58556 52.86931 56.56024 61.64839 67.93951 75
50 48.31607 47.39348 47.78093 49.79691 53.61405 59.2695 66.58047 75
50 46.33449 43.91569 43.37764 44.99165 48.94264 55.38806 64.29121 75
50 43.09381 38.56608 36.8614 37.93565 41.91332 49.21507 60.37012 75
50 37.46764 30.4051 27.61994 28.08718 31.71478 39.39338 53.1291 75
50 26.36368 17.98153 15.18654 15.20479 17.63115 23.73251 38.00928 75
0 0 0 0 0 0 0 0 0

with percent approximate errors of



0.0584 0.1318 0.2034 0.2606 0.2828 0.2493  0.1529
0.0722 0.1603 0.2473 0.3173 0.3424 0.2983 0.1862
0.0854 0.1883 0.2937 0.3788 0.4077 0.3438 0.2096
0.0933 0.2121  0.3441 0.4464 0.4754 0.3972  0.2247
0.0930 0.2300 0.3913 0.5097 0.5328 0.4468 0.2605
0.0873 0.2469 0.4299 0.5474 0.5611  0.4237 0.2747
0.0913 0.2827 0.4995 0.5852 0.5525 0.3157  0.0477
0.1131 03612 0.7054 09164 0.7958 0.5085 0.6345
0 0 0 0 0 0 0

cNeoNoNoNoNoNolNolNo]
cNeoNoNoNolNoNolNolNo]

29.5 The solution is identical to Examples 29.1 and 29.3, except that now heat balances
must be developed for the three interior nodes on the bottom edge. For example, using
the control-volume approach, node 1,0 can be modeled as

T,-T T, - T T, -T
-049(5) 1017000 + 0.49(5)20170‘0 + o.49(10)“170‘° -2(10)=0

4T,y = Ty, = Tyy = 2T,, = —81.63265

The resulting simulation yields (with a stopping criterion of 1% and a relaxation
coefficient of 1.5)

87.5 100 100 100 75
75 79.91669 77.76103 70.67812 50
75 66.88654 60.34068 55.39378 50
75 52.26597 40.84576 40.26148 50
75 27.12079 10.54741 14.83802 50

The fluxes for the computed nodes can be computed as

qx
-0.06765 0.226345 0.680145
0.359153 0.281573 0.253347

0.836779 0.29411 -0.22428

1.579088 0.300928 -0.96659
9y

-0.81128 -0.97165 -1.09285

-0.67744 -0.90442 -0.74521

-0.97426 -1.21994 -0.99362

-1.23211 -1.48462 -1.24575
qn

0.814095 0.997668 1.287216
0.766759 0.947241 0.787095
1.284283 1.254887 1.018614
2.002904 1.514811 1.576764

0 (radians)
-1.65398 -1.34193 -1.0141
-1.08331 -1.26898 -1.24309

-0.86117 -1.33422 -1.7928



|  -0.66259 -1.37081 -2.23067|

0 (degrees)
-94.7663 -76.8869 -58.1036
-62.0692 -72.7072 -71.2236
-49.3412 -76.4454 -102.72
-37.9638 -78.5416 -127.808

29.6 The solution is identical to Example 29.5 and 29.3, except that now heat balances must
be developed for the interior nodes at the lower left and the upper right edges. The
balances for nodes 1,1 and 3,3 can be written as

— 4T, +08453T,, +0.8453T,, = —1154701(T,, + T;,)

—4Ty; +0.8453T;, +0.8453T,; = —-1.154701(T3y + Ty3)

Using the appropriate boundary conditions, simple Laplacians can be used for the
remaining interior nodes. The resulting simulation yields

75 50 50 50

100 75 63.97683 55.90731 50

100 86.02317 75 63.97683 50

100 94.09269 86.02317 75 50
100 100 100 75

29.7 The nodes to be simulated are

0,3 1,3 23 3,3

P

0,2 1,2 2,2 3,2

0,1 1,1 21 3.1

50,0 1,0 2,0 3,0

o & o

Simple Laplacians are used for all interior nodes. Balances for the edges must take
insulation into account. Fo example, node 1,0 is modeled as

4Ty ~Toy =T, — 27, =0
The corner node, 0,0 would be modeled as

4Ty, — 21, - 21;,, =0



The resulting set of equations can be solved for

0 12.5 25 37.5 50
11.94853 16.08456 22.79412 30.14706 37.5
15.625 17.09559 19.94485 22.79412 25
16.36029 16.72794 17.09559 16.08456 12.5
16.36029 16.36029 15.625 11.94853 0

The fluxes can be computed as

Jx
-0.6125 -0.6125 -0.6125 -0.6125 -0.6125
-0.20267  -0.26572  -0.34453  -0.36029  -0.36029
-0.07206  -0.10584  -0.13961 -0.12385  -0.10809
-0.01801 -0.01801 0.015763  0.112592  0.175643
-5.6E-13  0.018015 0.108088 0.382812 0.585478

Jy
0.585478 0.175643  -0.10809  -0.36029 -0.6125
0.382812 0.112592  -0.12385  -0.36029 -0.6125
0.108088 0.015763  -0.13961 -0.34453 -0.6125
0.018015  -0.01801 -0.10584  -0.26572 -0.6125
0 -0.01801 -0.07206  -0.20267 -0.6125

JIn
0.847314 0.637187 0.621964 0.710611  0.866206
0.43315 0.288587 0.366116  0.509533 0.710611
0.129906 0.107004 0.197444 0.366116  0.621964
0.025477 0.025477 0.107004  0.288587 0.637187
5.63E-13  0.025477  0.129906 0.43315 0.847314

0 (radians)
2.378747 2.862322  -2.96692  -2.60987  -2.35619
2.057696  2.740799 -2.7965  -2.35619  -2.10252
2.158799 2.993743  -2.35619  -1.91589  -1.74547

2.356194  -2.35619  -1.42295 -1.17  -1.29153
3.141593 -0.7854 -0.588 -0.4869  -0.80795

0 (degrees)
136.2922 163.999  -169.992  -149.534 -135
117.8973 157.0362  -160.228 -135  -120.466
123.6901  171.5289 -135  -109.772  -100.008
135 -135  -81.5289  -67.0362 -73.999

180 -45  -33.6901 -27.8973  -46.2922



29.8 Node 0.3:

There are two approaches for modeling this node. One would be to consider it a Dirichlet node
and not model it at all (i.e., set it’s temperature at 50°C). The second alternative is to use a heat
balance to model it as shown here

(0,3)

(0,2)
T,-T T,,-T
0=05(15)(1) % - 0.5(20)(1) % +0.0120)(1)(10 - Ty )

—029752T, +4T, , - 0.52893T,, =3.17355

Node 2.3:

T -T T. -T T -T
0= ‘05(15)(1)% +0.5(15)(1) % = 0.5(30)(1) % +0.01(30)(1)(10 = T3 3)
4T, , — 0705887, , — 1411767, , — 1882357, ,

Node 2.2:

[

L, -1 T,, - T T, —T.
0=-05(225)(1) 222 +05022.5)(1) 222 - 05(30)(1]) - =>——>1
(22.5)(1) 20 (22.5)(1) 2 (30)(1) s
T, T
+05(30)(1) % +1071(7.5)?

4T, , - 0.48T,, —096T; , — 1.70667 T, — 0.85333T, , = 301593



(5,3)

(5,2)
0= —0.5(15)(1)T””32_0T“’3 - 0.5(10)(1)T5’33_0T5’2 +0.01(10)(1)(10 = T3 )

4Ty, —2.33766T, ; — 10389675, = 6.23377

29.9 Node 0.0:

A o

: O

TOO

0=0.01 o ~Top Toy — Ty,
=001(75)(D)(20 = Tye) = 07(75)(2) -+~ +0720)2)

4750 — 046069, , —3.276057) ; = 526508

Node 1.1:
- (1,2)
o (1,1)] .
0,1) T% 21
O
(1,0)

0=-07(225)(2) Tt 0.5(22.5)(2)M 07(20)2) 5, — Ty
40 20 15

~0510)2) M0 4 702002 124 o510y T2 T
' 15 ‘ 30 : 2

4T, - 0.78755T,, — 177389 T , — 0.88694 7T, , — 055142 T,, =0

Node 2.1:




e

1,1)° (?"1)‘ ©
x (3.1)

@)

(20)

L, -1, TSI_TZI Tzl_Tzo
0=-05225(2)—=——"+0.5225)(2) ——=-=0.520)(2) ="~
(22.5)(2) 2 (225)(2) 2 (20)(2) s
Tz,z - Tz,l
= 05(20)(2) T +10(22.5)(20)

4T,, - 1058827, — 1058827, , —12549T,, - 0.62745T, , =4235.29

29.10 The control volume is drawn as in

® o,
0, j-1
([

A flux balance around the node can be written as (note Ax = Ay = k)
T .-T, . T,.-T, . T .-17 .
= khite S0 k(2 ST~ k(h 2)0e S =0

Collecting and cancelling terms gices

T, T,

g " T = To e =21, =0



29.11 A setup similar to Fig. 29.11, but with 8 > 45° can be drawn as in

— 2 9
3
8 1 4
Ay
J :
6 5 |

- Ax—»

The normal derivative at node 3 can be approximated by the gradient between nodes 1
and 7,

or
on

_L-5
Ly

3

When 8 is greater than 45° as shown, the distance from node 5 to 7 is Ay cotB, and
linear interpolation can be used to estimate

Aycot
T =T +(Ig _Ts)yi

The length L7 is equal to Ay/sinB. This length, along with the approximation for 77 can
be substituted into the gradient equation to give

