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Preface

Electroencephalography (EEG) has played a prominent role in brain studies, mental
and brain diseases’ and disorders’ diagnosis, and treatments in medical fields. The
examination of EEG signals has been recognized as the most preponderant
approach to the problem of extracting knowledge of brain dynamics. At present,
EEG recordings are widely used for epilepsy diagnosis and for brain computer
interfaces (BCIs). The main use of an EEG is to detect and investigate epilepsy that
causes seizures. In BCI systems, EEG signals help to restore sensory and motor
functions in patients who have severe motor disabilities. Generally, the vast
amounts of multi-channel EEG signals are visually analysed by an expert to identify
and understand abnormalities within the brain and how they propagate.

The visual inspection approach for such huge EEG data is not a satisfactory
procedure for accurate and reliable diagnosis and interpretation as this process is
time-consuming, burdensome, reliant on expensive human resources, and subject to
error and bias. An extensive amount of research is required for automatic diagnosis
of epileptic seizures and also for the automatic identification of mental states to help
motor disabled people through BCI systems. Hence, in this monograph, we aim to
develop advanced methods for the analysis and classification of epileptic EEG
signals and also for the identification of mental states in BCI applications.

A number of edited books have been published in these two areas (but never
have they been presented together in one book) and those books present common
signal processing techniques such as, wavelet transformation, Fourier transforma-
tion for EEG data analysis. This book, however, presents some different EEG signal
analysis approaches; combining statistical techniques (e.g. random sampling,
optimum allocation, etc.) and machine learning methods. In this book, the authors
present their methods that provide better performance compared to the existing
methods.

The book consists of four parts with 13 chapters. Part I provides a basic over-
view of EEG signals including concept, generation procedure, characteristics,
nature and abnormal patterns. This part also provides a discussion of the different
applications of EEG signals for the diagnosis of brain diseases and abnormalities. In
addition, we provide the aims of this book, description of analyzed datasets used in
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the research, performance evaluation measures and a short review of commonly
used methods in EEG signal classification in Part I. Part II presents our developed
techniques and models for the detection of epileptic seizures through EEG signal
processing. Implementation of these proposed methods in real-time databases will
also be highlighted. In Part III, we introduce the methods for identifying mental
states from EEG data designed for BCI systems and their applications in several
benchmark datasets. We also report the experimental procedure with the results of
each methodology. Finally, we provide an overall discussion on EEG signal
analysis and classification in Part IV. This part gives a summary discussion on the
developed methods, future directions in the EEG signal analysis area and conclu-
sions with suggestions for future research.

Melbourne, Australia Siuly Siuly
Toowoomba, Australia Yan Li
Melbourne, Australia and Shanghai, China Yanchun Zhang
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Chapter 1
Electroencephalogram (EEG) and Its
Background

1.1 What Is EEG?

Electroencephalography (EEG) is a measurement of potentials that reflect the
electrical activity of the human brain. It is a readily available test that provides
evidence of how the brain functions over time. The EEG is widely used by
physicians and scientists to study brain functions and to diagnose neurological
disorders. The study of the brain’s electrical activity, through the EEG records, is
one of the most important tools for the diagnoses of neurological diseases, such as
epilepsy, brain tumours, head injury, sleep disorders, dementia and monitoring the
depth of anaesthesia during surgery (Hazarika et al. 1997; Adeli et al. 2003). It is
also helpful for the treatment of abnormalities, behavioural disturbances (e.g.,
Autism), attention disorders, learning problems and language delay.

The first EEG recording machine was introduced to the world by Hans Berger in
1929 (Collura 1993). Berger, who was a neuropsychiatrist from the University of
Jena in Germany, used the German term “elektrenkephalogramm” to describe the
graphical representations of the electric currents generated in the brain. He sug-
gested that brain currents changed depending upon the functional status of the
brain, such as, sleep, anaesthesia and epilepsy. This was a revolutionary idea that
helped create a new branch of medical science called neurophysiology.

During the EEG test a number of small disks called electrodes are placed in
different locations on the surface of the scalp with temporary glues. Each electrode
is connected to an amplifier (one amplifier per pair of electrodes) and an EEG
recording machine. Finally, the electrical signals from the brain are converted into
wavy lines on a computer screen to record the results. Figure 1.1 presents an
example of how electrodes are placed on the scalp during the recording of EEG
signals and EEG signals are displayed on a computer screen. The electrodes detect
tiny electrical charges that result from the activity of the brain cells. The charges are
amplified and appear as a graph on a computer screen, or as a recording that may be
printed out on paper. An expert then interprets the reading. EEG recordings,
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depending on their use can have from 1 to 256 electrodes recorded in parallel. This
is called multichannel EEG recordings. One pair of electrodes usually makes up a
channel. Each channel produces a signal during an EEG recording.

There are two types of EEGs, depending on where the signal is taken in the head:
scalp or intracranial. For the scalp EEG, small electrodes are placed on the scalp
with good mechanical and electrical contact. Special electrodes implanted in the
brain during the surgery result in intracranial EEG. On the other hand, the EEG
measured directly from the cortical surface using subdural electrodes is called the
electrocorticogram (ECoG). The amplitude of an EEG signal typically ranges from
about 1 to 100 µV in a normal adult, and it is approximately 10–20 mV when
measured with subdural electrodes such as needle electrodes. Since the architecture
of the brain is nonuniform and the cortex is functionally organized, the EEG can
vary depending on the location of the recording electrodes.

The question of how to place the electrodes is important, because different lobes
of cerebral cortex are responsible for processing different types of activities. The
standard method for the scalp electrode localization is the international 10–20
electrode system (Jasper 1958). The “10” and “20” represent actual distances
between neighbouring electrodes are either 10 or 20% of the total front-back or
right-left distance of the skull. The positions are determined by the following two
points; nasion, which is the point between the forehead and the nose, level with the
eyes, and inon which is the bony prominence at the base skull on the midline at the
back of the head. Figure 1.2 presents the electrode position on the brain according
to the international 10–20 system. Each location uses a letter to identify the lobe
and a number to identify the hemisphere location. The letters F, T, C, P and O stand
for Frontal, Temporal, Central, Parietal and Occipital, respectively. A “z” refers to

Fig. 1.1 An illustration of EEG recording (Ref. EEG, Saint Luke’s Health System)
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an electrode placed on the midline. Even numbers refer to electrode positions on the
right hemisphere, whereas odd numbers refer to those on the left hemisphere. Since
an EEG voltage signal represents a difference between the voltages at two elec-
trodes, the display of the EEG for the reading EEG machine may be set up in
several ways. The placement of the electrodes is referred to as a montage.

The EEG can be monitored with the following montages.
Bipolar montage: One pair of electrodes usually makes up a channel as shown

in Fig. 1.3. Each channel (waveform) represents the difference between two adja-
cent electrodes (Niedermeyer and Lopes Da Silva 2005; Fisch 1999) as shown by
Fig. 1.4. The entire montage consists of a series of these channels. For example, we
present a diagram of a bipolar montage in Fig. 1.5, where the channel “Fp1–F3”
represents the difference in the voltage between the Fp1 electrode and the F3
electrode The next channel in the montage, “F3–C3”, represents the voltage dif-
ference between F3 and C3, and so on, through the entire array of electrodes.

Referential montage: Each channel represents the difference between a certain
electrode and a designated reference electrode (Niedermeyer and Lopes Da Silva
2005; Fisch 1999). In Fig. 1.6, electrode A2 is considered as the reference elec-
trode. There is no standard position for this reference. It is, however, at a different
position than the “recording” electrodes. Midline positions are often used because
they do not amplify the signal in one hemisphere versus the other. Another popular
reference is “linked ears”, which is a physical or mathematical average of electrodes
attached to both earlobes and mastoids.

Average reference montage: The outputs of all of the amplifiers are summed
and averaged, and this averaged signal is used as the common reference for each
channel (Fisch 1999). An illustration of the average reference montage is given by
Fig. 1.7.

Fig. 1.2 The international 10–20 electrode placement system (Campisi 2012; Jasper 1958; 10/20
positioning/DIY tDCS)
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Laplacian montage: Each channel represents the difference between an elec-
trode and a weighted average of the surrounding electrodes (Fisch 1999). With
digital EEGs, all signals are typically digitized and stored in a particular (usually

EEG 
channel

Amplifier

Fig. 1.3 A model of an EEG channel

Fig. 1.4 A channel
(waveform) is the difference
between two adjacent
electrodes (Ref. EEG
Recording, medical
electronics III)

Fig. 1.5 An illustration of
the bipolar montage (Ref.
EEG Recording, medical
electronics III)
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referential) montage. Since any montage can be constructed mathematically from
any others, the EEGs can be viewed by an EEG machine in any display montage
that is desired.

1.2 Generation Organism of EEG Signals in the Brain

The human brain consists of about 100 billion nerve cells called neurons and the
electrical charges of the brain are maintained by these neurons. Neurons share the
same characteristics and have the same parts as other cells, but their electrochemical
character lets them transmit electrical signals and pass messages to each other over
long distances. Neurons have three basic parts: cell body (soma), axon and den-
drites (Carlson 2002a; Purves et al. 2004) as shown in Fig. 1.8.

The cell nucleus is the heart of the cell giving instructions to the cell. The axon is
a long, slender portion of the neuron that connects the nucleus of its own neuron to
the dendrite of another. The dendrite is a short section of the neuron with many

Fig. 1.6 An example of the
referential montage (Ref.
EEG Recording, medical
electronics III)

Fig. 1.7 An illustration of
the average reference
montage (Ref. EEG
Recording, medical
electronics III)
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receptor sites for neurotransmitters that may be sent by a paired axon. Dendrites can
be located on one or both ends of the cell. Through the axon–dendrite link, neurons
can communicate between each other. This communication is made possible
through the action potential.

The action potential is an event where the ion pumps along the outside of an
axon, rapidly changing the ionic makeup of the axon, allowing an electrical signal
to travel quickly through the axon to the next dendrite (Atwood and MacKay 1989).
As a result of this rapid change in ionic charge, a voltage is generated, both on the
inside and the outside of the cell membrane of the neuron (Carlson 2002b; Sanei
and Chambers 2007; Purves et al. 2004). These neurons emit a chemical (Carlson
2002b; Sanei and Chambers 2007; Purves et al. 2004) called neurotransmitters. The
interneuron communication system is depicted in Fig. 1.8. Figure 1.9 presents the
current flow that contributes to the surface EEG during a net excitatory input. When
neurons are activated by means of an electrochemical concentration gradient, local
current flows are produced. The electrical activity of neurons can be divided into
two subsets; action potentials (AP) and postsynaptic potentials (PSP). If the PSP
reaches the threshold conduction level for the postsynaptic neuron, the neuron fires
and an AP is initiated (Atwood and MacKay 1989).

The electrical potentials recordable on the scalp surface are generated by low
frequency summed inhibitory and excitatory PSPs from pyramidal neuron cells that
create electrical dipoles between the soma and apical dendrites (see Fig. 1.9). These
PSPs summate in the cortex and extend to the scalp surface where they are recorded
as the EEG. Nerve cell APs have a much smaller potential field distribution and are
much shorter in duration than PSPs. APs therefore do not contribute significantly to
either scalp or clinical intracranial EEG recordings. Only large populations of active
neurons can generate electrical activity recordable on the scalp (Carlson 2002b;

Fig. 1.8 A simple structure of a neuron (Sanei and Chambers 2007; Neuroscience, http://www.
appsychology.com/Book/Biological/neuroscience.htm)
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Sanei and Chambers 2007; Purves et al. 2004). The voltage, when generated by a
single cell, is typically too small to be accurately measured with present-day
technology.

Anatomically the brain can be divided into three major parts; cerebrum, cere-
bellum and brainstem (Gray 2002) as illustrated in Fig. 1.10. The cerebrum is the
largest and most important part of the human brain and is generally associated with
brain functions related to thoughts, movements, emotions and motor functions. The
outermost layer of the cerebrum is made up of neural tissues known as the cerebral
cortex. The cerebrum consists of two hemispheres: the right and left hemispheres.
Each hemisphere is divided into four lobes: frontal, parietal, occipital and temporal
(Purves et al. 2004). These lobes are responsible for a variety of bodily functions.

Fig. 1.9 Illustration of generation of very small electrical fields by synaptic currents in pyramidal
cells. The EEG electrode measures the signal through the thick layers of tissues. Only if thousands
of cells simultaneously their small voltages can the signals become large enough to be seen at the
surface of the scalp (Freeman 2004a, b)
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The frontal lobe is involved with personality, emotions, problem solving, motor
development, reasoning, planning, parts of speech and movement. The parietal
lobe is responsible for sensation (e.g., pain, touch), sensory comprehension,
recognition, perception of stimuli, orientation and movement. The occipital lobe is
responsible for visual processing. The temporal lobe is involved in dealing with the
recognition of auditory stimuli, speech, perception and memory. The cerebellum is
located at the lower back of the head and is also divided into two hemispheres. It is
the second largest structure of the brain and contains more than half of the brain’s
neurons. The cerebellum is one of the sensory areas of the brain that is responsible
for motor control, sensory perception and co-ordination. The cerebellum is also
associated with voluntary muscle movements, fine motor skills, posture and balance
regulation. The brainstem is located at the bottom of the brain and connects the
cerebrum to the spinal cord. The brainstem is like a hard drive of a computer and it
is the main control panel of the body. It controls vital functions of the body,
including breathing, consciousness, movements of the eyes and mouth, and the
relaying of sensory messages (pain, heat, noise, etc.), heartbeat, blood pressure and
hunger. In the EEG measurement, the cerebral cortex is the most relevant structure
as it is responsible for higher order cognitive tasks, such as problem solving,
language comprehension, movement and processing of complex visual information.
Due to its surface position, the electrical activity of the cerebral cortex has the
greatest influence on EEG recordings.

Thus, the study of EEGs paves the way for diagnosis of many neurological
disorders and other abnormalities in the human body. The EEG signals acquired

Fig. 1.10 Anatomical areas of the brain (Ref. Brain & Nervous System Health Center, WebMD)
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from a human (and also from animals) can be used for investigation of the fol-
lowing clinical problems (Birbaumer et al. 2006; Schröder et al. 2005):

• Distinguish epileptic seizures
• Characterizing seizures for the purposes of treatment
• Investigating epilepsy and locate seizure origin;
• Testing epilepsy drug effects;
• Assisting in experimental cortical excision of epileptic focus;
• Monitoring cognitive engagement;
• Monitoring the depth of anaesthesia, coma and brain deaths
• Monitoring for non-convulsive seizures/non-convulsive status epilepticus
• Locating areas of damage following head injury, stroke and tumour;
• Producing biofeedback situations;
• Controlling anaesthesia depth (servo anaesthesia);
• Monitoring the brain development;
• Testing drugs for convulsive effects;
• Investigating sleep disorders and physiology;
• Investigating mental disorders;
• Providing a hybrid data recording system together with other imaging

modalities.

This list confirms the rich potential for EEG analysis and motivates the need for
advanced signal processing techniques to aid clinicians in their EEG interpretation.
The EEG patterns are very important for understanding brain activities by identi-
fying morphological features or examining frequency bands associated with dif-
ferent mental activities or conscious states. The frequency bands can be divided into
five categories. In the next section, we discuss the most common patterns of EEG
signals in situations where individuals are in a state of alertness, sleeping, suffering
from a brain disorder and experiencing extreme emotions.

1.3 Characteristics and Nature of EEG Signals

Frequency is one of the most important criteria for assessing abnormalities in
clinical EEGs and for understanding functional behaviours in cognitive research.
Frequency refers to rhythmic repetitive activity (in Hz). The number of cycles in
second is counted as frequency. With billions of oscillating communities of neurons
as its source, human EEG potentials are manifested as aperiodic unpredictable
oscillations with intermittent bursts of oscillations. In healthy adults, the amplitudes
and frequencies of such signals change from one state to another, such as wake-
fulness and sleep. There are five major brain waves distinguished by their different
frequency ranges. These frequency bands from low to high frequencies, respec-
tively, are typically categorized in specific bands such as 0.5–4 Hz (delta, d),
4–8 Hz (theta, h), 8–13 Hz (alpha, a), 13–30 Hz (beta, b) and >30 Hz (gamma, c)
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(Niedermeyer and Lopes Da Silva 2005; Fisch 1999). Higher frequencies are often
more common in abnormal brain states such as epilepsy. Figure 1.11 illustrates
examples of these EEG rhythms.

The delta wave lies between the range of 0.5–4 Hz and the shape is observed as
the highest in amplitude and the slowest in waves. It is primarily associated with
deep sleep, serious brain disorders and the waking state. The theta wave lies
between 4 and 8 Hz with an amplitude usually greater than 20 µV. The theta arises
from emotional stress, especially frustration or disappointment and unconscious
material, creative inspiration and deep meditation. The alpha contains the frequency
range from 8 to 13 Hz, with 30–50 m µV amplitude, which appears mainly in the
posterior regions of the head (occipital lobe) when the subject has eyes closed or is
in a relaxation state. It is usually associated with the intense mental activity, stress
and tension. The alpha activity recorded from sensorimotor areas is also called mu
activity. The beta is in the frequency range of 13–30 Hz. It is seen in a low
amplitude and varying frequencies symmetrically on both sides in the frontal area.
When the brain is aroused and actively engaged in mental activities, it generates

Delta

Theta

Alpha

Beta

Gamma

Fig. 1.11 Example of different types of normal EEG rhythms (Ref. Brainwave Entrainment, Itsu
sync)
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beta waves. These waves are characteristics of a strongly engaged mind. The beta is
the brain wave usually associated with active things, active attentions and focusing
on the outside world or solving concrete problems. The gamma waves have the
frequency from 30 Hz and up. This rhythm is sometimes defined as having a
maximal frequency around 80 or 100 Hz. It is associated with various cognitive and
motor functions. Figure 1.12 presents an illustration of normal EEG recording. This
is an example of awake EEG showing the normal or usual amount of beta activity.
As shown here, beta activity is often easier to identify during relaxed wakefulness
or early drowsiness.

Electrical signals in the EEG that are originated from non-cerebral origin are
called artefacts. EEG data is almost always contaminated by such artefacts. The
amplitude of artefacts is largely relative to the size of amplitude of the cortical
signals of interest. This is one of the reasons why it takes the considerable expe-
rience to correctly interpret EEGs clinically. Figure 1.13 displays an illustration of
most common four types of artefacts in human EEG recordings. 1—
Electrooculographic artefact caused by the excitation of eyeball’s muscles (related
to blinking, for example). Big amplitude, slow, positive wave prominent in frontal
electrodes. 2—Electrode’s artefact caused by bad contact (and thus bigger impe-
dance) between P3 electrode and skin. 3—Swallowing artefact. 4—Common ref-
erence electrode’s artefact caused by bad contact between reference electrode and
skin. Huge wave similar in all channels.

Fig. 1.12 An illustration of a normal EEG recording (Ref. Normal Awake EEG, Medscape 2015)
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1.4 Abnormal EEG Signal Patterns

EEG abnormalities typically signify dysfunction of the entire brain. Abnormal
patterns of EEG signals appear as variations in the signals’ patterns for certain states
of the subject. Abnormal EEG findings can be divided into two categories such as,
epileptiform pattern activity and non-epileptiform pattern abnormalities.
Epileptiform refers to spike waves, sharp waves, spike and wave activity, which are
the interictal marker of a patient with epilepsy and are the EEG signature of a
seizure focus (Tedrus et al. 2012). Non-epileptiform abnormalities are characterized
by alterations in normal rhythms or by the appearance of abnormal ones. They are
associated with focal cerebral dysfunction, often due to a demonstrable structural
lesion. By contrast, more widespread central nervous system (CNS) derangements,
such as those due to metabolic disturbances, usually produce generalized EEG
abnormalities. Identification of an abnormality requires the analysis of the EEG to
determine various neurological conditions and any other available information.
A precise characterization of abnormal patterns leads to clearer insight into some
specific pathophysiologic reactions, such as epilepsy, or specific disease processes,
such as subacute sclerosing panencephalitis.

The most significant category is epileptiform pattern, obtained in the epileptic
seizure signal pattern, called ictal wave patterns, which appear during the onset of
epilepsy. Epilepsy is defined as a brain disorder characterized by an enduring
predisposition to generate epileptic seizures and by the neurobiologic, cognitive,
psychological and social consequences of this condition. Seizures are caused by
transient, paroxysmal and synchronous discharges of groups of neurons in the
brain. A detailed discussion of epilepsy and epileptic seizures is provided in
Chap. 2. Chatrian et al. (1974) defined the term epileptiform to describe distinct
waves or complexes, distinguishable from the background activity, which resemble
the waveforms recorded in a proportion of human subjects suffering from an
epileptic disorder (Noachtar et al. 1974). Figures 1.14 and 1.15 display the

Fig. 1.13 An example of the main types of artefacts in human EEG (Picture Courtesy of
Wikipedia: https://en.wikipedia.org/wiki/Electroencephalography)
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Fig. 1.14 EEG recordings of a partial seizure (Mani 2014)

Fig. 1.15 EEG recordings of a generalized epileptic seizure (Ref. Epilepsy and its Treatment for
Providers, Angelman)
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examples of epileptiform patterns for a partial seizure and a generalized seizure,
respectively. Often the onset of a clinical seizure is characterized by a sudden
change of frequency in the EEG measurement. It is normally within the alpha wave
frequency band with a slow decrease in frequency (but increase in amplitude)
during the seizure period. In the clinical practice, the ability to distinguish between
epileptiform activity and an epileptic disorder may be challenging, as variability
may be seen within each epilepsy syndrome and within a given child over time. The
wave of the partial seizure may or may not be spiky in shape. Sudden desyn-
chronization of electrical activity is found in electrodecremental seizures. The
transition from the preictal to the ictal state, for a focal epileptic seizure, consists of
a gradual change from chaotic to ordered waveforms. The amplitude of the spikes
does not necessarily represent the severity of the seizure. Rolandic spikes in a child
of 4–10 years, for example, are very prominent; however, the seizure disorder is
usually quite benign or there may not be clinical seizure.

The demonstration of non-epileptiform EEG abnormalities in patients with an
altered mental status or level of consciousness, for example, can be especially
useful in guiding decision-making and the best treatment. In these situations,
however, the EEG provides evidence of organic electrophysiological dysfunction
and the patterns observed may orientate for the diagnostic possibilities. There are
several types of non-epileptiform EEG abnormalities such as focal slow activity,
generalized or regional bisynchronous slow activity, generalized asynchronous
slow activity, generalized attenuation/suppression, focal attenuation and other
abnormal activity.

Focal slow activity may be an indicative sign of focal cerebral dysfunction,
especially in awake adults, and it seems to be the result of a cortex deafferentation
from subcortical structures (Andraus and Alves-Leon 2011; Schaul 1998). It is the
most common phenomenon encountered in clinical EEG and is indicative of a
localized structural lesion (Schaul 1998). Slow activity is classified according to
frequency in theta activity (ranging from 4.0 to 7.9 Hertz (Hz) or cycles per sec-
ond), and in delta activity (around 0.5–3.9 Hz). Continuous slow activity suggests a
more severe brain damage (likelihood of increased mass effect, large lesion or deep
hemispheric lesion), whereas intermittent slow activity usually indicates a small
lesion and the absence of a mass effect (Schaul et al. 1981). In general, fast-growing
tumours, such as glioblastoma multiform or metastatic brain tumours, are associated
with focal slow activity occurring in delta frequency as shown in Fig. 1.16.
Generalized or regional bisynchronous slow activity may be intermittent or con-
tinuous, and seems to be due to disordered circuits between the cortex and thala-
mus, although there has been some controversy about its genesis and significance
(Schaul 1998; Andraus et al. 2011). This type of abnormality can be found in
conditions that affect both cortical and subcortical structures, as well as the presence
of several toxic-metabolic encephalopathies, early stages of coma and deep midline
lesions encephalopathy and is always abnormal in awake adults (Schaul 1998;
Abou-Khalil and Missulis 2006). Some possibilities include degenerative processes
such as, encephalitis, extensive multifocal vascular (Schaul 1998; Abou-Khalil and
Missulis 2006). The abnormalities are associated with a large number of disorders,
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including toxic-metabolic encephalopathies, early stages of coma (see Fig. 1.17),
degenerative diseases, such as dementia (see in Fig. 1.18) and other conditions,
affecting both cortical and subcortical structures (Abou-Khalil and Missulis 2006).
Generalized asynchronous slow activity consisting of frequencies less than 4.0 Hz,
is highly nonspecific and has a broad differential diagnosis (Schaul 1998). Its
presence usually indicates diseases and toxic-metabolic encephalopathies. It is
worth remembering that the correct interpretation of generalized asynchronous slow
activity takes into account the age and condition of the patient, given that wide-
spread slow activity may be normally present in drowsiness and sleep in all ages
and in awake children, depending on the age (Abou-Khalil and Missulis 2006). It
should be considered an abnormal activity when the pattern is inconsistent with age
and stages of sleep. Focal attenuation indicates reduced amplitude of one type of
activity that occurs at certain frequency, or of the entire EEG activity. Attenuation
generally indicates focal cortical lesion or reversible cortical dysfunction (post-ictal
state, for example), but may be related to the presence of a collection between the
cortex and recording electrode (like an hematoma or subdural empyema) or a
tumour (a dural based tumour, such as a meningioma, for example), leading to an
increased distance between the cortex and the recording electrode (Abou-Khalil and
Missulis 2006). Generalized attenuation may suggest cortical generalized injury or
transitory dysfunction (Abou-Khalil and Missulis 2006). It is most often found in

Fig. 1.16 Polymorphic delta activity in the left hemisphere in a patient with a brain tumour (Lee
and Khoshbin 2015)

1.4 Abnormal EEG Signal Patterns 17



Fig. 1.17 EEG patterns of alpha coma in an awake patient (Encephalopathic EEG Patterns,
Medscape 2015)

Fig. 1.18 EEG findings in dementia (EEG in Dementia and Encephalopathy, Medscape 2015)
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patients who have suffered a severe cerebral damage in postanoxic encephalopathy,
or are under the effect of anaesthetic drugs or in a drug-induced coma. The term
burst suppression refers to the presence of brain activity bursts of variable ampli-
tude, duration and form, followed by a marked depression of the activity, which
occur on a cyclical basis. It is most often found in patients who suffered severe
cerebral damage in postanoxic encephalopathy, under the effect of anaesthetic drugs
or drug-induced coma. In conclusion, the non-epileptiform EEG abnormalities
provide evidence of brain dysfunction, which may be focal or generalized.
Figure 1.19 shows abnormality in the EEG recoding of autism children. Many
pathological processes can lead to their appearance, which, when properly ana-
lyzed, could help the diagnosis.
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Chapter 2
Significance of EEG Signals in Medical
and Health Research

EEG is becoming increasingly important in the diagnosis and treatment of mental
and brain neuro-degenerative diseases and abnormalities. The role of the EEG is to
help physicians for establishing an accurate diagnosis. In neurology, a main diag-
nostic application of EEGs is in the case of epilepsy, as epileptic activity can create
clear abnormalities on a standard EEG study (Abou-Khalil and Misulis 2006). EEG
is also used as a first-line method for diagnosing many neurological disorders, such
as dementias, Alzheimer’s disease, brain tumours, strokes, Parkinson’s disease,
migraine, neuroinfections, sleep disorders and traumatic disorders of the nervous
system, such as brain trauma and autism. Furthermore, EEG can also be used in the
diagnosis of coma, encephalopathies and brain deaths. EEG has become very
popular in brain–computer interface (BCI) applications. EEG and its derivatives,
event-related potentials (ERPs), are used extensively in neuroscience, cognitive
science, cognitive psychology, and psycho physiological research. ERPs refer to
averaged EEG responses that are time-locked to more complex processing of
stimuli.

Many techniques used in research are not sufficiently standardized to be used in
the clinical context. As EEG recordings contain a huge amount of data, the
development of computer-aided analysis systems is essential for classifying
abnormal EEG signals from normal EEGs to support the diagnosis of brain diseases
and to contribute to a better understanding of mental states for BCI applications.
The main purpose of a classification is to separate EEG segments and to decide
whether people are healthy, or to estimate the mental state of a subject related to a
performed task.

In this chapter, we provide a brief discussion of various uses and the significance
of EEGs in brain disorder diagnosis and also in BCI systems. In this chapter, we
also discuss why EEG signal analysis and classification are required for medical
and health practice and research. Then, we provide the key concepts of EEG signal
classification and a brief description of computer-aided diagnostic (CAD) systems.
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2.1 EEG in Epilepsy Diagnosis

Epilepsy is one of the most common and devastating neurological diseases expe-
rienced worldwide (Supriya et al. 2016). The hallmark of epilepsy is recurrent
seizures termed “epileptic seizures” (Alexandros et al. 2012). Seizures are defined
as sudden changes in the electrical functioning of the brain, resulting in altered
behaviours such as losing consciousness, jerky movements, temporary loss of
breath and memory loss. These usually happen in the cortex, or outside rim of the
brain. Epilepsy may develop because of an abnormality in brain wiring, an
imbalance of nerve signalling chemicals called neurotransmitters, or some combi-
nation of these factors.

Figure 2.1 shows an image of abnormal electrical impulses during a seizure.
Neurons normally generate electrochemical impulses that act on other neurons,
glands, and muscles to produce human thoughts, feelings, and actions. In epilepsy,
the normal pattern of neuronal activity becomes disturbed, causing strange sensa-
tions, emotions and behaviours, or sometimes convulsions, muscle spasms and loss
of consciousness. There may be a kind of brief electrical “storm” arising from
neurones that are inherently unstable because of a genetic defect (as in the various
types of inherited epilepsy), or from neurones made unstable by metabolic abnor-
malities, such as low blood glucose or alcohol. Alternatively, the abnormal dis-
charge may come from a localized area of the brain (this is the case in patients with
epilepsy caused by head injury or brain tumour). During a seizure, neurons may fire
as many as 500 times a second, much faster than normal (1–100 µV). In some
people, this happens only occasionally; for others, it may happen up to hundreds of
times a day.

Fig. 2.1 An illustration of
abnormal electrical impulses
during a seizure (Ref. Johns
Hopkins Medicine Health
Library)
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EEG is an essential component for the diagnosis and analysis of epilepsy
(Alotaiby et al. 2014; Kabir et al. 2016). EEG continues to play a central research
role in the diagnosis and management of patients with seizure disorders. One of the
main reasons behind this is that it is a convenient and relatively inexpensive way to
demonstrate the physiological manifestations of abnormal cortical excitability that
underlies epilepsy. EEG’s chief manifestation is the epileptic seizure. The seizures
can encompass a discrete part of the brain partial or the complete cerebral mass
generalized. The recorded EEG represents electrical activity produced by firing of
neuron within the brain along the scalp. When epilepsy is present, seizure activity
will appear as rapid spiking waves on the EEG. Epileptic activity can create clear
abnormalities on a standard EEG. Epilepsy leaves its signature in the EEG signals
(Siuly et al. 2015). The detection of seizures occurring in the EEGs is an important
component in the diagnosis and treatment of epilepsy. Two categories of abnormal
activity can be observed in an EEG signal: ictal (during an epileptic seizure) and
interictal (between seizures). Often, the onset of a clinical seizure is characterized
by a sudden change of frequency in the EEG measurement. It is normally within the
alpha wave frequency band with a slow reduction in frequency but increases in
amplitude during the seizure period. It may or may not be spiky in shape. To assist
the diagnosis and treatment of epilepsy or neurological disease, this book aims to
develop methods that can identify the epileptic EEG signals during seizure activity
and also during seizure-free time.

EEG helps to determine seizure types and epilepsy syndrome in patients with
epilepsy, thereby helping to determine antiepileptic medication choice and the
prediction of prognosis. Another important contribution of EEG findings is to
determine the multi-axial diagnosis of epilepsy, in terms of whether the seizure
disorder is focal or generalized, idiopathic or symptomatic, or part of a specific
epilepsy syndrome (Smith 2005). Figure 2.2 displays usual patterns of EEG signals
for normal, partial seizure and generalized seizure. The EEG provides important
information about background EEG and epileptiform discharges and is required for
the diagnosis of specific electroclinical syndromes (Nolan et al. 2004). Such
diagnoses carry important prognostic information, guide selection of antiepileptic
medication, and suggest when to discontinue medication. Neurologic examination
and imaging in the essential idiopathic, typically genetic, epilepsies are normal
(Urbach 2005). Following a seizure, the EEG background may be slow. However,
interictal background EEG frequencies that are slower than normal for age usually
suggest symptomatic epilepsy. Thus, EEG background offers important prognostic
and classification information. Epileptiform discharges help clinicians to separate
generalized from focal (i.e. partial) seizures.
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2.2 EEG in Dementia Diagnosis

Dementia refers to a group of neuro-degenerative disorder diversity caused by the
gradual neuronal dysfunction and death of brain cells. This disorder can be defined
clinically as a syndrome that causes a decline in cognitive domain (i.e. attention,
memory, executive function, visual-spatial ability and language) (Al-Qazzaz et al.
2014), which is common in the elderly. Dementia is classified into Alzheimer’s
disease (AD), Parkinson’s disease (PD), dementia with lewy bodies, Creutzfeldt–
Jakob disease, normal pressure hydrocephalus, vascular dementia and frontotem-
poral dementia (Minguez and Winblad 2010; DeKosky and Marek 2003). AD is the
most well-known and common type of dementia. Out of all the mentioned types of
dementia, two-third of the demented patients suffer from AD.

EEG plays an important role in detecting and classifying dementia. The resting
alpha frequency declines, especially in early dementia. It is known that the lower
limit of normal alpha frequency is 8 Hz (cycles per second). In assessing the
frequency of the alpha rhythm, alerting manoeuvres are essential to ensure that the
patient is in the best awake state and not drowsy. Although the EEG may be normal
or minimally disturbed in a number of patients in the initial stages of AD, an
abnormal EEG usually is recorded later in the course. A large percentage of patients

Fig. 2.2 Typical patterns of EEG signals for normal, partial seizure and generalized seizure (Ref.
Seizure, Drugs.com)

26 2 Significance of EEG Signals in Medical and Health Research



with moderately severe-to-severe AD exhibit abnormal EEGs. Computerized
methods, such as EEG spectral analysis (Neto et al. 2015), coherence and com-
plexity (i.e. correlation dimension), have been demonstrated to correspond to
cognitive function (Staudinger and Polikar 2011). EEG is useful for clinical eval-
uation because of its ease of use, non-invasiveness and capability to differentiate
types and severity of dementia at a cost lower than that of other neuro-imaging
techniques.

2.3 EEG in Brain Tumour Diagnosis

A brain tumour is a collection, or mass, of abnormal cells in the brain. Different
types of brain tumours are featured in the literature, where some are noncancerous
(benign), and the others are cancerous (malignant). Sometimes, brain tumours can
begin in the brain (primary brain tumours), alternatively cancer can begin in other
parts of the body and spread to the brain (secondary, or metastatic, brain tumours).
EEG is primarily used to complement advanced imaging, for example, CT scan-
ning, and MRI. EEG can also be used for localization diagnosis of brain tumours.
Old neuro-imaging techniques consisted of skull radiography (Ref. Medscape (EEG
in Brain Tumours)). EEG was first introduced by Walter in 1936 by introducing the
term “delta waves” that identified the association between localized slow waves on
the EEG and tumours of the cerebral hemispheres (Walter 1936). Delta is the
frequency of EEG that is less than 4 Hertz (Hz), whereas the normal alpha is
between 8 and 12 Hz. This established EEG is known to be an important tool for
localizing brain tumours. After this establishment, in the next four decades, elec-
troencephalographers mounted an enormous effort to improve the accuracy of
localization and seek clues to underlying pathological processes. EEG abnormali-
ties in brain tumours depend on the stage at which the patient presents for evalu-
ation and the changes observed with tumours result mainly from disturbances in
bordering brain parenchyma as tumour tissue is electrically silent (Ref. EEG in
Brain Tumours, Medscape).

It is known that brain tumours may be associated with various EEG findings.
Fischer-Williams and Dike (Fischer-Williams and Dike 1993) mentioned that the
following characteristics may be seen at the time of brain tumour diagnosis:

• Focal slow activity
• Focal attenuation of background activity
• Asymmetric beta activity
• Disturbance of the alpha rhythm
• Interictal epileptiform discharges (spikes and sharp waves)
• Normal EEG.
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2.4 EEG in Stroke Diagnosis

A stroke is the sudden death of brain cells in a localized area which happens when
the blood flow to an area of the brain is interrupted by either a blood clot or a
broken blood vessel. A stroke is a medical emergency that kills many brain cells per
minute and causes permanent brain damage. Depending on the region of the brain
affected, a stroke may cause paralysis, speech impairment, loss of memory and
reasoning ability, coma or death. A stroke is also sometimes called a brain attack or
a cerebrovascular accident (CVA). There are two main types of stroke: ischemic,
due to lack of blood flow, and hemorrhagic, due to bleeding. About four out of
every five strokes are ischaemic. About one in every five strokes is haemorrhagic.
After dementia, strokes are the second leading cause of disability. Disability may
include loss of vision and/or speech, paralysis and confusion. Once the damage
becomes clinically or radiographically apparent, proper neurological exams and
imaging are very useful for detecting delayed cerebral ischemia stroke. Thus, EEG
can be a useful way to detect and subsequently treat ischemia before the injury
becomes irreversible. EEG is also very useful for identifying the stroke. In the
operating room, EEG has an established role in identifying ischemia prior to the
development of infarction during carotid endarterectomy (Foreman and Claassen
2012).

Brain function is represented on an EEG by oscillations of certain frequencies.
Slower frequencies (typically delta [0.5–3 Hz] or theta [4–7 Hz]) are generated by
the thalamus and by cells in layers II–VI of the cortex. Faster frequencies (or alpha,
typically 8–12 Hz) derive from cells in layers IV and V of the cortex (Amzica et al.
2010). All frequencies are modulated by the reticular activating system, which
corresponds to the observation of reactivity on the EEG (Evans 1976). Pyramidal
neurons found in layers III, V and VI are exquisitely sensitive to conditions of low
oxygen, such as ischemia, thus leading to many of the abnormal changes in the
patterns seen on an EEG (Ordan 2004).

2.5 EEG in Autism Diagnosis

Autism and related autism spectrum disorders (ASD) are lifelong, often severely
impairing neurodevelopmental syndromes involving deficits in social relatedness,
language and behaviour. The diagnosis of autism is a difficult process that usually
includes certain behavioural and cognitive characteristics. As EEG recording and
analysis is one of the fundamental tools in diagnosing and identifying disorders in
neurophysiology, researchers are trying to identify diagnostic approaches for aut-
ism, which is a disorder of neurophysiology (Hashemian and Pourghassem 2014).
The EEG signal is characterized by a high temporal resolution (in the order of
milliseconds) allowing for precise temporal examination of cortical activity. In
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autism analysis, EEG rhythms are the most commonly used features based on the
comparison technique.

Dr. Molholm and colleagues suggested that brainwave EEG recordings could
potentially reveal how severely autistic individuals are affected. In addition, EEG
recordings might help diagnose autism earlier. “Early diagnosis allows for earlier
treatment-which we know increases the likelihood of a better outcome”, said
Molholm (Ref. Autism Research 2014). Molholm hopes that one day, EEG
recordings might contribute to a more objective diagnosis for autism, as well as
better categorization of where people are on the spectrum. The increased prevalence
of epilepsy and/or epileptiform EEG abnormalities in individuals with ASD may be
an important clue to an underlying neurological abnormality, at least for a subset of
autism patients. In general, autistic children appear to show poor short range
connectivity in the left hemisphere of the brain which is responsible for language,
while at the same time having an increased connectivity in regions that are further
apart from each other, indicating that some compensation or misbalance is occur-
ring. The EEG tests have proved more accurate, providing a clearer picture and able
to identify these patterns.

2.6 EEG in Sleep Disorder Diagnosis

The term “sleep disorder” refers to a range of conditions that result in abnormalities
during sleep. The most common disorder is sleep apnoea. Sleep apnoea occurs
when the walls of the throat come together during sleep, blocking off the upper
airway. The full name for this condition is Obstructive Sleep Apnoea (OSA).
Another rare form of breathing disturbance during sleep is called central sleep
apnoea. It is caused by a disruption to the mechanisms that control the rate and
depth of breathing.

Sleep staging is crucial for the diagnosis and treatment of sleep disorders. It also
relates closely to the study of brain function. The EEG monitors the various stages
of sleep and is interpreted by clinicians. This information is very useful to get a
clear picture of different types and causes of sleep disorders. For example, in an
intensive care unit, EEG wave classification is used to continuously monitor
patients’ brain activities. For newborn infants at risk of developmental disabilities,
sleep staging is used to assess brain maturation. Many other applications acclimate
the EEG wave classification techniques (originally developed for sleep staging) to
their purposes. Besides being used to study human activities, sleep staging has also
been used to study avian bird song systems and evolutionary theories about
mammalian sleep.
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2.7 EEG in Alcoholism Diagnosis

Alcoholism is a severe disorder that affects the functionality of neurons in the
central nervous system (CNS) and alters the behaviour of an affected person.
Alcoholism causes a wide range of effects such as liver diseases, heart diseases,
brain damage and certain cancers. It is also the cause of other harms such as road
and other accidents, domestic and public violence and crime, and it contributes to
family breakdown and broader social dysfunction (MCDS 2011). Alcoholics
experience numerous cognitive deficiencies, for instance, learning and memory
deficits, impairment of decision making and problems with motor skills, as well as
suffering behavioural changes that include anxiety and depression (Harper 2007;
Brust 2010; Bajaj et al. 2016). EEG signals can be used as a diagnostic tool in the
evaluation of subjects with alcoholism. The neurophysiological interpretation of
EEG signals in persons with alcoholism is based on observations and interpretations
of the frequency and power in their EEGs compared to EEG signals from persons
without alcoholism (Acharya et al. 2014). While undertaking cognitive tasks,
alcoholics and people at risk of alcoholism manifest increased resting oscillations
(e.g. theta, beta) and decreased “active” oscillations in the same frequency bands
(Spence and Schneider 2009). Not only does this underlying central nervous system
(CNS) disinhibition appear to be involved in the predisposition toward alcoholism,
it is hypothesized that neuroelectric features related to CNS disinhibition may
provide insights into the neurobiology of craving and relapse. The relationship
between this underlying CNS hyperexcitability and the induction of alcohol abuses
leading to alcohol dependence remains to be explained.

2.8 EEG in Anaesthesia Monitoring

Awareness during surgery is one of the most feared complications of anaesthesia.
EEG is used to monitor anaesthetic depth. Monitoring the level of consciousness
during general anaesthesia with processed EEG monitors has become an almost
routine practice in the operating room, despite ambiguous research results regarding
its potential benefits (Musialowicz and Lahtinen 2014). Using EEG signals to
monitor the depth of anaesthesia reduces the incidences of intraoperative awareness,
leads to a reduction in drug consumption, prevents anaesthesia-related adverse
events and enables faster recovery. EEG patterns are known to change with the
patient’s depth of anaesthesia, and assessment of hypnosis requires measurements
of electrical activity in the central nervous system (CNS). Anaesthetics act on the
brain; thus, this organ should be monitored in addition to the patient’s spinal cord
reflexes and cardiovascular system signs, such as blood pressure and heart rate.
EEG-based depth-of-anaesthesia (DoA) monitors use algorithms to continuously
analyse EEG signals and translate any changes into simple numerical indices that
correspond to the level of consciousness.

30 2 Significance of EEG Signals in Medical and Health Research



There are many different EEG-based DoA monitors, including the Bispectral
Index System Monitor (BIS Monitor; Covidien, USA); E-Entropy Module (GE
Healthcare, USA); Narcotrend Compact M (MonitorTechnik, Germany); AEP
A-line Monitor, Cerebral State Monitor (Danmeter, Denmark); Patient State Index
Monitor, SEDLine (Masimo, USA); and SNAPII (Stryker, USA). However, not all
of them have been thoroughly validated by clinical studies. Among them, the BIS is
the best described monitor of the depth of the hypnotic component of anaesthesia or
sedation. The BIS index discriminates between awake and asleep states but with
considerable overlap of values and no clear-cut transition between awake and
asleep values at the end of surgery.

2.9 EEG in Coma and Brain Death

Coma is an eyes-closed state of unresponsiveness with severely impaired arousal
and cognition. It represents a failure of neurologic function resulting from damage
to a critical number of brainstem and diencephalic pathways, which regulate the
overall level of cortical function (Sutter and Kaplan 2012). Coma has been iden-
tified as a major predictor of death and poor neurofunctional outcomes in patients
with a variety of critical illnesses including ischemic strokes (Sacco et al. 1990),
intracerebral haemorrhage (Tuhrim et al. 1988), traumatic brain injury (Teasdale
and Jennett 1976; Perel et al. 2008), hypoxic encephalopathy after cardiac arrest
(Sacco et al. 1990; Levy et all. 1985; Booth et al. 2004) and metabolic derange-
ments or sepsis (Sacco et al. 1990). EEG has long been used in evaluating comatose
patients, and is being increasingly found to uncover patterns of prognostic signif-
icance, reveal subclinical seizure activity and provide data during treatment in
which patients are paralysed. Some EEG patterns reveal increasing degrees of
cerebral compromise with a progressive slowing of the background frequencies,
while others can be explored for reactivity to external stimuli for prognostic pur-
poses. When a patient’s brain falls completely silent and electrical recordings
devices show a flat line reflecting a lack of brain activity, doctors consider the
patient to have reached the deepest stage of a coma.

Brain death is referred to the complete, irreversible and permanent loss of all
brain and brainstem functions (Chen et al. 2008). Brain death implies the termi-
nation of a human’s life. EEG is often used in the confirmatory test for brain death
diagnosis in clinical practice. Because EEG recording and monitoring is relatively
safe for the patients in deep coma, it is believed to be valuable for either reducing
the risk of brain death diagnosis (while comparing other tests such as the apnea) or
preventing mistaken diagnosis. Generally, an EEG demonstrates electrocerebral
silence reflecting the absence of electrical brain activity. Transcranial doppler
studies reveal the absence of cerebral blood flow. EEG is used to diagnose brain
death in order to terminate treatment or prepare for organ donation.
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2.10 EEG in Brain–Computer Interfaces (BCIs)

A relatively new but emergent field for EEGs is brain–computer interfaces (BCIs).
BCI is a technology that finds a new communicative way between a brain and a
computer. A BCI is a computer-based system that acquires brain signals, analyses
them, and translates them into commands that are relayed to an output device to
carry out a desired action (see Fig. 2.6). The key aim of BCI research is to create a
new communication pathway allowing direct transmission of messages from the
brain by analysing the brain’s mental activities for people suffering from severe
neuromuscular disabilities (Siuly and Li 2015). To measure EEG signal, an elec-
trode cap is placed on the head of a user. To command the machine a user imagines
a specific task, such as the movement of limbs or composing of words. These tasks
affect the patterns of EEG signals. Computers detect and classify these patterns into
different tasks in order to control a computer application (such as a cursor move-
ment) or control a machine (e.g. wheelchair).

BCIs do not require actual physical movement, and hence they may be the only
means of communications possible for people who have severe motor disabilities.
BCIs could also help reduce symptoms resulting from stroke, autism, emotional and
attention disorders. There are two types of BCIs: invasive, which are based on
signals recorded from electrodes implanted over the brain cortex (requiring sur-
gery), and non-invasive, based on signals recorded from electrodes placed on the
scalp (outside the head) (Wolpaw et al. 2002). In recent research, the non-invasive
EEG is the most preferable technique.

In general, BCI systems allow individuals to interact with the external envi-
ronment by consciously controlling their thoughts instead of contracting muscles
(e.g. human–machine interfaces controlled or managed by myoelectric signals).
A BCI system typically requires the following of a closed-up process which gen-
erally consists of six steps: brain activity measurement, pre-processing, feature
extraction, classification, translation into a command and feedback (Mason and
Birch 2003) as shown in Fig. 2.3. The result of the classification allows external
devices to control signals. Another aspect of BCI systems is that the user receives
stimuli (visual, auditory or tactile) and/or performs mental tasks while the brain
signals are captured and processed. Based on the stimulus or task performed by the
user, several phenomena or behaviours extracted from the EEG signals can be
detected.

Brain activity measurement: Measuring brain activity effectively is a critical
step for BCI communications. Human intentions modulate the electrical signals
which are measured using various types of electrodes and then these signals are
digitized. In this book, we use EEGs as the measurement of brain activities.

Pre-processing: Pre-processing aims to simply process subsequent processing
operations, improving signal quality without losing information. In this step, the
recorded signals are processed to clean and denoise data to enhance the relevant
information embedded in the signals (Bashashati et al. 2007).
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Feature extraction: The brain patterns used in BCIs are characterized by certain
features. Feature extraction aims at describing the signals by a few relevant values
called “features” (Bashashati et al. 2007).

Classification: The classification step assigns a class to a set of features
extracted from the signals. This class corresponds to the type of mental states
identified. This step can also be denoted as “feature translation”.

Translation into a command/application: Once the mental state is identified, a
command is associated to this mental state in order to control a given application,
such as a computer or a robot.

Feedback: Finally, this step provides the user with feedback about the identified
mental state. This aims to help the user control his/her brain activities. The overall
objective is to increase the user’s performance.

A BCI can only detect and classify specific patterns of an activity in continuous
brain signals that are associated with specific tasks or events. What a BCI user has
to do to produce these patterns is determined by the mental strategy a BCI system
employs. The mental strategy is the foundation of any brain–computer communi-
cation. The mental strategy determines what a user has to do in order to produce
brain patterns that the BCI can interpret. The most common mental strategies are
motor imagery (MI) and selective (focused) attention. Motor imagery (MI) is the
imagination of a movement without actually performing the movement. On the
other hand, BCIs based on selective attention require external stimuli provided by a

1101010001101 Digitalized                     Translation into command
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Fig. 2.3 The general architecture of a BCI system

2.10 EEG in Brain–Computer Interfaces (BCIs) 33



BCI system. The stimuli can be auditory or somatosensory. In this research, we
work on the MI for the BCI systems.

2.11 Significance of EEG Signal Analysis
and Classification

When measuring an EEG we often have large amounts of data with different
categories, most particularly when the recordings are made over a long time period.
To extract information from such a large amount of data, automated methods are
needed to analyse and classify the data through appropriate techniques.
Although EEG recordings contain valuable information about the function of the
brain, the classification and evaluation procedures of these signals have not been
well developed. The evaluation of an EEG recording is usually conducted by
experienced electroencephalographers who visually scan the EEG records (Kutlu
et al. 2009; Subasi and Ercelebi 2005). Visual inspection of EEG signals is not a
satisfactory procedure because there are no standard criteria for the assessments and
it is a time-consuming process that can often result in errors due to interpreter
fatigue. Therefore, there is a need to develop automatic systems for classifying the
recorded EEG signals. As BCIs aim to translate an activity of the brain into a
command to control an external device completing the task of communication, it is
a challenge for BCI systems to properly and efficiently recognize the intension’s
patterns of the brain using appropriate classification algorithms.

Given the high variability of the EEG signals in the presence of different subjects
and target events (classes), the design of an effective classification system is
complex. In recent years, a variety of computerized analysis methods have been
developed to extract the relevant information from EEG recordings and identify
different categories of EEG data. From the literature, it is observed that most of the
reported methods have a limited success rate. Some methods take more time to
perform the required computation work and others are very complex for practical
applications. Some methods used small sample setting (SSS) data points as a
representative of a large number of data points of EEG recordings. Generally these
were not representative enough for EEG signal classification. On the other hand, in
most of the cases, the reported methods did not select their parameters using a
suitable technique, even though parameters significantly affect the classification
performance.

Since EEG signals provide significant contributions to biomedical science, a
careful analysis of the EEG records is needed to provide valuable insight and to
improve understanding of them. One challenge in the current biomedical research is
how to classify time-varying electroencephalographic (EEG) signals as accurately
as possible. Several classification methods are reported to identify different neu-
rological diseases and also to recognize diverse mental states of disabled people
using the typical patterns of the EEG signals. Currently, the classification of EEG
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signals in epileptic activities and MI task-based BCIs are still far from being fully
understood. A considerable amount of neuroscience research is required to achieve
this goal. Hence, in this book, we aim to develop methods to classify brain activities
in these two areas.

2.12 Concept of EEG Signal Classification

The classification of EEG signals plays an important role in biomedical research.
Classifying EEG signals is very important in the diagnosis of brain diseases and
also for contributing to a better understanding of cognitive processes. An efficient
classification technique helps to distinguish EEG segments in the decision making
of a person’s health. As EEG recordings contain a large amount of data; one key
problem is how to represent the recorded EEG signals for further analysis, such as
classification. It is, first, important to extract useful features from raw EEG signals,
and then use the extracted features for classification.

The task of classification occurs throughout daily life, and essentially means
decisions being made based on currently available information. Examples of
classification tasks include the mechanical procedures used for sorting letters on the
basis of machine read postcodes, assigning individuals to credit status on the basis
of financial and other personal information, and the preliminary diagnosis of a
patient’s disease in order to select immediate treatment while awaiting definitive
test results (Brunelli 2009). In machine learning and pattern recognition, classifi-
cation refers to an algorithm procedure for assigning a given piece of input data into
one of the given numbers of categories (Duda et al. 2001; Brunelli 2009). An
example would be assigning an email to a “spam” or “non-spam” section, or giving
a diagnosis to a patient based on observed characteristics (gender, blood pressure or
presence or absence of certain symptoms, etc.). The piece of input data is formally
known as an instance and the categories are termed classes. The instance is for-
mally described by a vector of features, which together constitute a description of
all known characteristics of the instance. The goal of the classification is to assign
class labels to the features extracted from the observations of a set of data in a
specific problem. An algorithm that implements classification, especially in a
concrete implementation, is known as a classifier. The term classifier sometimes
also refers to the mathematical function, implemented by a classification algorithm
that maps input data to a category. Classifiers are able to learn how to identify the
class of a feature vector, thanks to training sets. These sets are composed of feature
vectors labelled with their classes of belonging.

This research works on the EEG signal analysis and classification. Measuring
brain activity through EEG leads to the acquisition of a large amount of data. In
order to obtain the best possible performance, it is necessary to work with a smaller
number of values which describe some relevant properties of the signals. These
values are known as “features”. Features are generally aggregated into a vector
known as a “feature vector” (Lotte 2009). Thus, feature extraction can be defined as
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an operation which transforms one or several signals into a feature vector. The
feature vector, which comprised the set of all features used to describe a pattern, is a
reduced dimensional representation of that pattern. Signal classification means to
analyse different characteristic features of a signal, and based on those characteristic
features, decide to which grouping or class the signal belongs. The resulting
classification decision can be mapped back into the physical world to reveal
information about the physical process that created the signal.

The concept of signal classification is depicted in Fig. 2.4. This figure presents a
structure of how signals with different categories are classified, extracting features
from original data in a pattern recognition area. From this figure, it is seen that
appropriate features are extracted from the signal space and generate a feature
space. In the feature space, the features are divided into two classes (Class A and
Class B). Finally, a classifier attempts to identify the extracted features during the
classification.

• Types of classification

There are two main divisions of classification: supervised classification and
unsupervised classification. In supervised classification, observations of a set of
data are associated with class labels. In unsupervised classification, observations are
not labelled or assigned to a known class (Jain et al. 2000).

Supervised classification is preferred in the majority of biomedical research.
Most of the classification algorithms deal with a group of data that has some
information about the dataset. In other words, the class label information is given
within the dataset for training the classifier. This type of classification belongs to
supervised learning, in which a supervisor instructs the classifier during the con-
struction of the classification model. Supervised procedure assumes that a set of
training data (the training set) has been provided, consisting of a set of instances
that have been properly labelled by hand with the correct output (Duda et al. 2001;
Brunelli 2009).

Fig. 2.4 Procedure of classification in biomedical signal processing
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In the supervised learning approach, there are pairs of examples in the given
training dataset which can be mathematically expressed as D = {(x1, y1), (x2, y2),
…, (xN, yN)}. Here, x1, x2, …, xN are the observations and y1, y2, …, yN are the class
labels of the observations. For example, if the problem is filtering spam, then xi is
some representation of an email and yi is either “spam” or “non-spam”. The
observations can be any vector, whose elements are selected from a set of features.
For practical considerations, we usually have real-valued observations and it is easy
to assume x e X. Also, one can choose any type of representation for the class labels.
For simplicity, they are usually represented as real numbers that is y e Y. Therefore,
in supervised classification, the aim is to find the transformation between the fea-
ture space X and the class label space Y, i.e. f: X ! Y. If the class space has a finite
number of elements, i.e. y e {1, 2, …, L}, then the problem is considered as a
classification task. For the case of a binary classification problem, the classes are
divided into two categories, such as the target and non-target classes. For clarity and
conformity with the literature, these classes are represented as Y = {-1, +1} where
the negativity represents the non-target case. Algorithms for the classification
depend on the type of label output, on whether learning is supervised or unsu-
pervised, and on whether the algorithm is statistical or non-statistical in nature.
Statistical algorithms can be further categorized as generative or discriminative.

The algorithms in the supervised classification procedure predicting categorical
labels are linear discriminant analysis (LDA), support vector machine (SVM),
decision trees, naive Bayes classifier, logistic regression, K-nearest-neighbour
(kNN) algorithms, Kernel estimation, neural networks (NN), linear regression,
Gaussian process regression, Kalman filters, etc. In a typical supervised classifi-
cation procedure, the dataset is divided into two: training set and testing set.
A classifier is constructed using the training set. Then the performance of the
classifier is evaluated using the testing set. This evaluation is sometimes repeated
for different parameters of the classifier constructed. This way the parameters of the
classifier are optimized. After that optimization, the classifier is ready to assign
class labels to the features with unknown class labels. The goal of the learning
procedure is to maximize this test accuracy on a “typical” testing set. Classification
normally refers to a supervised procedure. In this research, we have used a su-
pervised procedure in the classification of EEG signals. During the experiment, we
divide each EEG dataset into two mutually exclusive groups training set and testing
set as shown in Fig. 2.5. The reason for separating the sets is related to

A set of EEG data

Training set Testing set

Fig. 2.5 Mutually exclusive
training and testing set
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memorization and generalization. The training set is used to train the classifier,
while the testing set is used to evaluate the performance of the classifier.

The unsupervised classification procedure involves grouping data into classes
based on some measure of inherent ability (e.g. the distance between instances,
considered as vectors in a multi-dimensional vector space). This procedure assumes
training data has not been hand-labelled, and attempts to find inherent patterns in
the data that can then be used to determine the correct output value for new data
instances (Duda et al. 2001; Brunelli 2009). In unsupervised learning, any infor-
mation about the class labels of the measurements is not available even for a small
set of data. The common algorithms of unsupervised classification are K-means
clustering, hierarchical clustering, principal component analysis (PCA), kernel
principal component analysis (Kernel PCA), hidden Markov models, independent
component analysis (ICA), categorical mixture model, etc. A combination of the
two classification procedures (supervised and unsupervised) that has recently been
explored is semi-supervised learning which uses a combination of labelled and
unlabelled data (typically a small set of labelled data combined with a large amount
of unlabelled data).

2.13 Computer-Aided EEG Diagnosis

EEG signals are complex and analysing them in bulk obtained from a large number
of patients makes assessment time consuming. Thus recently the computer-aided
diagnosis system is introducing to make it possible to conduct an automatic neu-
rophysiological assessment for detection of abnormalities from EEG signal data.
The CAD system (Arimura et al. 2009; Siuly and Zhang 2016) consists of three
main steps: pre-processing, feature extraction, and classification as shown in
Fig. 2.6. In the pre-processing, acquired EEG data are processed for removing

Fig. 2.6 A framework of computer-aided EEG diagnosis
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noises, which reduces the complexity and computation time of the CAD algorithms.
The feature extraction step of the CAD system is one of the most important parts
where the biomarkers of disease identification are extracted from the original source
data. In the classification process for CAD systems, the extracted feature vector is
used in the classifier model as input for assigning the candidate to one of the
possible categories (e.g. healthy or normal) according to the output of a classifier.
Generally, a CAD system can be categorized one of the two types. When a CAD
system involves classifying all candidates into two categories, such as abnormal and
normal candidates, it is called a two-class categorization system. On the other hand,
if a CAD system can classify unknown cases into several types of abnormalities,
which are more than two, it is called a multi-class categorization system. Many
researchers are working to develop CAD schemes for detection and classification of
various kinds of abnormalities from medical data.

Like pattern recognition, the performance of CAD systems is assessed by a k-
fold cross validation test, bootstrap method, leave-one-out (Jain et al. 2000), etc.
The free-response receiver operating characteristic (FROC) and ROC curves are
used for evaluation of the overall performance of the CAD systems for various
operating points. The FROC curve shows the relationship between the sensitivity
and the number of false positives, which can be obtained by thresholding a certain
parameter of the CAD system or the output of the classifier (Arimura et al. 2009).
Recently, there has been a lot of research performed on the development of CAD
systems for detecting neurological problems such as epileptic seizures, dementia,
Alzheimer’s disease, autism, strokes, brain tumours, alcoholism related neurolog-
ical disorders and sleeping disorders (Siuly and Zhang 2016).

In this book, our aim is to develop CAD methods for the detection of epilepsy
and epileptic seizures from EEG signal data and also for identifying mental states
for BCI applications.
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Chapter 3
Objectives and Structures of the Book

In the medical and health community, EEG signals are the most utilized signals in
the clinical assessment of brain states, detection of epileptic seizures and identifi-
cation of mental states for BCI systems. A reliable automatic classification and
detection system would help to ensure an objective assessment thus facilitating
treatments, and it would significantly improve the diagnosis of epilepsy. EEG
signals could also be used for the long-term monitoring and treatment of patients.
The main goal of this book is to explore the development of several methods that
are capable of classifying different categories of EEG signal to help in the evalu-
ation and treatment of brain diseases and abnormalities. This chapter outlines the
book’s objectives and its structures. This chapter also provides a description of the
experimental databases and performance evaluation measures used in this research.
Furthermore, this chapter discusses the commonly used methods of EEG signal
classification.

3.1 Objectives

The work presented in this book focuses on how different EEG signals from dif-
ferent brain activities can be classified to analyze different brain disorders. We have
developed a number of techniques for classifying EEG signals in the epileptic
diagnosis and also several techniques for the identification of different categories of
MI tasks in BCI applications. The main objective of this study is to develop
methods for identifying different EEG signals. To investigate the performances of
those techniques, we also compare our proposed algorithms with other recently
reported algorithms.

Our main objective in this book is achieved through focusing on three goals:

• Introducing methods for analyzing EEG signals for the detection of epileptic
seizures
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• Developing methods for the identification of mental states in brain computer
interfaces (BCIs)

• Investigating which algorithm and which kind of EEG data (motor area data or
all-channels data) are better for motor imagery (MI) signal classification
(Fig. 3.1).

To achieve Goals 1 and 2, we will introduce methods for feature extraction,
segmentation analysis and information retrieval. The methods are based on algo-
rithms developed from statistical techniques and machine learning methods, and are
specifically designed to deal with the characteristics of EEG signals. The perfor-
mances will be studied by means of empirical analyses. To achieve Goal 3, we will
apply our developed algorithms for EEG based MI signal classification on data
from the motor cortex area and all-channel EEG data; and will then make a decision
about which algorithm is most suited for which data type.

3.2 Structure of the Book

The examination of EEG signals has been recognized as the most preponderant
approach to the problem of extracting knowledge of brain dynamics. EEG
recordings are particularly important in the diagnosis of epilepsy and in brain
computer interfaces (BCI). The main use of EEGs is to detect

Fig. 3.1 Objectives
addressed in this book
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and investigate epilepsy, a condition that causes repeated seizures. An EEG will
help physicians to identify the type of epilepsy a patient has, what may be triggering
seizures and how best to treat the patient. In BCI systems, EEG signals help to
restore sensory and motor function in patients suffering with severe motor dis-
abilities. Analyzing EEG signals is very important both for supporting the diagnosis
of brain diseases and for contributing to a better understanding of mental state
identification of motor disabled people in BCI applications. Correctly and effi-
ciently identifying different EEG signals for diagnosing abnormalities in health is
currently a major challenge for medical science. Hence, this book intends to present
advanced methods for the analysis and classification of epileptic EEG signals and
also for the identification of mental state based on MI EEG signals in BCI’s
development.

Part I provides a basic overview of EEG signals, including its concepts, gen-
eration procedure, characteristics, nature and abnormal patterns. This part also
provides a discussion of different applications of EEG signals for the diagnosis of
brain diseases and abnormalities. In addition, we provide the aims of this book, a
description of the experimental data sets and performance evaluation measures used
in this research and a short review of commonly used methods in the EEG signal
classification. Part II presents our developed techniques and models for the
detection of epileptic seizures through EEG signal processing. The implementation
of these proposed methods in the real-time databases will be highlighted. In Part III,
we introduce the methods for identifying mental states from EEG data designed for
BCI systems and their applications in some benchmark datasets. Part III also reports
the experimental procedures and the results of each methodology. Finally, Part IV

Fig. 3.2 Structure of the book’s four parts
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provides an overall discussion about EEG signal analysis and classification. This
part gives a summary discussion on the developed methods, suggests future
directions in the EEG signal analysis area and concludes with recommendations for
further research. Figure 3.2 displays a brief outline of each of the four parts using
chapter titles.

3.3 Materials

To achieve the objectives of the book, a set of methods is developed and imple-
mented in various EEG signal databases. Datasets used are described in Sect. 3.3.1.
Section 3.3.2 provides a brief description of the performance evaluation measures
used. Several methods are commonly used in the analysis and classification of EEG
signals. Section 3.4 reports these methods. Our research develops methods for the
epileptic EEG signal classification and also for the MI-based EEG signal recog-
nition in BCI systems. Section 3.4.1 reports the methods which are used in the
epileptic EEG data for feature extraction and classification. The methods for the
classification of MI tasks in BCI systems are described in Sect. 3.4.2.

3.3.1 Analyzed Data

3.3.1.1 The Epileptic EEG Data

The epileptic EEG data, developed by the Department of Epileptology, University
of Bonn, Germany, and described in Andrzejak et al. (2001), is publicly available
(EEG time series 2005). The whole database consists of five EEG data sets (denoted
as Set A to Set E), each containing 100 single-channel EEG signals of 23.6 s from
five separate classes. Each signal was chosen after visual inspection for artifacts
such as the causes of muscle activities or eye movements. All EEG recordings were
made with the same 128-channel amplifier system, using an average common
reference. The recoded data was digitized at 173.61 data points per second using
12-bit resolution. The band-pass filter settings were 0.53–40 Hz (12 dB/oct). Set A
and Set B were collected from surface EEG recordings of five healthy volunteers
with eyes open and eyes closed, respectively. Sets C, D and E were collected from
the EEG records of the pre-surgical diagnosis of five epileptic patients. Signals in
Set C and Set D were recorded in seizure-free intervals from five epileptic patients
from the hippocampal formation of the opposite hemisphere of the brain and from
within the epileptogenic zone, respectively. Table 3.1 presents a summary
description of the five set EEG data. Set E contains the EEG records of five epileptic
patients during seizure activity. Figure 3.3 depicts some examples of five EEG
signals (Set A to Set E). The amplitudes of those EEG recordings are given in micro
volts.
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Table 3.1 Summary of the epileptic EEG data (Siuly and Li, 2014)

Subjects Set A Set B Set C Set D Set E

Five healthy
subjects

Five healthy
subjects

Five epileptic
subjects

Five epileptic
subjects

Five epileptic
subjects

Patient’s
state

Awake and
eyes open
(normal)

Awake and
eyes closed
(normal)

Seizure-free
(interictal)

Seizure-free
(interictal)

Seizure
activity (ictal)

Electrode
type

Surface Surface Intracranial Intracranial Intracranial

Electrode
placement

International
10–20 system

International
10–20 system

Opposite to
epileptogenic
zone

Within
epileptogenic
zone

Within
epileptogenic
zone

Number
of
channels

100 100 100 100 100

Time
duration
(s)

23.6 23.6 23.6 23.6 23.6

0 5 10 15 20 25
-200

0

200

0 5 10 15 20 25
-500

0

500
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Fig. 3.3 Example of five different sets of EEG signals (from top to bottom: Set A, Set B, Set C,
Set D and Set E) (Siuly et al. 2014)
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3.3.1.2 Dataset IVa of BCI Competition III

Dataset IVa (BCI competition III 2005; Blankertz et al. 2006) was recorded from
five healthy subjects (labelled aa, al, av, aw, ay) who performed right hand (class
1) and right foot (class 2) MI tasks. The subjects sat in comfortable chairs with their
arms resting on armrests. This data set contains MI EEG data from the four initial
sessions without feedback. The EEG signals were recorded from 118 electrodes
according to the international 10/20 system. There were 280 trials for each subject,
namely 140 trials for each task per subject. During each trial, the subject was
required to perform either of the two (right hand and right foot) MI tasks for 3.5 s.
A training set and a testing set consisted of different sizes for each subject. Among
280 trials, 168, 224, 84, 56 and 28 trials composed the training set for subject aa, al,
av, aw, ay, respectively, and the remaining trials composed the test set. This study
uses the down-sampled data at 100 Hz where the original sampling rate is 1000 Hz.

3.3.1.3 Dataset IVb of BCI Competition III

Dataset IVb (BCI competition III; Blankertz et al. 2006) was collected from one
healthy male subject. He sat in a comfortable chair with arms resting on armrests.
This data set has the data from the seven initial sessions without feedback. The EEG
data consisted of two classes: left hand and right foot MI. Signals were recorded
from 118 channels in 210 trials. 118 EEG channels were measured at the positions
of the extended international 10/20 system. Signals were band-pass filtered between
0.05 and 200 Hz and digitized at 1000 Hz with 16 bit (0.1 µV) accuracy. They
provided a version of the data that was down-sampled at 100 Hz, which is used in
this research.