_OAy T

T
'“HineHan

7, Aycot® Ts@‘ Aygc)tGD

Ax

3

29.12 The following Fortran-90 program implements Liebmann’s method with relaxation.

PROGRAM liebmann

IMPLICIT NONE

INTEGER :: nx,ny,1,1i,7

REAL :: T(0:5,0:5),ea(0:5,0:5),Told(0:5,0:5)
REAL :: gy (0:5,0:5),9x(0:5,0:5),gqn(0:5,0:5),th(0:5,0:5)
REAL :: Trit,Tlef,Ttop, Thot,lam,emax,es,pi
REAL :: k,x,vy,dx,dy

nx=4

ny=4

pi=4.*atan(1l.)

x=40.

y=40.

k=0.49

lam=1.2

es=1.

dx=x/nx



dy=y/ny
Tbot=0.
Tlef=25.
Trit=50.
Ttop=150.
DO i=1,nx-1
T(i,0)=Tbot
END DO
DO i=1,nx-1
T(i,ny)=Ttop
END DO
DO j=1,ny-1
T(0,]j)=Tlef
END DO
DO j=1,ny-1
T(nx,j)=Trit
END DO
1=0
DO
1=1+1
emax=0.
DO j = 1,ny-1
DO 1 = 1,nx-1
Told(i,3)=T(i,3)
T(1,3)=(T(1+1,3)+T(i-1,3)+T(i,3+1)+T(i,3-1))/4
T(i,j)=lam*T(i,73)+(1-lam)*Told (i, J)
ea(i,j)=abs ((T(i,3j)-Told(i,j))/T(i,3j))*100.
if(ea(i,j) .GT.emax) emax=ea (i, ])
END DO
END DO
PRINT *, 'iteration = ',1
DO j = 1,ny-1
PRINT *, (T(i,J),1i=1,nx-1)
END DO
PRINT *
DO j = 1,ny-1
PRINT *, (ea(i,j),i=1,nx-1)
END DO
IF (emax.LE.es) EXIT
END DO
DO j = 1,ny-1
DO i = 1,nx-1
ay (i,3)=-k* (T (i,3+1)-T(i,3-1))/2/dy
ax (i,3)=-k* (T (i+1,3)-T(i-1,3))/2/dx
an (i, 3)=sqrt(qgy(i,J) **2+gx (i, ]) **2)
th(i,j)=atan2 (qy(i,J),agx(i,3j))*180./pi
END DO
END DO
PRINT *, 'gx="
DO j = 1,ny-1
PRINT *, (gx(i,3),1i=1,nx-1)
END DO
PRINT *, 'qy="
DO j = 1,ny-1
PRINT *I (qY(llj)ll:llnX_l)
END DO
PRINT *, 'gn="
DO j = 1,ny-1
PRINT *, (gn(i,j),i=1,nx-1)
END DO
PRINT *, 'theta="
DO j = 1,ny-1
PRINT *, (th(i,j),i=1,nx-1)
END DO
END



iteration =
42.81303
63.17175
78.57594

0.5462000

1.1274090E-02

3.1769749E-02
ax=

1.022510

0.4589829
-2.7459882E-02
qy=

-1.547708
-0.8761914
-0.9022922

qn=

1.854974

0.9891292

0.9027100
theta=

-56.54881

-62.35271

-91.74317
Press any key to

iteration =
25.01361
46.21659
78.57531

0.2954020
2.2673620E-02
2.1652540E-03
ax=
-9.3255267E-02
-0.7657973
-1.668020
qy=
-1.132306
-1.312262
-2.542694
an=
1.136140
1.519367
3.040984
theta=
-94.70818
-120.2666
-123.2651
Press any key to

6
33.26489
56.26600
76.12081

0.1074174
2.0983342E-02
3.6572997E-02

0.2174759
0.2624041
0.2188648

.378517
.049970
.071483

1.395566
1.082263
1.093608

-81.03486
-75.96829
-78.45538
continue

9
28.80634
56.25703
93.08244

2.5313158E-02
2.0823948E-02
3.5900162E-03

-0.2185114
-0.2622653
-0.2186839

-1.378297
-1.574765
-2.296703

1.395511
1.596454
2.307091

-99.00854
-99.45540
-95.43910
continue

When the program is run, the result of the last iteration is:

33.93646
52.46138
69.64268

2.4864437E-02
4.8064217E-02
2.4659829E-02

.4100102
0.1535171
0.6399599

-1.285304
-0.8748025
-1.164696

1.349116
0.8881705
1.328934

-107.6926
-80.04664
-61.21275

29.13 When the program is run, the result of the last iteration is:

33.93244
56.92129
87.50118

1.6795604E-02
1.0414450E-02
1.7438381E-03

-0.5192447
0.1532972
1.055520

-1.394572
-1.312434
-2.280428

1.488101
1.321357
2.512862

-110.4219
-83.33782
-65.16245

29.14 When the program is run, the result of the last iteration is:

iteration

38.
54.
62.
68.
72.

490
430
710
165
761

24

.764
41.
53.
62.
70.

832
570
478
301

19

19.
34.
47.
58.
67.

044
955
660
219
841

16.
31.
44 .
55.
65.

783
682
291
234
489

16.
31.
42.
53.
63.

696
041
924
215
051

19.
33.
43.
51.
60.

176 27.
110 38.
388 45.
848 50.
034 55.

028
976
799
854
780



77.795 78.373 77.594 76.027 73.595 69.522 62.233
85.175 87.944 88.261 87.530 85.843 82.249 73.624

This data can be imported into Excel and the following contour plot created:

40
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CHAPTER 30

30.1 The key to approaching this problem is to recast the PDE as a system of ODEs. Thus, by
substituting the finite-difference approximation for the spatial derivative, we arrive at
the following general equation for each node

dT,
L=k

df, T, -2T +T
dt Ax?

i+1

By writing this equation for each node, the solution reduces to solving 4 simultaneous
ODEs with Heun’s method. The results for the first two steps along with some later
selected values are tabulated below. In addition, a plot similar to Fig. 30.4, is also shown

t x=0 x=2 x=4 x=6 x=8 x=10
0 100 0 0 0 0 50
0.1 100 2.04392 0.02179 0.01089 1.02196 50
0.2 100 4.00518 0.08402 0.04267 2.00259 50
3 100 37.54054 10.2745 6.442321 18.95732 50
6 100 53.24295 24.66054 17.46032 27.92252 50
9 100 62.39033 36.64937 27.84901 34.34692 50
12 100 68.71329 46.03496  36.5421 39.53549 50
100
80
60
40
20
0

30.2 Because we now have derivative boundary conditions, the boundary nodes must be
simulated. For node 0,

L =T+ AT =205 + T.)) (i)

This introduces an exterior node into the solution at i = —1. The derivative boundary
condition can be used to eliminate this node,

dr| T -T,

dx|,  2Ax
which can be solved for

ar,

T, =T, —2Ax
dx

which can be substituted into Eq. (i) to give



dar/
T =1 +A %Tf -27¢ - 2Ax—°E

de

For our case, dTo/dx = 1 and Ax = 2, and therefore 7-, = T; + 4. This can be substituted
into Eq. (i) to give,

i =1 +N2T - 21 +4)

A similar analysis can be used to embed the zero derivative in the equation for the fifth
node. The result is

T =T+ AT -2T)

Together with the equations for the interior nodes, the entire system can be iterated with
a step of 0.1 s. The results for some of the early steps along with some later selected
values are tabulated below. In addition, a plot of the later results is also shown

t x=0 x=2 x=4 x=6 x=8 x=10
0 50.0000 50.0000  50.0000  50.0000  50.0000  50.0000
0.1 49.9165 50.0000 50.0000  50.0000  50.0000 49.9165
0.2 49.8365 49.9983  50.0000  50.0000  49.9983  49.8365
0.3 49.7597 49.9949  50.0000  50.0000  49.9949  49.7597
0.4 496861 49.9901 49.9999  49.9999  49.9901 49.6861
0.5 496153 49.9840  49.9997  49.9997  49.9840 49.6153
200 30.00022 31.80019 33.20009  34.19992 34.79981 34.99978
400 13.30043 15.10041 16.50035  17.50028 18.10024 18.30023
600 -3.40115 -1.60115 -0.20115  0.798846  1.398847 1.598847
800 -20.1055 -18.3055 -16.9055  -15.9055 -15.3055 -15.1055
1000 -36.8103 -35.0103 -33.6103  -32.6103 -32.0103 -31.8103

40 -
-

20 | —0
. |——200
i ——— 400

0 —— - — |— —600
0 2 4 6 8 10 |——-800

________________ 1000
20 F———— 777
40 0

Notice what’s happening. The rod never reaches a steady state, because of the heat loss
at the left end (unit gradient) and the insulated condition (zero gradient) at the right.

30.3 The solution for Az = 0.1 is (as computed in Example 30.1),



t x=0 x=2 x=4 x=6 x=8 X =
0 100 0 0 0 0
0.1 100 2.0875 0 0 1.04375
0.2 100 4.087847 0.043577 0.021788 2.043923
For Ar=0.05, it is
t x=0 x=2 x=4 x=6 x=8 X=
0 100 0 0 0 0
0.05 100 1.04375 0 0 0.521875
0.1 100 2.065712 1.09E-02 5.45E-03 1.032856
0.15 100 3.066454 3.23E-02 0.016228 1.533227
0.2 100 4.046528 6.38E-02 3.22E-02 2.023265

10
50
50
50

10
50
50
50
50
50

To assess the differences between the results, we performed the simulation a third time
using a more accurate approach (the Heun method) with a much smaller step size (At =
0.001). It was assumed that this more refined approach would yield a prediction close to
true solution. These values could then be used to assess the relative errors of the two

Euler solutions. The results are summarized as

x=0 X=2

Heun (h = 0.001) 100 4.006588
Euler (h =0.1) 100 4.087847
Error relative to Heun 2.0%
Euler (h = 0.05) 100 4.046528
Error relative to Heun 1.0%

x=4
0.083044

0.043577
47.5%

0.063786
23.2%

XxX=6
0.042377

0.021788
48.6%

0.032229
23.9%

x=8 x=10
2.003302 50
2.043923 50
2.0%
2.023265 50
1.0%

Notice, that as would be expected for Euler’s method, halving the step size

approximately halves the global relative error.