3.3.1.4 Mental Imagery EEG Data of BCI Competition III

The data set V, for brain computer interface (BCI) Competition III, contains EEG
recordings from three normal subjects during three kinds of mental imagery tasks,
which were the imagination of repetitive self-paced left hand movements (class 1),
the imagination of repetitive self-paced right hand movements (class 2), and gen-
eration of different words beginning with the same random letter (class 3) (Millán
2004; Chiappa and Millán 2005). Figure 3.4 shows the exemplary EEG signals for
left hand movements (class 1), right hand movements (class 2) and word generation
(class 3) taken from Subject 1 for this dataset. In these tests, subjects sat in a normal
chair, with relaxed arms resting on their legs. For a given subject, four
non-feedback sessions were recorded on the same day, each lasting four minutes or
so with breaks of 5–10 min between each session. The subjects performed a given
task for about 15 s and then switched randomly to the next task at the operator’s
request (Chiappa and Millán 2005). The sampling rate of the raw EEG potential
signals was 512 Hz. The signals were first spatially filtered by means of a surface
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Laplacian. Then, every power spectral density in the band of 8–30 Hz was esti-
mated using the last second of data with a frequency resolution of 2 Hz for the 8
centro-parietal channels (closely related to the current mental tasks) C3, Cz, C4,
CP1, CP2, P3, Pz and P4. EEG recordings of 12 frequency components were
obtained from each of the 8 channels, producing a 96 dimensional vector.

3.3.1.5 Ripley Data

This data contains a synthetic two-class problem from Ripley data which was used
in Ripley (1996). The dataset is publicly available in Ripley (1996). The
well-known Ripley dataset widely used as a benchmark, consists of two classes.
Each pattern has two real-valued co-ordinates and a class that can be either 0 or 1.
Each class corresponds to a bimodal distribution that is an equal mixture of two
normal distributions (Ripley 1996). Covariance matrices are identical for all the
distributions and the centre is different. The training set consists of 250 patterns
(125 patterns in each class) and the test set consists of 1000 patterns (500 patterns in
each class). This data is interesting because there is a big overlap between both
classes and the number of the test data is much larger than the number in the
training pattern.

Fig. 3.4 Exemplary EEG signals for left hand movements (class 1), right hand movements (class
2) and word generations (class 3) taken from Subject 1 (Siuly et al. 2011a, b)
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3.3.2 Performance Evaluation Parameters

Criteria for evaluating the performance of a methodology are an important part of
its design. In pattern recognition area, there are various types of measures for the
evaluation of performance. In this book, the stability of the performance of a
method is assessed on the basis of standard criteria that are used in biomedical
signal analysis. These include classification accuracy, sensitivity (or true positive
rate (TPR) or recall), specificity, false alarm rate (FAR) and receiving operating
characteristic (ROC) curve. To reduce overfitting, we also use the k-fold
cross-validation procedure for evaluating the performance of the developed meth-
ods. These criteria allow the estimation of the behaviour of the classifiers on the
extracted feature data. The definitions of these performance parameters (Siuly et al.
2011b; Guo et al. 2009; Siuly and Li 2012, 2015) are provided below:

• Classification accuracy: the number of correct decisions divided by the total
number of cases

• Sensitivity: the number of true positive decisions divided by the number of
actual positive cases

• Specificity: the number of true negative decisions divided by the number of
actual negative cases

• FAR: the percentage of false-positives predicted as positive from negative class
• ROC: A very useful tool for visualizing, organizing and selecting a classifier

based on its performance (Fawcett 2006). A ROC curve plots the sensitivity (true
positive rate) on the X-axis and the 1-specificity (false positive rate) on the Y-axis.
The area under the ROC curve is an important value to evaluate the performance
of a binary classifier and its value is always between 0 and 1. If the area of the ROC
curve is 1, it indicates that the classifier has a perfect discriminating ability. If the
area equals 0.5, the classifier has no discriminative power at all and no suitable
classifier should have an area under this curve less than 0.5 (Fawcett 2006).

• k-fold cross-validation procedure: Cross-validation is a model validation
technique for assessing the results of an analysis. It is generally used in settings
where the goal is prediction, and one wants to estimate how accurately a pre-
dictive model will perform in practice. The cross-validation process involves
partitioning data into complementary subsets, performing the analysis on one
subset (called the training set) and validating the analysis on the other subset
(called the validation set or testing set). To reduce variability, multiple rounds of
cross-validation are performed using different partitions, and the validation
results are averaged over the rounds.
In the k-fold cross-validation procedure, a data set is partitioned into k mutually
exclusive subsets of approximately equal size and the method is repeated k times
(folds) (Abdulkadir 2009; Ryali et al. 2010; Siuly and Li 2012). Each time, one
of the subsets is used as a testing set and the other k − 1 subsets are put together
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to form a training set. Then the average accuracy across all k trials is computed.
Figure 3.5 presents a design of how the extracted feature vectors of this study
are partitioned into k mutually exclusive subsets according to the k-fold
cross-validation system. As shown in Fig. 3.5, the feature vector set is divided
into k subsets and the procedure is repeated k times (the folds). Each time, one
subset is used as a testing set and the remaining nine subsets are used as a
training set, as illustrated in the figure. The results of each of k times on the
testing set are averaged over the iterations called ‘k-fold cross-validation
performance’.

One of the main reasons for using cross-validation instead of using the con-
ventional validation (e.g. partitioning the data set into two sets of 70% for training
and 30% for test) is that there is not enough data available to partition it into
separate training and test sets without losing significant modelling or testing
capability. In these cases, a fair way to properly estimate model prediction per-
formance is to use cross-validation as a powerful general technique.
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Fig. 3.5 Partitioning design of the k-fold cross-validation method
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3.4 Commonly Used Methods for EEG Signal
Classification

3.4.1 Methods for Epilepsy Diagnosis

For efficient classification, an accurate feature extraction method is very important
to extract good features from original signals. In fact, if the features extracted from
EEGs are not relevant and do not accurately describe the EEG signals employed, a
classification algorithm using such features will have trouble identifying the classes
of the features (Siuly and Zhang 2016). As a result, the correct classification rates
will be very low. From the literature, it is seen that a variety of methods have been
used for feature extraction in epileptic EEG data. The feature extraction methods
can be classified into four groups: parametric methods, non-parametric methods,
time-frequency methods and eigenvector methods.

The parametric or model-based methods assume that the signal satisfies a
generating model with known functional form, and then proceeds by estimating the
parameters in the assumed model. Some popular parametric methods are the
autoregressive (AR) model (Ubeyli 2009a), moving average (MA) model (Ubeyli
2009a), autoregressive-moving average (ARMA) model (Ubeyli 2009a) and lapu-
nov exponents (Guler et al. 2005; Murugavel et al. 2011). The AR model is suitable
for representing spectra with narrow peaks. The MA model provides a good
approximation for those spectra which are characterized by broad peaks and sharp
nulls. Such spectra are encountered less frequently in applications than narrowband
spectra, so there is a somewhat limited interest in using the MA model for spectral
estimation. Spectra with both sharp peaks and deep nulls can be modelled by the
ARMA model. The practical ARMA estimators are computationally simple and
often quite reliable, but their statistical accuracy may be poor in some cases (Kay
1988; Kay and Marple 1981; Proakis and Manolakis 1996; Stoica and Moses 1997).

The non-parametric methods rely entirely on the definitions of power spectral
density (PSD) to provide spectral estimates. These methods constitute the ‘classical
means’ for PSD estimation. Two common non-parametric methods, periodogram
and the correlogram (Ubeyli 2009a), provide a reasonably high resolution for
sufficiently long data lengths, but are poor spectral estimators because their variance
is high and does not decrease with increasing data length. The high variance of the
periodogram and correlogram methods motivates the development of modified
methods that have lower variance at a cost of reduced resolution (Ubeyli 2009a).

Mappings between the time and the frequency domains have been widely used in
signal analysis and processing. The methods which are usually used in time-fre-
quency domain are fast Fourier transform (FFT) (Welch 1967), short time Fourier
transform (STFT) (Ubeyli 2009a), wavelet transform (WT) (Adeli and Dadmehr
2003; Subasi et al. 2005b; Ubeyli 2009b; Jahankhanni et al. 2006; Murugavel et al.
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2011), wavelet energy function (Guo et al. 2009), wavelet entropy (Shen et al.
2013), Cohen class kernel functions (Acharjee and Shahnaj 2012) and visibility
graph (Supriya et al. 2016; Zhu et al. 2014). Since Fourier methods may not be
appropriate for nonstationary signals or signals with short-lived components,
alternative approaches have been sought. Among the early works in this area is
Gabor’s development of the short-time Fourier transform (STFT). The wavelet
transform (WT) provides a representation of the signal in a lattice of ‘‘building
blocks” which have good frequency and time localization. The wavelet represen-
tation, in its continuous and discrete versions, as well as in terms of a
multi-resolution approximation is presented in Akay (1998), Ubeyli and Guler
(2004).

Eigenvector methods are used for estimating frequencies and powers of signals
from noise-corrupted measurements. These methods are based on an eigen
decomposition of the correlation matrix of the noise-corrupted signal. Even when
the signal-to-noise ratio (SNR) is low, the eigenvector methods produce frequency
spectra of high resolution. The eigenvector methods, such as Pisarenko, multiple
signal classification (MUSIC) and minimum-norm, are best suited to signals that
can be assumed to be composed of several specific sinusoids buried in noise
(Proakis and Manolakis 1996; Stoica and Moses 1997; Ubeyli and Guler 2003).

In the last a few years, these feature extraction methods have been combined
with different types of classifiers. Examples include adaptive neuro-fuzzy inference
system (Guler and Ubeyli 2005), support vector machine (SVM) (Makinac 2005;
Burges 1998; Guler and Ubeyli 2007; Chandaka et al. 2009; Silver et al. 2006; Fan
et al. 2006; Shen et al. 2013; Murugavel et al. 2011; Supriya et al. 2016; Siuly et al.
2015), least square support vector machine (LS-SVM) (Ubeyli 2010; Siuly et al.
2009, 2010, 2011a, b; Hanbay 2009; Siuly and Li 2014; Siuly and Li 2015) and
artificial neural network (ANN) (Guler et al. 2005; Subasi 2007; Ubeyli 2008;
Jahankhani et al. 2006; Subasi and Ercelebi 2005a; Guo et al. 2009; Acharjee and
Shahnaj 2012), multilayer perceptron neural network (MLPNN) (Guler and Ubeyli
2007), recurrent neural network (RNN) (Guler et al. 2005), relevance vector
machine (RVM) (Lima et al. 2009), probabilistic neural network (PNN) (Guler and
Ubeyli 2007; Murugavel et al. 2011), mixture of experts (MEs) (Ubeyli 2009a),
modified mixture of experts (MMEs) (Ubeyli 2009a), k-NN (Shen et al. 2013) and
logistic tree model (Kabir et al. 2016). The performance of a classifier depends
greatly on the characteristics of the data to be classified. There is no single classifier
that works best on all given problems. Various empirical tests have been performed
to compare classifier performance and to identify the characteristics of data that
determine classifier performance. The measures of accuracy and confusion matrix
are very popular methods of evaluating the quality of a classification system. More
recently, receiver operating characteristic (ROC) curves have been used to evaluate
the trade-off between true- and false-positive rates of classification algorithms. This
research mainly uses accuracy to assess the performance of the proposed methods.
The confusion matrix and ROC curves are also used to evaluate the performance.

3.4 Commonly Used Methods for EEG Signal Classification 53



3.4.2 Methods for Mental State Recognition in BCIs

In BCI applications, several methods have been studied and employed for feature
extraction from MI based EEG signals. These include autoregressive
(AR) (Schloglel al. 2002; Pfurtschelleret al. 1998; Burke et al. 2005; Guger et al.
2001; Blankertz et al. 2006), fast Fourier transform (FFT) (Polat et al. 2007),
common spatial patterns (CSP) (Blankertz et al. 2006; Blanchard et al. 2004; Lemm
et al. 2005; Lotte and Guan 2011; Lu et al. 2010; Zhang et al. 2013), regularized
common spatial patterns (R-CSP) (Lu et al. 2009; Lotte and Guan 2011), spa-
tiospectral patterns (Wu et al. 2008), wavelet coefficients (Qin et al. 2005; Ting
et al. 2008), iterative spatiospectral patterns learning (ISSPL) (Wu et al. 2008),
fisher ratio criterion (Song and Epps 2007), Bayesian spatiospectral filter opti-
mization (BSSFO)-based bayesian framework (Suk and Lee 2013). Feature
extraction methods based on self organizing maps (SOM) using autoregressive
(AR) spectrum (Yamaguchi et al. 2008) and inverse model (Qin et al. 2004;
Kamousi et al. 2005; Congedo et al. 2006) have been studied to discriminate the
EEG signals recorded during the right and left hand motor imagery. In the
decomposition of EEG multiple sensor recordings, the PCA and ICA feature
selection methods were used (Sanei and Chambers 2007; Wang and James 2007).
All movement-related potentials are limited in duration, frequency and spatial
information of EEG data (Congedo et al. 2006; Sanei and Chambers 2007). The
combination of time-frequency (TF) and linear discriminant analysis
(LDA) techniques can be used (Bian et al. 2010). The feature extraction method
based on discrete wavelet transform has been employed in Kousarrizi et al. (2009)
to control the cursor movement via EEGs. The variance and mean of signals
decomposed by a Haar mother wavelet served as the inputs to the classifiers
(Kousarrizi et al. 2009). In other studies, db40 wavelet packet decomposition was
used to select features of EEG signals to control a four-direction motion of a small
ball on the computer screen (Bian et al. 2010).

Five different categories of classifiers: linear classifiers, neural networks, non-
linear Bayesian classifiers, nearest neighbour classifiers and combinations of
classifiers have been studied in BCI system design (Lotte et al. 2007; Md Norani
et al. 2010). Linear classifiers are discriminant algorithms that use linear functions
to distinguish classes. Linear Discriminant Analysis (LDA) (Blankertz et al. 2006;
Yong et al. 2008; Zhang et al. 2013) otherwise known as Fisher’s Linear
Discriminant Analysis (FLDA) and Support Vector Machine (SVM) are the most
popular techniques used to separate the data representing different classes by using
hyperplanes (Lotte et al. 2007; Duda et al. 2001). FLDA has the ability to distin-
guish signals from a related movement activity with a classification accuracy of
81.63% from a single trial (Kaneswaran et al. 2010). In recognizing P300 potentials
obtained from spelling a word, FLDA (an accuracy of 95.75%) outperforms Least
Squares Analysis (LSA) and Stepwise Linear Discriminant Analysis (SWLDA)
(Congedo et al. 2006). However, LDA and SVM classifiers have other limitations.
The main limitation of LDA is its linearity, which can cause poor outcomes when it
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deals with complex nonlinear EEG data (Lotte et al. 2007; Garcia et al. 2003). SVM
are known to have good generalization properties, but have a low speed of exe-
cution (Lotte et al. 2007).

The most widely used neural networks (NNs) for BCI systems, is the multilayer
perceptron (MLP), a common approximator that is sensitive to overtraining,
especially with such noisy and nonstationary data as EEGs (Lotte et al. 2007; Md
Norani et al. 2010). Other types of NNs used in BCIs are the Gaussian classifier
(Millan et al. 2004), learning vector quantization (LVQ) neural network
(Pfurtscheller et al. 1993), fuzzy ARTMAP neural network (Palaniappan et al.
2002), dynamic neural networks such as the finite impulse response neural network
(FIRNN) (Haselsteiner and Pfurtscheller 2000), time-delay neural network (TDNN)
or gamma dynamic neural network (GDNN) (Barreto et al. 1996), RBF neural
network (Hoya et al. 2003), Bayesian logistic regression neural network (BLRNN)
(Penny et al. 2000), adaptive logic network (ALN) (Kostov et al. 2000) and
probability estimating guarded neural classifier (PeGNC) (Felzer and Freisieben
2003). Recently, Ming et al. (2009) studied the performance of the probabilistic
neural network delta band (PNN-DB), MLP neural network with driven pattern
replication (MLP-DPR), modular multi-net system (MMN) and hierarchical model
(HM) to find the best method to control a mobile robot. They discovered that the
HM with statistical implementation produced the best result with an accuracy of
91%.

There are two types of Nonlinear Bayesian classifiers used in BCI systems;
Bayes quadratic and the Hidden Markov model (HMM) (Md Norani et al. 2010).
Both classifiers produce non-linear decision boundaries. The advantages of these
classifiers are that they are generative and reject uncertain samples more efficiently
than discriminative classifiers (Lotte et al. 2007). Nearest Neighbour classifiers are
also used in BCIs; for example, k Nearest Neighbour (kNN) and Mahalanobis
Distance. kNN assigns an unseen point of the dominant class among its k nearest
neighbours within the training set. kNN has failed in several BCI experiments due
to being very sensitive to the curse-of-dimensionality (Lotte et al. 2007; Felzer and
Freisieben 2003), however, it may perform efficiently with low-dimensional feature
vectors (Lotte et al. 2007). Mahalanobis Distance classifier has been used to detect
the imagination of hand movement tasks, and the accuracy produced by this
classifier is 80% (Ming et al. 2009).

Classifiers can be combined to reduce variance and thus increase classification
accuracy. Boosting, voting and stacking are the classifier combination strategies
used in BCI applications (Lotte et al. 2007). Boosting consists of several classifiers
in cascade where the errors committed by the previous classifier are focussed by
each classifier (Lotte et al. 2007). In voting, several classifiers are used with each of
them assigning an input feature vector to a class. Due to its simplicity and effi-
ciency, voting is the most popular, and has been combined with LVQ NN, MLP or
SVM (Lotte et al. 2007). Stacking uses several classifiers which are called level-O
classifiers to classify the input feature vectors. The output of each of these classi-
fiers serves as the input to a meta-classifier (or level-I classifier) which is respon-
sible for making the final decision. In BCI research, stacking has been used as
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level-O classifiers in Hidden Markov Models (HMM), and as a meta-classifier in
SVM (Lee and Choi 2003).

Other classification methods used in the recent BCI research include Particle
Swarm Optimisation (PSO), logistic regression (Siuly et al. 2013; Siuly and Li
2014), Naïve bayes (Siuly et al. 2015, 2016), least square support vector machine
(Siuly and Li 2012, 2014a), and Fisher classifier and Fuzzy logic. The PSO has
been incorporated in reference (Satti et al. 2009) to select a subject
specific-frequency band for an efficiently tuned BCI system. The Fisher classifier
was used by Bian et al. (2010) to identify SSEVP signals generated from con-
trolling a small ball movement on a computer screen. An investigation on the
performance of Fuzzy Logic in detecting four different imagery tasks revealed that
this technique could only provide an accuracy of 78% with a slow computation time
(Saggiol et al. 2009).

From the literature, it is seen that there are numerous signal processing tech-
niques employed for the feature extraction and the classification stages, but there
are still some limitations to be considered. The drawbacks of these methods are that
they could not produce enough accuracy for this field and do not work well when
the data size is very large. Most of them require a lengthy training time. These
limitations can be overcome by some future enhancements. To overcome these
problems this study aims to introduce methods for the classification of epileptic
EEG data and also for the identification of the MI based EEG data in BCI systems.
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Part II
Techniques for the Diagnosis of Epileptic

Seizures from EEG Signals



Chapter 4
Random Sampling in the Detection
of Epileptic EEG Signals

The detection of epileptic EEG signals is a challenging task due to bulky size and
nonstationary nature of the data. From a pattern recognition point of view, one key
problem is how to represent the large amount of recorded EEG signals for further
analysis such as classification. It is, first, important to extract useful features from
raw EEG signals, and then use the extracted features for classification. The liter-
ature reports numerous signal processing techniques being employed for the feature
extraction and classification stage. The main drawback of these methods is that they
do not work well when the data size is very large. To tackle the problem, this
chapter introduces a new classification algorithm combining a simple random
sampling (SRS) technique and a least square support vector machine (LS-SVM) to
classify two-class EEG signals. To evaluate the performance of the proposed
method, we tested it in the benchmark epileptic EEG database (EEG time series
2005; Andrzejak et al. 2001) and have reported the results in Sect. 4.3. For further
assessment, we also evaluated the proposed method in the mental imagery EEG
dataset: BCI Competition III (Data set V) (Chiappa and Millán 2005) and in Ripley
data (1996), and these results are also provided in the experimental results section.

4.1 Why Random Sampling in Epileptic EEG Signal
Processing?

The idea of using random sampling for feature extraction is completely new in
epileptic seizure diagnosis. Sampling allows experts to work with a small, man-
ageable amount of data to build and run analytical models that produce accurate
findings more quickly. Sampling is particularly useful with data sets that are too
large to efficiently analyze in full. To ensure reliable and valid inferences from a
sample, the probability sampling technique is used to obtain unbiased results
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(Suresh et al. 2011). The most commonly used probability sampling method used in
medicine is SRS, which is introduced in this research work.

In the SRS approach, a representative sample is randomly selected from the
population and each individual has the same probability of being chosen. An
effective sample of a population represents an appropriate extraction of the useful
data which provides meaningful knowledge of the important aspects of the popu-
lation. Owing to randomization, it is free from conscious and unconscious bias that
researchers may introduce while selecting a sample (Siuly et al. 2009, 2011).
Usually EEG recordings contain a huge amount of data. Due to the high volume,
velocity and complexity of EEG data, it is very difficult for experts to accumulate,
manage and analyze data for diagnosis and planning. Condensation of high quantity
EEG data is the grand challenge for the experts who deliver clinical recommen-
dations. Thus, this study intends to present the SRS technique for obtaining rep-
resentative samples from each category of the EEG data. Using the SRS technique,
we compress a large amount data into fewer parameters, which are termed ‘fea-
tures’. These features represent the behaviours of the EEG signals, which are
particularly significant for recognition and diagnostic purposes. In this research, all
the EEG data of a class is considered as a population where a sample is considered
as a representative part of the population. Thus, a sample is a set of observations
from a parent population. An observation in a sample is called sample unit, and the
sample size is the number of observations that are included in a sample.

In the SRS approach, the most importing thing is to determine the required size
of observations for a sample to describe the characteristics of the whole dataset.
Because, it is not known in the sampling process how many sample units are
required to represent the whole population. Table 4.1 provides our evidence for the
choice of the SRS scheme in this research work. Table 4.1 presents an example of
the required sample size for the population with different sizes using a sample size
calculator (Ref. Sample Size Calculator). This table shows that the increment of the
sample size is not with the same rate as the population size. It is seen, from this
table, that the sample size can reach a maximum of 9604 at 95% confidence level
and 16,641 at 99% confidence level when the population size is 100,000 or as large

Table 4.1 An example of the
required sample size for
various sizes of
population (Siuly and Li
2014)

Population
size

Sample size

99–100% confidence interval

95% confidence
level

99% confidence
level

500 475 485

1000 906 943

5000 3288 3845

10,000 4899 6247

50,000 8057 12,486

100,000 9604 16,641

5,000,000 9604 16,641

10,000,000 9604 16,641
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as possible. Thus, the SRS technique is appropriate for any large size of population
data such as EEG signal data analysis and classification.

Until now, the literature has proposed several techniques for the classification of
EEG signals, and diverse classification accuracies have been reported for epileptic
EEG data during the last decade. Due to the large data quantity involved, traditional
methods or data mining approaches may not be applicable for reliable processing.
Hence, in this chapter, we propose a new approach based on the SRS technique and
the least square support vector machine (LS-SVM) named SRS-LS-SVM to classify
epileptic EEG signals (described in the following section). As simple random
samples are a representative part of a population, it is a natural expectation that
selecting samples from EEG signals may well represent original data which can
help to improve the performance of the classification method. This expectation is
achieved in this chapter where the SRS is used in two stages to select representa-
tives of EEG signals from the original data.

4.2 Simple Random Sampling Based Least Square
Support Vector Machine

In this chapter, we develop a combined algorithm based on SRS and least square
support vector machine (LS-SVM) for identifying epileptic seizure in EEG. In this
process, we employ the SRS technique for feature extraction, and LS-SVM for EEG
signal classification. The block diagram of the proposed method is depicted in
Fig. 4.1. This figure shows the different steps of the proposed EEG signal classi-
fication method. The proposed method consists of three parts: (i) random sample
and sub-sample selection using the SRS technique; (ii) feature extraction from each
random sub-sample and (iii) LS-SVM for the classification of the EEG signals.
These parts are described in detail in the following three subsections.

Fig. 4.1 Block diagram of the SRS-LS-SVM method for EEG signal classification
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4.2.1 Random Sample and Sub-sample Selection Using SRS
Technique

SRS is the purest form of the probability sampling. A random sample is obtained by
choosing elementary units in such a way that each unit in the population has an
equal chance of being selected. In this procedure, a random sample is free from
sampling bias. For a given population, if the sample size is adequately taken, it will
represent the characteristics of the population. Different types of sampling tech-
niques are used in statistics (Cochran 1977; Islam 2007). The application of these
techniques depends on the structure of a population. In this chapter, the SRS
technique is applied in two stages to select random samples and sub-samples from
each EEG channel data file and finally different features are evaluated from each
sub-sample set to represent the distribution of the EEG signals. These features
reduce the dimensionality of the data discussed in Sect. 4.2.2. Figure 4.2 illustrates
how different random samples and sub-samples are selected from each EEG data
file. In this study, random samples and sub-samples are selected by the SRS method
in the following two steps:

Step 1: n random samples of suitable sizes are selected from each EEG channel
data set, where n is the number of random samples and n� 2.

Step 2: m random sub-samples with appropriate sizes are then selected from
each random sample obtained in the first step. Here m is the number of
random sub-samples and m� 2.

Fig. 4.2 Random sample and
sub-sample selection diagram
using SRS technique
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For any applications, the number of sample (n) and sub-sample (m) selections
are chosen based on an empirical approach. The consistency of the results will be
improved if the number of samples is sufficiently large. In Steps 1 and 2, the sizes
of each random sample and sub-sample are determined using the following for-
mulas (Eqs. 4.1 and 4.2) (Islam 2007; De Veaux et al. 2008; Sample Size
Calculator) for each EEG class’s data.

n ¼ Z2 � p� ð1� pÞ
e2

ð4:1Þ

where n = desired sample size (or sub-sample size); Z = standard normal variate
(the value for Z is found in statistical tables which contain the area under the normal
curve) for the desired confidence level (1.96 for 95% confidence level and 2.58 for
99% confidence level) (see Z Distribution Table); p = estimated proportion of an
attribute that is present in the population; e = margin of error or the desired level of
precision (e.g. e = 0.01 for 99–100% confidence interval). If the population is
finite, the required sample size (or sub-sample size) is given by

nnew ¼ n
1þ n�1

N

ð4:2Þ

where N = population size. If the estimator p is not known, 0.50 (50%) is used as it
produces the largest sample size. The larger the sample size, the more sure we can
be that the answers truly reflect the population. In this research, we consider
p = 0.50 so that the sample size is at a maximum and Z = 2.58 and e = 0.01 for
99% confidence level in Eq. (4.1). It is worth mentioning that, in the calculation of
a random sample size, EEG channel data is considered as a population while the
random sample is considered as a population for the calculation of the size of
sub-sample size. In this study, we obtained the size of each random sample:
nnew = 3287 when N = 4096 in each class and obtained the size of each
sub-sample: nnew = 2745 when N = 3287. After Step 2, different statistical features,
namely minimum, maximum, mean, and median, mode, first quartile, third quartile
and standard deviation are calculated from each sub-sample set. They are discussed
in the next section.

4.2.2 Feature Extraction from Different Sub-samples

The goal of the feature extraction is to pull out features (special patterns) from the
original data to achieve reliable classification. Feature extraction is the most
important part of the pattern recognition because the classification performance will
be degraded if the features are not chosen well (Hanbay 2009). The feature
extraction stage must reduce the original data to a lower dimension that contains
most of the useful information included in the original vector. It is, therefore,
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necessary to identify the key features that represent the whole dataset, depending on
the characteristics of that dataset.

In this chapter, nine statistical features are extracted from each sub-sample data
point as they are the most representative values to describe the distribution of the
EEG signals. The features are the minimum, maximum, mean, median, mode, first
quartile, third quartile, inter-quartile range (IQR) and standard deviation of the
EEG data. Out of above nine features, minimum, maximum, first quartile, second
quartile (also called median) and third quartile are together called a five number
summary (De Veaux et al. 2008; Islam 2004). A five number summary is sufficient
to represent a summary of a large data. It is well known that a five number summary
from a database provides a clear representation of the characteristics of a dataset.

Again, a database can be symmetric or skewed. In this study, some of the EEG
data files used have symmetric distributions while others have skewed distributions.
For a symmetric distribution, an appropriate method for measuring the centre and
variability of the data are the mean and the standard deviation, respectively (De
Veaux et al. 2008; Islam 2004). For skewed distributions, the median and the IQR
are the appropriate methods for measuring the centre and spread of the data. On the
other hand, mode is the most frequent value, and is also a measure of locations in a
series of data. Like mean and median, mode is used as a way of capturing important
information about a data set.

For these reasons, we consider these nine statistical features as the valuable
parameters for representing the distribution of EEG signals and brain activity as a
whole in this study. The obtained features are employed as the input for the
LS-SVM. The description of the LS-SVM is provided in the following subsection.

4.2.3 Least Square Support Vector Machine (LS-SVM)
for Classification

The least square support vector machine (LS-SVM) is a relatively new powerful
tool in the field of biomedical, employed for classification purposes. The LS-SVM
was originally proposed by Suykens and Vandewalle (1999) and corresponds to a
modified version of a support vector machine (SVM) (Vapnik 1995). Recently
LS-SVM has drawn a great amount of attention for solving problems of pattern
recognition by employing a kernel function. It solves a set of linear equations
instead of a quadratic programming problem, and all training points are used to
model the LS-SVM. This approach significantly reduces the cost in complexity and
computational time associated with problem solving. The formulation of LS-SVM
is briefly introduced as follows.

Consider a training set fxi; yigi¼1;2;...;N where xi is the ith input features vector of
d-dimension and yi is the class label of xi, which is either +1 or −1. In the feature
space, the classification function of the LS-SVM (Suykens et al. 2002; Guo et al.
2006) can be described as
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yðxÞ ¼ sign½wT/ðxÞþ b�: ð4:3Þ

where w is the weight vector, b is the bias term and /ðxÞ is the nonlinear mapping
function that maps the input data into a higher dimensional feature space. The
weight vector, w, and bias term, b, need to be determined. In order to obtain w and
b, the following optimization problem to be solved is as follows (Suykens et al.
2002; Guo et al. 2006)

Min Jðw; b; eÞ ¼ 1
2
wTwþ 1

2
c
XN
i¼1

e2i : ð4:4Þ

Subject to the equality constraint

yi½wT/ðxiÞþ b� ¼ 1� ei; i ¼ 1; 2; . . .;N: ð4:5Þ

Here c is the regularization parameter, ei is the classification error variable and J
is the cost function which minimizes the classification error.

The Lagrangian can be defined for Eq. (4.4) (Suykens et al. 2002; Guo et al.
2006) as

Lðw; b; e; aÞ ¼ Jðw; b; eÞ �
XN
i¼1

aifyi½wT/ðxiÞþ b� � 1þ eig: ð4:6Þ

Here ai denotes Lagrange multipliers (which can be either positive or negative
due to equality constraints). According to the conditions of Karush–Kuhn–Tucker
(KKT) (Fletcher 1987), we partially differentiate L and obtain formulas as follows:

@L
@w

¼ 0 ! w ¼
XN
i¼1

ai/ðxiÞ;

@L
@b

¼ 0 !
XN
i¼1

ai ¼ 0;

@L
@ei

¼ 0 ! ai ¼ cei; for i ¼ 1; . . .;N;

@L
@ai

¼ 0 ! wT/ðxiÞþ bþ ei � yi ¼ 0; for i ¼ 1; . . .;N

Now we get

w ¼
XN
i¼1

ai/ðxiÞ ¼
XN
i¼1

cei/ðxiÞ ð4:7Þ

Putting the value of w from Eqs. (4.7) in (4.3), the following result is obtained:
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yðxÞ ¼
XN
i¼1

ai/ðxiÞT/ðxÞþ b ¼
XN
i¼1

a /ðxiÞT ;/ðxÞ
� �þ b ð4:8Þ

By eliminating ei and w, the solution is given by the following set of linear
equations:

0 1Tm
1 K þ 1

c I

� �
b
a

� �
¼ 0

y

� �
; ð4:9Þ

where y ¼ ½y1; . . .; yN �,1m ¼ ½1; . . .; 1�;a ¼ ½a1; . . .; aN � and K ¼ Kðx; xiÞ ¼ /ðxÞT
/ðxiÞ, i ¼ 1; . . .;N: Kðx; xiÞ; which is called the inner-product kernel should satisfy
the case of Mercer’s condition.

It is seen from Eq. (4.9), all Lagrange multipliers (support vectors) are nonzero,
which means that all training data contributes to the solution. After applying of the
Mercer condition, the decision function of the LS-SVM is then constructed for the
classification as follows:

yðxÞ ¼ sign
XN
i¼1

yiaiKðx; xiÞþ b

 !
; ð4:10Þ

where ai and b are the solutions to the linear system and yðxÞ is the LS-SVM output
(estimated class) for the input vector x. Further explanation of the input vector x of
the LS-SVM is provided in Sect. 4.3. There are different types of kernel function.
For example linear kernel, polynomial kernel, radial basis function (RBF) and

multi-layer perception kernel. In our work, the RBF kernel, Kðx; xiÞ ¼
exp � jjx�xijj2

2r2

� 	
is used as the kernel function because most biomedical researchers

consider this function to be ideal.
Thus, the LS-SVM model has two hyper parameters, c and r, that need to be

determined a priori. In this chapter, the above LS-SVM algorithm is applied for
classifying two-class EEG signals represented by the extracted features obtained by
the SRS. The LS-SVM implementation is carried out in a MATLAB environment
(version 7.7, R2008b) using the LS-SVMlab toolbox, available in (LS-SVMlab
toolbox (version 1.5)-online).

4.3 Experimental Results and Discussions

The proposed methodology is evaluated on the epileptic EEG dataset. To further
evaluate, the method is also tested on the mental imagery tasks EEG dataset of BCI
competition III (Data set V) and Ripley data (1994a). The descriptions of these
datasets are provided in Chap. 3. The performance of the proposed scheme is
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assessed based on different statistical measurements such as sensitivity, specificity,
classification accuracy and a receiving operating characteristic (ROC) curve. The
description of these parameters is provided in Sect. 3.3.2 in Chap. 3. MATLAB
version 7.7.0 (2008b) is used for all implementations. The experimental results of
the three datasets are discussed below.

4.3.1 Results for Epileptic EEG Datasets

The epileptic EEG data consists of five sets (Set A-Set E) having 100
single-channels of EEG signals (refer to Sect. 3.3.1.1 for details). Each data set
contains 100 data files and each data file holds one channel EEG data, which has
4096 data points. In our proposed method, we consider n = 10 (the number of
random samples), m (the number of random sub-samples) = 5, random sample
size = 3287 and random sub-sample size = 2745 for each EEG channel data of a
set (a class) from the epileptic data. Thus, 10 random samples of sizes 3287 are
selected from each EEG channel data file and five random sub-samples of sizes
2745 are chosen from each random sample by the SRS technique. Then nine
statistical features (minimum, maximum, mean, median, mode, first quartile, third
quartile, IQR and standard deviation) are calculated from each sub-sample. Thus
we obtain a feature vector set of size [1 � 45] from the five random sub-samples of
each random sample. Hence, for 10 random samples of an EEG channel data file,
we acquire a feature vector set of size [10 � 45] and consequently we obtain a
feature vector set of size [1000 � 45] for 100 channel data files of a data set.
Therefore, we obtain a feature vector set of size [2000 � 45] for two data sets and
[5000 � 45] for five data sets. Finally, the feature vector set is employed as the
input in the LS-SVM for the training and testing purposes.

Figures 4.3, 4.4, and 4.5 show examples of the mean feature points of the EEG
recordings from the healthy subjects with eyes open (Set A), epileptic patients
during a seizure-free interval within hippocampal formation of the opposite
hemisphere of the brain (Set C) and epileptic patients during seizure activity (Set
E), respectively, by the proposed sampling method. In Figs. 4.3, 4.4, and 4.5, it is
noted that only 4000 feature points out of 45,000 are used for each set of the EEG
epileptic database to show typical results of the proposed SRS. Set A, Set C and
Set E from the epileptic EEG data are used as representatives. These figures indicate
that the representative patterns of the original data are detected by the SRS
technique.

In this study, we obtain 5000 vectors (1000 vectors from each data set) of 45
dimensions (the dimensions of the extracted features) for the five EEG data sets.
Five experiments are performed for the EEG epileptic dataset. In each experiment,
we use a pair of two-class, which has 2000 vectors with 45 dimensions taking 1000
vectors from each class. From each class, we use the first 500 vectors for the
training and the remaining 500 vectors for the testing. Thus, for each pair of
two-class, we obtain 1000 vectors of 45 dimensions as the training set and 1000
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vectors with the same dimensions as the testing set. In Eq. (4.10), we employ the
training set as x and the class label of the training set as y. In this study, the training
vectors are applied to train the LS-SVM classifier, where the testing vectors are
used to verify the accuracy and the effectiveness of the trained LS-SVM for the
classification of two-class of EEG signals. The LS-SVM with RBF kernel function
is employed as an optimal kernel function over the different kernel functions that
were tested.

There are two important parameters (c; r2) in the LS-SVM, which should be
appropriately chosen to achieve the desired performance. The values of the two
parameters significantly affect the classification performance of the LS-SVM. To
achieve the best results, LS-SVM is trained with different combinations of the
parameters, c and r2: The proposed method is conducted with different pairs of the

Fig. 4.3 Exemplary mean feature points obtained by the SRS from healthy subjects with eyes
open (Set A)

Fig. 4.4 Exemplary mean feature points obtained by the SRS from epileptic patients during
seizure-free intervals within the hippocampal formation of the opposite hemisphere of the brain
(Set C)
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five EEG data sets in the epileptic EEG data and the best classification result is
obtained for the pair of Set A and Set E when c = 1 and r2 ¼ 1 with a zero
misclassification rate in both the training and testing results. For the pairs of the
Sets B and E, Sets C and E, Sets A and D and Sets D and E, we achieved optimal
results using different combinations of the parameters c and r2, which were (10, 1),
(10, 10), (1, 10) and (2, 1), respectively.

The experimental results for five pairs of epileptic EEG datasets are shown in
Table 4.2. Here it is observed that the highest classification accuracy obtained is
100% for both healthy subjects with eyes open (Set A) and epileptic patients during
seizure activity (Set E). It is known that seizures produce abnormal electronic
signals in the brain and there are large variations among the recorded EEG values in
Set A and Set E. Due to the nature of the large differences, it is relatively easy to
classify Set A and Set E as demonstrated by the 100% classification accuracy in the
experiment. For Set B and Set E, 99.50% classification accuracy is obtained.
A classification accuracy of 96.40% is achieved for Set C and Set E. As it can be
seen, from Table 4.2, that the classification accuracy is 88.00% for Sets A and D.
The accuracy is not significant as the EEG data from Set A and Set D are more
analogous to each other. On the other hand, the method obtains 94.00% classifi-
cation accuracy for Set D and Set E. It is also noted, from Table 4.2, that the area
values under the ROC curve for all pairs of EEG data sets is 1 except for the pair of
Set A and Set D. Hence it is apparent that the proposed approach has a high
discriminating capability for classifying EEG signals and produces excellent results
for classifying EEG brain signals between Set A and Set E. As shown in Table 4.2,
the average value and standard deviation of classification accuracies for the dif-
ferent combinations of the EEG data sets were obtained as 95.58% and 4.4869,
respectively. The results demonstrate that the method proposed in this study is a
very promising technique for the EEG signal classification.

Fig. 4.5 Exemplary mean feature points obtained by the SRS from epileptic patients during
seizure activity (Set E)

4.3 Experimental Results and Discussions 75



The proposed approach is capable of classifying the EEG signals for Set A and
Set E with 100% classification accuracy. The result indicates that the proposed
method has significantly improved in performance compared to the two most recent
methods, LS-SVM and model-based methods by Ubeyli (2010) and
cross-correlation aided SVM by Chandaka et al. (2009). The performance com-
parison of the present method with the two most recently reported methods for
Set A and Set E are shown in Table 4.3.

Table 4.3 shows that Ubeyli (in 2010) obtained 99.56% classification accuracy
when she applied the LS-SVM and model-based methods on Set A and Set E (the
same data sets used in this study) for EEG signal classification. At the same time,
Chandaka et al. (2009) used a cross-correlation aided SVM approach to classify the
EEG signals for the same data sets and reported the classification accuracy as
95.96%. In contrast, our proposed method reaches 100% classification accuracy for
the same pair of data sets. The results demonstrate that our approach can more
accurately classify the EEG signals of all epileptic and healthy subjects using the
extracted features from the SRS technique.

In Fig. 4.6, the receiving operating characteristic (ROC) curve is drawn on the
testing vector set for the EEG data sets of healthy subjects with eyes open (Set A)
and epileptic patients during seizure activity (Set E). The ROC curve presents an
analysis of the sensitivities and specificities when all possible sensitivity/specificity

Table 4.2 Experimental results and the area values under ROC curve for two-class pairs of the
EEG signals for the EEG epileptic database

Different data sets Sensitivity (%) Specificity (%) Classification
accuracy (%)

Area under
ROC curve

Set A and Set E 100.00 100.00 100.00 1.00000

Set B and Set E 99.80 99.20 99.50 1.00000

Set C and Set E 98.00 94.80 96.40 1.00000

Set A and Set D 94.00 82.00 88.00 0.96812

Set D and Set E 88.00 100.00 94.00 1.00000

Mean/average 95.96 95.20 95.58 –

Standard deviation 5.0604 7.6890 4.4869 –

Table 4.3 Comparison of performance of our proposed method with two most recently reported
methods for Set A and Set E of the EEG epileptic database

Different methods Sensitivity (%) Specificity (%) Classification
accuracy (%)

SRS technique and LS-SVM
(proposed)

100.00 100.00 100.00

LS-SVM and model-based
methods (Ubeyli 2010)

99.50 99.63 99.56

Cross-correlation aided SVM
(Chandaka et al. 2009)

92.00 100.00 95.96

76 4 Random Sampling in the Detection of Epileptic EEG Signals



pairs for the full range of experiments are considered. A good test is the one for
which sensitivity (true positive rate) rises rapidly and 1-specificity (false positive
rate) hardly increases at all until sensitivity becomes high (Ubeyli 2008). From
Fig. 4.7, it is seen that the area value of the ROC curve is 1, which indicates that the
LS-SVM model has effectively classified the EEG signals using the extracted
features from Sets A and E. Therefore, it is obvious that the sampling features well
represent the EEG signals and the LS-SVM classifier trained on these features
achieves a high classification accuracy.

Fig. 4.6 ROC curve for healthy subjects with eyes open (Set A) and epileptic patients during
seizure activity (Set E) in the EEG epileptic data

Fig. 4.7 Exemplary mean feature points obtained by the SRS from left hand movements (class 1)
of Subject 1
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4.3.2 Results for the Mental Imagery Tasks EEG Dataset

The mental imagery tasks EEG database contains EEG recordings from three
normal subjects during three kinds of mental imagery tasks. The EEG data were
recorded for a subject with four non-feedback sessions on the same day. The
number of recorded samples in four sessions for each subject is given in Table 4.4.
According to the data description (see Sect. 3.3.1.4 in Chap. 3), each of the eight
channels has 12 frequency components and an EEG sample obtained from the eight
channels is a 96 dimensional vector. In this study, we use the first three sessions’
recorded EEG data of three kinds of mental imagery tasks for each subject. Thus
10,528 vectors of 96 dimensions are obtained for Subject 1, 10,400 vectors for each
of Subjects 2 and 3 with the same dimensions as the original data in the experiment.

In the proposed approach, we take n = 10, m = 5 for each channel EEG data of
all subjects from the mental imagery tasks. For Subject 1, the random sample and
sub-sample sizes of each channel EEG data are determined as 2490 and 2166 for
class 1; 2862 and 2442 for class 2; and 3318 and 2767 for class 3, respectively.

For Subject 2, we get the random sample and sub-sample sizes of 2513 and 2183
respectively, for class 1; 2829 and 2418 for class 2; and 3246 and 2716 for class 3.
For Subject 3, the random sample and sub-sample sizes are obtained 2829 and 2418
for class 1; 2851 and 2434 for class 2 and 2851 and 2434 for Class 3, respectively.
Here, it is noted that random samples and sub-sample sizes are different for each
class of a subject as the number of observations of all classes are not the same in the
mental imagery tasks EEG data. The nine features (see in Sect. 4.2.2) are then
calculated from each sub-sample of a class in a subject. Finally, the LS-SVM
algorithm is trained on these features to classify EEG signals.

Figure 4.7 shows the extracted mean feature points of EEG recorded data for the
imagination of repetitive self-paced left hand movements (class 1) of Subject 1 from
the mental imagery tasks data by the proposed SRS technique. From Fig. 4.7 it can
be seen that 4000 feature points out of 43,200 of the mental imagery tasks EEG
dataset are presented to display representative outcomes of the proposed SRS
technique.

From the mental imagery tasks EEG data, we select 960 vectors of 45 dimen-
sions from each class of a subject. For the dataset, nine experiments are carried out
using a pair of two-class EEG data. Each experiment uses 1920 vectors of 45
dimensions for a two-class data set with 960 vectors from each class as the training
set. The performance is also evaluated based on this vector set. After the feature

Table 4.4 Number of recorded values in four sessions from the mental imagery tasks EEG data
(Data set V for BCI competition III)

Subjects Session 1 Session 2 Session 3 Session 4

1 3488 3472 3568 3504

2 3572 3456 3472 3472

3 3424 3424 3440 3788
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extraction, a LS-SVM classifier has been trained using these extracted features. In
this database, the best classification results are found for all pairs when c ¼ 10;000
and r2 ¼ 1. From Table 4.5, it is observed that classification accuracies for dif-
ferent pairs of different subjects are obtained ranging from 93 to 100%.

The average classification accuracy and standard deviation for all classification
accuracies of all subjects are achieved at 98.73% and 2.0739, respectively. The area
values under the ROC curve for all pairs’ classification are close to 1. The
experimental results therefore, confirm that the features obtained through the SRS
technique actually represent the most important information in the recorded EEG
data, and that our approach is powerful means of EEG signal classification.

4.3.3 Results for the Two-Class Synthetic Data

In this section, we discuss the experimental results of a non-EEG dataset, which is
two-class synthetic data from Ripley (1996). There are two sets of data, training and
testing sets (see more in Sect. 3.3.1.5 in Chap. 3). The original Ripley data structure
and the feature vectors obtained by the SRS are presented in Table 4.6.

In this experiment, the proposed method is implemented on 250 given training
data with two dimensions to find the training feature vector set. Choosing n = 10,
m = 5, the random sample size = 246 and the random sub-sample size = 242 in the
experiment. Then, the mentioned nine features are computed from each sub-sample.

Thus, we obtain 10 vectors of 45 dimensions as a training vector set. Similarly,
we employ the algorithm to the 1000 given testing data of two dimensions and take
n = 10, m = 5 with a random sample size of 943 and a random sub-sample size of
892. The nine features are extracted from each sub-sample. As a result, we get 10

Table 4.5 Experimental results for different pairs of two-class EEG signals for the mental
imagery tasks EEG data (Data set V for BCI competition III)

Subject Pair of classes Sensitivity (%) Specificity (%) Classification
accuracy (%)

Area under
ROC curve

1 Class 1 and class 2 97.19 98.75 97.97 0.99792

Class 1 and class 3 97.50 98.12 97.81 0.99682

Class 2 and class 3 94.37 93.02 93.70 0.98870

2 Class 1 and class 2 100.00 100.00 100.00 1.00000

Class 1 and class 3 99.79 99.58 99.69 0.99990

Class 2 and class 3 99.79 99.58 99.69 0.99995

3 Class 1 and class 2 100.00 99.79 99.90 0.99997

Class 1 and class 3 99.90 100.00 99.95 0.99999

Class 2 and class 3 99.90 99.90 99.90 1.00000

Average/mean 98.72 98.75 98.73 –

Standard deviation 1.9717 2.2399 2.0739 –
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vectors of 45 dimensions which are used as the test vectors in the experiment.
Optimal classification results were achieved when we set c ¼ 1 and r2 ¼ 1 in the
training and testing.

Classification results of the algorithm are displayed by a confusion matrix in
Table 4.7. In the confusion matrix, each cell consists of the number of vectors
classified for the corresponding combinations of the predicted and actual outputs.
As can be seen in Table 4.7, an overall 100% classification accuracy is obtained by
the SRS-LS-SVM approach. The correct classification rate is 100% for class 1 and
100% for class 2. According to the confusion matrix, no misclassification has
occurred using the proposed method.

Table 4.8 presents sensitivity, specificity, classification accuracy and the area
value under the ROC curve of the LS-SVM classifier. The method results in 100%
sensitivity, 100% specificity and 100% classification accuracy on the Ripley data
set. The area under ROC curve is 1 for the dataset, confirming a perfect classifi-
cation capability of the approach. The outcomes of this dataset also prove that the
proposed method can be successfully used in any classification area. The experi-
ential results from the above three databases used in this study demonstrate that the
SRS is able to effectively extract the features from the original data which is very
important for a successful classification by the LS-SVM. They also demonstrate
that the SRS-LS-SVM is a very promising approach for pattern classification.

Table 4.6 The original two-class synthetic data from Ripley (1996) and the extracted feature
vectors obtained by the SRS technique

Classes Original data Features vectors of 45 dimensions

Training data Testing data Training vector set Testing vector set

Class 1 125 500 10 10

Class 2 125 500 10 10

Total 250 1000 20 20

Table 4.7 Confusion matrix for Ripley data (1996)

Predicted value

Class 1 (vectors) Class 2 (vectors)

Actual outcome Class 1 10 0

Class 2 0 10

Table 4.8 Experimental results for the Ripley data (1996)

Statistical parameters Value

Sensitivity 100%

Specificity 100%

Classification accuracy 100%

Area under ROC curve 1.000
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4.4 Conclusions

This chapter presents the development of a novel signal classification algorithm for
classifying two categories of EEG signals. The proposed method introduces the
SRS technique for feature extraction and a LS-SVM classifier with a RBF kernel
function for the classification of any two-class pairs of EEG signals using sampling
features as the inputs. The experimental study is conducted with different pairs of
two-class EEG signals on an EEG epileptic database and a mental imagery tasks
EEG database for BCI Competition III (Data set V). The datasets are tested sepa-
rately. The method achieves a 95.96% average sensitivity, 95.20% average speci-
ficity and 95.58% average classification accuracy for the EEG epileptic data. From
the mental imagery tasks EEG database, we obtain an average of 98.72% sensi-
tivity, 98.75% specificity and 98.73% classification accuracy using different pairs of
two-class EEG signals from three subjects. We are able to achieve 100% classifi-
cation accuracy on the EEG epileptic database for the pair of healthy subjects with
eyes open and epileptic patients during seizure activity. For the same pair of EEG
epileptic data, the classification accuracy of Ubeyli’s method (2010) was reported at
99.56% and Chandaka et al.’s method (2009) was 95.96%. To date and to the best
of our knowledge, our results present the highest classification accuracy achieved
for that pair of EEG data. To determine the effectiveness of the method on non-EEG
data, the proposed algorithm is also applied to the synthetic two-class problem from
the Ripley data set (1996). The sensitivity, specificity and classification accuracy
rate were found to be a 100% for the values of this dataset. The results demonstrate
that the proposed methodology is superior. The experimental results also indicate
that the SRS is efficient for extracting features representing the EEG signals. The
LS-SVM classifier has the inherent ability to solve a pattern recognition task for the
sampling features.
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Chapter 5
A Novel Clustering Technique
for the Detection of Epileptic Seizures

This chapter presents a different clustering technique for detecting epileptic seizures
from EEG signals. This algorithm uses all the data points of every EEG signal. In
Chap. 4, we developed and studied the SRS technique which does not use all
sample points to make representative features for classification. Sometimes valuable
sample points can be omitted during sampling and this may degrade accuracy.
Again, the SRS-LS-SVM algorithm takes more time during experiments due to
replications of random samples in the SRS technique. To overcome the problems,
this chapter proposes a clustering technique aided LS-SVM algorithm named
CT-LS-SVM for the detection of epileptic seizures. Decision-making is performed
in two stages. In the first stage, the clustering technique (CT) has been used to
extract representative features from EEG data. In the second stage, the LS-SVM is
applied to the extracted features to classify two-class EEG signals.

One of the most important criteria for choosing the best method is computational
efficiency. This study presents a method for two-class EEG signal classification,
which reduces the computational complexity, thus reducing execution time. In this
chapter, we investigate the performance of the CT-LS-SVM algorithm in the
epileptic seizure detection in EEGs with respect to accuracy and execution (run-
ning) time of experiments. We also compare the proposed method with the
SRS-LS-SVM algorithm. The performance of the proposed method is also com-
pared with existing methods reported in the literature. In addition, the performance
of the proposed method is evaluated in two ways; (i) dividing the feature set into
two groups as the training and testing sets and (ii) using the tenfold cross validation
method.
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5.1 Motivation

Advanced signal classification techniques for the analysis of EEG signals are
essential for developing and understanding the current biomedical research. The
classification techniques mainly work in two stages, where features are extracted
from raw EEG data in the first stage and then the obtained features are used as the
input for the classification process in the second stage. It is important to note that
features are the compressed parameters that characterize the behaviour of the
original data. Feature extraction is the most important part of the pattern recognition
process because the classification performance will be degraded if the features are
not chosen well. EEG signals are known to be aperiodic and nonstationary and the
magnitudes of signals changed over time. But, during the signal analysis, it is
necessary to make an EEG signal stationary. Although recorded EEG signals are
not stationary, usually smaller windows, or parts of those signals will exhibit sta-
tionarity. An EEG signal is stationary for a small fraction of time. Thus, we intend
to introduce the concept of the clustering technique (CT) to have representative
values of a specific time period and to make the signals stationary.

In this chapter, the CT approach is proposed for feature extraction from EEG
data. In a CT scheme, we partition each recorded EEG channel data into several
clusters based on a specific time period to properly account for possible station-
arities. In this procedure, each set of EEG channel data is divided into n mutually
exclusive clusters with a specific time duration. Each cluster is again partitioned
into m sub-clusters over a specific time period, and then some statistical features
(discussed in Sect. 5.2.1) are extracted from each sub-cluster to represent the
original EEG signals. The same features are used in the SRS-LS-SVM algorithm
(Siuly et al. 2011a) in Chap. 4. These features are applied to the LS-SVM classifier
as the input for classifying two-class EEG signals. The proposed approach has two
main advantages compared to the SRS-LS-SVM. The first advantage is that this
method uses all data points for experiments. The second advantage is that by using
the CT technique, much less time is taken to run the program. The proposed
approach is simple and thus flexible for EEG signal classification. The proposed
CT-LS-SVM approach is implemented on the epileptic EEG database (EEG time
series 2005; Andrzejak et al. 2001). For further assessment, we also test this method
on motor imagery EEG data (data set IVa, BCI Comp III) (BCI Competition III
2005; Blankertz et al. 2006).

5.2 Clustering Technique Based Scheme

In the literature, numerous techniques have been used to obtain representations and
to extract features of interest for classification purposes but sometimes they cannot
properly manage complex properties of EEG data. Hence, in this chapter, we
introduce a new type of clustering technique (CT) for extracting representative
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information from original EEG signals. In this way, we develop a new algorithm
based on the CT scheme and LS-SVM named “CT-LS-SVM” algorithm for clas-
sifying epileptic EEG signals. The block diagram of the proposed CT method based
on the LS-SVM for EEG signals classification is shown in Fig. 5.1. The first block
is the input of EEG brain signals and the second block is the feature extraction
using the CT approach, which is responsible for data reduction and to capture most
representative features from the original EEG patterns. The obtained features are
used for classification through the LS-SVM classifier in the third block. The
classification result is obtained in the fourth block. The following subsections
describe this method in detail.

5.2.1 Clustering Technique (CT) for Feature Extraction

The design of the clustering technique (CT) is completely new in pattern recog-
nition for feature extraction. As EEG signals are aperiodic and nonstationary, we
divide the EEG signal of each channel into groups (clusters) and sub-groups
(sub-clusters) with a specific time period. To characterize brain activities from the
recordings, several features are computed from each segmented sub-group. These
features allow the representation of each segment as a point in the input vector
space. In this chapter, the CT method is proposed for feature extraction from the
original EEG database. This approach is conducted in three stages, and determines
different clusters, sub-clusters and statistical features extracted from each
sub-cluster. Figure 5.2 depicts the procedure of the CT method on how different
clusters, sub-clusters and statistical features are obtained from the EEG channel data
in three stages. These stages are discussed in the following three subsections.

Fig. 5.1 Block diagram of the proposed methodology for EEG signal classification
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• Stage 1: Determination of clusters

In this technique (Siuly et al. 2011b), each EEG channel’s data is considered as a
population. This population is divided into n groups with a specific time duration,
which are called clusters (see Fig. 5.2). Here n is the number of clusters and n � 1.
For any applications, the numbers of clusters (n) are determined empirically over
time.

• Stage 2: Determination of sub-clusters

In this stage, each cluster is partitioned into m sub-clusters based on a specific
time period. In this approach, m is the number of sub-clusters and m � 1, where the
value of m is determined on an empirical basis over time. The sizes of each cluster
and sub-cluster are automatically defined if a time period is fixed.

• Stage 3: Statistical feature extraction

The following nine statistical features of each sub-cluster of each EEG channel’s
data are used as the valuable parameters for the representation of the characteristics
of the original EEG signals.

(I) Minimum (XMin)
(II) Maximum (XMax)
(III) Mean (XMean)
(IV) Median (XMe)
(V) Mode (XMo)
(VI) First quartile (XQ1)
(VII) Third quartile (XQ3)
(VIII) Inter-quartile range (XIQR)
(IX) Standard deviation (XSD).

Each EEG channel data

Cluster 1 Cluster 2 …………… Cluster n

Sub-cluster 1….. Sub-cluster m Sub-cluster 1 …...  Sub-cluster m Sub-cluster 1..… Sub-cluster m

Statistical features Statistical features Statistical features

Fig. 5.2 Diagram of the proposed clustering technique
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The feature set is denoted as {XMin, XMax, XMean, XMe, XMo, XQ1, XQ3, XIQR,
XSD}. The same feature set is used in the previous chapter (Chap. 4) for the
SRS-LS-SVM algorithm. The reasons of choosing these statistical features are
explained in Chap. 4. The obtained features are employed as the input for the
LS-SVM for the EEG signal classification (see the description of LS-SVM in Sect.
4.2.3).

5.3 Implementation of the Proposed CT-LS-SVM
Algorithm

First, the proposed method is implemented on the Epileptic EEG data (EEG time
series 2005) (see the description of this database in Sect. 3.3.1.1). The epileptic
EEG data has five sets that are Set A to Set E, and each set contains 100 channel
data. Every channel consists of 4096 data points with 23.6 s. In this method, the
channel data of each dataset is divided into 16 groups where each group is called
cluster and each cluster consists of 256 data points in 1.475 s. Then every cluster is
again partitioned into 4 sub-clusters and each sub-cluster contains 64 observations
of 0.3688 s.

The nine statistical features, i.e. {XMin, XMax, XMean, XMe, XMo, XQ1, XQ3, XIQR,
XSD}, are calculated from each sub-cluster. Thus we obtain a feature vector set of
size [1 � 36] from 4 sub-clusters of each cluster. Hence, for 16 clusters of an EEG
channel data file, we acquire a feature vector set of size [16 � 36] and consequently
we obtain a feature vector set of size [1600 � 36] for 100 channel data files of a
data set. Therefore we obtain a feature vector set of size [3200 � 36] for two data
sets. The feature vector set make an input matrix of size [3200 � 36] (e.g. input
matrix, x = [3200 � 36]) from any two-class signals and are used for the LS-SVM
algorithm in Eq. (4). To classify EEG signals, the LS-SVM is trained and tested
with these features.

For further evaluation, this proposed method is also tested on the motor imagery
EEG data (see data description in Sect. 3.3.1.2). As discussed in the data
description, the motor imagery EEG data used in this study consists of two tasks
denoted as two classes: right hand (denoted by ‘RH’) and right foot (denoted by
‘RF’) motor imageries. Each of five healthy subjects performed these two tasks in
every trial. The size of each class is different for each subject. Each EEG channel
data is divided into 16 clusters with a specific time period and then each cluster is
partitioned into 4 sub-clusters. Table 5.1 presents the number of clusters and
sub-clusters and a distributed time period for each cluster and sub-cluster of a class
as the EEG recording time for each class is not equal for all subjects. For Subject 1,
the cluster and sub-cluster sizes are 5086 and 1271, respectively, for RH, and 6863
and 1715 for its RF. In Subject 2, the number of samples for clusters and
sub-clusters are 6569 and 1642 for RH, and 7775 and 1943 for RF. For Subject 3,
cluster sizes for RH and RF are 2840 and 2556 and sub-cluster sizes are 710 and
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639, respectively. In Subject 4, the cluster and sub-cluster sizes of RH and RF are
2095, 523 and 1549, 387, respectively. For Subject 5, the sizes of clusters and
sub-clusters are 904 and 226 for RH and 936 and 234 for RF. From each
sub-cluster, the same statistical features that were used for the other two sets of data
are calculated. These feature vector sets are divided into two groups as the training
and testing vector sets, and these are used as the input of the LS-SVM algorithm.
A detailed description of the LS-SVM is given in Sect. 4.2.3.

In this study, the stability of performance of the LS-SVM classifier is assessed
based on different statistical measurements: such as sensitivity, specificity and
classification accuracy. In the experiments, we utilize three databases into two
ways. First, we divide feature vector sets into two groups as the training and testing
sets. For each of the three databases, the training vectors are applied to train the
LS-SVM classifier, where the testing vectors are used to verify the accuracy and the
effectiveness of the trained LS-SVM for the classification of two-class of EEG
signals. Sensitivity, specificity and classification accuracy of the proposed method
are therefore calculated from the testing set (definitions provided in Chap. 3).
Second, the tenfold cross validation method (Abdulkadir 2009; Chap. 3) is used to
evaluate the accuracy of the classification method. With the tenfold cross validation
method, the whole feature vector set is divided into 10 mutually exclusive subsets
of an equal size and the present method is repeated 10 times. Each time, one of the
10 subsets is used as a test set and other nine subsets are put together to form a
training set. After repeating the method 10 times, the accuracy obtained from each
trial is averaged. This is named tenfold cross validation accuracy. The performance
is evaluated on the testing set for all the datasets.

Table 5.1 The number of clusters and sub-clusters and the time period for each cluster and
sub-cluster of a class for a subject for the motor imagery EEG data

Subject Class Number
of clusters

Number of
sub-clusters

Number of
channels

Time period for
each cluster (s)

Time period for
each sub-cluster (s)

1 RH 16 4 118 5.0868 1.2717

RF 16 4 118 6.8639 1.7160

2 RH 16 4 118 6.5699 1.6425

RF 16 4 118 7.7754 1.9439

3 RH 16 4 118 2.8409 0.7102

RF 16 4 118 2.5567 0.6392

4 RH 16 4 118 2.0957 0.5239

RF 16 4 118 1.5493 0.3873

5 RH 16 4 118 0.9046 0.2261

RF 16 4 118 0.9365 0.2341
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5.4 Experimental Results and Discussions

In this study, we investigate the potential of applying the CT algorithm for
obtaining representative features from all EEG channel data and these features are
used as the inputs to the LS-SVM algorithm. The RBF kernel function is employed
for the LS-SVM as an optimal kernel function over the different kernel functions
that were tested. The LS-SVM has two important parameters c and r2, which
should be appropriately chosen to achieve the desired performance. To obtain the
best results, the LS-SVM is trained with different combinations of the parameters c
and r2. The proposed method is conducted on different pairs of two-class EEG
signals with the epileptic EEG data and the motor imagery EEG data.

In the epileptic EEG data, the optimal classification results are obtained for
Case I, Case II, Case III and Case IV (described in Sect. 5.4.1) when c ¼ 10 and
r2 ¼ 4. Case V achieves the best result when c ¼ 1 and r2 ¼ 10 for this database.
In the motor imagery EEG data (see Sect. 5.4.2), the best possible classification
results are achieved for Subjects 1, 2 and 3 when c ¼ 70 and r2 ¼ 5. We obtained
the optimal results for Subject 4 when c ¼ 10 and r2 ¼ 10, and for Subject 5 when
c ¼ 1000 and r2 ¼ 100. All experiments are performed using the MATLAB
software package version 7.7 (R2008b) and run on a 1.86 GHz Intel(R) Core(TM)2
CPU processor machine with 1.99 GB of RAM. The operating system on the
machine was Microsoft Windows XP Professional Version 2002. The classification
results for the two datasets are presented in the following sections.

5.4.1 Classification Results for the Epileptic EEG Data

The present method is employed in this section to classify different pairs of
two-class EEG signals from five datasets (Sets A–E) in the Epileptic EEG data. In
this study, 1600 vectors of 36 dimensions (the dimensions of the extracted features)
from each dataset are obtained using the CT method. We use the first 1100 vectors
of 36 dimensions for training and the remaining 500 vectors of the same dimensions
for the testing of each class. The training vectors are used to train the LS-SVM
classifier, while the testing vectors are used to verify the accuracy and the effec-
tiveness of the trained LS-SVM for the classification of the two-class of EEG
signals.

Five experiments are performed for the Epileptic EEG dataset and each exper-
iment is considered as a case. In each case, we use a pair of two-class of EEG
signals, which have 3200 vectors with 36 dimensions taking 1600 vectors from
each class. The cases are defined as follows:

Case I: Set A versus Set E
Case II: Set B versus Set E
Case III: Set C versus Set E
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Case IV: Set D versus Set E
Case V: Set A versus Set D

Table 5.2 displays the performance comparison of the proposed CT-LS-SVM
method versus the SRS-LS-SVM method for the different cases in the
Epileptic EEG data. The classification accuracies of Case I, Case II, Case III,
Case IV and Case V are 99.90, 96.30, 96.20, 93.60 and 84.90%, respectively. The
average classification accuracy of the proposed approach for all cases is achieved as
94.18% while the SRS-LS-SVM gained 95.58% for the same dataset. An average
value of sensitivity is obtained as 94.92% for the proposed approach while the
SRS-LSVM method attained sensitivity of 95.96% as the average for this dataset.
The CT-LS-SVM method achieved a 93.44% average specificity but the
SRS-LS-SVM technique obtained a 95.20% average specificity. From Table 5.2, it
is noticeable that the SRS-LS-SVM attained slightly higher classification accuracies
(sensitivity, specificity, accuracy) compared to the present method, as in the SRS,
random samples were replicated 10 times from each channel.

From Table 5.2, it is noted that the highest sensitivity, specificity and accuracy
are obtained for both methods in Case I and the lowest for both methods in Case V.
It is important to note that the EEG data from Case I are more classifiable than the
other cases because there are large variations among the recorded EEG values in
Case I, which consists of Set A and Set E. Due to the nature of the large differences
in the data, it is easier to classify Set A and Set E as demonstrated by the 99.90% of
classification accuracy in the proposed method. In contrast, Case V produces the
lowest classification accuracy which is 84.90% for Sets A and D. The accuracy is
not significant as the EEG data from Set A and Set D are more analogous to each
other.

Table 5.3 shows the performance of the proposed method through the tenfold
cross validation method for every case from the epileptic data. Using the tenfold
cross validation method, we can achieve an overall classification performance of
94.12%. From Table 5.3, it can be observed that the classification accuracies for
almost all cases are quite satisfactory, indicating the high performance of the
proposed method for EEG signal classification.

Table 5.2 Performance comparison of the proposed CT-LS-SVM versus the SRS-LS-SVM
method for different pairs of two-class EEG signals from the Epileptic EEG data

Different
cases

CT-LS-SVM (proposed) SRS-LS-SVM

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

Case I 100.00 99.80 99.90 100.00 100.00 100.00

Case II 99.20 93.40 96.30 99.80 99.20 99.50

Case III 96.20 96.20 96.20 98.00 94.80 96.40

Case IV 89.40 97.80 93.60 94.00 82.00 94.00

Case V 89.80 80.00 84.90 88.00 100.00 94.00

Mean/average 94.92 93.44 94.18 95.96 95.20 95.58
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We next compare the execution time of the proposed method to that of the
SRS-LS-SVM method for this dataset. Figure 5.3 depicts the execution time
(running time) of the CT-LS-SVM versus the SRS-LS-SVM for the epileptic data.
It is generated using MATLAB (version7.7, R2008b). The total numbers of the
observations of two-class raw EEG data are indicated in the horizontal axis and the
total program running time in seconds is plotted in the vertical axis. The proposed
method takes 8.9 and 9.4 s for 81,940 and 163,880 data samples, respectively, but
the SRS-LS-SVM method takes 11.4 and 14.2 s for the same samples, respectively.
Figure 5.3 illustrates that the execution time of the proposed algorithm with all
different samples is much smaller than the SRS-LS-SVM algorithm. The SRS
technique with the LS-SVM takes longer time as it spends more time selecting
different random samples from the original data set. Thus it is noted that the
proposed method is superior to the SRS method with the LS-SVM in terms of the
execution time. Figure 5.3 shows the proposed algorithm results in a shorter exe-
cution time, demonstrating the flexibility and the usability of the proposed method.