30.4 The approach described in Example 30.2 must be modified to account for the zero

derivative at the right hand node (i = 5). To do this, Eq. (30.8) is first written for that

node as

_}\141+1 +(1+ 2)\)TSHI _ }\T()Hl — TSI

(@)

The value outside the system (i = 6) can be eliminated by writing the finite difference

relationship for the derivative at node 5 as

dr
dx

_T,-T,

s 2Ax

which can be solved for

7=7, - 20 L
dx

5

For our case, d7/dx = 0, so Ts = T4 and Eq. (i) becomes



_2)\7—;‘l+1 +(1+2}\)7—§l+1 - 7—;]

Thus, the simultaneous equations to be solved at the first step are

104175 —0.020875 a0 208750
0020875 104175 ~0.020875 ;E E 0 E
0 0020875 104175  —0.020875 1= 0 g
0 _ _ %ID 0 O
o 0020875 104175 00208757770 B 0
H -0.04175 104175 H'g B 0 H

which can be solved for

[12.004645 [

50.040186 E

[0.000806 ]

D2 x 105U

O 0

F6.47 x 107

For the second step, the right-hand side is modified to reflect these computed values of
Tatt=0.1,

0104175  —0.020875 0070 04092145 O
0020875 104175 0020875 ;E 50.040186 E
i ~0.020875  1.04175  —0.020875 1 5= [0.000806 [
. ~0.020875  1.04175 —0.020875%;1% o162 %107 2
H —004175 104175 H'g B47x107Q

which can be solved for

(13930497 0O
50.117399 E
00003127 0

83x1070
E’783x 0=

BB.76 x 10 H

30.5 The solution is identical to Example 30.3, but with 6 segments. Thus, the simultaneous
equations to be solved at the first step are

02.06012  -0.03006

00020875 206012 —-0.03006

—0.03006 206012 -0.03006
—0.03006 206012 —0.03006

—-0.03006 2.06012

o
=
Do

=
oS o O

—_

mooOoOoad
%b_‘g w__; Ny
D:I]I:II:II:“ID]:II:II:I
A0
mMmOoOOomOadd

)
S
(=]
(@)

which can be solved for



[(2.9189000

5).042605
0.000930

021318
poarai?
H1.45945H
For the second step, the right-hand side is modified to reflect these computed values of
Tatt=0.1,
02.06012  —0.03006 |j]:l]"11 O [d1.675590
0020875 206012 ~0.03006 ;E 50.17042 E
0 -0.03006 206012 -0.03006 31 0= 00.00373 O
0 _ _ %1 0O 0 O
0 0.03006 2.06012 0.03006 7, 0 D0'08524 0
= -0.03006 206012 Hy)H H583780

which can be solved for

[5.6698601

0
16553
1o

00.005430
082821
08282

F2.83493H

The solution at # = 10 for this problem (» = 6) along with the results determined for n =
5, as in Example 30.3, are displayed in the following plot:

100 *
50 E} oo u
0 1 1 1 1 1 } 1 1 1 1 |
0 5 10

30.6 Using the approach followed in Example 30.5, Eq. (30.20) is applied to nodes (1,1),
(1,2), and (1,3) to yield the following tridiagonal equations

02167  —00835 07, 0 0626250
8—0.0835 2167 -0.08354T}, H= He2625
E -00835 2167 B, H H8.7875H

which can be solved for

T, =3.018843 T, =3345301 T, =8.798722



In a similar fashion, tridiagonal equations can be developed and solved for

T,, =0130591 T,, =0370262 T, = 6133184

and

T,, =11017962 T, =1287655 Ty, =7.029137

For the second step to ¢ = 10, Eq. (30.22) is applied to nodes (1,1), (2,1), and (3,1) to

yield

02167 -00835 07, 0 02075370
8—0.0835 2167 -0.08354T, H= Ho27029 B
E -00835 2167 FHr,H Hr060943

which can be solved for

T, =55883 T,,=0412884 T, = 1889903

Tridiagonal equations for the other rows can be developed and solved for

T,, =6308761 T,, =0902193 T,, =2430939

and

Ty, =168241 T,, =12.1614 T,,=1325121

Thus, the result at the end of the first step can be summarized as

i=0 i=1 i=2 i=3 i=4
j=4 150 150 150

=3 75 16.824  12.161 13251 25
j=2 75 6.309 0.902 2431 25
j=1 75 5.588 0413 1.89 25
=0 0 0 0

The computation can be repeated, and the results for # = 2000 s are below:

i=0 i=1 i=2 i=3 i=4
j=4 150 150 150

=3 75 98.214 97.768 80.357 25
j=2 75 70.089 62.5 48.661 25
j=1 75 44.643 33.482 26.786 25
=0 0 0 0

30.7 Although this problem can be modeled with the finite-difference approach (see Sec.
32.1), the control-volume method provides a more straightforward way to handle the
boundary conditions.

The boundary fluxes and the reaction term can be used to develop the discrete form of
the advection-diffusion equation for the interior volumes as



I I_ 1 I ! . I !
dc; ¢ —c¢ Cis] — Cj ¢ teiy +¢;

Ax i =_D i i-1 +D +U Uci+1 l_kAxcil
dt Ax Ax 2 2
or dividing both sides by Ax,
de] _ DCiI+1 -2¢f +c U ¢y +el — k!
dt Ax? 20x !

which is precisely the form that would have resulted by substituting centered finite
difference approximations into the advection-diffusion equation.

For the first boundary node, no diffusion is allowed up the entrance pipe and advection
1s handled with a backward difference,

et 2 pe2 e + Uc) _peta ~ kixe!
dt
or dividing both sides by A,
ﬁ:Dcé —chl + 2ch —ch = ¢f —kcll
dt Ax 2Ax

For the last boundary node, no diffusion is allowed through the exit pipe and advection
out of the tank is again handled with a backward difference,

+cl

I i I I
dc c, —c¢ c
-1 -1 i I

! = -Uc, — kixc,,

"n=_pD n +Uy
dt Ax 2

or dividing both sides by Ax,

dl I _ 1_ l_ _ 1
Cn :_Dcn czn1+Ucn1 cn_kci
dt Ax 2Ax

By writing these equations for each equally-spaced volume, the PDE is transformed into
a system of ODEs. Explicit methods like Euler’s method or other higher-order RK
methods can then be used to solve the system.

The results with and initial condition that the reactor has zero concentration with an
inflow concentration of 100 (using Euler with a step size of 0.005) for t = 100 are

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5
14.2042 12.6506 11.2610 10.0385 8.9847 8.1025 7.3928 6.8583 6.5000 6.3201

The results are also plotted below:



16 +

12 +

30.8
Option Explicit

Sub EulerPDE ()

Dim i As Integer, j As Integer, np As Integer, ns As Integer

Dim Te (20) As Single, dTe(20) As Single, tpr(20) As Single, Tepr (20, 20)
As Single

Dim k As Single, dx As Single, L As Single, tc As Single, tf As Single
Dim tp As Single, t As Single, tend As Single, h As Single

L =10

ns = 5

dx = 2

k = 0.835

Te (0) = 100

Te(5) = 50

tc = 0.1

tf =1

tp = 0.1

np = 0

tpr (np) = t

For 1 = 0 To ns
Tepr (i, np) = Te(i)

Next i

Do

tend = t + tp
If tend > tf Then tend = tf
h = tc
Do
If t + h > tend Then h = tend - t
Call Derivs (Te, dTe, ns, dx, k)
For j =1 Tons -1
Te(Jj) = Te(j) + dTe(j) * h
Next j
t =t +h
If t >= tend Then Exit Do
Loop
np = np + 1
) = t
= 0 To ns
(3, np) = Te(j)

tpr (np
For j

If t >= tf Then Exit Do
Loop
Sheets ("sheetl") .Select
Range ("a4") .Select
For 1 = 0 To np

ActiveCell.Value = tpr(i)

For j = 0 To ns
ActiveCell.Offset (0, 1).Select
ActiveCell.Value = Tepr(j, 1)

Next j



ActiveCell.Offset (1, -ns - 1).Select
Next i

End Sub
Sub Derivs (Te, dTe, ns, dx, k)

Dim j As Integer
For 3 = 1 To ns - 1
dTe(j) = k * (Te(j - 1) - 2 * Te(j) + Te(j + 1)) / dx ~ 2
Next j
End Sub

30.9 This program is set up to either use Dirichlet or gradient boundary conditions depending
on the values of the parameters istrt and iend.