Table 5.3 Classification
accuracy of the proposed
CT-LS-SVM method by the
tenfold cross validation for
the epileptic EEG-data

Different cases Tenfold cross validation accuracy
of the proposed method (%)

Case I 99.69

Case II 96.78

Case III 97.69

Case IV 93.91

Case V 82.53

Average 94.12

Fig. 5.3 Comparison of the execution time between the CT-LS-SVM and SRS-LS-SVM methods
for the epileptic EEG data
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For a performance comparison, different methods from the literature and their
respective classification accuracies for healthy subjects with eyes open (Set A) and
epileptic patients during seizure activity (Set E) from the epileptic dataset are
provided in Table 5.4. Compared to the results shown in Table 5.4, our proposed
method produces a good classification accuracy rate (99.90%) while the
SRS-LS-SVM method (Siuly et al. 2011a) reported 100% classification accuracy.
The classification accuracy of the wavelet-artificial neural networks (Guo et al.
2009), wavelet-neural networks (Jahankhani et al. 2006) and expert model with a
double-loop EM algorithm (Subasi 2007) were reported at 95.00, 98.00 and
94.50%, respectively. On the other hand, the decision tree classifier-FFT (Polat and
Gunes 2007), cross-correlation aided SVM classifier (Chandaka et al. 2009) and
model based methods-LS-SVM (Ubeyli 2010) obtained 98.72, 95.96 and 99.56%
classification rates. Based on the above results, we conclude that the CT method
with the LS-SVM obtains more promising results in classifying the two-class EEG
signals. We believe that the proposed approach can be very helpful to physicians for
their final diagnostic decisions. By using such a reliable tool, they can make more
accurate medical diagnosing decisions.

5.4.2 Classification Results for the Motor
Imagery EEG Data

This section discusses the classification results of the proposed approach for the
motor imagery EEG dataset (see Chap. 3). Applying the CT method to this data set,
we obtain 1888 feature vectors of 36 dimensions for one class from each subject
where 1000 vectors of 36 dimensions are used as the training vector and 888
vectors of the same dimensions for the testing set. We know that the motor imagery
data contain the EEG recorded data of five healthy subjects where every subject
performed two tasks, imagination of “right hand” and “right foot” movement. Each
task indicates a class of EEG data. For this dataset, five experiments are conducted

Table 5.4 The obtained performance with the proposed CT-LS-SVM method and other methods
from the literature for healthy subjects with eyes open (Set A) and epileptic patients during seizure
activity (Set E) of the epileptic EEG-data

Method Classification accuracy (%)

CT-LS-SVM (proposed method) 99.90

SRS-based LS-SVM (SRS-LS-SVM) (Siuly et al. 2010) 100.00

Wavelet-artificial neural networks (Guo et al. 2009) 95.00

Wavelet-neural networks (Jahankhani et al. 2006) 98.00

Expert model with a double-loop EM algorithm (Subasi 2007) 94.50

Decision tree classifier-FFT (Polat and Gunes 2007) 98.72

Cross-correlation aided SVM classifier (Chandaka et al. 2009) 95.96

Model-based methods-LS-SVM (Ubeyli 2010) 99.56
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for five subjects and every experiment contains 3776 feature vectors of 36
dimensions for two classes of a subject, with 1888 vectors of the same dimension in
each class.

Table 5.5 shows the sensitivity, specificity and classification accuracy of the
proposed method compared to the SRS-LS-SVM algorithm for the motor imagery
EEG data. As shown in Table 5.5, the classification accuracy of the proposed
method for almost all the subjects is higher than the previous method,
SRS-LS-SVM. The average sensitivity and specificity for the CT-LS-SVM are
83.98 and 84.37%, while they are 97.23 and 56.19%, respectively, for the
SRS-LS-SVM. The proposed approach produces 84.17% average classification
accuracy for all five subjects while the SRS-LS-SVM has 76.71%. The results
demonstrate that the proposed algorithm has better potential in the classification
environment than the SRS-LS-SVM.

The tenfold cross validation accuracy rate of the proposed approach for the
motor imagery data is depicted in Table 5.6. Using tenfold cross validation method,
we achieve an overall performance of 88.32% for the same dataset with the same
parameters of the classifier. The average classification accuracy is reached at
84.17% for the same feature set when the data are divided into two groups as the
training and testing sets (as shown in Table 5.5) using general way. It is worth
mentioning that the proposed method is very effective in identifying different motor
imagery signals from EEG data.

Table 5.5 Performance comparison between the CT-LS-SVM and SRS-LS-SVM for the motor
imagery EEG data

Subject CT-LS-SVM SRS-LS-SVM

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

1 (aa) 96.17 88.18 92.17 100.00 55.29 77.65

2 (al) 89.86 73.42 81.64 88.85 38.40 63.63

3 (av) 87.16 88.96 88.06 100.00 64.75 82.38

4 (aw) 63.74 88.63 76.18 97.29 58.22 77.76

5 (ay) 82.99 82.66 82.83 100.00 64.30 82.15

Mean/average 83.98 84.37 84.17 97.23 56.19 76.71

Table 5.6 Classification
accuracy of the CT-LS-SVM
method by the tenfold cross
validation for the motor
imagery EEG data

Subject Tenfold cross validation accuracy
of the proposed method (%)

1 (aa) 92.63

2 (al) 84.99

3 (av) 90.77

4 (aw) 86.50

5 (ay) 86.73

Mean/average 88.32
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Figure 5.4 presents the experimental time (execution time in seconds) of the
CT-LS-SVM and SRS-LS-SVM for different numbers of samples with the motor
imagery EEG data. The total number of samples for the two-class EEG data is
presented in X axis, and the total program running time (execution time) in seconds
is on the Y-axis. Figure 5.4 shows that the proposed method and the SRS technique
with LS-SVM take 4.7 and 13.3 s, respectively, when the total number of samples
for two-class signals is 4,206,664. Again the program running time is 7.3 s for the
proposed CT-LS-SVM algorithm when the algorithm uses 8,413,328 samples
whereas the SRS-LS-SVM method takes 25.1 s for the same samples. Thus,
Fig. 5.4 shows that, for all samples, the SRS-LS-SVM method takes a longer time
than the proposed technique. Figure 5.3 shows the same patterns for the epileptic
data. As Fig. 5.4 indicates, the proposed approach is a faster running algorithm
compared to the SRS-LS-SVM.

Table 5.7 displays an overall comparison of our method with a few other EEG
signal classification methods for the motor imagery EEG data set. The results are
presented with respect to the classification accuracy for the five subjects and their
averages. The average classification accuracies of sparse spatial filter optimization
(Yong et al. 2008), Regularized common spatial pattern with generic learning
(R-CSP) (Lu et al. 2009), Composite common spatial pattern (composite CSP)
(Kang et al. 2009) and Spatially regularized common spatial pattern (SRCSP)
methods (Lotte and Guan 2010) for the motor imagery data are 73.50, 74.20, 76.22
and 78.62%, respectively, whereas it is 84.17% for the proposed method. The
classification accuracy is improved when the proposed methodology is employed
on the motor imagery EEG data.

Fig. 5.4 Comparison of the execution time between the CT-LS-SVM and SRS-LS-SVM methods
for the motor imagery EEG data
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The average classification accuracy of the SRS-LS-SVM method is a little higher
than the proposed method because random samples were repeated 10 times from
each EEG channel data in the SRS technique. For the motor imagery data, we
obtain an average classification accuracy of 84.17% for the present method whereas
it is 76.71% for the SRS-LS-SVM method.

Table 5.8 shows a summary of the performance of the proposed CT-LS-SVM
method versus the SRS-LS-SVM for the three databases. From Table 5.8 it is
observed that the CT approach achieves 94.18% of the average classification
accuracy with the epileptic EEG data while the SRS-LS-SVM technique obtained a
95.58% average classification accuracy. For the motor imagery data, we obtain an
average classification accuracy of 84.17% for the present method whereas it is
76.71% for the SRS-LS-SVM method. The study demonstrates that the obtained
signal features using the CT approach accurately represent the most important
information in the recorded EEG data. The CT-LS-SVM is a powerful and less
complex algorithm for EEG signal classification.

Table 5.7 Comparison of classification accuracy for the motor imagery EEG data with other EEG
signal classification attempts

Method Classification accuracy (%)

S1 S2 S3 S4 S5 Average

CT-LS-SVM-(proposed method) 92.17 81.64 88.06 76.18 82.83 84.17

Spatially regularized common spatial
pattern (SRCSP)-(Lotte and Guan 2010)

72.32 96.43 60.2 77.68 86.51 78.62

Composite common spatial pattern
(composite CSP) (method 1; n = 3) (Kang
et al. 2009)

67.66 97.22 65.48 78.18 72.57 76.22

Regularized common spatial pattern with
generic learning (R-CSP) (Lu et al. 2009)

69.6 83.9 64.3 70.5 82.5 74.20

Sparse spatial filter optimization (Yong
et al. 2008)

57.5 54.4 86.9 84.4 84.3 73.50

Note S1 subject 1 (aa); S2 subject 2 (al); S3 subject 3 (av); S4 subject 4 (aw); S5 subject 5 (ay)

Table 5.8 Summary results of the proposed CT-LS-SVM approach and the SRS-LS-SVM
method applied to the epileptic EEG data and the motor imagery EEG data

Database Average classification accuracy (%)

CT-LS-SVM SRS-LS-SVM

Epileptic EEG data 94.18 95.58

Motor imagery EEG data 84.17 76.71
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5.5 Conclusions

This chapter proposes the CT-LS-SVM algorithm for the EEG signal classification
where the CT approach is employed for the feature extraction, and the LS-SVM
classifier with RBF kernel function is used for the classification of the extracted
features. The major aim of the proposed approach is to develop a system that can
distinguish two categories of EEG signals with less computation complexity. We
also investigate whether the CT method is appropriate for feature extraction from
EEG data. Experiments are carried out on epileptic EEG data and also motor
imagery EEG data. The efficacy and superiority of the proposed CT-LS-SVM
method over the SRS-LS-SVM method are validated through different measures.
For the Epileptic EEG data, we obtain 94.92, 93.44 and 94.18% as the average
sensitivity, specificity and classification accuracy, respectively, using the
CT-LS-SVM while the SRS-LS-SVM has 95.96, 95.20 and 95.58%, respectively.
In the motor imagery data, the average classification accuracy of the proposed
approach is 84.17%, while the SRS-LS-SVM has 76.71%. For the CT-LS-SVM
algorithm using the tenfold cross validation method, we achieve an overall clas-
sification accuracy of 94.12% for the epileptic data and 88.32% for the motor
imagery data. In both datasets, the proposed CT-LS-SVM approach took much less
time to compute the data compared to the SRS-LS-SVM with two datasets. One of
the advantages of the proposed methodology is the computational efficiency and
usability.
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Chapter 6
A Statistical Framework for Classifying
Epileptic Seizure from Multi-category
EEG Signals

An innovative idea for classifying epileptic seizures in multi-categories EEG sig-
nals is developed in this chapter. Due to the complex characteristics of EEG signals
(e.g. poor signal-to-noise ratio, non-stationary, aperiodic), it is hard to achieve the
efficient detection of epileptic seizure signs from multi-category EEG signals. Thus,
designing efficient detection algorithms that ensure the proper evaluation and
treatment of neurological diseases is an important goal for this study. This chapter
presents an optimum allocation (OA) technique to select representative samples
from every time-window considering the variation of an observation. This research
investigates whether the OA scheme is suitable for extracting representative sam-
ples from the EEG signals depending on their variability within the groups in the
input EEG data. In order to assess performance, the obtained samples are used as
the input in the multiclass least square support vector machine (MLS-SVM) for
detecting epileptic seizure from multiclass EEG signals.

6.1 Significance of the OA Scheme in the EEG Signals
Analysis and Classification

This study presents a novel idea, called “optimum allocation” (OA), to determine
the number of observations to be selected from every time-window of each EEG
channel data considering minimum variability among the values. Generally, in a
random sample section, variability is not considered within a time-window, how-
ever, it is an important factor for the provision of information about samples. If the
variability within a time-window is large, the size of a sample from that
time-window is also large. On the other hand, if the variability of the observations
within a time-window is small, the sample size will be small in that time-window.

The OA method is an appropriate choice when a dataset (population) is
heterogeneous and very large in size. An effective sample (a subset of a population)
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represents an appropriate extraction of the useful data which provides a meaningful
understanding of the important aspects of the population. Signal processing
methods require stationary data even though the overall signal may not be sta-
tionary. If the recorded EEG signals in every category are partitioned into several
groups based on a specific time period, they may help to properly account for
possible stationarities. Thus, the dataset must be divided into several groups to
create homogeneity within a group according to its specific characteristics and is
used to select representative samples from the groups so that those samples can
represent the entire data. When measuring an EEG, a large amount of data with
different categories is obtained over a time period. This huge amount of data is very
complex and time-consuming to analyse in practise. As EEG recordings normally
include a huge amount of data and the data is heterogeneous with respect to a time
period, it is reasonable to expect that dividing the whole EEG recording into
sub-groups with respect to time, and then taking representative samples from each
sub-group would improve the performance of a classifier. Thus, this study intro-
duces the OA scheme for getting representative samples from each group of all
channel EEG data to extract reliable information from such a large amount of data.

6.2 Optimum Allocation-Based Framework

In this work, a novel algorithm based on OA and MLS-SVM is proposed for
classifying multiclass EEG signals. The method is very effective for labelling
sequential data in multi-category EEG identification. Figure 6.1 exhibits the
structural diagram of the proposed methodology. The entire process of this method
is divided into several processing modules: sample size determination (SSD), epoch
determination, OA, sample selection and classification as shown in Fig. 6.1.

First, an appropriate sample size with the desired confidence interval and con-
fidence level for each class from the entire EEG data set is determined by survey
software called “Sample size calculator”. Second, the data of each class is seg-
mented into different epochs, considering a specific time period. Third, the OA
technique is employed to determine the best sample size for each epoch with a
minimal variance. The sum of all sample sizes for all epochs will be equal to the
calculated sample size that is obtained from the class of the entire EEG data
(discussed in Sect. 6.2.3). Fourth, the samples are selected from the epochs

Sample size 
determination 

Classification Sample 
selection

Optimum 
allocation

Epoch
determination 

EEG 
signal 

Fig. 6.1 The structural diagram of the proposed approach
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considering the size that is obtained by the OA procedure. Finally, these samples
obtained from all epochs of each class are used as the input to a classifier, the
multiclass LS-SVM (MLS-SVM). The classification results are then acquired.
A detailed description of this algorithm is provided in the following sections.

6.2.1 Sample Size Determination

Determining the sample size of a classification method is a crucial component of the
study. One of the most important problems in the sample design is to determine
how large a sample is needed for the estimates to be reliable enough to meet the
objectives of a study. The SSD is a mathematical process for deciding the number
of observations or replicates to be included in a statistical sample. The sample size
is an important component of an empirical study in which the goal is to obtain
results that reflect the original population as precisely as needed. Two factors are
necessary to calculate the size of a sample: confidence interval and confidence level
(Islam 2007; De Veaux et al. 2008). Statisticians use a confidence interval to
express the degree of uncertainty associated with a sample statistic. The confidence
level tells us how confident we are. It is expressed as a percentage and represents
how often the true percentage of the population lies within the confidence interval.
The 99% confidence level means that we are 99% confident.

Figure 6.2 presents a design of the proposed algorithm on how a large amount of
multiclass EEG data can be processed to obtain reliable information regarding the
brain state. As shown in Fig. 6.2, the size of the sample (denoted by n) of each class
is determined using a sample size calculator with the desired confidence interval
and confidence level. The SSD is noted as SSD in Fig. 6.2. This is the first step of
the methodology. In the sample size calculator, the following formula is used to
calculate the required sample size

n ¼ z2 � p� ð1� pÞ
e2

where, n = desired sample size; Z = standard normal variate (the value for Z is
found in statistical tables which contain the area under the normal curve) for the
desired confidence level (1.96 for 95% confidence level and 2.58 for 99% confi-
dence level) (see Z Distribution Table); p = estimated proportion of an attribute,
that is present in the population; e = margin of error or the desired level of precision
(e.g. e = 0.01 for 99–100% confidence interval). If the population is finite, the
required sample size is given by

nnew ¼ n
1þ n�1

N

ð6:1Þ

where, N = population size.
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If the estimator p is not known, 0.50 (50%) is used as it produces the largest
sample size. The larger the sample size, the more sure we can be that their answers
truly reflect the population. In this research, we consider p = 0.50 so that the sample
size is at a maximum and Z = 2.58 and e = 0.01 for 99% confidence level. In this
study, N = 4097 and thus we obtain from Eq. (6.1), nnew = 3288 for each and every
five classes (Set Z, Set O, Set N, Set F, Set S) of epileptic EEG data.

6.2.2 Epoch Determination

It is known that EEG signals are aperiodic and non-stationary and the magnitude of
the signals change over time. To have representative values of a specific time
period, we divide the EEG signals of a class into some mutually exclusive groups,
which are called epochs in this research. Thus, each epoch consists of EEG data
within a time-window. For example, an epoch of 5.9 s in a class is shown in

EEG signals 

EEG signals of Class 1 EEG signals of Class 2 ...................     EEG signals of Class m

    Epoch 1       Epoch 2.....  Epoch k Epoch 1         Epoch 2.....   Epoch k Epoch 1      Epoch 2.....   Epoch k

OA1 OA2.........     OAk OA1 OA2........      OAk OA1 OA2........         OAk

Note: SSD= Sample Size Determination; OA= Optimum Allocation; OA_Sample= Sample with the optimum allocated size.

OA_Sample 1

All OA_ Samples from the multiclass data

Classification outcomes

Classification by Multiclass Least Square Support Vector Machine (MLS-SVM)

SSD SSDSSD 

OA_Sample 2 OA_Sample m

Fig. 6.2 Optimum allocation-based MLS-SVM algorithm for multiclass EEG signal classification
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Fig. 6.3. For the experiment design, the number of epochs (k) is determined
empirically over time. It is worth mentioning that every epoch contains a number of
EEG channel data. Usually, the columns of an epoch consist of EEG channel data
as shown in an example in Sect. 6.2.3.

6.2.3 Optimum Allocation

OA (Siuly and Li 2014) refers to a method of sample allocation that is designed to
provide the most precision. The purpose of the OA consists of determining the
number of observations to be selected from different epochs with a view to mini-
mizing their variance. The allocation of the samples to different epochs is governed
by two factors: (i) the total number of observations in each epoch; (ii) the variability
of observations within the epoch. Of course, the precision of the epoch (Islam 2007)
largely depends on the choice of the sample size of the whole data discussed in
Sect. 6.2.1.

In this section, our intention is to select a representative sample from each epoch
such that the variance is the minimum in each epoch. Suppose, xijl is the value of the
lth unit of the jth channel in the ith epoch in a sample. Here i = 1, 2,…, k; j = 1, 2,
…, h; l = 1,2,…, ni, where ni is the sample size of the ith epoch. Xijl is the
corresponding value in the population where l = 1,2,…, Ni. To discover the vari-
ability of the mean in the epoch process, we assume that the samples are drawn
independently from different epochs and the sample mean is an unbiased estimator
of the population mean �X.

The variance of the sample mean �x, Vð�xÞ ¼ E½�x� Eð�xÞ�2 ¼ E½�x� �X�2

where �x ¼
Pk

i¼1

Ph
j¼1

Pni
l¼1 xijl

n1hþ n2hþ � � � þ nkh
¼
Pk

i¼1

Ph
j¼1 ni�xij

nh

and �X ¼
Pk

i¼1

Ph
j¼1

PNi
l¼1 Xijl

n1hþ n2hþ � � � þ nkh
¼
Pk

i¼1

Ph
j¼1 Ni�Xij

nh

Fig. 6.3 Example of determining epoch from an EEG dataset of a class
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Assuming that the sampling fraction is the same in all epochs, e.g.

ni
n
¼ Ni

N
where n ¼ n1 þ n2 þ � � � þ nk andN ¼ N1 þN2 þ � � � þNK

) Vð�xÞ ¼ 1
h2

Xk
i¼1

Xh
j¼1

N2
i

N2Eð�xij � �XijÞ
" #2

¼ 1
h2
Xk
i¼1

Xh
j¼1

N2
i

N2Vð�xijÞ
ð6:2Þ

Here, �xij is the mean of simple random sample in the jth channel of the ith epoch

whose variance is Vð�xijÞ ¼ ðNi�niÞ
Ni

s2ij
ni
by (Cocran 1977)

Putting the value of Vð�xijÞ into Eq. (6.2), we obtain,

Vð�xÞ ¼ 1
h2
Xk
i¼1

Xh
j¼1

N2
i

N2

ðNi � niÞ
Ni

s2ij
ni

ð6:3Þ

where Ni is the size of the ith epoch; ni is the required sample taken from the ith
epoch;s2ij is the standard deviation of the jth channel in the ith epoch; and n is the
total sample size in the epoch process.

Now let us see how a given total sample size, n, should be allocated among
different epochs so that the estimator, �x, will have the smallest possible variability.
Formally the problem is to determine n1, n2, …, nk for minimizing, Vð�xÞ, subject to
the constraint that the total size n equals n ¼ n1 þ n2 þ � � � þ nk . This is equal to
minimizing the function of

/ ¼ Vð�xÞþ k
Xk
i¼1

ni � n

 !
¼ 1

h2
Xk
i¼1

Xh
j¼1

N2
i

N2

ðNi � niÞ
Ni

s2ij
ni

þ k
Xk
i¼1

ni � n

 !
ð6:4Þ

For ni, k is an unknown Langrange’s multiplier. For the extreme case of the

function, we have d/
dni

¼ 0 and d2/
dn2i

[ 0 . By differentiating function / with respect

to ni and equating the derivation to zero, we have,

d/
dni

¼ � 1
h2
Xk
i¼1

Xh
j¼1

N2
i

N2

ðNi � niÞ
Ni

s2ij
ni

þ
Xk
i¼1

k ¼ 0

) ni ¼ Ni

Nh
ffiffiffi
k

p
ffiffiffiffiffiffiffiffiffiffiffiffiXh
j¼1

s2ij

vuut ð6:5Þ
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Summing up both sides of Eq. (6.5), we have
ffiffiffi
k

p ¼
Pk

i¼1
Ni

ffiffiffiffiffiffiffiffiffiffiffiffiffiPh

j¼1
s2ij

q� �
hNn and

putting the value of
ffiffiffi
k

p
into Eq. (6.5), we get

ni ¼
Ni

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPh
j¼1 s

2
ij

q
Pk

i¼1 Ni

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPh
j¼1 s

2
ij

q� �� n ð6:6Þ

Hence, Eq. (6.6) is used to determine the required sample size in the optimal
allocation technique. Now the next important task is to decide the number of
observations to be taken from each epoch as described in Sect. 6.2.4. From
Fig. 6.2, it can be seen that the size of samples from each epoch is determined by
the OA denoted as OA. It is important to mention that if the variability within an
epoch is large, the size of the samples from that epoch is also large. This means that
more observations will be needed in the samples to represent the epoch. On the
other hand, if the variability of the observations within an epoch is small,
the sample size will be small, meaning that fewer observations will be needed in the
sample to represent the epoch.

As shown in Fig. 6.2, the OA process consists of the following steps:

• Step 1: Consider all the channels of the EEG data of a class
• Step 2: The sample size determination (SSD) is performed from that class

through the “Sample size calculator”. Assume that the selected sample size is n
• Step 3: The EEG data of that class is divided into k epochs considering a specific

time period. Suppose the sizes of the epochs are N1, N2, …, Nk, respectively.
Now the problem is to find out how a given total sample size, n, should be
allocated among the k epochs, N1, N2, …, Nk, with the smallest possible
variability

• Step 4: Now the sample sizes for each epoch is determined by the OA. Let n1,
n2, …., nk be the sizes of samples drawn from the epochs whose sizes are
N1, N2,…, Nk, respectively, using Eq. (6.6). Then n1 þ n2 þ � � � þ nk ¼ n

6.2.4 Sample Selection

Considering the sizes of samples obtained by the OA using Eq. (6.1), the repre-
sentative samples are selected from each epoch. The individual samples selected
from each epoch in a class make a vector set denoted by OA_Sample as shown in
Fig. 6.2. The vector sets of all classes construct a matrix that is used as the input to
the MLS-SVM for the classification, as discussed in the next section.
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6.2.5 Classification by Multiclass Least Square Support
Vector Machine (MLS-SVM)

A MLS-SVM is a straightforward extension of a LS-SVM proposed by Suykens
and Vandewalle (1999a). The LS-SVMs was originally designed for binary clas-
sification but now it can be effectively extended for multiclass classification. This
method is very popular and considered robust in the machine learning community
because it nicely deals with high dimensional data and provides good generalization
properties. The detailed discussion of the LS-SVM for binary classification is
available in references (Suykens et al. 2002; Vapnik 1995; Siuly et al. 2009, 2010,
2011a, b, 2013; Siuly and Li 2014). This study employs the MLS-SVM with radial
basis function (RBF) kernel as a classifier to distinguish the different categories or
multiclass EEG signals.

Let, xi; y
ðjÞ
i

n o
; i ¼ 1; 2; . . .;N; j ¼ 1; 2; . . .;m; be a training set, where N is the

number of the training data and m is the number of the classes. Here xi ¼
xi1; xi2; . . .; xinf g 2 Rn is the input index; yðjÞi ¼ ðyð1Þi ; yð2Þi ; . . .; yðmÞi Þ is an m dimen-

sional vector (output index). yðjÞi 2 1;�1f g; yðjÞi = 1 means that the ith input vector

belongs to the jth class while yðjÞi = −1, otherwise. Multiclass categorization
problems are typically solved by reformulating the multiclass problem with
m classes into a set of L binary classification problems (Allwein et al. 2000; Bishop

1995). The task of an m class classifier is to predict the class label yðjÞi using the
input vector xi 2 Rn. There exist different approaches to construct the set of binary
classifiers and the approaches are minimum output codes (MOC), error-correcting
output codes (ECOC), One versus One (1vs1) and One versus All (1vsA).

The MOC approach (Suykens and Vandewalle 1999b) is applied to solve the
multiclass problem with binary LS-SVMs, using L bits to encode up to 2L classes.
This output coding having minimal L, is called minimum output coding (MOC).
The basis of the ECOC framework is to map a multiclass classification problem into
performing a number of multiple binary classification processes. This approach
(Dietterich and Bakiri 1995) is motivated by information theory and introduces
redundancy (m < L) to the output coding to handle misclassifications using a binary
classifier. In this approach, up to 2m−1−1 (where m is the number of classes)
LS-SVMs are trained, each of them aims to separate a different combination of
classes (Guler and Ubeyli 2007). The 1vs1 approach, also called pairwise classi-
fication, constructs m(m − 1)/2 binary classifiers for m-class problems, where each
binary classifier discriminates two opposing classes. The classifier is trained using
all the data from class i as positive instances and all the data from class j as negative
instances, disregarding the remaining data. To classify a new instance, x, each of the
base classifiers casts a vote for one of the two classes used in its training (Bagheri
et al. 2012). Then, 1vs1 method applies the majority voting scheme for labelling
x to that class with the most votes. In 1vsA coding approach, each class is dis-
criminated against the rest of the classes. This approach constructs m binary
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classification processes for m-class classification problems, where each binary
process discriminates a given class from the rest of the m − 1 classes (Rifkin and
Klautau 2004). For this approach, we require m = L binary classifiers, where the
mth classifier is trained with positive examples belonging to class m and negative
examples belonging to the other m − 1 classes. A new instance is classified in the
class whose corresponding classifier output has the largest value (Bagheri et al.
2012).

Detailed descriptions of these four coding systems are available in the literature
(Suykens and Vandewalle 1999a; Gestel et al. 2002, 2004). In this study, these four
multiclass classification approaches are used to evaluate the reliability of the pro-
posed method. The decision function of the MLS-SVM in Eq. (6.7) is derived
directly from solving a set of linear equations (Suykens and Vandewalle 1999b;
Sengur 2009; Youping et al. 2005; Suykens et al. 2002). The detailed description of
the MLS-SVM algorithm can be found in the literature (Suykens and Vandewalle
1999b; Suykens et al. 2002; Sengur 2009; Youping et al. 2005; Gestel et al. 2002).
Finally, the discrimination of the MLS-SVM is obtained as below:

yjðxÞ ¼ sign
XN
i¼1

yðjÞi aijKjðx; xiÞþ bj

 !
; j ¼ 1; 2; . . .;m ð6:7Þ

where yjðxÞ is the predicted class on the basis of the input index x, bj is the bias
term, aij denotes Lagrange multipliers called support values, and Kjðx; xiÞ is the

RBF kernel defined as Kjðx; xiÞ ¼ exp � x� xik kð Þ2=2r2
� �

(Suykens and

Vandewalle 1999b; Vapnik 1995).

6.2.6 Classification Outcomes

Classification outcomes for the multi-category EEG signals are obtained in this
stage. The solution of Eq. (6.7) provides the prediction results that directly assign
the samples with various labels to identify which category it belongs to. Based on
the outcomes, we can decide how efficiently the MLS-SVM classifier can classify
multi-category EEG signals by employing the optimum allocated samples of dif-
ferent classes.

6.3 Implementation of the Proposed Methodology

This section describes how the proposed OA-based MLS-SVM algorithm is imple-
mented on the benchmark epileptic EEG database. As discussed in Sect. 3.3.1.1, the
epileptic EEG data has five sets (Set A–Set E), and each set contains 100 channels

6.2 Optimum Allocation-Based Framework 107

http://dx.doi.org/10.1007/978-3-319-47653-7_3


data. Every channel consists of 4097 data points of 23.6 s. The different steps of the
implementation are provided as below:

First, we calculate the sample size, n, for each class, by using Eq. (6.1). Here, we
have n = 3288 for each class.
Second, we segment each class into four epochs (k = 4) and each epoch contains
the data for 5.9 s. As every channel of a class contains 4097 data points of 23.6 s,
the maximum sizes of the four epochs are N1 = 1024, N2 = 1024, N3 = 1024,
N4 = 1025, respectively.
Third, in order to determine the sample size for each of the four epochs in each
class, we apply the OA technique using Eq. (6.6). In this way, the calculated sample
size for a class, n = 3288 is allocated among the four epochs with the smallest
possible variability. As a result, the sum of all the sample sizes from all epochs of a
class is equal to the total sample size (n) of that class. As mentioned previously, the
sample size of every epoch may not be equal due to the variability of the obser-
vations within the epoch. Table 6.1 presents the sample size for each epoch in each
of the five classes obtained by using the OA in Eq. (6.6). In Table 6.1, it is
observed that the sizes of the samples are not equal in each epoch and the sum of
the sample sizes of all the epochs is equal to the previously calculated total sample
size of each class, n = 3288.
Fourth, the samples are selected from the epochs with the sizes obtained by the OA.
The samples drawn from each epoch of a class make a vector set denoted
OA_Sample in Fig. 6.2. For example, the selected samples from each of the four
epochs of Class 1 create a vector denoted OA_Sample 1. Similarly, the vector sets:
OA_Sample 2, OA_Sample 3, OA_Sample 4 and OA_Sample 5, are created from
Class 2, 3, 4 and 5, respectively. Together, all the OA_Samples from the five
categories EEG data: OA_Sample 1 (from Class 1), OA_Sample 2 (from Class 2),
OA_Sample 3 (from Class 3), OA_Sample 4 (from Class 4) and OA_Sample 5

Table 6.1 The sample size for each epoch by the optimum allocation

Class Epoch 1 Epoch 2 Epoch 3 Epoch 4 Total

Class 1 (Set A) 797 (1024) 822 (1024) 837 (1024) 832 (1025) 3288

Class 2 (Set B) 815 (1024) 840(1024) 805 (1024) 828 (1025) 3288

Class 3 (Set C) 839 (1024) 841 (1024) 780 (1024) 828 (1025) 3288

Class 4 (Set D) 828 (1024) 833 (1024) 788 (1024) 839 (1025) 3288

Class 5 (Set E) 833 (1024) 844 (1024) 815 (1024) 796 (1025) 3288

Note In each cell, the number inside the parentheses is the epoch size (e.g. (1024) in the first cell)
and the number outside of the parentheses is the calculated sample size (e.g. 797 in the first cell)
obtained by the optimum allocation procedure
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(from Class 5), make a matrix that is employed as the input to the MLS-SVMs to
identify the five categories of EEG signals.
Finally, the samples selected from each epoch are divided into two distinct sets.
One set is used for training purpose, whilst the other set is used for testing the
model. Here the training set is used to train the classifier and the testing set is used
to evaluate the accuracy and effectiveness of the classifiers for the classification of
the multiclass EEG data. In each class, the training set is constructed randomly
taking 500 vectors from each epoch while the remaining vectors of each epoch are
considered as the testing set. For example, in Class 1, the selected sample sizes are
797, 822, 837 and 832 for Epoch 1, 2, 3 and 4, respectively, as shown in Table 6.1.
For the training set, we consider 500 observations from each epoch and the
remaining 297, 322, 337 and 332 observations are taken from Epoch 1, 2, 3 and 4,
respectively, for the testing set. Thus, for each of the five classes, we obtain a total
of 2000 observations for the training set and 1288 observations for the testing set.
Finally, for the five-class (m = 5) EEG data set, we acquire a total of 10,000
observations for the training set and 6440 observations for the testing set. Note that
each vector is 100 dimensions here. In each classification system, this training set is
fed into the MLS-SVM classifier as the input to train the classifier and the per-
formances are assessed with the testing set.

In this research, the stability of the performance of the proposed method is
assessed based on different statistical measures, such as sensitivity, specificity and
total classification accuracy (TCA) and their formulas are given below (Siuly et al.
2012; Guler and Ubeyli 2007; Ubeyli 2009):

d Sensitivity ið Þ ¼ No: of true positive decisions in class i
No: of actual positive cases in class i

i ¼ 1; 2; 3; 4; 5

ð6:8Þ

d Specificity ið Þ ¼ No: of true negative decisions in class i
No: of actual negative cases in class i

i ¼ 1; 2; 3; 4; 5

ð6:9Þ

d TCA ¼ No: of total correct decisions in all classes
Total no. of actual cases in all classes

ð6:10Þ

In this study, the calculated sensitivity for each class is called “class-specific
sensitivity” and the calculated specificity from each class is called “class-specific
specificity”.
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6.4 Results and Discussions

Experiments are conducted to determine the capability and consistency of the
proposed algorithm. This section presents the experimental outcomes of the pro-
posed method for each of the four multiclass LS-SVM classification approaches:
MOC, ECOC, 1vs1, and 1vsA. The classification by the MLS-SVM is carried out
in MATLAB (version 7.14, R2012a) using the LS-SVMlab toolbox (version 1.8)
(LS-SVMlab toolbox-online) and all other mathematical calculations are also per-
formed in MATLAB with the same version. Before applying the classification
algorithm, the parameters of the MLS-SVM is chosen carefully over an empirical
evaluation as the classification performance depends on the parameters. In order to
achieve the most reliable and consistent results, the proposed method is repeated 10
times on the same parameters for each of the four classification approaches. This
section also provides a comparison between the proposed method and four other
well-known existing methods.

6.4.1 Selection of the Best Possible Combinations
of the Parameters for the MLS-SVM

In this chapter, the RBF kernel function is employed for the MLS-SVM as an
optimal kernel function over different kernel functions that were tested. The
MLS-SVM has two important parameters, c and r2, which should be appropriately
chosen for achieving the desired performance as these parameters play a significant
role in the classification performance. The regularization parameter c determines a
trade-off between minimizing the training error and minimizing the model com-
plexity. The parameter r2 is the bandwidth and implicitly defines the nonlinear
mapping from the input space to a high dimensional feature space. Large values of
c and r2 may lead to an over-fitting problem for the training data (Chandaka et al.
2009; Suykens et al. 2002), so the values must be chosen carefully. As discussed
before, there are four types of output coding approaches of the LS-SVM for the
multiclass problem, which are MOC, ECOC, 1vs1 and 1vsA. This study conducts
several experiments for each of the four output coding approaches in different
combinations of those parameters to discover the optimum values of the
hyper-parameters. To find the optimal combination, we have opted for a set of
values of the hyper-parameters, c and r2 = 1, 10, 100, 1000 for possible combi-
nations. We obtain sixteen combinations of c and r2 as shown in Table 6.2,, which
are employed in the four multiclass classification approaches. Thus, the 16
experiments for each of the 4 classification schemes are carried out on the epileptic
EEG data and the outcomes of those experiments are reported in Table 6.2.
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Table 6.2 presents the TCA in percentage for the five class experiment datasets
in each of the four output coding approaches. They are calculated using Eq. (6.10).
In order to provide a clear outlook, Fig. 6.4a–d are presented to show the patterns of
the TCA for each individual value of r2 = 1, 10, 100, 1000 against c = 1, 10, 100,
1000 in MOC, ECOC, 1vs1 and 1vsA, respectively. From Table 6.2 and Fig. 6.4a–
d, it is observed that the classification performances are not good enough for r2 = 1
with any values of c in each of the four classification approaches (MOC, ECOC,
1vs1 and 1vsA). It is also seen that, when r2 = 10, the TCA is dramatically
increased over the TCA when r2 = 1. The TCA is much better for r2 = 100
compared to r2 = 10. The experimental outcomes presented in Table 6.2 show that
the most favourable results are obtained when c = 10 and r2 = 100 which is 100%
for all four classification approaches. On the other hand, when r2 = 1000, the TCA
decreases compared to r2 = 100 and r2 = 10. In this study, the TCA is used as a
performance indicator because it measures what percentage of a classification
method can be provided and how well classification is made in the process.

Considering the performances depicted in Table 6.2 and Fig. 6.4a–d, it is
observed that c = 10 and r2 = 100 is the best combination for the MLS-SVM
method for the four output coding approaches and this combination is used as the
optimal combination in this research.

Table 6.2 The total classification accuracy (in percentage) for different combinations of the
parameters (c, r2)

Different combinations of parameters (c, r2) Total classification accuracy (TCA) (%)

MOC ECOC 1vs1 1vsA

c = 1, r2 = 1 47.22 40.19 80.31 16.61

c = 1, r2 = 10 99.92 99.89 99.91 99.89

c = 1, r2 = 100 99.95 99.91 100 99.98

c = 1, r2 = 1000 95.14 76.46 99.97 95.08

c = 10, r2 = 1 54.11 50.25 81.66 36.32

c = 10, r2 = 10 99.95 99.97 99.97 99.95

c = 10, r2 = 100 100.0 100.0 100.0 100.0

c = 10, r2 = 1000 97.73 96.71 100 98.11

c = 100, r2 = 1 55.16 51.74 81.99 38.79

c = 100, r2 = 10 99.97 99.97 99.97 99.97

c = 100, r2 = 100 99.97 99.97 100 99.97

c = 100, r2 = 1000 99.22 99.15 100 99.08

c = 1000, r2 = 1 55.36 51.88 82.05 38.98

c = 1000, r2 = 10 99.97 99.97 99.97 99.97

c = 1000, r2 = 100 99.84 99.72 100 99.8

c = 1000, r2 = 1000 98.93 98.34 100 98.51
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Fig. 6.4 The total classification accuracy (TCA) performance for different combinations of
parameters (c, r2) for four multiclass classification approaches: a MOC approach; b ECOC
approach; c 1vs1 approach; and d 1vsA approach
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6.4.2 Experimental Classification Outcomes

6.4.2.1 Results for the Minimum Output Codes (MOC) Approach

Table 6.3 displays the experimental results for the MOC approach for 10 repetitions
using the parameter values, c = 10 and r2 = 100. From Table 6.3, one can observe
that, the class-specific performances in terms of sensitivity and specificity are very
promising: almost 100% in each of the 10 repetitions. There are no significant
differences in the performances (class-specific sensitivity and class-specific speci-
ficity) among the 10 runs, indicating the consistency of the proposed algorithm.

In order to identify the patterns of the class-specific sensitivity and class-specific
specificity for each class (set), we provide an individual graphical presentation for
the MOC approach. Figure 6.5 shows the patterns of the class-specific sensitivity
performances for each class, and Fig. 6.6 exhibits the patterns of the class-specific
specificity performances for each class. The bars in these graphs represent the
standard errors. From Fig. 6.5, it is noted that the class-specific sensitivity patterns
for Set A, Set B, Set C and Set D are the same but the pattern for Set E is a little bit
different from the other sets. From Fig. 6.6, it is seen that Set B, Set C, Set D and
Set E follow the same patterns in the class-specific specificity while Set A is slightly
different.

Table 6.4 summarizes all the results for the MOC approach. In this table, the
sensitivity refers to the average of all class-specific sensitivities for a class in all 10
repetitions. In the meantime, the same patterns occur for the specificity (also
considered in Tables 6.6 and 6.8). As shown in Table 6.4, the sensitivity, speci-
ficity and the TCA are very high for the proposed algorithm with the MOC
approach and the overall TCA is 99.99%.

6.4.2.2 Results for the Error-Correcting Output Codes (ECOC)

Table 6.5 shows the experimental results for the ECOC approach with 10 repeti-
tions. From the table, one can see that, in each repetition the class-specific per-
formances (sensitivity and specificity) are very similar proving the consistency of
the algorithm.

Figures 6.7 and 6.8 illustrate the class-specific sensitivity and the class-specific
specificity performances, respectively, for the five classes (five sets) applying the
ECOC process. As shown in Fig. 6.8, one can observe that, in each repetition the
patterns of the performances (sensitivity and specificity) for Sets A, B, C and D are
similar, but Set E is a bit lower than the others.

The summary results of the ECOC approach is reported in Table 6.6. The results
show that the sensitivity, specificity and TCA are very high: close to 100%. From
these results, it is certain to conclude that the proposed method with the ECOC
yields an excellent performance.
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Table 6.3 Experimental classification results for the MOC approach for 10 repetitions

Repeat EEG data sets Class-specific performance (%)

Class-specific sensitivity Class-specific specificity

1 Set A 100 100

Set B 100 100

Set C 100 100

Set D 100 100

Set E 100 100

2 Set A 100 100

Set B 100 100

Set C 100 100

Set D 100 100

Set E 100 100

3 Set A 100 100

Set B 100 100

Set C 100 100

Set D 100 100

Set E 100 100

4 Set A 100 99.98

Set B 100 100

Set C 100 100

Set D 100 100

Set E 99.92 100

5 Set A 100 100

Set B 100 100

Set C 100 100

Set D 100 100

Set E 100 100

6 Set A 100 99.98

Set B 100 100

Set C 100 100

Set D 100 100

Set E 99.92 100

7 Set A 100 100

Set B 100 100

Set C 100 100

Set D 100 100

Set E 100 100

8 Set A 100 100

Set B 100 100

Set C 100 100

Set D 100 100

Set E 100 100
(continued)
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Table 6.3 (continued)

Repeat EEG data sets Class-specific performance (%)

Class-specific sensitivity Class-specific specificity

9 Set A 100 99.98

Set B 100 100

Set C 100 100

Set D 100 100

Set E 99.92 100

10 Set A 100 100

Set B 100 100

Set C 100 100

Set D 100 100

Set E 100 100

Fig. 6.5 Class-specific sensitivity patterns for each class with the MOC approach

Fig. 6.6 Class-specific specificity patterns for each class with the MOC approach
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6.4.2.3 Results for the One Versus One (1vs1) Approach

Figures 6.9 and 6.10 display the experimental results of the proposed OA-based
MLS-SVM algorithm by the 1vs1 approach for 10 repetitions. The results reveal a
remarkable rate of 100% for both the class-specific sensitivity and the class-specific
specificity in each repetition for all five datasets. This is really an amazing outcome
produced by the 1vs1 approach. Based on the results, it can be concluded that the
proposed algorithm is very consistent.

As shown in Fig. 6.9, it is obvious that the class-specific sensitivity patterns are
the same for each class and for each of the 10 repetitions, which is 100%.
Figure 6.10 also illustrates the same patterns of the class-specific specificity for
every class. In Figs. 6.9 and 6.10, the overall performance for each performance
indicator (sensitivity and specificity) is 100% for the 1vs1 approach. Thus, it is clear
that the overall TCA is 100% in the 1vs1 approach. It is, therefore, confident to
conclude that the method with the 1vs1 approach has a high capability for the EEG
classification.

6.4.2.4 Results for the One Versus All (1vsA) Approach

The experimental results of the proposed algorithm for the 1vsA are presented in
Table 6.7. This table provides the repeated results for each of the 10 repetitions in
terms of the class-specific sensitivity and class-specific specificity. As shown in
Table 6.7, it is observed that there are no significant variations in the performances
for the 10 repetitions. In most of the cases, the classification performances are 100%
or close to 100%, which confirms the reliability of the proposed algorithm.

For the 1vsA approach, Figs. 6.11 and 6.12 provide a view of the whole
spectrum of the class-specific sensitivity and the class-specific specificity, respec-
tively. From Fig. 6.11, it is observed that, in each repetition, sensitivity patterns are
similar for Sets A, B, C and D, but Set E is different. Figure 6.12 shows the same
performance patterns for Sets B, C, D and E, but Set A is a little bit far from the
others.

Table 6.4 Performance summary for the MOC approach

Data sets Overall performance (%)

Sensitivity Specificity Total classification accuracy (TCA)

Set A 100 99.99 99.99

Set B 100 100

Set C 100 100

Set D 100 100

Set E 99.98 100
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Table 6.5 Experimental results for the ECOC approach with 10 repetitions

Repeat EEG data sets Class-specific performance (%)

Class-specific sensitivity Class-specific specificity

1 Set A 100 99.98

Set B 100 100

Set C 100 100

Set D 100 100

Set E 99.92 100

2 Set A 100 99.96

Set B 100 100

Set C 100 100

Set D 100 100

Set E 99.98 100

3 Set A 100 100

Set B 100 100

Set C 100 100

Set D 100 100

Set E 100 100

4 Set A 100 99.98

Set B 100 100

Set C 100 100

Set D 100 100

Set E 99.92 100

5 Set A 100 100

Set B 100 100

Set C 100 100

Set D 100 100

Set E 100 100

6 Set A 100 100

Set B 100 100

Set C 100 100

Set D 100 100

Set E 100 100

7 Set A 100 100

Set B 100 100

Set C 100 100

Set D 100 100

Set E 100 100

8 Set A 100 99.94

Set B 100 100

Set C 100 100

Set D 100 100

Set E 99.77 100
(continued)
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Table 6.5 (continued)

Repeat EEG data sets Class-specific performance (%)

Class-specific sensitivity Class-specific specificity

9 Set A 100 100

Set B 100 100

Set C 100 100

Set D 100 100

Set E 100 100

10 Set A 100 100

Set B 100 100

Set C 100 100

Set D 100 100

Set E 100 100

Fig. 6.7 Class-specific sensitivity patterns for each class with the ECOC approach

Fig. 6.8 Class-specific specificity patterns for each class with the ECOC approach
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A performance summary of the proposed algorithm by the 1vsA approach is
provided in Table 6.8. The results presented in this table demonstrate that the
OA-based MLS-SVM with the 1vsA yielding a good classification performance for
each class that is close to 100% in most of the cases.

Table 6.6 Performance summary by the ECOC approach

Data sets Overall performance (%)

Sensitivity Specificity Total classification accuracy (TCA)

Set A 100 99.986 99.99

Set B 100 100

Set C 100 100

Set D 100 100

Set E 99.959 100

Fig. 6.9 Class-specific sensitivity patterns for each class with the 1vs1 approach

Fig. 6.10 Class-specific specificity patterns for each class with the 1vs1 approach

6.4 Results and Discussions 119



Table 6.7 Experimental results for the 10 repetitions by the 1vsA approach

Repeat EEG data sets Class-specific performance (%)

Class-specific sensitivity Class-specific specificity

1 Set A 100 99.98

Set B 100 100

Set C 100 100

Set D 100 100

Set E 99.92 100

2 Set A 100 100

Set B 100 100

Set C 100 100

Set D 100 100

Set E 100 100

3 Set A 100 100

Set B 100 100

Set C 100 100

Set D 100 100

Set E 100 100

4 Set A 100 99.98

Set B 100 100

Set C 100 100

Set D 100 100

Set E 99.92 100

5 Set A 100 100

Set B 100 100

Set C 100 100

Set D 100 100

Set E 100 100

6 Set A 100 99.98

Set B 100 100

Set C 100 100

Set D 100 100

Set E 99.92 100

7 Set A 100 100

Set B 100 100

Set C 100 100

Set D 100 100

Set E 100 100

8 Set A 100 99.98

Set B 100 100

Set C 100 100

Set D 100 100

Set E 99.92 100
(continued)
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Table 6.7 (continued)

Repeat EEG data sets Class-specific performance (%)

Class-specific sensitivity Class-specific specificity

9 Set A 100 99.96

Set B 100 100

Set C 100 100

Set D 100 100

Set E 99.84 100

10 Set A 100 100

Set B 100 100

Set C 100 100

Set D 100 100

Set E 100 100

Fig. 6.11 Class-specific sensitivity patterns for each class by the 1vsA approach

Fig. 6.12 Class-specific specificity patterns for each class by the 1vsA approach
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6.5 Comparison

The literature contains a few studies in the literature (Murugavel et al. 2011; Ubeyli
2008, 2009; Guler and Ubeyli 2007) that performed the multiclass EEG signal
classification, and dealt with the same epileptic EEG data. In order to further
examine the efficiency of our proposed OA-based MLS-SVM algorithm, this sec-
tion provides a comparison for our proposed approach with four well-known
reported algorithms. The three reference methods by Ubeyli (2008, 2009) and Guler
and Ubeyli (2007) were employed with the ECOC approach and one method by
Murugavel et al. (2011) was used with the 1vs1 approach for the multiclass EEG
signal classification. Hence, we compare the proposed algorithm for the ECOC
approach with the three reference methods in Table 6.9 and also compare our
method for the 1vsA in Table 6.10. We could not present the comparison results for
the MOC and 1vs1 as there are no reported research results available for the
epileptic EEG dataset.

Table 6.9 presents a comparative study for the ECOC approach between our
proposed method and the three reference algorithms for the epileptic EEG dataset.
This table reports the overall classification performances of the five categories EEG
signals in terms of sensitivity, specificity and the TCA. For each method, the
highest classification performances among the four algorithms are highlighted in
bold font. From Table 6.9, it is clear that our proposed algorithm yields the highest
performance in each statistical parameter in each category compared to the three
reference methods.

For example, the TCA of the proposed method is 99.99% while 99.20, 99.30 and
99.28%, reported by Ubeyli (2009, 2008) and Guler and Ubeyli (2007), respec-
tively. Thus, our algorithm improves accuracy by at least 0.79% compared to the
reference methods.

Table 6.10 shows a comparison of the performances for the 1vsA approach
between the proposed algorithm and the reference method by Murugavel et al.
(2011). In this table, one can see that, for each class, the proposed method produces
the best performance, which is 100% while the reference method generates only
96%. Based on the performances presented in Tables 6.9, it can be concluded that
our proposed method is the best in the epileptic EEG classification: achieving a
promising classification result.

Table 6.8 Performance summary by the 1vsA approach

Data sets Overall performance (%)

Sensitivity Specificity Total classification accuracy (TCA)

Set A 100 99.9875 99.99

Set B 100 100

Set C 100 100

Set D 100 100

Set E 99.952 100
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6.6 Concluding Remarks

This chapter presents a new classification structure to classify multiclass EEG
signals using the OA and the MLS-SVM. The OA technique is employed to select
representative samples as EEG signal features, considering the variability of the
observations within the groups called “epoch”. In this research, the MLS-SVM with
RBF is used as the classifier where the extracted samples are fed to identify several
categories of EEG signals. Four output coding approaches: MOC, ECOC, 1vs1 and
1vsA are applied in the MLS-SVM and their individual effectiveness is investi-
gated. Before the classification procedure, the parameter values (c = 10 and
r2 = 100) of the MLS-SVM method are determined after an extensive experimental
evaluation. To examine the consistency of the method, the experiments of the

Table 6.9 Performance comparison by the ECOC approach

Methods Data
sets

Statistical parameters (%)

Sensitivity Specificity Total classification accuracy
(TCA)

Proposed algorithm Set A 100 99.99 99.99
Set B 100 100
Set C 100 100
Set D 100 100
Set E 99.96 100

Ubeyli (2009) Set A 99.25 99.84 99.20

Set B 99.13 99.81

Set C 99.25 99.72

Set D 99.38 99.62

Set E 99.00 100.00

Ubeyli (2008) Set A 99.38 99.81 99.30

Set B 99.25 99.87

Set C 99.13 99.78

Set D 99.50 99.65

Set E 99.25 100.00

Guler and Ubeyli
(2007)

Set A 99.25 99.84 99.28

Set B 99.38 99.84

Set C 99.25 99.75

Set D 99.38 99.65

Set E 99.13 100.00

Table 6.10 Performance comparison by the 1vsA approach

Methods Total classification accuracy (TCA) (%)

Proposed algorithm 99.99

Murugavel et al. (2011) 96.00
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proposed algorithm are repeated 10 times for each of the four output coding
approaches with the selected optimal parameter values. For further performance
evaluation, the proposed algorithm is compared with the four well-known existing
methods: Murugavel et al. (2011), Ubeyli (2008, 2009) and Guler and Ubeyli
(2007). The experimental results show that our developed algorithm is consistent in
each repetition, and yields very high classification performances for each of the four
output coding approaches. There are no significant differences among the perfor-
mances by the MOC, ECOC, 1vs1 and 1vsA approaches. The results also
demonstrate that our method is superior in comparison to the existing methods for
the same epileptic EEG database. This research leads us to confirm that the OA
reliably captures valuable information from the original EEG data and the
MLS-SVM is very promising for the classification of multiclass EEG signals.
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Chapter 7
Injecting Principal Component Analysis
with the OA Scheme in the Epileptic EEG
Signal Classification

This chapter presents a different design for reliable feature extraction for the
classification of epileptic seizures from multiclass EEG signals. In this chapter, we
introduce a principal component analysis (PCA) method with the optimum allo-
cation (OA) scheme, named as OA_PCA for extracting reliable characteristics from
EEG signals. As EEG data from different channels are correlated and huge in
number, the OA scheme is used to discover the most favourable representatives
with minimal variability from a large number of EEG data, and the PCA is applied
to construct uncorrelated components and also to reduce the dimensionality of the
OA samples for enhanced recognition. To discover a suitable classifier for the
OA_PCA feature set, four popular machine learning classifiers, such as LS-SVM,
naive Bayes classifier (NB), k-nearest neighbor algorithm (KNN) and linear dis-
criminant analysis (LDA) are applied and tested. Furthermore, our approaches are
compared with some recent reported research work. This proposed method can also
be applicable in biomedical signal processing and also in time series data analysis
for acquiring evocative features when data size is large.

7.1 Background

Finding traces of epilepsy through the visual marking of long EEG recordings by
human experts is a very tedious, time-consuming and high-cost task (Sharma and
Pachori 2015). Furthermore, due to visual analog analysis, different experts could
give contradictory diagnosis for the same EEG segment. Therefore, current
biomedical research is challenged with the task of determining how to classify
time-varying epileptic EEG signals as accurately as possible (Bronzino 2000; Siuly
et al. 2011). To classify signals, the first and most important task is to extract
distinguishing features or characteristics from the epileptic EEG data. These fea-
tures determine detection and classification accuracy. The features characterizing
the original EEGs are used as the input of a classifier to differentiate normal and
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epileptic EEGs. As optimal features play a very important role in the performance
of a classifier, this study intends to identify a robust feature extraction method for
the recognition of epileptic EEG signals.

In the last few years, the literature has discussed many methods of feature
extraction and classifications in EEG signal analysis. Acharya et al. (2013) dis-
cussed various feature extraction methods and the results of the different automated
epilepsy stage detection techniques in detail. In that study, the authors briefly
discussed some challenges to developing a computer aided diagnostic system that
automatically identifies normal and abnormal activities using a minimum number of
highly discriminating features for classification. Lee et al. (2014) proposed several
hybrid methods to classify normal and epileptic EEG signals using wavelet trans-
form, phase-space reconstruction and Euclidean distance based on a neural network
with weighted fuzzy membership functions. The classification of abnormal activi-
ties of brain functionality was achieved by understanding abnormal activities
caused by changes in neuronal electrochemical activities by identifying EEG signal
features (Oweis and Abdulhay 2011). Hilbert weighted frequency was used to help
discriminate between healthy and seizure EEG patterns. Li et al. (2013) designed a
method for feature extraction and pattern recognition of ictal EEGs, based upon
empirical model decomposition (EMD) and SVM. First, an EEG signal was
decomposed into intrinsic mode functions (IMFs) using the EMD, and then the
coefficients of the variation and the fluctuation index of the IMFs were extracted as
features. Pachori et al. (2014) presented a method for the classification of ictal and
seizure-free EEG signals based on the EMD and the second-order difference plot
(SODP). The EMD method decomposed an EEG signal into a set of symmetric and
band-limited signals (the IMFs). The SODP of the IMFs provided an elliptical
structure. The importance of the entropy-based features was presented by Kumar
et al. (2010) for recognizing normal EEGs, and ictal as well as interictal epileptic
seizures. Three nonlinear features, such as wavelet entropy, sample entropy and
spectral entropy, were used to extract quantitative entropy features from the given
EEGs, and these features were used as the input into two neural network models:
recurrent Elman network and radial basis network for the classification. Siuly et al.
(2011a) introduced a new approach based on the simple random sampling
(SRS) technique with least square support vector machine (LS-SVM) to classify
EEG signals. In that study, the SRS technique was applied in two stages to select
random samples and sub-samples from each EEG channel data file and finally
different features were evaluated from each sub-sample set to represent the original
EEG signals and reduced the dimensionality of the data that were used as inputs to
the LS-SVM classifier.

From the literature, it is observed that many of the feature extraction methods
were not a perfect choice for non-stationary epileptic EEG data (Siuly et al. 2014a)
and the reported methods were limited in their success rate and effectiveness. Some
of the existing methods cannot work properly for a large EEG data set. None of the
prior methods considered the variability of the observations within a window where
the time variability is an important consideration for describing the characteristics
of the original data. In most of the cases, the methods did not select their parameters
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through experimental evaluation, even though the parameters significantly affect the
classification performance.

This research intends to design a robust method for feature extraction based on
the optimum allocation (OA) and principal component analysis (PCA), denoted as
OA_PCA. The reason for using the OA method is to acquire representative sam-
pling points from the huge amount of EEG data when the data is heterogeneous. It
is worth mentioning that epileptic EEG data is heterogeneous in term of the time
period. The idea to use the PCA is due to the fact that, in most of the EEG data,
there is a large amount of redundant information unnecessary for diagnostic
applications. The PCA method is practical when there is a large number of cor-
related variables in a dataset and it is believed that there are some redundancies in
those variables. The PCA is an excellent method for making uncorrelated variables
that can contribute to enhanced classification accuracy and it can also reduce the
dimensions of the data for easy handling. The core objective of this research is to
develop a new method for feature extraction and discover a suitable classifier for the
features that can improve overall classification accuracy (OCA) with low false
alarm rate (FAR) Siuly and Li (2015).

To create stationarity of the EEG signals, this study partitions EEG data into a
number of time-windows (discussed in detail in Sect. 7.2). Then the OA scheme is
used to search representative sampling points from each window, which can effi-
ciently describe the signals based on the variability of their observations within the
window. After that, the PCA method is employed on the OA data to produce
uncorrelated variables and to reduce dimensionality. The obtained principal com-
ponents are treated as features in this study, and called the OA_PCA feature set. To
identify an efficient classifier for the OA_PCA feature set, this study employs four
prominent classifiers, namely least square support vector machine (LS-SVM), naive
bayes classifier (NB), k-nearest neighbor algorithm (KNN) and linear discriminant
analysis (LDA). In this research, four different output coding approaches of the
multi-class LS-SVM [error correcting output codes (ECOC), minimum output
codes (MOC), One versus One (1vs1) and One versus All (1vsA)] are also
investigated to test which one is the best for the obtained features. The parameters
of the proposed classification methods are selected by extensive experimental
evaluations.

7.2 Principal Component Analysis-Based Optimum
Allocation Scheme

This study develops a new framework for classifying epileptic EEG signals as
presented in Fig. 7.1. The research work investigates and explores whether the OA
based PCA features, (named OA_PCA) are suitable for epileptic EEG signal
classification, evaluates which classifier is more suitable for the feature set. From
Fig. 7.1, it can be seen that the proposed methodology is divided into six major
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parts: sample size determination (SSD), data segmentation, sample selection by OA
(denoted as OA_Sample), dimension reduction by PCA, OA based PCA features
(named as OA_PCA) and classification by the LS-SVM, NB, KNN and LDA. Brief
explanations of these six parts are provided below.

7.2.1 Sample Size Determination (SSD)

The first step of the proposed method is to determine an appropriate sample size
from an EEG channel data of a class. From a statistical sense, a sample is a set of
observations from a population. In this study, the entire EEG data of a class (class
means a specific category of EEG data, e.g. Class 1 (Set Z): healthy persons with
eyes open; Class 2 (Set O): healthy persons with eyes closed etc.), is considered as a
population where a sample is considered as a representative part of the population.
An observation in a sample is called a sample unit, and the sample size is the
number of observations that are included in a sample. In this study, the following
formulas (Eqs. (7.1) and (7.2)) (Sample size calculator; Siuly and Li 2015) are used
to calculate the desired samples for each EEG class data.

n ¼ Z2 � p� ð1� pÞ
e2

ð7:1Þ

where, n = desired sample size; Z = standard normal variate (the value for Z is
found in statistical tables which contain the area under the normal curve) for the
desired confidence level (1.96 for 95% confidence level and 2.58 for 99% confi-
dence level) (ref. Z Distribution Table); p = estimated proportion of an attribute,
that is present in the population; e = margin of error or the desired level of precision
(e.g. e = 0.01 for 99–100% confidence interval). If a population is finite, the
required sample size is given by

EEG 
recording 
of a class

window 1 OA1

window 2 OA2

................     ............

window k OAk

Data
Segmentation 

Sample size determination
(SSD)

OA_
Sample

Dimension 
reduction 
by PCA

OA_PCA
feature 

set

Classifi- 
cation by 
LS-SVM, 
NB, KNN,
and LDA

n(1)+n(2)+....+n(k)=n

Fig. 7.1 Architecture of the proposed system for the classification of epileptic EEG signals
Note OAi = optimum allocation in the ith window; OA_Sample: selected sample by the OA
together from each window; OA_PCA: feature vector set obtained by optimum allocation and
principal component analysis; SSD = n; n(1) = sample size by OA1 from window 1; n
(2) = sample size by OA2 from window 2 and n(k) = sample size by OAk from window k
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nnew ¼ n
1þ n�1

N

ð7:2Þ

where, N = population size.
If estimator p is not known, 0.50 (50%) is used as it produces the largest sample

size. The larger the sample size, the more sure we can be that the answers truly
reflect the population. In this research, we consider p = 0.50 so that the sample size
is maximum and Z = 2.58 and e = 0.01 for 99% confidence level in Eq. (7.1). In
this study, N = 4097 and thus we obtain from Eq. (7.2), nnew = 3288 for each and
every five classes (Set Z, Set O, Set N, Set F, Set S) of the epileptic EEG data.

7.2.2 Data Segmentation

EEG signals are nonstationary and stochastic. But, during signal analysis, an EEG
signal must be made stationary. The term ‘non-stationary’ means that the statistical
properties of a signal change over time. For example, the signal’s mean, variance,
kurtosis and skewness do not remain constant over the entire duration of the signal
but change from one point in the signal to the next. ‘Stochastic’ refers to signals
where the events in the signal occur in a random fashion, and self-similar, at the
simplest level, means that if a portion of a signal is magnified, the magnified signal
will look the same and have the same statistical properties as the original signal.
Although an overall signal may not be stationary, usually smaller windows, or parts
of those signals will exhibit stationarity. An EEG signal is stationary for a small
amount of time. That is why we partition the recorded EEG time series signals of
every category into several segments based on a specific time period to properly
account for possible stationarities. In this methodology, we divide the EEG signals
of a class into k-mutually exclusive groups, called ‘window’ considering a partic-
ular time period. For any experiments, the number (k) of windows is determined
empirically over time based on the data size. Suppose the sizes of the windows are
N1, N2,…, Nk. Hence, the number of observations in window 1, window 2 and…
window k are N1, N2,…, Nk, respectively.

In this research, the EEG signals of a class are segmented into four (k = 4)
windows with respect to a specific time period based on the data structure. Each
window contains 5.9 s of EEG data as every channel consists of 4097 data points of
23.6 s. Thus, the sizes of the four windows (window 1, window 2, window 3 and
window 4) are N1 = 1024, N2 = 1024, N3 = 1024 and N4 = 1025, respectively.

7.2.3 OA_Sample

Optimum allocation (OA) refers to a method of sample allocation that is designed to
provide the most precision. A detailed discussion of the OA scheme is provided in
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Sect. 6.2 in Chap. 6 and also available in reference (Siuly and Li 2014b, 2015). In
this study, the OA technique is used to determine the number of observations to be
selected from different windows. To find out how a given total sample size, n, should
be allocated among k windows with the smallest possible variability, we calculate
the best sample size for the ith window using the OA (Islam 2007; Cochran 1977)
technique by Eq. (7.3). All of the selected samples by the OA from all the windows
together are denoted as OA_Sample in this study. Detailed discussion of the OA
technique is available in references (Siuly and Li 2014b, 2014c, 2015).

nðiÞ ¼
Ni

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pp
j¼1 s

2
ij

q

Pk
i¼1 Ni

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pp
j¼1 s

2
ij

q� �� n; i ¼ 1; 2; . . .; k; j ¼ 1; 2; . . .; p ð7:3Þ

where nðiÞ is the required sample size of the ith window; Ni is the data size of the ith
window; s2ij is the variance of the jth channel of the ith window; and n is the sample
size of the EEG recording of a class obtained by Eq. (7.1). If n(1), n(2), …, n(k) are
the sample sizes obtained by Eq. (7.3) from the window sizes, N1, N2,…, Nk,
respectively, the sum of all obtained sample sizes from all the windows in a class
will be equal to n, i.e. n(1 + n(2) + ��� + n(k) = n as shown in Fig. 7.1.

In this work, k (the number of windows in each class) = 4 and p (the number of
channels in each class) = 100. For each of the five classes, the sizes of Windows 1,
2, 3 and 4 are 1024, 1024, 1024 and 1025, respectively. The numbers of obser-
vations are determined to be selected from each window in a class using the OA by
Eq. (7.3) as reported in Table 7.1. From Table 7.1, it is seen that in Set Z, the
sample sizes: 797, 822, 837 and 832, are obtained by the OA from Windows 1, 2, 3
and 4, respectively. The total of these four samples is 3288 that is equal to the total
sample size, n = 3288. Note that the total sample size, n of a class (e.g. Set Z or
Set O, Set N or Set F or Set S) is allocated among different windows with the
smallest possible variability by the OA procedure. As shown in Table 7.1,
the sample sizes are not equal in every window of a class due to the variability
of the observations in different windows. If the variability within a window is large,
the size of the sample from that window is also large. On the other hand, if the
variability of the observations within a window is small, the sample size will be
small in that window. Finally, we create an OA_Sample for Set Z such as
{797,822,837,832} which contains 3288 sample units. Similarly, we acquire the
OA_Sample from Sets O, N, F, S, individually, which have 3288 sample units, for
example {815, 840, 805, 828} for Set O; {839, 841, 780, 828} for Set N; {828,
833, 788, 839} for Set F; and {833, 844, 815, 796} for Set S. It is worth mentioning
that each OA_Sample set has 100 dimensions because each class contains 100
channels of EEG data in the epileptic EEG database. Thus, the OA_Sample for each
class consists of 3288 observations of 100 dimensions and all of the OA_Samples
together from each of the five classes consists of 16,440 observations of 100
dimensions. The entire set (16,440 � 100) of the OA_Samples from the five classes
is denoted as OA_Sample set in the experiments of this study.
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7.2.4 Dimension Reduction by PCA

At this step, the PCA is used to reduce the dimensionality of the OA_Sample set
and to generate fewer numbers of uncorrelated variables that are utilized as features
for better classification of epileptic

EEG signals. Generally, the recorded multi-channel EEG signals are huge in
number, containing a large amount of redundant information and are highly cor-
related. Often different signals from different scalp sites do not provide the same
amount of discriminative information. If there is a large amount of redundant
information and a large number of correlated variables in a dataset, the PCA is a
powerful technique to transform a number of correlated variables into a smaller
number of uncorrelated variables called principal components. The principal
components represent the most informative data carried by the original signals to
provide the discriminative information about those signals. Thus, the PCA features
work better in EEG signal classification. A detailed explanation of the PCA is found
in references (Cao et al. 2003; Chawla et al. 2006; Duda et al. 2001; Turk and Pentl
1991). Figure 7.2 presents an example of the PCA features for the five classes of
EEG signals. In this figure, we consider 100 feature points for each of the five
classes. The patterns of the PCA features for each class are similar as their original
signal patterns (as shown in Fig. 7.1).