Option Explicit
Sub EulerPDE ()

Dim i As Integer, j As Integer, np As Integer, ns As Integer

Dim istrt As Integer, iend As Integer

Dim Te(20) As Single, dTe(20) As Single, tpr(200) As Single, Tepr (20,
200) As Single

Dim k As Single, dx As Single, L As Single, tc As Single, tf As Single
Dim tp As Single, t As Single, tend As Single, h As Single

Dim dTedx (20) As Single

L =10

ns = 5

dx = 2

k = 0.835

dTedx (0) =1

istrt = 0

dTedx (ns) = 0

iend = ns

Te (0) = 50

Te(1l) = 50

Te(2) = 50

Te(3) = 50

Te (4) = 50

Te (5) = 50

tc = 0.1

tf = 1000

tp = 200

np = 0

tpr (np) = t

For i = 0 To ns
Tepr (i, np) = Te(i)

Next i

Do

tend = t + tp
If tend > tf Then tend = tf
h = tc
Do
If t + h > tend Then h = tend - t
Call Derivs(Te(), dTe(), istrt, iend, ns, dx, k, dTedx())

For j = istrt To iend
Te(j) = Te(Jj) + dTe(J) * h

Next j

t =t +h

If t >= tend Then Exit Do
Loop
np = np + 1
tpr(np) = t
For j = 0 To ns

Tepr (j, np) = Te(J)
Next j

If t >= tf Then Exit Do
Loop



Sheets ("sheetl") .Select
Range ("a4") .Select

For 1 = 0 To np
ActiveCell.Value = tpr(i)
For 7 = 0 To ns
ActiveCell.Offset (0, 1) .Select
ActiveCell.Value = Tepr(j, 1)
Next j
ActiveCell.Offset (1, -ns - 1).Select
Next i
End Sub
Sub Derivs (Te, dTe, istrt, iend, ns,
Dim j As Integer
If istrt = 0 Then

dTe(0) = k * (2 * Te(l) - 2 * Te(0)
End If
For 3 = 1 To ns - 1

dTe(j) = k * (Te(j - 1) - 2 * Te(])
Next j
If iend = ns Then

dTe(ns) = k * (2 * Te(ns - 1) - 2 *
~2
End If
End Sub

30.10
Option Explicit

Sub SimpImplicit()
Dim
Dim
Dim
Dim

np, ns,
Te (10),
k, dx,
e(10),

i, J, n

dTe (10), tpr(100), Tepr (10
L, tc, tf, tp, t, tend, h,
£(10), g(10), r(10), x(10),

10#
ns = 5

dx,

- 2 * dx * dTedx(0))

+ Te(j + 1))

Te (ns)

, 100),
lambda
xrod

L / ns
35

1004
504

[ Iee)

tend = t
If tend
h = tc
Do
If t +
lambda
f(1) =

r(l) =
For j
e(J)

To ns - 1
Tei

+ tp

> tf Then tend = tf

tend - t
k *h / dx ~ 2

h > tend Then h =
1 + 2 * lambda

= —-lambda

Te(l) + lambda * Te(0)
= 2 To ns - 2
= —-lambda

k, dTedx)

/ dx ~ 2

/ dx ~ 2

+ 2 * dx * dTedx(ns))

Tei As Single

/ dx



f(3) =1 + 2 * lambda
g(j) = -lambda
r(j) = Te(3)
Next j
e(ns - 1) = -lambda
f(ns - 1) =1 4+ 2 * lambda
r(ns - 1) = Te(ns - 1) + lambda * Te(ns)
Call Tridiag(e(), £, g(), (), Te(), ns - 1)
t =t + h
If t >= tend Then Exit Do
Loop
np = np + 1
tpr (np) =t
For 7 = 0 To ns
Tepr (j, np) = Te(])
Next j
If t >= tf Then Exit Do

Loop

Range ("b5") .Select
xrod = 0
For 7 = 0 To ns
ActiveCell.Value = xrod
ActiveCell.Offset (0, 1) .Select
xrod = xrod + dx
Next j
Range ("a6") .Select
For 1 = 0 To np
ActiveCell.Value = "t = " & tpr(i)
For 7 = 0 To ns
ActiveCell.Offset (0, 1) .Select
ActiveCell.Value = Tepr(j, 1)
Next j
ActiveCell.Offset (1, -ns - 1).Select
Next i
Range ("a6") .Select

End Sub

Sub Tridiag(e, £, g, ¥, %, n)

Call Decomp(e, £, g, n)
Call Substit(e, £, g, r, n, x)

End Sub
Sub Decomp (e, f, g, n)

Dim k As Integer
For k = 2 To n

e(k) = e(k) / f(k - 1)
f(k) = £(k) - e(k) * g(k - 1)
Next k

End Sub
Sub Substit(e, £, g, ¥, n, x)
Dim k As Integer

For k = 2 To n
= r(k) - e(k) * r(k = 1)

30.11

Option Explicit



Sub CrankNic ()
Dim
Dim
Dim
Dim

np, ns,
Te (10),
k, dx,
e (10),

i, j, n

dTe (10), tpr(100),
L, tc, tf, tp, t, tend, h,
£(10), g(10), r(10), x(10)

104
=5
L / ns
.835
1004#
504#

tend t + tp
If tend > tf Then tend
h tc
Do
If t + h > tend Then h =
lambda k *h / dx ~ 2
£(1) 2 * (1 + lambda)
= —-lambda
lambda * Te(0) + 2 *
r(l) + lambda * Te(0)
2 To ns - 2
—-lambda
2 * (1 + lambda)
—-lambda
lambda * Te (J

tf

(1

1)

= —-lambda
2 * (1 + lambda)
lambda * Te (ns

1)
lambda * Te (ns)
r(ns 1)
Call Tridiag
t t + h
If t >= tend Then Exit Do
Loop
np = np
tpr (np)
For j =
Tepr (3,
Next j
If t >= tf Then Exit Do
Loop

2)

+ lambda *

r(ns - 1)
(e(), £O, g0, v,

1
t
To ns

np)

+
0

Te (3)

Range ("b5") .Select

xrod 0

For j 0 To ns
ActiveCell.Value xrod
ActiveCell.Offset (0, 1) .Select
xrod xrod + dx

Next j

Range ("a6") .Select

For 1i 0 To np
ActiveCell.Value =
For j 0 To ns

ActiveCell.Offset (0,

"t o= " & tpr(i)

1) .Select

Tepr (10,

tend - t

+ 2 *

100),
lambda
, xrod

Tei As Single

lambda) * Te(l) + lambda * Te (2)

(1 - lambda) * Te(]j) + lambda * Te

*

+ 2 (1

lambda)

* Te(ns 1) +

Te (ns)

Te(), ns - 1)



ActiveCell.Value = Tepr(j, 1)
Next j
ActiveCell.Offset (1, -ns - 1).Select
Next i
Range ("a6") .Select
End Sub
Sub Tridiag(e, £, g, ¥, %X, n)

Call Decomp(e, £, g, n)
Call Substit(e, f, g, r, n, x)

End Sub

Sub Decomp (e, £, g, n)

Dim k As Integer

For k = 2 To n
e (k) = e(k)
f(k) = f(k)

Next k

End Sub

/ £k - 1)
- e

Sub Substit(e, £, g, r,

Dim k As Integer
For k = 2 To n

End Sub

30.12 Here is VBA code to solve this problem. The Excel output is also attached showing
values for the first two steps along with selected snapshots of the solution as it evolves

in time.

Option Explicit

Tei As Single

tp As Single

As Single, r(10) As

Sub ADI ()

Dim np As Integer, i As Integer, j As Integer

Dim nx As Integer, ny As Integer

Dim Lx As Single, dx As Single

Dim Ly As Single, dy As Single

Dim Te (10, 10) As Single, dTe(10, 10) As Single

Dim tpr(100) As Single, Tepr (10, 10, 100) As Single,

Dim k As Single

Dim dt As Single, ti As Single, tf As Single,

Dim t As Single, tend As Single, h As Single

Dim lamx As Single, lamy As Single

Dim e (10) As Single, £f(10) As Single, g(10)
Single

'set computation parameters

Lx = 40

nx = 4

dx = Lx / nx

Ly = 40

ny = 4

dy = Ly / ny

k = 0.835

dt = 10

tf = 500

ti =0

tp = 10

Tei = 0

'set top boundary

For i = 1 To nx - 1
Te (i, ny) = 100
Next i

'set bottom boundary
For 1 = 1 To nx - 1
Te(i, 0) =0

Single, Ted(10) As



Next 1
'set left boundary

For 3 =1 To ny - 1
Te (0, J) = 75
Next j

'set right boundary

For j = 1 To ny - 1
Te (nx, j) = 50
Next jJ
'set corners for plot
Te(0, 0) = (dy * Te(l, 0) + dx * Te(0, 1)) / (dy + dx)
Te(nx, 0) = (dy * Te(nx - 1, 0) + dx * Te(nx, 1)) / (dy + dx)
Te (0, ny) = (dy * Te(l, ny) + dx * Te(0, ny - 1)) / (dy + dx)
Te(nx, ny) = (dy * Te(nx - 1, ny) + dx * Te(nx, ny - 1)) / (dy + dx)
'set interior
For i = 1 To nx - 1
For j =1 To ny - 1
Te(i, j) = Tei
Next jJ
Next i
'save initial values for output
np = 0
t = ti
tpr(np) =t
For 1 = 0 To nx
For j = 0 To ny
Tepr (i, j, np) = Te(i, j)
Next jJ
Next i
Do
tend = t + tp
If tend > tf Then tend = tf
h = dt
Do
If t + h > tend Then h = tend - t
'Sweep y
lamx = k * h / dx ~ 2
lamy = k * h / dy *~ 2
For i = 1 To nx - 1
f(l) =2 * (1 + lamy)
g(1) = -lamy
r(l) = lamx * Te(i - 1, 1) + 2 * (1 - lamx) * Te(i, 1) + lamx * Te(i + 1, 1)
+ lamy * Te(i, O0)
For j = 2 To ny - 2
e(j) = -lamy
£(3) =2 * (1 + lamy)
g(j) = -lamy
r(j) = lamx * Te(i - 1, J) + 2 * (1 - lamx) * Te(i, j) + lamx * Te(i + 1, j)
Next j
e(ny - 1) = -lamy
f(ny - 1) =2 * (1 + lamy)
r(ny - 1) = lamx * Te(i - 1, ny - 1) + 2 * (1 - lamx) * Te(i, ny - 1) _
+ lamx * Te(i + 1, ny - 1) + lamy * Te (i, nx)
Call Tridiag(e(), £0), g(), r(), Ted(), nx - 1)
For j = 1 To ny -
Te(i, 3j) = Ted(3J)
Next jJ
Next i
t=t+h/2
'Sweep x
For 3 =1 To ny - 1
f(1) = 2 * (1 + lamx)
g(l) = -lamx
r(l) = lamy * Te(l, j - 1) + 2 * (1 - lamy) * Te(l, j) + lamy * Te(l, j + 1) _
+ lamx * Te (0, 7J)
For i = 2 To nx - 2
e(i) = -lamx
f(i) = 2 * (1 + lamx)
g(i) = -lamx
r(i) = lamy * Te(i, j - 1) + 2 * (1 - lamy) * Te(i, j) + lamy * Te(i, j + 1)
Next i
e(nx - 1) = -lamx
f(nx - 1) =2 * (1 + lamx)
r(nx - 1) = lamy * Te(nx - 1, j - 1) + 2 * (1 - lamy) * Te(nx - 1, J) _
+ lamy * Te(nx - 1, j + 1) + lamx * Te(ny, J)
Call Tridiag(e(), £0, g0, r(), Ted(), nx - 1)
For i = 1 To nx - 1
Te(i, j) = Ted(i)
Next i
Next j
t=t+h/2