In this work, we apply the PCA method to the OA_Sample set of five classes that
have 16,440 data points of 100 dimensions. Here eigenvectors with eigen values
greater than one are chosen. Considering eigen values greater than one, we obtain a
principal component set which contains 16,440 data points of 37 dimensions.
Figure 7.3 illustrates a box plot of a whole feature vector set for five class datasets.
The experimental results show that the EEG channels’ data are highly correlated
with each other and the PCA components represent 68.22% of the variation that
confirms an appropriate use of the PCA approach for this research. Thus, the
obtained principal components of the OA_Sample set are used as the features
denoted as ‘OA_PCA’.

Table 7.1 Calculated sample size for each window by the OA scheme

Segment Sample sizes obtained

Set Z Set O Set N Set F Set S

Window 1 797 (1024) 815 (1024) 839 (1024) 828 (1024) 833 (1024)

Window 2 822 (1024) 840(1024) 841 (1024) 833 (1024) 844 (1024)

Window 3 837 (1024) 805 (1024) 780 (1024) 788 (1024) 815 (1024)

Window 4 832 (1025) 828 (1025) 828 (1025) 839 (1025) 796 (1025)

Total 3288 3288 3288 3288 3288

Note In each cell, the number inside the parentheses is the window size (e.g. (1024) in the 1st cell)
and the number outside of the parentheses is the calculated sample size (e.g. 797 in the 1st cell)
obtained by the OA
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7.2.5 OA_PCA Feature Set

After reducing the dimensions of the OA_Sample set by the PCA, the new
generated feature vector set is denoted as ‘OA_PCA’. In this study, we obtain an
OA_PCA feature set that has 16,440 data points of 37 dimensions as discussed in
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the last section. This feature vector set is divided into a training set and a testing
set using a six fold cross-validation method, which is discussed in Sect. 7.3. In
each of the six trials, the training set consists of 13,700, and the testing set
consists of 2740 observations with 37 dimensions. Thus, the percentages of the
training set and testing set are 83.33 and 16.67%, respectively. In this study, the
training set is applied to train a classifier and the testing vectors are used to
evaluate the accuracy and the effectiveness of the chosen classifiers in the clas-
sification. The testing set is used as the input to the classification algorithm. The
obtained OA_PCA feature set is fed to each of the four classifiers discussed in the
following section.

7.2.6 Classification by the LS-SVM, NB, KNN and LDA

After the feature extraction, the feature vector set, OA_PCA, is forwarded to each
mentioned classifier. To choose the most appropriate classifier for the OA_PCA
feature set, this study employs four prominent classifiers: LS-SVM, NB, KNN and
LDA, for the classification of epileptic EEG signals. Brief explanations of those
methods are provided below.

• Least square support vector machine (LS-SVM)

The LS-SVM proposed by Suykens and Vandewalle (1999) is one of the most
successful classifying models. The LS-SVMs use equality constraints instead of
inequality constraints and solve linear equations instead of the quadratic pro-
gramming that reduces the computational cost of the LS-SVM (Suykens et al. 2002;
Xing et al. 2008; Suykens and Vandewalle 1999) compared to the original SVM.
A straightforward extension of LS-SVMs to multiclass problems has been proposed
by Suykens and Vandewalle (2002). A common way of solving the multiclass
categorization problem is to reformulate the problem into a set of binary classifi-
cation problems using four output coding schemes: minimum output codes (MOC),
error correcting output codes (ECOC), One versus One (1vs1) and One versus All
(1vsA). The detailed description of the multiclass LS-SVM algorithms can be found
in Sect. 6.2.5 of Chap. 6 and also in the literature (Suykens and Vandewalle 1999;
Suykens et al. 2002; Xing et al. 2008; Youping 2005; Sengur 2009; Gestel et al.
2002). In this research, the multiclass LS-SVM with four output coding schemes:
ECOC, MOC, 1v1 and 1vA is denoted as LS-SVM_ECOC, LS-SVM_MOC,
LS-SVM_1v1 and LS-SVM_1vA, respectively. Then they are all applied with the
radial basis function (RBF) for the classification of multiclass EEG signals, using
the OA_PCA features as the input. Before the classification procedure, the hyper
parameters of the LS-SVM (c and r2) with RBF kernel in each of the four output
coding schemes are selected through the extensive experimental evaluations in this
research, as discussed in Sect. 7.4.1.
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• Naive Bayes classifier (NB)

A NB is a probabilistic classifier based on Bayes theorem with strong (naive)
independence assumptions. The NB assumes all the feature nodes are to be inde-
pendent of each other for a given class, and typically the feature variables are
assumed to have a Gaussian distribution if they are continuous. The classification
results are determined by the posterior probability P(y|x1, x2, x3,…, xn) described in
detail in references (Friedman 1997; Zhang 2004; Siuly et al. 2016), which can be
transformed by using the chain rule and Bayes’ Theorem. In this study, the class
node, y, presents the five categories of the epileptic EEG signals and the feature
nodes (x1, x2, x3, …, xn) represent the OA_PCA features. A detailed explanation of
this method is available in Chap. 12 and also in references (Friedman 1997; Zhang
2004; Hope et al. 2011).

• K-Nearest Neighbor algorithm (KNN)

The idea behind the KNN algorithm is quite straightforward in classifying
objects based on the closest training observations presented in the feature space
(Duda et al. 2001; Cover and Hart 1967). Here, an object is classified by a majority
vote of its neighbours, with the object being assigned to the class most common
amongst its k nearest neighbours (k is a positive integer, typically small). If k = 1,
then the object is simply assigned to the class of that single nearest neighbour
(Cover and Hart 1967; Han et al. 2005). The only adjustable parameter in the model
is k, the number of the nearest neighbours to be included in the estimate of a class
membership. The value of P(y|x) is calculated simply as the ratio of members of
class y among the k nearest neighbours of x. A detailed discussion of this method is
available in references (Duda et al. 2001; Cover and Hart 1967; Han et al. 2005;
Ripley 1996). In this study, an appropriate value of k is selected after the experi-
mental assessments, as described in Sect. 7.4.1.

• Linear Discriminant Analysis (LDA)

A LDA (also known as Fisher’s LDA) builds a predictive model for a group
membership. The LDA uses hyper-planes to separate data representing different
classes (Duda et al. 2001). The model is composed of a discriminant function
based on linear combinations of predictor variables. The purpose of the LDA is
to maximally separate the groups and to determine the most and parsimonious
way to separate groups and to discard variables which are little related to group
distinctions for online systems. This technique has a very low computational
requirement. A detailed discussion of this method is available in references
(Duda et al. 2001; Friedman et al. 1997). In this research, the OA_PCA features
are used as the predictor variables for epileptic EEG data classification in this
model.
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7.3 Performance Assessment

To evaluate the performances of the proposed framework, this study applies a k-fold
cross-validation (see description in Chap. 3) and also in references (Siuly and Li
2012; Siuly et al. 2011) method. In this study, we select k = 6 as the six fold
cross-validation is found adequate for this dataset. As mentioned before, we obtain
a total of 16,440 feature vectors of 37 dimensions where each of the five classes
holds 3288 feature vectors of the same dimensions. In this research, we divide the
whole feature sets into six subsets where each subset is called fold. Each fold
consists of 2740 feature vectors of the five classes taking 548 feature vectors from
each class. Figure 7.4 presents a design of how the extracted feature vectors of this
study are partitioned into six mutually exclusive subsets (folds) according to the k-
fold cross-validation system.

The procedure is repeated 6 times. Each time, one subset (fold) is used as a
testing set and the remaining five subsets (folds) are used as a training set. As
shown in Fig. 7.4, in each iteration, the testing set is denoted as bold face and other
five folds together are used as the training set. Thus, the training set consists of
13,700 feature vectors of 37 dimensions and the testing set contains 2740 feature
vectors of the same dimension. The classification performances from each of six
iterations on the testing set are obtained for all categories of the epileptic EEG
signals and summarized in Table 7.6 in Sect. 7.4.2.

In this study, the performances of the proposed methods are assessed based on
different statistical measures, such as corrected percentage (CP) in each class,
overall classification accuracy (OCA) and false alarm rate (FAR). Their formulas
are given below (Murugavel et al. 2011; Siuly and Li 2012; Siuly et al. 2009, 2010,
2011; Siuly and Wen 2013; Bajaj and Pachori 2012, 2013):

• Corrected percentage (CP) in each class (also called sensitivity)

CPi ¼ Number of correctly classified cases in ith class
Actual number of cases in ith class

� 100 ð7:4Þ

1st iteration -1 Fold-2 Fold-3 Fold-4 Fold-5 Fold-6
2nditeration Fold-1 -2 Fold-3 Fold-4 Fold-5 Fold-6
3rditeration Fold-1 Fold-2 -3 Fold-4 Fold-5 Fold-6
4thiteration Fold-1 Fold-2 Fold-3 -4 Fold-5 Fold-6
5thiteration Fold-1 Fold-2 Fold-3 Fold-4 -5 Fold-6
6thiteration Fold-1 Fold-2 Fold-3 Fold-4 Fold-5 -6

Fold
Fold

Fold
Fold

Fold
Fold

Fig. 7.4 Structure of performing six fold cross validation process
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• Overall classification accuracy (OCA)

OCA ¼ Number of total correct decisions for all classes
Total number of cases for all classes

� 100 ð7:5Þ

• False alarm rate (FAR)

FARi ¼

Number of of normal cases that are detected as

not a normal cases in ith category
Total number of normal cases

� 100 ð7:6Þ

7.4 Experimental Set-up

In this section, we first select the parameters of the four mentioned classifiers:
LS-SVM, NB, KNN and LDA, because the classification performances of a clas-
sifier depend on the values of the parameters as discussed in Sect. 7.4.1. Then we
investigate the effectiveness of each classifier on the OA_PCA features with the
optimally selected parameters discussed in Sect. 7.4.2. The classification by
the multi-class LS-SVM is carried out in MATLAB (version 7.14, R2012a) using
the LS-SVMlab toolbox (version 1.8). The classification of the NB method is also
performed in MATLAB with the same version. On the other hand, the classifica-
tion executions for the KNN and LDA methods are executed in SPSS package
(version 21).

7.4.1 Parameter Selection

As mentioned before, this study uses four classification methods, such as LS-SVM,
NB, KNN and LDA. The four output coding schemes of the multi-class LS-SVM:
ECOC, MOC, 1vs1 and 1vsA, are explored in this research. As there are no specific
guidelines to set the values of these parameters of the mentioned classifiers, this
study presents a new way to select the parameters. In this study, the RBF kernel
function is employed for the multi-class LS-SVM as an optimal kernel function
over the different kernel functions that were tested. The multi-class LS-SVM with
RBF has two important parameters, c and r2, which should be appropriately chosen
to achieve the desired performance as these parameters play a significant role in the
classification performance. The NB classifier is a probabilistic classifier based on
Bayes’ theorem and there is no parameter in this method. The KNN model has only
one parameter k which refers to the number of nearest neighbors. By varying k, the
model can be made more or less flexible. In this study, the appropriate value of the
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model parameter, k is selected after experimental evaluations. In the LDA method,
the parameters are obtained automatically through the maximum likelihood esti-
mation (MLE) method.

From the above discussion, it is clear that we only determine the optimal
parameter values, c and r2, for the LS-SVM classifier of each output coding system
and an appropriate k value for the KNN classifier. As mentioned before, we denote
the LS-SVM for the four output coding schemes: ECOC, MOC, 1v1 and 1vA, as
LS-SVM_ECOC, LS-SVM_MOC, LS-SVM_1v1 and LS-SVM_1vA, respectively.
To select appropriate combinations of (c, r2) for all four LS-SVM approaches, we
set up the ranges of c and r2 values as c = 1, 10, 100, 1000 and r2 = 1, 10, 100,
1000 for the experimental evaluations. Thus, we obtain classification outcomes for
all possible combinations of c and r2 and then take one combination as an optimal
combination for each fold that reports the highest overall classification accuracy
(OCA) rate for that fold. In each fold, the best combination of (c, r2) for the
LS-SVM_ECOC, LS-SVM_MOC, LS-SVM_1v1 and LS-SVM_1vA classifiers
with their OCAs are presented in Tables 7.2, 7.3, 7.4 and 7.5, respectively. In every
fold, the selected combinations of (c, r2) for each of the LS-SVMs are highlighted
in bold font.

Table 7.2 reports that one combination of (c, r2) is obtained in Fold-1, three
combinations in Fold-2, four combinations in Fold-3, two combinations in Fold-4,
three combinations in Fold-5 and one combination in Fold-6. From this table, it is
seen that c = 100, r2 = 10 is the common combination for the LS-SVM_ECOC
approach in each fold. Thus, we select c = 100, r2 = 10 as an optimal combination
for the LS-SVM_ECOC method. Table 7.3 also shows that c = 100, r2 = 10 is the
common combination that produces highest performance in every fold for the
LS-SVM_MOC method. Hence c = 100, r2 = 10 is considered to be the best
combination for this method. In Table 7.4, it can be seen that the selected optimal
parameters for the LS-SVM_1v1 classifier is c = 10, r2 = 10 that yields 100%
classification accuracy in each fold. Table 7.5 reports that c = 100, r2 = 10 is the
best pair for the hyper parameters of the LS-SVM_1vA method.

As mentioned previously, there is only one model parameter in the KNN clas-
sifier, and that is k. The choice of k is essential in building up a model which can be

Table 7.2 Selection of hyper parameters (c, r2) of the LS-SVM _ECOC classifier

LS-SVM_ECOC

Fold Parameters (c, r2) OCA (%)

Fold-1 c = 100, r2 = 10 99.96

Fold-2 c = 100, r2 = 10; c = 1000, r2 = 10; c = 10, r2 = 10 100.00

Fold-3 c = 1, r2 = 10; c = 10, r2 = 10; c = 100, r2 = 10; c = 1000, r2 = 10 100.00

Fold-4 c = 10, r2 = 10; c = 100, r2 = 10 99.96

Fold-5 c = 10, r2 = 10; c = 100, r2 = 10; c = 1000, r2 = 10 100.00

Fold-6 c = 100, r2 = 10 99.89

Note Selected parameters for the LS-SVM_ECOC approach: c = 100, r2 = 10
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regarded as one of the most important factors of the model that can strongly
influence the quality of predictions. k should be set to a suitable value to minimize
the probability of misclassification. The best choice of k depends upon the data. In
this study, we select the appropriate k value in an automatic process following the

Table 7.3 Selection of hyper parameters (c, r2) of the LS-SVM_MOC

LS-SVM_MOC

Fold Parameters (c, r2) OCA (%)

Fold-1 c = 100, r2 = 10 99.96

Fold-2 c = 10, r2 = 10; c = 100, r2 = 10; c = 1000, r2 = 10 100.00

Fold-3 c = 1, r2 = 10; c = 10, r2 = 10; c = 100, r2 = 10; c = 1000, r2 = 10 100.00

Fold-4 c = 10, r2 = 10; c = 100, r2 = 10 99.96

Fold-5 c = 10, r2 = 10; c = 100, r2 = 10; c = 1000, r2 = 10 100.00

Fold-6 c = 100, r2 = 10 99.89

Note Selected parameters for the LS-SVM_MOC approach: c = 100, r2 = 10

Table 7.4 Selection of hyper parameters (c, r2) of the LS-SVM_1v1

LS-SVM_1v1

Fold Parameters (c, r2) OCA
(%)

Fold-1 c = 1, r2 = 10; c = 10, r2 = 10; c = 100, r2 = 10; c = 100, r2 = 100;
c = 1000, r2 = 10; c = 1000, r2 = 100

100.00

Fold-2 c = 10, r2 = 10; c = 100, r2 = 10; c = 100, r2 = 100; c = 1000, r2 = 10;
c = 1000, r2 = 100;

100.00

Fold-3 c = 1, r2 = 10; c = 10, r2 = 10; c = 100, r2 = 10; c = 100, r2 = 100;
c = 1000, r2 = 10; c = 1000, r2 = 100

100.00

Fold-4 c = 1, r2 = 10;c = 10, r2 = 10; c = 100, r2 = 10; c = 1000, r2 = 10 100.00

Fold-5 c = 1, r2 = 10; c = 10, r2 = 10; c = 100, r2 = 10; c = 1000, r2 = 10;
c = 1000, r2 = 100

100.00

Fold-6 c = 10, r2 = 10 100.00

Note Selected parameters for the LS-SVM_1v1 approach: c = 10, r2 = 10

Table 7.5 Selection of hyper parameters (c, r2) of the LS-SVM_1vA

LS-SVM with 1vA

Fold Parameters (c,r2) OCA(%)

Fold-1 c = 100, r2 = 10; c = 1000, r2 = 10 99.96

Fold-2 c = 100, r2 = 10; c = 1000, r2 = 10 100.00

Fold-3 c = 10, r2 = 10; c = 100, r2 = 10; c = 1000, r2 = 10 100.00

Fold-4 c = 10, r2 = 10; c = 100, r2 = 10 99.96

Fold-5 c = 10, r2 = 10; c = 100, r2 = 10; c = 1000, r2 = 10 100.00

Fold-6 c = 100, r2 = 10; c = 1000, r2 = 10 99.85

Note Selected parameters for the LS-SVM_1vA approach: c = 100, r2 = 10
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k selection error log as there is no a simple rule for selecting k. We consider the
range of the k value being between 1 and 30. We pick an appropriate k value that
results in the lowest error rate in each fold as the lowest error rate indicates having
the best model. In the experimental results, we obtain the lowest error rate for k = 1
in every fold. Figures 7.5 and 7.6 show the two examples for Fold-1 and Fold-2 of
the testing data set. In these two figures, it is seen that the number of nearest
neighbours (k) are plotted in the X-axis and the error rate of the KNN model for
each k value is presented in the Y-axis. The error rate increases in conjunction with
an increase in the number of nearest neighbours (k). For example, in Fig. 7.6, the
error rate is about 0.01 for k = 1 while it is about 0.07 for k = 5. Again, in Fig. 7.6,
the error rate is about 0.06 for k = 1 when it is about 0.17 for k = 5. Hence the
appropriate value of k is 1 for this epileptic dataset. Thus, the lowest error rate is
obtained with this value in each fold of the dataset.

7.4.2 Results and Discussions

Table 7.6 presents the classification results for the OA_PCA feature set with the
classifiers of LS-SVM_ECOC, LS-SVM_MOC, LS-SVM_1v1, LS-SVM_1vA,
NB, KNN and LDA on the epileptic EEG data. In this study, the average of the
corrected percentage (CP) in a category [calculated by Eq. (7.4)] of the six folds is

Fig. 7.5 k selection error log in fold-1 of the testing set
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named as CP_average, and the variation among results from the six folds is denoted
as standard deviation (SD). On the other hand, the average of the overall classi-
fication accuracy (OCA) [calculated by Eq. (7.5)] for the six folds is named
OCA_average, and the deviation among the six folds is denoted as standard
deviation (SD). As shown in Table 7.6, the highest classification performance is
achieved for the LS-SVM_1v1 classifier, which is 100% for each and every cate-
gory. The LS-SVM_ECOC and LS-SVM_MOC classifiers get the second position
and the LS-SVM_1vA is in third position according to the CP_average and
OCA_average for the OA_PCA feature set. The LDA classifier yields the lowest
performance among the seven classification methods. It can be seen from Table 7.6
that the LS-SVM classifier with each of the four output coding systems produces
relatively better performances for the OA_PCA feature set compared to the other
three classifiers: the NB, KNN and LDA. On the other hand, the NB produces a
better performance than those of the KNN and LDA. Furthermore, Table 7.6
reports that the SD for every classifier is very low, which leads to the conclusion
that the mentioned classifiers are consistent for the OA_PCA features. It is also
observed that the SD of the classification performance for the LS-SVM_1v1 clas-
sifier is zero, which indicates the robustness of the LS-SVM_1v1 for obtained
features. The lower value of the SD represents the consistency of the proposed
method. Hence, the results demonstrate that the LS-SVM is a superior classifier for
epileptic EEG signal classification. The LS-SVM_1v1 is the best method.

Fig. 7.6 k selection error login Fold-2 of the testing set
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To get a clear understanding of how the six fold cross-validation system pro-
duces the CP in each of the six folds in each class for every reported classifier, we
provide Fig. 7.7a–g. These figures present the patterns of the corrected percentage
(CP) in each class against each of the six folds. Figure 7.7c shows that there are no
fluctuations in the performance among the six folds in each of the five classes for
the LS-SVM_1v1 classifier. The results indicate that the proposed method is fairly
stable. It is also seen from Fig. 7.7a–g, that the fluctuations in the performances
among the different folds are very little in each class. From these figures, it is
observed that the pattern of the CP in each fold for every class is very consistent,
indicating the robustness of the methods. The error bars in the graphs represent the
standard errors indicating the fluctuations in the performances among the folds.

Table 7.7 illustrates the false alarm rate (FAR) (sometimes called ‘probability of
false detection’) for the seven classifiers in each of the six folds for Sets O, N, F and
S. In this study, we consider Set Z as a normal case and compute the FAR using

Fig. 7.7 Individual classification performances of each of the six folds in each class for the proposed
classifiers: (a) LS-SVM_ECOC, (b) LS-SVM_MOC, (c) LS-SVM_1v1, (d) LS-SVM_1vA, (e) NB,
(f) KNN, and (g) LDA. Error bars represent the standard error
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Table 7.7 Obtained false alarm rate (FAR) for each of the proposed classifiers

Different classifiers Data set FAR

Set O Set N Set F Set S

LS-SVM_ECOC Fold-1 0.00 0.00 0.00 0.00

Fold-2 0.00 0.00 0.00 0.00

Fold-3 0.00 0.00 0.00 0.00

Fold-4 0.00 0.00 0.00 0.00

Fold-5 0.00 0.00 0.00 0.00

Fold-6 0.00 0.00 0.00 0.00

LS-SVM_MOC Fold-1 0.00 0.00 0.00 0.00

Fold-2 0.00 0.00 0.00 0.00

Fold-3 0.00 0.00 0.00 0.00

Fold-4 0.00 0.00 0.00 0.00

Fold-5 0.00 0.00 0.00 0.00

Fold-6 0.00 0.00 0.00 0.00

LS-SVM_1v1 Fold-1 0.00 0.00 0.00 0.00

Fold-2 0.00 0.00 0.00 0.00

Fold-3 0.00 0.00 0.00 0.00

Fold-4 0.00 0.00 0.00 0.00

Fold-5 0.00 0.00 0.00 0.00

Fold-6 0.00 0.00 0.00 0.00

LS-SVM_1vA Fold-1 0.00 0.00 0.00 0.00

Fold-2 0.00 0.00 0.00 0.00

Fold-3 0.00 0.00 0.00 0.00

Fold-4 0.00 0.00 0.00 0.00

Fold-5 0.00 0.00 0.00 0.00

Fold-6 0.00 0.00 0.00 0.00

NB classifier Fold-1 0.00 0.00 0.00 0.00

Fold-2 0.00 0.0036 0.0036 0.00

Fold-3 0.00 0.0036 0.00 0.00

Fold-4 0.00 0.0055 0.00 0.00

Fold-5 0.00 0.0036 0.00 0.00

Fold-6 0.00 0.0055 0.00 0.00

KNN classifier Fold-1 0.00 0.00 0.00 0.00

Fold-2 0.00 0.00 0.00 0.00

Fold-3 0.00 0.00 0.00 0.00

Fold-4 0.00 0.00 0.00 0.00

Fold-5 0.00 0.00 0.00 0.00

Fold-6 0.00 0.00 0.00 0.00

LDA classifier Fold-1 0.00 0.011 0.020 0.00

Fold-2 0.00 0.0055 0.015 0.0018

Fold-3 0.0018 0.013 0.0073 0.00

Fold-4 0.0018 0.0073 0.00 0.0073

Fold-5 0.00 0.0036 0.0018 0.00

Fold-6 0.00 0.00 0.0055 0.00
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Eq. (7.6). As shown in Table 7.7, the FARs are zero in each of the folds in every
class for the LS-SVM_ECOC, LS-SVM_MOC, LS-SVM_1v1, LS-SVM_1vA and
KNN. This means that there are no incorrect responses in each fold in every class
for those classifiers. For most of the cases, the FARs are also zero for the NB and
LDA classifiers. For the value of the FAR, zero indicates that normal cases are
detected as normal with 100% accuracy.

7.5 Comparisons

To choose the best classifier for the OA_PCA features, we compare our proposed
methods in terms of their OCA against each fold and present the results in Fig. 7.8.
It can be seen from the figure that the patterns of the OCA for the LS-SVMs in each
of the four output coding systems are very close. That justifies that the four graph
lines of the LS-SVM_ECOC, LS-SVM_MOC, LS-SVM_1v1, LS-SVM_1vA are
laying in one line showing a higher performance compared to the other classifiers.
This figure also demonstrates that the OCA of the LDA is a bit lower compared to
the other six classifiers. From Tables 7.6 and 7.8, it is clear that the LS-SVM results
are in a better performance with the OA_PCA feature set in the EEG signals
classification than the other reported classifiers.

To further examine the efficiencies of the proposed classifiers with the OA_PCA
features, we provide the comparisons of our approaches with some recently reported
methods. In Table 7.8, we list a comparison of different methods in terms of the OCA
for the epileptic EEG database. We present the results from our proposed methods
and also the six reported research works discussed in Sect. 7.1. The datasets used in
these experiments are also the same. The highest OCA rate among the algorithms is
highlighted in bold font. From Table 7.8, it is obvious that the result obtained from
the approach LS-SVM_1v1 is the best for this database among the recently reported
approaches. The results indicate that the LS-SVM_1v1 approach improves the OCA
up to 7.10% over the existing algorithms for the epileptic EEG data.

Fig. 7.8 Comparisons of the proposed classifiers for the OA_PCA feature in terms of the OCA
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7.6 Conclusions

This research presents an optimal feature extraction technique, named as OA_PCA,
and also searches for a suitable classifier for the feature set to identify
multi-category epileptic EEG signals. The proposed schemes demonstrate many
advantages, such as high classification performance and very low FAR for all
classifiers tested. The main conclusions of this study are summarized as follows:

Table 7.8 Comparison with the existing methods on epileptic EEG database

Authors Methods OCA
(%)

Siuly and Li (the
proposed)

OA + PCA + LS-SVM_ECOC 99.97

OA + PCA + LS-SVM_MOC 99.97

OA + PCA + LS-SVM_1v1 100.0
OA + PCA + LS-SVM_1vA 99.96

OA + PCA + NB classifier 99.24

OA + PCA + KNN classifier 98.82

OA + PCA + LDA classifier 87.79

Shen et al. (2013) Wavelet + ApEn + SVM 99.97

Wavelet + ApEn + KNN 99.10

Wavelet + ApEn + RBFNN 99.82

Acharjee and
Shahnaj (2012)

twelve Cohen class kernel functions + Modular
energy + Modularentropy + ANN

98.00

Murugavel et al.
(2011)

WT and Lyapunov + SVM_1vA 96.00

WT and Lyapunov + PNN 94.00

WT and Lyapunov + RBFNN 93.00

Ubeyli (2009) Wavelet coefficients + power spectral
density + SVM_ECOC

99.20

Wavelet coefficients + power spectral density + MME
classifier

98.68

Wavelet coefficients + power spectral density + ME 95.00

Wavelet coefficients + power spectral density + RNN 94.85

Wavelet coefficients + power spectral density + PNN 95.30

Wavelet coefficients + power spectral density + CNN 93.48

Wavelet coefficients + power spectral density + MLPNN 90.48

Ubeyli (2008) Pisarenko, MUSIC, and minimum-norm + SVM_ECOC 99.30

Pisarenko, MUSIC and minimum-norm + MLPNN 92.90

Guler and Ubeyli
(2007)

wavelet coefficients and lyapunov
exponents + SVM_ECOC

99.28

wavelet coefficients and lyapunov exponents + PNN 98.05

wavelet coefficients and lyapunov exponents + MLPNN 93.63

WT wavelet transform
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• The OA_PCA system is very effective for feature extraction for the epileptic
EEG data. The experimental results for the proposed classifiers, the
LS-SVM_ECOC, LS-SVM_MOC, LS-SVM_1v1, LS-SVM_1vA, NB, KNN
and LDA, confirm that the extracted features are very consistent in detecting
epileptic EEG signals

• The parameters of the proposed methods are optimally selected through
experimental evaluations indicating the reliability of the methods

• The results show that the proposed LS-SVM_1v1 classifier with the OA_PCA
features achieves the best performance compared to the other classifiers with the
same features

• The experimental results also indicate that our proposed approach,
LS-SVM_1v1 outperforms the other six recently reported research results with
the same epileptic EEG database. It demonstrates that our method is considered
the best method for the epileptic EEG signal classification.

This study concludes that the LS-SVM_1v1 with the OA_PCA feature set is a
promising technique for epileptic EEG signals recognition. It offers great potential
for the development of epilepsy analyses. The proposed technique can assist
physicians or doctors to diagnose brain function abnormalities. One limitation for
performing the proposed optimum allocation based algorithm is dealing with the
problem of considering the window size based on an empirical evaluation. In the
future, we will extend the proposed approach to online and real-time applications in
the multiclass classification problems.
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Part III
Methods for Identifying Mental States in

Brain Computer Interface Systems



Chapter 8
Cross-Correlation Aided Logistic
Regression Model for the Identification
of Motor Imagery EEG Signals
in BCI Applications

One crucial and challenging issue in BCI systems is the identification of motor
imagery (MI) task based EEG signals in the biomedical engineering research area.
Although BCI techniques have been developing quickly in recent decades, there
remains a number of unsolved problems such as the improvement of MI signal
classification. The translation of brain activities into EEG signals in BCI systems
requires a robust and accurate classification to develop a communication system for
motor disabled people. In BCIs, MI tasks generate brain activities, which are
generally measured by EEG signals. The aim of this chapter is to introduce a
method for the extraction of discriminatory information from the MI based EEG
signals for BCI applications and then identify MI tasks based on the extracted
features through the classification process. This chapter proposes a new approach,
the ‘Cross-correlation aided logistic regression model’ called “CC-LR” for the
identification of MI tasks. In this methodology, the cross-correlation (CC) technique
is used for extracting information from MI EEG signals and the logistic regression
(LR) method is employed to estimate the class labels of MI tasks using the extracted
information as the input. This study investigates the performance of the CC tech-
nique for a randomly selected reference signal and also investigates the LR for
efficient classification of the cross-correlated features. The proposed method is
tested on two benchmark datasets, IVa and IVb of BCI Competition III and the
performance is evaluated through a cross-validation procedure.

8.1 Definition of Motor Imagery (MI)

Motor imagery (MI) can be defined as a dynamic mental state during which an
individual mentally simulates a given action. This type of phenomenal experience
implies that the subject feels himself performing the action (Decety 1996). In MI,
subjects are instructed to imagine themselves performing a specific motor action
(for example: a hand or foot movement) without an overt motor output
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(Kayikcioglu and Aydemir 2010; Thomas et al. 2009). MI produces effects on the
brain rhythm in the sensory-motor cortex which are the same as those associated
with the real executed movement (Pfurtscheller et al. 2006). Prominent changes in
brain rhythms are observed in the sensory-motor area of the brain during the
planning and the execution of movements. Different mental states lead to changes in
the electro-physiological signals in the brain. To use a BCI, a subject must have a
sensor of some kind on the head, and must voluntarily choose to perform certain
mental tasks to accomplish goals. There are various acquisition techniques for
capturing MI brain activities. Among these techniques, EEG is the most studied
measure of potential for non-invasive BCI designs, mainly due to its excellent
temporal resolution, non-invasiveness, usability, and low set-up cost (Kayikcioglu
and Aydemir 2010; Blankertz et al. 2008; Grosse-Wentrup et al. 2009). In pattern
recognition, each MI task is treated as a class.

8.2 Importance of MI Identification in BCI Systems

The ability to communicate with the outside world is one of the most indispensable
assets that humans possess. Our hands, legs and other limbs are essential for per-
forming our daily activities. Unfortunately, these abilities can be lost due to acci-
dents or diseases (Kayikcioglu and Aydemir 2010). Neurological diseases can
disrupt the neuromuscular channels through which the brain communicates with its
environment and exerts control. Therefore, it is impossible for people who are
motor disabled, to live and meet their daily needs without external help. The vital
object of the BCI is to provide humans with an alternative communication channel
allowing the direct transmission of messages from the brain by analyzing the
brain’s mental activities. The BCI is a well-known emerging technology with which
people are can communicate with their environment and control prosthetic or other
external devices using only their brain activity (Vaughan et al. 2003). It promises to
provide a way for people to communicate with the outside world using thoughts
alone.

In the BCI development, the identification of MI tasks is a key issue as users
(e.g. motor disabled people) produce different brain activity patterns for different
MI tasks that are identified by a system and are then translated into commands
(Wang et al. 2004). These commands are used as feedback for motor-disabled
patients to communicate with external environments. A communication or
control-based BCI technology requires patterns of a brain activity that can be
consciously generated or controlled by a subject and ultimately clearly distin-
guishable by a computer system. This system involves a BCI user to concentrate on
a MI task in order to produce a characteristic brain pattern that identifies with the
desired control; for example, the imagination of a hand movement (Thomas et al.
2009; Siuly and Li 2012). Figure 8.1 shows how BCIs convert user intentions or
thoughts into control signals to establish a direct communication channel between
the human brain and output devices. This figure depicts the basic structure of BCI
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technologies, how a MI-based EEG signal of a thought passes on to a BCI system,
and how the BCI system processes those signals into a control signal for a user
application. Thus, in order to improve BCI systems, it is essential to correctly
identify different MI classes that are related to a performed task using classification
techniques as MI-based BCI system translates a subject’s motor intention into a
command signal through real-time detection of motor imagery states.

Hence, a MI-based BCI provides a promising means of control and communi-
cation for people who are suffering from motor disabilities (Wolpaw et al. 2002).
Therefore, the recognition of MI tasks is crucial for the BCI development that
generates control signals.

8.3 Motivation to Use Cross-Correlation
in the MI Classification

Identification of MI-based EEG signals is a difficult problem in BCI systems as
EEG data are naturally nonstationary, highly noisy and contaminated with artefacts
(Wu et al. 2008; Long et al. 2010). Classification techniques help to predict and
identify class labels of a subject’s mental state by extracting useful information
from the highly multivariate recordings of the brain activities. To identify a sub-
ject’s intentions from MI-based EEG data, the most important thing is to extract
discriminative relevant features from the highly multivariate recordings of the brain
activities. Feature extraction in BCI research is a major task that would significantly
affect the accuracy of classifying MI tasks. We can obtain a good classification rate
if the extracted features are efficient for differentiating MI tasks. An efficient feature
extraction method can achieve good classification results with a simple classifier.
The performance and reliability of a recognition system greatly depends on the
features and the classification algorithm employed. The current study proposes an
innovative algorithm where a CC technique is developed for feature extraction for
EEG-based BCI systems.