If t >= tend Then Exit Do



Lo
'o
Ra
Ra
Fo

Loop
'save values for output
np = np + 1

tpr(np) = t
For 1 = 0 To nx
For j = 0 To ny
Tepr (i, j, np) = Te(i, Jj)
Next j
Next 1
If t >= tf Then Exit Do
op

utput results back to sheet
nge ("a5") .Select
nge ("a5:e2005") .ClearContents
r k = 0 To np
ActiveCell.Value = "t = " & tpr(k)
ActiveCell.Offset (1, 0).Select
For j = ny To 0 Step -1
For i = 0 To nx
ActiveCell.Value = Tepr(i, j, k)
ActiveCell.Offset (0, 1).Select
Next i
ActiveCell.Offset (1, -nx - 1) .Select
Next j
ActiveCell.Offset (1, 0).Select

Next k
Range ("ab5") .Select
End Sub

Sub Tridiag(e, f, g, r, %, n)
Call Decomp (e, £, g, n)

Call Substit(e, f, g, r, n, Xx)
End Sub

Sub Decomp (e, f, g, n)

Di

m k As Integer

For k = 2 To n

e(k) =e(k) / f£(k - 1)
£(k) = £(k) - e(k) * g(k - 1)

Next k
End Sub

Sub Substit(e, f, g, r, n, x)

Di

m k As Integer

For k = 2 To n

r(k) = r(k) - e(k) * r(k - 1)

Next k

% (

n) = r(n) / f(n)

For k = n - 1 To 1 Step -1

x(k) = (r(k) - g(k) * x(k + 1)) / £(k)

Next k
End Sub
A B [ ¢ | © [ E F [ 6 [ H [ T 1] N I O F & [T®" "5 T 7
|+ [Prob.30.12
12| RUN
|3
4]
|5 t=0
|s 87.5 100 100 100 75
E2 75 0 [} 0 50
|5 5 0 [ 0 50
le| 5 0 [} 0 50
|10 315 0 [} 0 25
11
l12]t=10 |
EEN| 87.5 100 100 100 75
|14 75 13.112 83207 11.361 50| = - -
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[r=100i5]
|20 875 100 100 100 75
|21 75 23.467 15.885 20.334 50
|22 75 11.8449 2.7623 8.3305 50
E= 75 10.0556 1.4948 6.7745 50
Ea ars 0 o 0 25

30.13 MATLAB solution:

ulxx]=ult]
BC u(0,t)=0 wu(l,t)=1
IC u(x,0)=0 x<1

0° 0° 0° of

PDE Parabolic Problem - Heat conduction in a rod




o©

i=spatial index, from 1 to imax
imax = no. of x points
n=time index from 1 to nmax
nmax = no. of time steps,
Crank-Nicolson Formulation

o° o° o

o©

imax=61;

nmax=60; % last time step = nmax+l
% Constants

dx=1/ (imax-1) ;

dx2=dx*dx;

dt=dx2; % Setting dt to dx2 for good stability and results

% Independent space variable
x=0:dx:1;

% Sizing matrices
u=zeros (imax, nmax+1); t=zeros(l,nmax+1);
a=zeros (1l,imax); b=zeros(1l,imax);

c=zeros(l,imax); d=zeros(l,imax);

ba=zeros(l,imax); ga=zeros(l,imax);
up=zeros (1, imax) ;

% Boundary Conditions
u(l,1)=0;
u(imax,1)=1;

o©

Time step loop
n=1 represents 0 time, n+l = next time step
t(1)=0;
for n=1:nmax
t (n+l)=t (n)+dt;

o©

o©

Boundary conditions & Constants
u(l,n+1)=0;
u(imax,n+1l)=1;
dx2dt=dx2/dt;

% coefficients
b (2)=-2-2*dx2dt;
c(2)=1;

d(2)=(2-2*dx2dt) *u(2,n)-u(3,n);
for i=3:imax-2

a(i)=1;

b(i)=-2-2*dx2dt;

c(i)=1;
d(i)=-u(i-1,n)+(2-2*dx2dt)*u(i,n)-u(i+l,n);

end
a(imax-1)=1;
b (imax-1)=-2-2*dx2dt;
d(imax-1)=-u(imax-2,n)+ (2-2*dx2dt) *u (imax-1,n) -2;
% Solution by Thomas Algorithm

ba (2)=b(2) ;

ga(2)=d(2)/b(2);

for i=3:imax-1
ba(i)=b(i)-a (i) *c(i-1)/ba(i-1);
ga(i)=(d(i)-a(i)*ga(i-1))/ba(i);

end

o)

% Back substitution step

u(imax-1,n+1l)=ga (imax-1);

for i=imax-2:-1:2
u(i,n+l)=ga(i)-c (i) *u(i+l,n+1)/ba(i);

end

dt=1.1*dt;

end

% end of time step loop

o©

Plot
Storing plot value of u as up, at every 5 time steps, np=5
$j=time index

o©

©



$i=space index

np=5;
for j=np:np:nmax
for i=l:imax
up (1)=u(i,J);
end
plot (x,up)
hold on
end
grid
title('ul[xx]=ult]; u(0,t)=0, u(l,t)=1, u(x,0)=0; Crank-Nicolson
Formulation')
xlabel ('x - ND Space')
ylabel ('u - ND Temperature')
hold off

% Storing times for temp. profiles

$These can be saved in a data file or examined in the command file
tp=zeros (1, (nmax-1) /np) ;

i=1;

tp (1)=0;

for k=np:np:nmax

i=i+1;

tp (i) =t(k);

end

tp

gtext ('n=60") ;gtext ('n=50") ;gtext ('n=40") ;gtext
('n=30"); gtext ('n=20") ;gtext ('n=10") ;gtext ('n=1");
gtext ('t=.766");
gtext ("t=.1115"
gtext ('t=.0038"

;gtext ("t=.0413");gtext ('t=.014");
;gtext ('t=0")

u[xx]=u[t]; u(0,t)=0, u(1,t)=1, u(x,0)=0; Crank-Nicolson Formulation

0.9

I
I
I

e
2
2 t=.766
o
0.5
G =S / /
'_
g 0.4 h=40
S
0.3 =30

yavddil
I,

P = t=.doas

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x - ND Space

tp =
Columns 1 through 7

0 0.0013 0.0038 0.0078 0.0142 0.0246 0.0413



Columns 8 through 13

0.0682 0.1115 0.1813 0.2937 0.4746 0.7661
°u 10u _ou
o’ ror ot

Substituting of second order correct Crank-Nicolson analogues

aZu _l Euiﬂ,nﬂ _ui,n+l +ul -1,n+1 + ui+1,n _ui,n +ui—1,n E
ot 2 O Ar? Ar? O
Ou _ 1 Ui pe1 ~Ujmp 1 | Ujnry ~ U1, O

— -0 + O

or 2 240r 20Ar 0

r=(>i-DAr

al _ ui,n+l - ui,n

ot At

into the governing equation give the following finite difference equations:

B 1 O A2 O 5 1 O O 1 O
- E%lnﬂ +F2-2 e ¥ O S Mivien = O 1F O i-1.n

0 26-D B AV 0 26-D 0 2i-1)
A2 O 0 1 O
- 2——[m 1
g At E + Er + 2(1 1) WHI n

For the end points:

x =1 (i=R), substitute the value of ur = 1 into the above FD equation
x=0(i=1), set the FD analog to the first derivative = 0

Du 10y, ~Uguer  Uoy, “Ug, O
-0 + 0=0
BrH, 2 2o 200

Also substitute in i = 1 into the finite difference equation and algebraically eliminate
Uy, T U, from the two equations and get the FD equation at i = 1:

O A2 O O N2 O
D_z 2— At B}ll n+l +[2]M2 n+l — _E?' -2 A @],n +[_2]u2,n
B B g £ g

%$PDE Parabolic Problem - Heat conduction in the radial direction in a
circular rod

% ulrr]+(l/r)ulr]l=ult] 0<r<1
% BC u(l,t)=1 ulr] (0,t)=0
% IC u(r,0)=0 0O<r<1l

oe

i=spatial index, from 1 to imax
imax = no. of r points (imax=21 for 20 dr spaces)
n=time index from 1 to nmax
nmax = no. of time steps,
Crank-Nicolson Formulation
imax=41;
nmax=60; % last time step = nmax+l

o o° o

oe



% Constants

dr=1/ (imax-1) ;
dr2=dr*dr;

dt=dr2;

oe

% Setting dt to dr2 for good stability and results

Independent space variable

r=0:dr:1;

oe

Sizing matrices

u=zeros (imax, nmax+1); t=zeros(l,nmax+1l);
a=zeros (l,imax); b=zeros(l,imax);

c=zeros(l,imax); d=zeros(l,imax);
ba=zeros (l,imax); ga=zeros(l,imax);
up=zeros (1, imax) ;

% Boundary Conditions
u(imax,1)=1;

oe

oe

Time step loop
n=1 represents 0 time, new time = n+l

t(1)=0;
for n=1:nmax

t(n+l)=t (n)+dt;

% Boundary conditions & Constants

oe

coefficients

2*dr2dt) *u(i,n)+(-1-1/(2* (1i-1)

u(imax,n+1)=1;
dr2dt=dr2/dt;

(1)=-2-2*dr2dt;
(1)=2;
(1)=(2-2*dr2dt) *u(l,n)-2*u(2,n);
for i=2:imax-2
a(i)=1-1/(2*(i-1));
b(i)=-2-2*dr2dt;
(1)=1+1/(2*(i-1));
(1)=(-1+1/(2*(1i-1))) *u(i-1,n)+(2-
) *u(i+1,n);

b
c
d

c
d
)
end

a(imax-1)=1-1/(2* (imax-2));
b (imax-1)=-2-2*dr2dt;

d(imax-1)=(-1+1/(2* (imax-2))) *u(imax-2,n) +

(2-2*dr2dt) *u (imax-1,n) -2* (1+1/ (2* (imax-2)))

o)

oe

% Solution by Thomas Algorithm

ba(l)=b(1l);

ga(l)=d(1)/b(1);

for i=2:imax-1
ba(i)=b(i)-a(i)*c(i-1)/ba(i-1);
ga(i)=(d(i)-a(i)*ga(i-1))/ba(i);

end

Back substitution step

u(imax-1,n+1)=ga(imax-1);
for i=imax-2:-1:1
u(i,n+l)=ga(i)-c (i) *u(i+1l,n+1)/ba(i);
end
dt=1.1*dt;
end

% end of time step loop

% Plot

% Storing plot value of u as up, at every 5 time steps

o)

%$j=time index
%i=space index

istart=4;
for j=istart:istart:nmax+1l
for i=l:imax
up (1)=u(i,j);
end
plot (r,up)



hold on
end
grid

title('ulrrl+(l/r)ulrl=ult]; u(l,t)=1 ulr] (0,t)=0; u(r,0)=0")
xlabel ('r - ND Space')

ylabel ('u - ND Temperature')

hold off

% Storing times for temp. profiles
% These can be saved in a data file or examined in the command file
tp=zeros (1, (nmax-1)/istart);
i=1;
tp (1)=0;
for k=istart:istart:nmax+l
i=1i+1;
tp (i) =t (k)
end
tp

ulrr]+ (1/r)u[r]=u[t]; u(1,t)=1 u[r](0,t)=0; u(r,0)=0

-ﬂ~,7--~/4~/”’::::::
0.9 | — | ﬁ
0.8 —1— 1|
0.7 //
2 0.6
8
o
e 0.5
()
'_ /
S 04—
:Is /
0.3
0.2 ] /
0.1
A e s
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
r- ND Space
tp =
Columns 1 through 7
0 0.0021 0.0059 0.0116 0.0199 0.0320 0.0497
Columns 8 through 14
0.0757 0.1137 0.1694 0.2509 0.3703 0.5450 0.8008

Columns 15 through 16

1.1754 1.7238

30.15



@erau _ Ou
dxz Ox ot

Substituting of second order correct Crank-Nicolson analogues

2 - -
0-u _1 |j’li+1,n+l Ui n+l +ui—1,n+1 + Uitipn Uiy +ui—l,n 0

O
x> 2Q Ax> Ayl J
Ou =lwi+l,n+1 T Ui+ + Uisry ~ Ui U
ox 2Q 20x 2Ax 0

Ou _ Uijnel " Uiy

o At

into the governing equation give the following finite difference equations

1. .0 O Ax* O 1.0 o,. 1,0
é‘zbmgﬂ'—l,nﬂ + gz_th%{i,nH "'g"'zbm%‘m,nﬂ = H“‘EbA’C%’i—l,n
0 20 o, 1,0

oe

PDE Parabolic Problem with a dispersion term
ul[xx]+bul[x]=ult]
BC u(0,t)=0 wu(l,t)=1
IC u(x,0)=0 x<1
i=spatial index, from 1 to imax
imax = no. of spatial points (imax=21 for 20 dx spaces)
n=time index, from 1 to nmax
nmax = no. of time steps
Crank-Nicholson formulation for the spatial derivatives
imax=61;
nmax=60; % last time step = nmax+l

A° A o o° o o oP

oe

oe

constants
dx=1/ (imax-1);
dx2=dx*dx;
dt=dx2;

oe

Parameters
B=-4;

oe

Independent spatial variable
x=0:dx:1;

% Sizing matrices
u=zeros (imax, nmax); t=zeros(l,nmax);
a=zeros (l,imax); b=zeros(l,imax);
c=zeros (l,imax); d=zeros(l,imax);
ba=zeros(l,imax); ga=zeros(l,imax);
up=zeros (1, imax) ;

oe

Boundary Conditions
u(l,1)=0;
u(imax,1)=1;

oe

Time step loop

n=1 represents 0 time, new time = n+l
t(1)=0;
for n=1:nmax

oe



t (n+l) =t (n)+dt;
% Boundary conditions & constants
u(l,n+1)=0;
u(imax,n+1)=1;
dx2dt=dx2/dt;
% Coefficients
b (2)=-2-2*dx2dt;
c(2)=1+0.5*B*dx;
d(2)=(-1-0.5*B*dx) *u(3,n) +(2-2*dx2dt) *u(2,n) ;
for i=3:imax-2
a(i)=1-0.5*B*dx;

)

b(i)=-2-2*dx2dt;

c(i)=1+0.5*B*dx;

d(i)=(-1-0.5*B*dx) *u(i+l,n)+(2-2*dx2dt) *u(i,n)+(-1+0.5*B*dx) *u
(i_lrn) 7

end

a(imax-1)=1-0.5*B*dx;
b (imax-1)=-2-2*dx2dt;
d(imax-1)=2* (-1-0.5*B*dx) + (2-2*dx2dt) *u (imax-1,n) + (-1+0.5*B*dx) *u (imax-

2,n);

% Solution by Thomas Algorithm
ba (2)=b(2);
ga(2)=d(2)/b(2);
for i=3:imax-1
ba(i)=b(i)-a(i)*c(i-1)/ba(i-1);
ga(i)=(d(i)-a(i)*ga(i-1))/ba(i);
end

% Back substitution step
u(imax-1,n+1)=ga(imax-1);
for i=imax-2:-1:2

u(i,n+l)=ga(i)-c(i)*u(i+l,n+1)/ba(i);

end
dt=1.1*dt;
end

% End of time step loop

%Plot
%$Storing plot value of u as up, at ever 5 time steps
j=time index
i=speace index
for j=5:5:nmax
for i=l:imax
up (1)=u(i,j);
end
plot (x,up)
hold on

oe

oe

end
grid
title('ul[xx]+bul[x]=ult]; u(0,t)=0 u(l,t)=1; u(x,0)=0 x<1")
xlabel ('x - ND Space')
ylabel ('"u - ND Temperature')
hold off
gtext ('b=-4")
% Storing times for temp. profiles

% These can be used in a data file or examined in the command file
tp=zeros (1, (nmax-1)/5);
i=1;
tp(1)=0;
for k=5:5:nmax
i=i+1;
tp (i) =t (k)
end
tp

tp



Columns 1 through 7

0

0.0013 0.0038 0.0078 0.0142 0.0246

Columns 8 through 13

0.0682

- ND Temperature

u

u - ND Temperature

0.9
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0.4
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0.2

0.1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.1115 0.1813 0.2937 0.4746 0.7661

u[xx]+bu[x]=ult]; u(0,t)=0 u(1,t)=1; u(x,0)=0

x<1

— |

za

I o I

////

0.1

0.2 0.3 0.4 0.5 0.6 0.7
x - ND Space

u[xx]+bu[x]=u[t]; u(0,t)=0 u(1,t)=1; u(x,0)=0

0.8 0.9 1

x<1l

—

/

| — /////

0.2 0.3 0.4 0.5 0.6 0.7
x - ND Space

0.8 0.9 1

0.0413



- ND Temperature

u

- ND Temperature

u
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u[xx]+bu[x]=u[t]; u(0,t)=0 u(1,t)=1; u(x,0)=0 x<1
b=-2
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CHAPTER 31

31.1 The equation to be solved is

=-20

dx?
Assume a solution of the form 7' = ax* + bx + ¢ which can be differentiated twice to give 7" = 2a.

Substituting this result into the differential equation gives a = —10. The boundary conditions can
be used to evaluate the remaining coefficients. For the first condition at x =0,

50 =—10(0)% +b(0) + ¢

or ¢ = 50. Similarly, for the second condition.

100 =-10(10)? + b(10) + 50

which can be solved for » = 105. Therefore, the final solution is

7 =-10x2 +105x +50

The results are plotted in Fig. 31.5.

300
200
100

31.2 The heat source term in the first row of Eq. (31.26) can be evaluated by substituting Eq. (31.3)
and integrating to give

IZ.SZOZ.D—X 7x:25
0 25

Similarly, Eq. (31.4) can be substituted into the heat source term of the second row of Eq.
(31.26), which can also be integrated to yield

f'szo X0 =25
0 25

These results along with the other parameter values can be substituted into Eq. (31.26) to give

047 —047 =—9L(x y+25
1 2 dx 1

and



—04T +04T, _ﬂ( ) +25

31.3 In a manner similar to Fig. 31.7, the equations can be assembled for the total system,

004 —04 7, O FdT(x,)/ dx +250
Ho4 08 -04 ZE E 50 E
S -04 08 -04 30=0 50 0

_ _ 0O O O
0 04 08 —04FTo . 50 .
H -04 04 HHLH HdT(x,)/dx+25H

The unknown end temperatures can be substituted to give

O -04 [(OdT(x,)/dx O O5 O
5 08 -04 7, E Emg
O -04 08 -04 % T 0=050 0
= -04 08 5 g% 5
H -0.4 —1%&(%)/0&@ Q—lsg

These equations can be solved for

DdT(xl)/dx IZI (1050
E %50D
0 25D
D T, D 755

E—dT(xs)/dxa 5-955

The solution, along with the analytical solution (dashed line) is shown below:

314
d’c dc
0=D 2—U——kc
dx dx
d’e de
R=D——5 -U——kC
dx dx




X2 dzg

—Uf TN (x)dx

—k f &N, (x)dx

Term (1):
O dc -c, O
o 25 (xl)_ _
Dj.zd CN(x)dx—D%_dx X5 xlg
Y dx® Di( 2)_g O
Hdx x; —x; H
Term (2):

2 AC N ey = f 278 N (x)dx

% dx Xy T X,
2 Ni(x)dx:u
X 2
0 diN (x)dx—;cl
X dx 2
Ebz - O
x> dc |
-uf L Nwax=-ug, 2 0
i dx 2 "%
o 2 0O
Term (3):
X, [, O
—k E‘Ni(x)dxz—M '
Xy 2 F20

Total element equation [(1) + (2) + (3)]

ey, a0 0_0hLC

m D:%}[
@ andr20 2 [
where
a,, = D U+ ( x) a,, = D +
LT el
1 X, —% 2 2 1 12 X, =%, 2
_ D U &k
ap =~ ot (x2 xl)

)

@

©))




dc dc
b, :_Da(xl) b, :Da(xz)

31.5 First we can develop an analytical function for comparison. Substituting parameters gives

2
d u
2

15x108 =50

dx
Assume a solution of the form
u=ax’ +bx+c
This can be differentiated twice to yield d?u/dx* = 2a. This can be substituted into the ODE,
which can then be solved for ¢ = 1.6667x10”. The boundary conditions can then be used to
evaluate the remaining coefficients. At the left side, #(0) = 0 and
0=16667 x1077(0)* +5(0) + ¢
and therefore, ¢ = 0. At the right side of the bar, #(30) = 0 and
0=1.6667 x 1077 (30)* +b(30)
and therefore, b = —5x107°, and the solution is
u=16667x107 x> =5x10™x

which can be displayed as

0 6 12 18 24 30
0E+00 .

-2E-05

-4E-05

The element equation can be written as

O du O [Ogx2 0
AE O -1 0 0 4. 0o %[Xl P(x) N, (x)dx
o -x 1 1 E A e OO 0
2= M 2 00— 0 P(x)N, (x)dx
Ddx(xz)D H; (x) N, (x) a

The distributed load can be evaluated as

IO 6—50

Thus, the final element equation is

6-—x x-0

dx =-150

6
dx =-150 L—so



31.6

O du

025x107  -25x10" 0 O 4 (xl)m 1500
H25x107  25%107 %H“Dd( )B H150F
Assembly yields

0.5x10° -25x%x107

S 5x107  -25x10’

O -25%x10"  5x107  -25x10’

D 7 7 7
0 -25%x10"  5x107  -25%10
g -25x107  5x10’
& -25x10’

which can be solved for

Odu
(xl)D O0-5x10° O

O O 5|:|
0 24x107 0

o=
O
% u, O B36x107H
O
O

U -5
up g 36x10 "
u, U O24x100

0 .0
(2)0 Hs5x10" d

SE
|

Eltf(xl)tl
Eﬂ]du O
[(i] 1
N
=
EII] o0
O

45M0%£4XE

These results, along with the analytical solution (dashed line) are displayed below:

0E+00

-2E-05

-4E-05 —

Option Explicit

Sub FErod ()

Dim ns As Integer, ii As Integer, i As Integer, j As Integer

Dim k As Integer, m As Integer

Dim x(5) As Single, st(2, 2) As Single, c As Single

Dim s (2, 2) As Single, a(5, 5) As Single, b(5) As Single,

Dim Te (5) As Single, ff As Single

Dim e(5) As Single, f(5) As Single, g(5) As Single, r(5) As Single

Dim duml As Single, dum2 As Single
Dim dTelLeft As Single, dTeRight As Single

'set parameters

1500
53007
30000
5—3008
3-30000
o104

d(5) As Single



sy
(€]

S
—
I

.5
0
Te(l) = 40
Te(5) = 200
ff = 10

I
= g0 N o

'construct
st(l, 1) =
For ii =1
c=17/ (
For i =1

For j =

s (i,
Next j
Next i
For i =1
k = i1

For j =

m =i
a(k,
Next j
b (k) =
Next i
Next ii

'determine
Call Mmult (
For i =1 T
b(i) = b(

Next i
a(l, 1) =1
1) =0

a(2,
a(ns + 1, ns + 1
a(

ns, ns +

'Transform
£(1) = a(l,
g(l) = af(l,
r(l) = b(l)

system matrix

1: st(l, 2) = -1: st(2, 1) = -1: st(2, 2) =1
To ns
x(ii + 1) - x(ii))
To 2
1 To 2
j) = c * st(i, 3J)
To 2
-1 + 1
1 To 2
i -1+ 73
m) = a(k, m) + s(i, J)
b(k) + ff * ((x(ii + 1) - x(ii)) - (x(ii + 1) - x(ii))

impact of uniform source and boundary conditions
a(), Te(), d(), ns + 1, ns + 1, 1)

ons + 1

i) - d(i)

) = -1
1) =0

square matrix into tridiagonal form

1)

2)
o ns
i, 1 - 1)
i, 1)
i, 1 + 1)
i)

= a(ns + 1, ns)

a(ns + 1, ns + 1)

'Tridiagonal solver

duml = Te (1l

)

dum2 = Te(ns + 1)
Call Tridiag(e, f, g, r, ns + 1, Te())

dTeLeft = T
dTeRight =

e(l)
Te(ns + 1)

Te(l) = duml

Te(ns + 1)

'output res
Range ("a3")
ActiveCell.
ActiveCell.
ActiveCell.
ActiveCell.
ActiveCell.
ActiveCell.
ActiveCell.
ActiveCell.

= dum?2

ults
.Select
Value
Offse
Value

= "dTe(x = " & x(0) & ")/dx ="
t(

Offset (
t(

, 1) .Select

dTelLeft

, —-1).Select

"dTe(x = " & x(ns + 1) & ")/dx ="
, 1) .Select

dTeRight

, —-1).Select

Value
Offse
Value

0
1
0
Offset (3

/ 2)



For i =1 To ns + 1

ActiveCell.Value = x (i)
ActiveCell.Offset (0, 1).Select
ActiveCell.Value = Te (i)
ActiveCell.Offset (1, -1).Select

Next i
Range ("b3") .Select

End Sub
Sub Mmult(a, b, ¢, m, n, 1)

Dim i As Integer, j As Integer, k As Integer
Dim sum As Single

For i =1 To n
sum = 0
For k = 1 Tom
sum = sum + a(i, k) * b (k)
Next k
c (i) = sum
Next 1
End Sub

Sub Tridiag(e, £, g, r, n, x)
Dim k As Integer

'decompose
For k = 2 To n
e (k) e(k) / £(k - 1)
£ (k) (k) - e(k) * gk - 1)
Next k
'substitute
For k = 2 To n
r(k) = r(k) - e(k) * r(k - 1)
Next k
x(n) = r(n) / f(n)
For k = n - 1 To 1 Step -1
x(k) = (r(k) - g(k) * x(k + 1)) / £(k)
Next k
End Sub

The output is

Fiy | B | C | B
1 [Probh31.6
2
3 |dTe(x = 0)/dx = 66 RUN
4 [dTe(x = 10)/dz = 34
5
B |x Te
[ F 1] 40
BN 2.5 173.75
g 5 245
10 7.5 253.75
11 10 200




31.7 After setting up the original spreadsheet, the following modifications would be made to insulate
the right edge and add the sink:

Cell I1: Set to 100

Cell 2: =(I1+2*H2+13) /4; This formula would then be copied to cells 13:I8.
Cell 19: =(18+H9) /2

Cell C7: =(C6+D7+C8+B7-110) /4

The resulting spreadsheet is displayed below:

A B C D E F G H I
87.5 100 100 100 100 100 100 100 102.8

75 89.6 96.9 101.7 104.9 105.7 105.4 105.1 105.6

75 86.4 96.2 105.2 112.1 112.4 110.8 109.5 109.2
75 85.0 96.3 110.8 126.0 120.9 115.9 113.1 112.2
75 82.2 93.2 115.7 160.1 1294 118.7 114.6 113.5
75 75.6 78.4 98.8 119.4 117.9 114.9 113.2 112.6
75 66.8 46.1 81.8 100.8 107.7 109.9 110.5 110.6
75 70.3 67.5 81.4 94.3 102.3 106.5 108.4 108.9
75 72.0 72.2 82.0 92.8 100.7 105.3 107.6 108.2

© O0ONOOGAWN-=-

Corresponding contour plots can be generated as

S9
S8
S7
S6
S5
S4
S3
S2
$1

L

1 2 3 4 5 6 7 8 9

31.8 The results of the preceding problem (31.8) can be saved as a tab-delimited text file (in our case,
we called the file prob3108.txt). The following commands can then be used to load this file into
MATLAB, as well as to generate the contour plot along with heat flow vectors.

>> load prob3108.txt

>> [px,pyl=gradient (prob3108) ;

>> cs=contour (prob3108) ;clabel (cs);hold on
>> quiver (-px, -py);hold off



31.9 The scheme for implementing this calculation on Excel is shown below:

A B C D E F G H | J K

1 87.5 100 100 100 100 100 100 100 100 100 625
2 75 25
3 75 | | | 25
4 75 | | | 25
5 75 25
6 62.5 50 50 50 50 50 50 50 50 50 37.5

The simple Laplace equation applies directly to the blank white cells (recall Fig. 31.14).

However, for the shaded cells impacted by the heat sink, a heat balance equation must be

written. For example, for cell E3, the control volume approach can be developed as

0= —k'MAyAZ + k'MAyAz B3 A n 0 B2 B3 pp s - 100AxAy

Ax Ax Ay Ay
Collecting and canceling terms yields
A
0=-4E3+ D3+ F3+E4+D3—100 22
Azk!
Substituting the length dimensions and the coefficient of thermal conductivity gives,
+F3+E4+ D3 -
3= D3+ F3+E4+ D3-160
4
The result is depicted below, along with the corresponding contour plots.
A B C D E F G H | J K

1 87.5 100 100 100 100 100 100 100 100 100 625
2 75 74.0 62.0 40.2 101 -1.5 7.9 34.7 50.8 51.3 25
3 75 59.0 337 -112 -98.2 -123.8 -101.8 -19.8 17.3 29.2 25
4 75 53.1 253 -20.7 -108.0 -133.7 -111.6 -29.2 8.8 23.4 25
5 75 53.3 34.9 1.2 -195 -313 -21.8 5.7 23.8 30.5 25
6 62.5 50 50 50 50 50 50 50 50 50 37.5




31.10 The results of the preceding problem (31.10) can be saved as a tab-delimited text file (in our
case, we called the file prob3110.txt). The following commands can then be used to load this
file into MATLAB, as well as to generate the contour plot along with heat flow vectors.

>> load prob3110.txt

>> [px,pyl=gradient (prob3110);

>> cs=contour (prob3110) ;clabel (cs) ;hold on
>> quiver (-px, -py) ;hold off

31.11
Program Plate
Use IMSL
Implicit None
Integer::ncval, nx, nxtabl, ny, nytabl
Parameter (ncval=11l, nx=33, nxtabl=5, ny=33, nytabl=5)
Integer::i, ibcty(4), iorder, j, nout
Real::ax,ay,brhs,bx,by,coefu,prhs,u(nx,ny),utabl, x,xdata (nx) ,y,ydata (ny)
External brhs, prhs
ax 0
bx 40
ay 0
by 40
ibcty (1)
ibcty (2)
ibcty (3)
ibcty (4)
coefu = 0
iorder = 4
Call FPS2H (prhs, brhs, coefu, nx, ny, ax, bx, ay, by, ibcty, iorder, u, nx)
Do i=1, nx

[ = SRS

xdata (i) = ax + (bx - ax) * Float(i - 1) / Float(nx - 1)
End Do
Do j=1, ny

ydata(j) = ay + (by - ay) * Float(j - 1) / Float(ny - 1)



End Do
Call UMACH (2, nout)
Write (nout,'(8X,A,11X,A,11X,A)") 'X', 'Y', 'U'
Do j=1, nytabl
Do i=1, nxtabl
X = ax + (bx - ax) * Float(i - 1) / Float(nxtabl - 1)
y = ay + (by - ay) * Float(j - 1) / Float(nytabl - 1)
utabl = QD2VL (x,y,nx,xdata,ny,ydata,u,nx, .FALSE.)
Write (nout,' (4F12.4)"') x, y, utabl
End Do
End Do
End Program

Function prhs(x, vy)
Implicit None
Real::prhs, x, y
prhs = 0

End Function

Real Function brhs(iside, x, y)
Implicit None

Integer::iside

Real::x , y

If (iside == 1) Then
brhs = 50

ElseIf (iside == 2) Then
brhs = 0

ElseIf (iside == 3) Then
brhs = 75

Else
brhs = 100

End If

End Function

Output:

0.0000 0.0000 75.0000
10.0000 0.0000 71.6339
20.0000 0.0000 66.6152
30.0000 0.0000 59.1933
40.0000 0.0000 50.0000

0.0000 10.0000 75.0000
10.0000 10.0000 72.5423
20.0000 10.0000 67.9412
30.0000 10.0000 60.1914
40.0000 10.0000 50.0000

0.0000 20.0000 75.0000
10.0000 20.0000 75.8115
20.0000 20.0000 72.6947
30.0000 20.0000 64.0001
40.0000 20.0000 50.0000

0.0000 30.0000 75.0000
10.0000 30.0000 83.5385
20.0000 30.0000 83.0789
30.0000 30.0000 74.3008
40.0000 30.0000 50.0000

0.0000 40.0000 87.5000
10.0000 40.0000 100.0000
20.0000 40.0000 100.0000
30.0000 40.0000 100.0000
40.0000 40.0000 75.0000

Press any key to continue



31.12

Element No. 1
Node No. 1

Node No. 2

-

kA—

(

dT

dx

dT

dx

(
1 X
(100

10(T, -

—kA(
2

2~ Xy

d 10
dTl 0T~ I)J 1, (

Xy — Xy

Y+ f(x) =0
1

dr
T,) = -1002

1

10—-x
10

)(Tz— Tl)) +f:N1f(x)dx =0

)3de =0

+ 150

Jaa- 1)) + [ Nof (e = 0

(100 dr). (T2 ] | o(x100)30dx 0

~10(T, -

dT

*lz

Other node equations are derived similarly

Element No. 2
Node No. 2

Node No. 3

Other element equations are similar.

Equation Assembly

10-100 0 0 O]
1020 -10 0 0 O
0 -10 20 <10 0 O
0 0 -10 20 10 0
0 0 0 10 20 —10
0 0 0 0 -10 10

10(T,—-T,) = —100

dT
-10(T,-T3) = 2

+ 150

fl—T: + 150
dx 2

+ 150

3
a dT

1 |-100%T

] |-1005 -+ 150
Ty 300

Ty _ 300

T, 300

T 300
T 10035 +150




Inserting Boundary Conditions

% Solution of Linear Algelwraic Bquation

% Prablem 31.1
% Fquation form Cx=b

c={ 10 -10 0 0
-10 20 -10 0

0 -10 20 -10

0 0 -10 20

0 0 0 -10

0 0 0 0

b=[125 300 300 300 1300

0

0

0
-10
20
-10

-850]';

%$5olution by inverse of A

fMatrix Hon. Form A*x=b
X=irv(C) *b; .
fprintf ('%5.1f \n' ,x)

»
462.5
450.0
407.5
335.0
232.5
-14.8

»

10-10 0 0 0 O
-10 20 -10 0 0 O
0 -1020-10 0 O
0 0 -1020-10 O
0 0 0 -1020 O
0 0 0 0 -10-100]

OO 0O
s we WNe W

(=]

.
I

-1001;

125
300
300
300
1300

-850



31.13

Element No. 1
Node No. 1

Node No. 2

(_

Y g+ f(x) =0
dT 1 2 _
KA * kA(xz_xl)(Tz - TI)J +f Ny () = 0
dar 10-x
[ 100d 10(T2 T )) j’o ( o )30dx 0
T
9S(T,~Ty) = ~100] +150
dr 1 2 _
(kA(—E z—kA(x L )(TZ—TI))+ [ 'Nof () = 0

( dT)I 22T, )j(m)sodx 0

dT

—Ty = dx

2

Other node equations are derived similarly

Element No. 2
Node No. 2

Node No. 3

Element No. 3
Node No. 3

Node No. 4

Element No. 4
Node No. 4

Node No. 5

~8.5(T,-T,) = 80%-

~1.5(T, -

~6.5(Ty~Ts) = 60%=

85(T,~T) = 9098

T8y

dx

3

7.5(T5— T

Ty) = -10%L

6.5(T, - e

dr

dJr5

3

2

4

+ 150

+ 150

+ 150

150

+ 150
4

+ 150

+ 150



Element No. 5

Node No. 5
dT
55(T5-Tg) = -602; 5+ 150
Node No. 6
dr
—5.5(Ts~T¢) = 504~ 6+ 150
Equation Assembly
] 1 [r] |F1009E] + 150
95950 0 0 O 1 x|y
9518 -85 0 0 o/ [T2 300
0 -85 16 -7.5 0 0 [ |T5|_ 300
0 0 -75 14 -65 0 T, 300
0 0 0 -65 12 -55 |, 300
0 0 0 0 -5555
: 1 0Te | s09T| +150
dx6
Inserting Boundary Conditions
dr
— - dx - -
10095 0 0 0 O —800
0 18 -85 0 0 0 Ty [1200
0 -8516 -75 0 0 |Ts|_|300
0 0 -75 14 -65 0 T, 300
0 0 0 —6512 0 T 575
-5.5 =50 12
_oooosss_d_T_s_
dx6




% Solution of Linear Algelraic Equation
% Prablem 31.1
% Bguation form Cx=b

Cc=[ 10 -10 0 0 ] 0;
-10 20 -10 0 0 0;
0 -10 20 -10 0 0;
0 0 -10 20 -10 0;
0 0 0 -10 20 0;
0 0 0 0 -10 -100];

b=[125 300 300 300 1300 -850]';

$Solution by inverse of A

fMatrix Bqn. Form A*x=b
X=1irv (C) *b; ‘
forintf('%5.1f \n' ,x)

»

7.2
159.7
197.1
199.4
155.9
-19.7

»