Brain signal  
(e.g. EEG)

Feedback  (visual, auditory and haptic )

Brain computer 
interface (BCI)

Control signal Application

Fig. 8.1 Fundamental structure of MI EEG-based BCI systems
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As discussed in Chap. 3, several feature extraction methods for MI data have
been applied in BCI applications such as autoregressive (AR) (Schlogl et al. 2002;
Pfurtscheller et al. 1998; Burke et al. 2005; Guger et al. 2001; Jansen et al. 1981),
fast Fourier transform (FFT) (Polat and Gunes 2007), common spatial patterns
(CSP) (Blanchard and Blankertz 2004; Lemm et al. 2005), spatio-spectral patterns
(Wu et al. 2008) and wavelet coefficients (Qin and He 2005; Ting et al. 2008; Liao
et al. 2013), phase locking value (PLV) and spectral coherence (Gysels and Celka
2004; Park et al. 2013; Lachaux et al. 1999; Quiroga 2009) and power spectral
density (PSD) (Park et al. 2013). From the mentioned literature, we understand that
the AR model has a superior resolution capability for the spectral estimation from
which features are obtained. But the major problem of this model is that the model
order is not known and has to be determined via order selection criteria.

Order selection can give inconsistent results if the data set is small. On the other
hand, the FFT is a transformation that can be used in time domain and frequency
domain to extract features from EEG data. However, in the Fourier algorithm, the
estimation of frequencies is sensitive to noise. This method requires a stationary
signal for analyzing the component of the signal where the EEG is a nonstationary
signal. Furthermore, the input signal repeats periodically and the periodic length is
equal to the length of the actual input. If the true signal is not periodic or if the
assumed periodic length is not correct, both the amplitude and position of a fre-
quency measurement will be inaccurate. Although the CSP is a popular method in
BCI applications, it is highly non-robust to noise and outliers and often over-fits
with small training sets. Moreover, despite being a spatial filter, the CSP completely
ignores the spatial location of the EEG electrodes. In the spatio-spectral patterns,
selecting their regularization parameters for reliable classification is not simple.

Wavelet transform (WT) is the improved version of Fourier transform that can
capture transient features and localizes them in both the time and frequency
domains. But, sometimes it is hard to select a suitable wavelet and determine an
appropriate number of decomposition levels in the analysis of EEG signals.
Detecting phase locking between two distant brainwave recordings (such as EEG,
MEG, and intracranial) is not straightforward in the PLV. The PLV may be the
measure of choice if one wants to focus on phase relationship. The PLV features
can be influenced by the changes in electrode locations. On the other hand, the
coherence may be very useful for studying interactions if one is interested in a
particular frequency band. The PSD features are very sensitive to the changes in
EEG electrode location, and another pitfall of the method is its potential instability.

In response to these problems, this study introduces a cross-correlation
(CC) method for feature extraction from MI EEG data. There are strong grounds
for using a CC technique for feature extraction in this area. EEGs record brain
activities as a multi-channel time series from multiple electrodes placed on the scalp
of a subject. The recorded multi-channel EEG signals are highly correlated, and the
different signals from different scalp sites do not provide the same amount of
discriminative information (Meng et al. 2009). The anatomical differences of the
brains of the subjects could affect the correlation of signals. These signals are also
typically very noisy and are not directly usable in BCI applications. The CC is a
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very powerful technique to identify the relationship between the EEG signals from
two different electrodes and is also able to provide discriminative information about
those signals. This method can measure the degree of similarities between two
signals with respect to time (Chandaka et al. 2009).

This technique produces a new signal called cross-correlogram (mathematically
called cross-correlation sequence) using two signals. If the two EEG signals have
the same rhythm, the pick of the cross-correlogram curve will appear in the centre.
In addition, the cross-correlation can diminish noise from the EEG signals by means
of correlation calculation because of the characteristics of signal periodicity. Hence
the cross-correlogram is a nearly noise-free signal that can provide more signal
information compared to the original signal (Hieftje et al. 1973). The process also
takes into consideration any potential phase differences between the two signals via
the inclusion of a lead or lag term (Dutta et al. 2009). Thus, a CC technique works
better for the feature extraction in MI EEG data.

8.4 Theoretical Background

8.4.1 Cross-Correlation Technique

In signal processing, cross-correlation (Chandaka et al. 2009; Siuly et al. 2013,
2016) is a statistical tool that measures the degree of similarity of two signals as a
function of a time-lag applied to one of them. The similarity of two waveforms may
be numerically evaluated by summing the products of the identical time samples of
each waveform. Cross-correlation is commonly used to search a long duration
signal for a shorter, known feature, and has applications in pattern recognition when
measuring information between two different time series. The correlation uses two
signals to produce a third signal. This third signal is called the CC of the two input
signals. If a signal is correlated with itself, the resulting signal is instead called the
autocorrelation. This method basically motivates implementations of the Fourier
transformation: signals of varying frequency and phase are correlated with the input
signals, and the degree of a correlation in terms of frequency and phase representing
the frequency and phase spectrums of the input signals.

The CC of two signals is obtained by multiplying corresponding ordinates and
summing for all portions of the signals within a time window. Consider two signals,
x and y, with N points, their CC as a function of lag m is defined as (Chandaka et al.
2009; Dutta et al. 2010; Siuly et al. 2013, 2014)

Rxy½m� ¼
X

N� mj j�1

i¼0

x½i�y½i� m�;

m ¼ �ðN � 1Þ;�ðN � 2Þ; . . .0; 1; 2; 3; . . .; ðN � 2Þ; ðN � 1Þ
ð8:1Þ
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Here, index m represents time-shift parameters known as lag where
m = −(N − 1), −(N − 2), … −1, 0, 1, …, (N − 2), (N − 1), and Rxy(m) is the
cross-correlated sequence at m lag. If each of the signals, x and y, consists of
M finite number of samples, the resultant CC sequence has 2M − 1 samples. If
x and y are not the same length, for example, x and y have N and M numbers of
samples, respectively, and if N > M, the resultant CC sequence has (2N − 1)
number of samples. The shorter vector, here y, is zero-padded to the length of the
longer vector, x.

Figure 8.2 shows an example of a typical cross-correlogram. The peak of the
cross-correlogram represents the offset. If the two signals are identical in the same
rhythm, the peak of the cross-correlogram curve will appear exactly in the centre. If
they are offset from each other, the peak will occur as an offset from centre. In CC
analysis, two signals (e.g. x and y) that alternate are out-of-phase from each other
and will have a negative relationship, whereas two synchronous signals will be
in-phase and have a positive relationship. A high degree of symmetry or stability
along the X-axis indicates a stable relationship between the two signals. However,
as the relationship between two signals varies, therefore creating decreasing cor-
relation values beyond zero lag, this indicates less stability in the relationship.

8.4.2 Logistic Regression Model

The logistic regression (LR) model is a workhorse of statistics, and is increasingly
popular in machine learning due to its similarity to the support vector machine
(SVM) (Liao and Chin 2007; Xie et al. 2008; Caesarendra et al. 2010; Mrowski
et al. 2009; Ryali et al. 2010). The LR fits a separating hyper plane that is a linear
function of input features between two classes. The goal of the LR in Eq. (8.2) is to
estimate the hyper plane that accurately predicts the class label of a new example.
To accomplish this goal, a model is created that includes all independent or pre-
dictor variables that are useful in predicting the dependent/response variables.
The LR (binary) is used when the dependent variable is a dichotomy (which is

Fig. 8.2 Example of a
typical cross-correlogram
(Chandaka et al. 2009)
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usually presented by the occurrence or non-occurrence of some output events,
usually coded as 0 and 1) and the independent variables are of any type.

Suppose x1, x2, ……, xn are vectors of input features and y is its class label
either, 0 or 1. Here x1, x2, ……, xn are treated as independent variables and y is a
dependent variable. Under the logistic regression framework, the probability of the
dependent variable y, when y belongs to Class 1, is defined as (Caesarendra et al.
2010; Hosmer and Lemeshow 1989; Subasi and Ercelebi 2005; Siuly et al. 2013,
2014)

P y ¼ 1jx1; x2; . . .. . .; xnð Þ ¼ p ¼ eb0 þ
Pn

i¼1
bixi

1þ eb0 þ
Pn

i¼1
bixi

ð8:2Þ

Here, p is a conditional probability of the form of P(y = 1| x1, x2, ……, xn). On
the other hand, the probability of y, when y belongs to class 0 denoted as P(y = 0|
x1, x2, ……, xn) can be calculated as 1 − p = 1 − P(y = 1| x1, x2, ……, xn). In
Eq. (8.2), b0 is an intercept and b1; b2; . . .; bn are the regression coefficients, related
to independent variables, x1, x2, …, xn. These parameters are estimated by a
maximum likelihood estimation (MLE) (Hosmer and Lemeshow 1989). The above
cost function results in a solution that accurately predicts class labels of a new
example.

The logit model of the LR is given below as (Caesarendra et al. 2010; Hosmer
and Lemeshow 1989; Subasi and Ercelebi 2005)

logitðpÞ ¼ loge
p

1� p

� �

¼ b0 þ b1x1 þ b2x2 þ � � � � � � þ bnxn ¼ b0 þ
X

n

i¼1

bixi

ð8:3Þ

In Eq. (8.3), logit(p) is a linear combination of independent variables, x1, x2, …,
xn, and regression coefficients, b0,b1; b2; . . .; bn. The LR applies to the MLE after
transforming the dependent variables into a logit variable in order to calculate
parameters, b0, b1; b2; . . .; bn. A linear relationship is not assumed in general
between the independent and dependent variables nor does it require normally
distributed independent variables (Subasi and Ercelebi 2005).

8.5 Cross-Correlation Aided Logistic Regression Model

This section presents the CC-LR algorithm to classify the MI tasks in BCI appli-
cations. The CC-LR algorithm combines two techniques, cross-correlation
(CC) and logistic regression (LR), where the CC technique is used for the fea-
ture extraction and the LR model is employed for the classification of the MI tasks
described in the following two sections.
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8.5.1 Feature Extraction Using the CC Technique

Feature extraction plays an important role in pulling out special patterns (features)
from the original data for reliable classification. In this research, we use the CC
technique for feature extraction, which follows three steps to extract features from
MI tasks data. At first, one of the EEG channels is selected randomly as a reference
channel (reference signal) from the class of a subject as there are no specific
requirements for selecting a reference signal in the CC analysis. In Eq. (8.1), x½i� is
considered as the reference signal and y½i� is one of any other signal named as a
non-reference signal. Second, the reference channel of a class is cross-correlated
with the data of the remaining channels in this class and the data of all channels of
another class. Third, six statistical features, mean, median, mode, standard devia-
tion, maximum and minimum, are calculated from each CC sequence to reduce the
dimensions, which ideally represents the distribution of the signal containing
important information.

It is necessary to describe why the above-mentioned characteristics are used (in
this chapter) for the representations of the MI data. When we are interested in
describing an entire distribution of some observations or characteristics of individ-
uals, there are two types of indices that are especially useful. These are the measure
of central tendency and the measure of variability (Islam 2004; De Veaux et al.
2008). Measures of central tendency are numerical indices that attempt to represent
the most typical values (centre value/representative value) of the observations. The
purpose of a typical value is to represent the distribution and also to afford a basis of
comparison with other distributions of a similar nature. The three measures of central
tendency, mean, median and mode, are the most used typical values which can
describe almost all distributions with a reasonable degree of accuracy. Mean cor-
responds to the centre of a set of values whilemedian is the middle most observation.
Mode is the value in the data set that occurs most often. These three features give a
fairly good idea of the nature of the data (shows the “middle value”), especially when
combined with measurements describing how the data is distributed. Measures of
variability describe how the observations in the distribution are different from each
other or how the observations in the distribution are spread around the typical values.
Standard deviation is the most popular measure for variability. It is the average
distance between the actual data and the mean. This feature gives information about
the spread of data; how close the entire set of data is to the average value in the
distribution. Data sets with a small standard deviation have tightly grouped, precise
data. Data sets with large standard deviations have data spread out over a wide range
of values. Measures of central tendency and measures of variability are both used to
describe the distribution of observations or characteristics of individuals under
study.Maximum and minimum values are used to describe the range of observations
in the distribution. Hence mean, median, mode, standard deviation, maximum and
minimum values are considered to be the most valuable parameters for representing
the distribution of the MI EEG signals and for representing brain activities as a
whole.
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8.5.2 MI Tasks Signal Classification by Logistic
Regression (LR)

This study employs a LR to predict the probability of two categories of MI tasks
from the EEG datasets. The LR is a standard method for the identification of binary
outcomes. As a result, it has been applied to the MI tasks classification in this study.
In this work, a MI task in two categories is used as a dependent variable y and the
six statistical features are considered as the independent variables, which are
x1 = mean, x2 = maximum, x3 = minimum values, x4 = standard deviation,
x5 = median, x6 = mode in Eq. (8.2).

8.6 Results and Discussions

This study uses two benchmark datasets, IVa and IVb from BCI Competition III, to
evaluate the efficacy of the proposed approach (see description in Sects. 3.3.1.2 and
3.3.1.3 in Chap. 3). This section presents the experimental results of the proposed
algorithm on these two benchmark EEG datasets, and also provides a comparison of
the present method with two recently reported methods for dataset IVa. As we did
not find any research reports for dataset IVb in the literature, we could not compare
the experimental results with other methods. In both datasets, each subject is
considered separately for an experiment as the MI EEG signals are naturally highly
subject-specific depending on physical and mental tasks. In this study, all experi-
mental results for both datasets are presented based on testing sets. In this chapter,
we used MATLAB software package [version 7.7, (R2008b)] for all mathematical
calculations and PASW (Predictive Analytics SoftWare) Statistics 18 for the LR
model.

8.6.1 Classification Results for Dataset IVa

In our proposed algorithm, we develop the CC technique to extract the represen-
tative features from the MI-based EEG data and employ the LR model for the
classification of the extracted MI features. Dataset IVa contains MI EEG records
from five healthy subjects labelled “aa”, “al”, “av”, “aw”, “ay” which are denoted
as Subject 1, Subject 2, Subject 3, Subject 4 and Subject 5, respectively. Each of the
five subjects performed two MI tasks denoted as two classes: right hand denoted by
“RH” and right foot denoted by “RF”.

Table 8.1 presents the information about the structure of the dataset. As shown
in Table 8.1, every sample of the training trials contains class labels, but the testing
trials do not have class labels with the samples. In this research, we used the
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training trials in our experiments as the proposed algorithm requires a class label at
each data sequence.

Figure 8.3 shows the typical RH and RF MI signals for each of the five subjects
in dataset IVa. In each of the five subjects, the Fp1 channel of the RH MI class is
considered as a reference channel (reference signal) as there is no specific selection
criterion in the CC system. As mentioned previously, there are 118 channels in each
of the two classes of a subject. In this study, the reference channel data is
cross-correlated with the data from the remaining 117 channels of the RH class and
117 CC sequences are obtained for this class. Again, in the RF class of the same

Table 8.1 The information of original data for BCI Competition III, dataset IVa

Subject Size of data with
two classes (RH
and RF)

280 trials

Number of trials
considered as a training
trial with class label

Number of trials considered
as a testing trial without
class label

1 (aa) 298458 � 118 168 112

2 (al) 283574 � 118 224 56

3 (av) 283042 � 118 84 196

4 (aw) 282838 � 118 56 224

5 (ay) 283562 � 118 28 252

Fig. 8.3 The typical signals of the RH and the RF MI tasks for each subject in dataset IVa
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subject, the reference channel data is cross-correlated with each of 118 channels’
data and produces 118 CC sequences. Thus, a total of 235 CC sequences is obtained
for the two-class MI data for each subject.

Figure 8.4 presents the results of CC sequences called cross-correlograms for the
RH and the RF MI data of Subjects 1, 2, 3, 4 and 5, respectively. It is important to
note that the cross-correlogram or CC sequences (Rxy) are calculated using Eq. (8.1)
for each lag. From this figure, one can see that, in most of the cases, the shapes of
the two curves for a subject are not exactly the same, indicating their statistical
independency. This means, that there is more of a chance of achieving better
separation. From each cross-correlogram of a subject in dataset IVa, the six sta-
tistical features as described in Sect. 8.5.1 are calculated. Thus, in the case of each
subject, we obtain 117 feature vectors of six dimensions for the RH class and 118
feature vectors of six dimensions for the RF class. Thus, a total 235 feature vectors
of six dimensions are obtained for the two classes of each subject.

According to the threefold cross-validation procedure, the 235 feature vectors of
six dimensions are divided into three subsets containing an equal number of

Fig. 8.4 The typical cross-correlograms for the RH and the RF MI signals of each subject in
dataset IVa
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observations. In this study, each of the three subsets consists of 78 feature vectors
(39 vectors from each class). Each time, a subset is used as a testing set and the
remaining two subsets comprise a training set. The procedure is repeated three
times (the folds) with each of the subsets as the test set. Finally, the average
classification accuracy is evaluated across all three folds. This process is called the
cross-validation accuracy.

We utilize the training set and the testing set to the LR model in Eq. (8.2) for
estimating the probability of the dependent variable. In Eq. (8.2), we consider the
MI tasks as the dependent variable y, which has two values, 0 or 1. Here the RH
class is treated as 0 and the RF is treated as 1 for dataset IVa. The six statistical
features are considered as six independent variables in Eq. (8.2) where x1 = mean
values, x2 = maximum values, x3 = minimum values, x4 = standard deviation
values, x5 = median values and x6 = mode values. Parameters b0, b1; b2; . . .; b6 are
calculated using the MLE.

Table 8.2 shows the classification accuracies and standard deviations for each of
the three folds. It also presents the average classification accuracy for all five
subjects in dataset IVa. Using the threefold cross-validation procedure, the pro-
posed CC-LR algorithm produces a cross-validation accuracy of 96.57, 82.9, 100,
96.6 and 82.9% for Subjects 1, 2, 3, 4 and 5, respectively. The standard deviations
of the three folds of Subjects 1, 2, 3, 4 and 5, are 2.65, 5.35, 0.0, 3.21 and 0.69,
respectively. One can see that there are no significant differences among the
threefold accuracies of a subject, indicating the consistency of the proposed
method. As shown in Table 8.2, the CC-LR method provides the highest
cross-validation accuracy at 100% and zeros the standard deviation for Subject 3.
The average cross-validation accuracy and the standard deviation for all five sub-
jects was 91.79% and 2.38, respectively.

To provide information on how the MI tasks are predicted and classified in each
fold, we describe the output for the onefold of Subject 1 in dataset IVa, as an
example. Table 8.3 displays a confusion matrix to show the classification results of
the LR classifier for the onefold of Subject 1 to dataset IVa. From the confusion
matrix, it is observed that in the onefold of Subject 1, two values of the RH class are

Table 8.2 The threefold cross-validation results by the CC-LR method on testing set for dataset
IVa of BCI Competition III

Subject Threefold cross-validation accuracy and their standard deviation (%)

Onefold Twofold Threefold Cross-validation
accuracy (average of
three folds)

Standard
deviation for three
folds accuracy

1 93.6 98.7 97.4 96.57 2.65

2 76.9 84.6 87.2 82.9 5.35

3 100.0 100.0 100.0 100.0 0.0

4 93.6 100.0 96.2 96.6 3.21

5 82.1 83.3 83.3 82.9 0.69

Average for all five subjects 91.79 2.38

164 8 Cross-Correlation Aided Logistic Regression Model …



misclassified to the RF class and three values of the RF class are misclassified as the
RH class. The correct classification rate is 94.9% for the RH class and 92.3% for the
RF class. The overall accuracy is 93.6% in the onefold for Subject 1.

Figure 8.5 depicts the typical scenery of a classification plot on how observed
values are predicted and classified by the LR model in the onefold of Subject 1 for
the dataset. In this figure, the observed group values of the two MI tasks and the
predicted probability values obtained from Eq. (8.2) are plotted on the X-axis. The
frequency values of the observed and predicted probability are plotted on the
Y-axis. As mentioned previously, in dataset IVa, 0 is indicated as the RH class and
1 as the RF class.

From Fig. 8.5, it is seen that three values of the RF class (denoted by 1) are
misclassified as the RH class (denoted by 0) whereas two values of the RH class are
misclassified with the RF class. Table 8.3 also shows similar results. The reflection
of the confusion matrix is shown in Fig. 8.5.

A comparison of the proposed algorithm with two recent reported algorithms is
shown in Table 8.4. The highest classification accuracy from the three algorithms is
highlighted for each subject and their average. The proposed CC-LR algorithm
provides better classification accuracies than the other two recently reported algo-
rithms in three out of the five subjects. From Table 8.4, it is seen that the proposed

Table 8.3 Confusion matrix for the onefold of Subject 1 from dataset IVa

Observed values Predicted outcome Correct classification rate (%)

RH RF

RH 37 2 94.9

RF 3 36 92.3

Overall 93.6

Observed Groups and Predicted Probabilities

Predicted Probability is of Membership for 1.00
The Cut value is .50
Symbols:  0-RH 

1-RF 
Each Symbol Represents 2 cases.

Fig. 8.5 Illustration of classification plots for the onefold of Subject 1 in dataset IVa
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algorithm produces the highest classification accuracy of 96.57% for Subject 1,
100.0% for Subject 3 and 96.6% for Subject 4 compared to the R-CSP with
aggregation (Lu et al. 2010) and CT-LS-SVM (Siuly et al. 2011) algorithms. We
obtained 82.9% accuracy with the proposed method for Subject 2, which is slightly
less than the highest rate (98.2%) of the R-CSP with aggregation algorithm. The
classification accuracy of the present method for Subject 5 is 82.9%, which is better
than the R-CSP with aggregation algorithm (77.0%) but the CT-LS-SVM algorithm
obtained 86.73%. The results demonstrate that the average classification accuracy
of the proposed method increases by 3.47% in comparison to the CT-LS-SVM
algorithm and 7.89% compared to R-CSP with aggregation. Based on these results,
it can be concluded that the CC-LR method does better than the two recently
reported algorithms in the MI tasks signal classification.

For further justification, we also compare the proposed method with four other
existing methods reported in the literature for the dataset shown in Fig. 8.6:
composite CSP (method 1, n = 3) (Kang et al. 2009), composite CSP (method 2,
n = 3) (Kang et al. 2009), R-CSP (Lu et al. 2009) and SSFO (Yong et al. 2008). As
shown in Fig. 8.6, compared to the four existing methods, the proposed algorithm
yields the best accuracy for Subjects 1, 3 and 4.

Table 8.4 Performance comparison of the CC-LR algorithm with the R-CSP with aggregation
and the CT-LS-SVM algorithms for dataset IVa, BCI III

Subject Classification accuracy rate (%)

CC-LR method R-CSP with aggregation
(Lu et al. 2010)

CT-LS-SVM
(Siuly et al. 2011)

1 96.57 76.8 92.63

2 82.9 98.2 84.99

3 100.0 74.5 90.77

4 96.6 92.9 86.50

5 82.9 77.0 86.73

Average 91.79 83.9 88.32

Fig. 8.6 Performance
comparisons of four other
existing methods (reported in
the literature) with the
proposed CC-LR method
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The composite CSP (method 1, n = 3) achieved a better classification accuracy
than our method for Subject 2, and a classification accuracy similar to the other
methods for Subject 5. It is observed from Fig. 8.6 that the highest average clas-
sification accuracy is obtained by our proposed algorithm.

8.6.2 Classification Results for Dataset IVb

As previously mentioned, dataset IVb of BCI Competition III was formed from one
healthy subject who performed left hand denoted by “LH” and right foot denoted by
“RF” MI tasks. Here each task is considered as a class. The dataset has two
portions: training data and testing data. We use the training data in our experiment
as the training data includes the class labels of each observation. The original data
size of the training set is 210259 � 118.

For this dataset, the Fp1 channel has been chosen as the reference channel from
the RF MI class. This reference channel is cross-correlated with the data from the
rest of the 117 channels of the RF MI class to create 117 CC sequences. The
reference channel is again cross-correlated with each of 118 channels of LH MI
class to produce 118 CC sequences. Therefore, a total of 235 CC sequences is
obtained from the dataset.

Figure 8.7 depicts the typical signals of the RF and LH MI tasks and their
cross-correlograms for dataset IVb. From this figure, it is observed that the shapes
of the two waveforms are not the same, so there is a greater chance of achieving a
better separation. The six statistical features mentioned in the previous section are
calculated from each cross-correlogram. We obtain 117 feature vectors of six
dimensions for the RF MI class, and 118 feature vectors of the same dimensions for
the LH MI class. Finally, we obtain a total of 235 feature vectors with six
dimensions from the dataset. These features are segregated as the training and
testing sets through the threefold cross-validation process. The feature vector sets

Fig. 8.7 The typical signals and cross-correlograms for the RF and the LH MI signals from
dataset IVb
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obtained are used as input variables to the LR classifier for the prediction and
classification of the EEG-based MI tasks.

Table 8.5 gives the classification accuracy for each of the three folds, and the
average classification accuracies and standard deviations for all three folds from
dataset IVb. Table 8.5 shows that the LR model classifies the RF and LH MI data
with the accuracy of 85.9, 94.9 and 100% for the onefold, the twofold and the
threefold, respectively. The average cross-validation accuracy and standard devia-
tion for the three folds is 93.6% and 7.14, respectively.

Table 8.6 provides the prediction information about the classification for the
onefold of dataset IVb. From this table, we see that seven values of the RF class are

Table 8.5 The threefold cross-validation results by the proposed method on testing set for dataset
IVb of BCI Competition III

Folds Cross-validation accuracy (%)

1 85.9

2 94.9

3 100

Average for three folds 93.6

Standard deviation 7.14

Table 8.6 Confusion matrix for the onefold of dataset IVb

Observed values Predicted outcomes Correct classification rate (%)

RF LH

RF 32 7 82.1

LH 4 35 89.7

Overall 85.9

Observed Groups and Predicted Probabilities

Predicted Probability is of Membership for 1.00
The Cut value is .50
Symbols:  0-RF

1-LH
Each Symbol Represents 2 cases. 

Fig. 8.8 Classification plot for the onefold for dataset IVb
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misclassified as the LH class. On the other hand, four values of the LH class are
misclassified as the RF class. The correct classification rate is 82.1% for the RF
class and 89.7% for LH class. The overall correct classification rate reaches 85.9%
for the onefold of this dataset. We can also see the mirror image of this confusion
matrix in Fig. 8.8.

To visually describe the classification scenery of the LR classifier, Fig. 8.8
exhibits the classification plot for the onefold of dataset IVb, as an example. This
figure clearly explains the confusion matrix reports presented in Table 8.6. In this
figure, 0 denotes the RF class and 1 denotes the LH class.

As shown in Fig. 8.8, four values of the LH class are misclassified as the RF
class, and seven values from the RF class are misclassified to the LH class in the
onefold of dataset IVb. From the experimental results, it is obvious that the CC
technique is efficient for extracting features from the MI data and the LR classifier
has the inherent ability to identify MI tasks in BCIs. The experimental results of the
two datasets prove that the proposed CC-LR algorithm is promising for the clas-
sification of MI tasks and offers a great potential for performance improvement.

8.7 Conclusions and Recommendations

This study develops an algorithm for the classification of the MI tasks in BCI
applications combining the CC and logistic regression methods. The performance
of the proposed algorithm is measured in terms of classification accuracy using a
threefold cross-validation method. The experiments are performed on datasets, IVa
and IVb, from BCI Completion III. The current approach is compared with two
recent reported algorithms, R-CSP with aggregation (Lu et al. 2010) and
CT-LS-SVM (Siuly et al. 2011) for dataset IVa. To further validate the efficacy of
the proposed algorithm, it is also compared with four other algorithms from the
literature. The experimental results have demonstrated the effectiveness of the
proposed CC-LR algorithm, especially its superiority over the reported algorithms.
Moreover, the CC-LR method is efficient for the identification of MI tasks that can
provide positive impacts on developing BCI systems.

In this chapter, our proposed approach provides a structure for the recognition of
MI EEG signals, randomly considering the reference signal of the Fp1 electrode.
But, the Fp1 electrode does not transmit the motor imagery related information well
from the brain according to the international 10–20 electrode placement system.
The extracted feature set was not able to produce higher performance for the
competition with the existing methods. This is why, in the next chapter, we modify
the CC-LR algorithm with the C3 reference channel employing the diverse features
to the proposed algorithm.
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Chapter 9
Modified CC-LR Algorithm
for Identification of MI-Based
EEG Signals

This chapter introduces a modified version of the CC-LR presented in Chap. 8. The
CC-LR algorithm was proposed for the identification of MI signals where the ‘Fp1’
electrode signal was randomly considered as the reference signal in the CC tech-
nique. A set of features was extracted from each CC sequence to represent the MI
task EEG signals. But that algorithm did not check whether the Fp1 electrode signal
is suitable for providing informative measurements about motor tasks, and it did not
investigate whether the considered feature set is the optimal choice or not. To
alleviate these concerns, we present a modified version of the CC-LR algorithm
which provides an insight into how to select a reference channel for the CC
technique in EEG signals considering the anatomical structure of the human brain.
We also investigate which features are superior to characterize the distribution of
MI task EEG data. After these investigations, the study reaches a conclusion as to
which electrode channel EEG data is appropriate for MI information and which
feature set is best suited to characterize MI EEG signals.

9.1 Motivations

In our earlier study presented in Chap. 8, we developed the CC-LR algorithm for
the classification of MI tasks for BCI applications but the performance was not
satisfactory. This chapter develops a modified version of the CC-LR algorithm
exploring an appropriately chosen reference signal and a suitable feature set that
improves the performance. In the CC-LR algorithm (Siuly et al. 2013), we ran-
domly considered the EEG signal from the electrode position Fp1 as a reference
signal for the CC technique. In that algorithm, we extracted one feature set from
each CC sequence to represent the MI task EEG data. However, the algorithm in
(Siuly et al. 2013) could not provide a clear picture of the optimal feature set and
the reference signal, as all EEG signals are not equal in providing informative
measurements of motor tasks.
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To overcome the problems of the CC-LR algorithm, this study proposes a
modified version of the CC-LR method to classify two-class MI task EEG signals.
To investigate which features are suitable for the representation of the MI signals,
three statistical feature sets (described in Sect. 9.2) are extracted from each
cross-correlation sequence of a subject, and are then evaluated. Finally, this study
decides which feature set is best suited to characterizing the EEG signals. This
study also reports on how a reference channel is selected for the CC method
considering the structure of the brain associated with MI tasks. A popular k-fold
cross-validation method is used to assess the performance of the proposed method
in the MI task EEG signal classification. This cross-validation procedure is applied
as a way of controlling the over-fitting of the data.

9.2 Modified CC-LR Methodology

This study proposes a potent method for MI task classification in the BCI devel-
opment, which is shown in Fig. 9.1. This method provides an important framework
for classifying the two-class MI task based EEG signals for BCI data. As we
consider a pattern recognition system for the MI data, the EEG recognition pro-
cedure mainly involves the feature extraction and classification processes. As
shown in Fig. 9.1, the building components of the proposed system are divided into
two major parts where the feature extraction procedure is described in the first part
and the classification technique in the second part. In the feature extraction stage,
features are extracted using the CC technique from different channels of the EEG
data of each and every MI class of a subject by means of following three steps:

Step 1: In the first phase, one EEG channel is chosen as a reference channel
corresponding to an electrode, which is likely to provide informative measurements
about motor tasks. It is believed that only a particular part of the brain is activated in
response to an MI task and the channels that are close to the active brain regions
have more relevant information about the MI task compared to all other channels.

Feature extraction stage Classification s

EEG channel 
data of a class

        .............            ...........   

ch1 (ref)

ch2

ch3

chn

R1

R2

R(n-1)

Features

Features

Features

LR model Outcomes 

Feature extraction stage Classification stage

Fig. 9.1 Schematic diagram for the classification of the MI tasks based EEG signal in BCIs. Here
ch channel, R cross-correlation sequence, LR logistic regression, ref reference channel
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As the motor cortex area of the brain is typically associated to the MI movements
with the EEG position C3 in the international 10-20 system for electrode placement
(Sander et al. 2010), so C3 channel can provide more information about brain
activity during the MI tasks.

Figure 9.2 gives information of the human brain structure and shows the loca-
tions of the 10-20 electrode placements. From Fig. 9.2b, it is obvious that C3 is in
an important position of the motor cortex area, which is very responsive in the
supply of MI information. This study considers the C3 channel as a reference
channel for the CC method. As shown in Fig. 9.1, ch1 (channel 1) is considered as
the reference channel, as an example.

Step 2: In this step, the CC technique (description provided in Sect. 8.4.1 in
Chap. 8) (Siuly et al. 2013, 2014, 2016) is used to calculate a cross-correlation
sequence denoted by ‘Rxy’ between the reference channel data and any other
channel data. The reference channel of a class is cross-correlated with the data of
the remaining channels of the current class and the data of all channels of any other
classes. The graphical presentation of a cross-correlation sequence is called a
cross-correlogram. From Fig. 9.1, it is seen that a cross-correlation sequence R1 is
created for the reference channel (ch1) and the ch2 channel; R2 for the reference
channel and the ch3 channel; and R(n−1) for the reference channel and the chn
channel in a class. So the total (n − 1) cross-correlation sequences are obtained for
n channels for this class when one channel is treated as the reference channel. If the
reference channel is not chosen from this class (if chosen from another class), the
total n cross-correlation sequences are obtained from this class.

Step 3: Statistical features are extracted from each cross-correlation sequence to
characterize the distribution of EEG signals, which reduce the dimension of the
cross-correlation sequence. To investigate which features can produce the best

Fig. 9.2 a Structure of the human brain. b The International 10–20 electrode placement system

9.2 Modified CC-LR Methodology 175

http://dx.doi.org/10.1007/978-3-319-47653-7_8


performance with the proposed classifier, the following three sets of features are
extracted from each cross-correlation sequence

• Two-feature set: This set consists of two features, mean and standard deviation
that are calculated from each cross-correlation sequence. When one is interested
in describing an entire distribution of some observations, these two features are
especially useful to represent a distribution (Islam 2004; De Veaux et al. 2008).
Mean represents the distribution of a signal and standard deviation describes the
amount of variability in a distribution.

• Four-feature set: In this set, another two features, skewness and kurtosis are
added to the features, mean and standard deviation in the two-feature set.
Skewness describes the shape of a distribution that characterizes the degree of
asymmetry of a distribution around its mean (Islam 2004; De Veaux et al. 2008).
Kurtosis measures whether the data are peaked or flat relative to a normal
distribution.

• Six-feature set: maximum and minimum features are added in the four-feature
set. Thus the six-feature set consists of six features, which are mean, standard
deviation, skewness, kurtosis, maximum and minimum. Maximum and minimum
provide a range of the observations and a non-parametric prediction interval in a
data set from a population (Islam 2004; De Veaux et al. 2008).

Step 4: As shown in Fig. 9.1, the classification stage is carried out with two
phases described below:

• Phase 1: In this phase, the LR model (description provided in Sect. 8.4.2 in
Chap. 8) is employed as a classifier to classify extracted features. Each of the
above mentioned three features sets are used in the LR model, individually, as
the input. Then the classification performances are evaluated for each of the
three sets using k-fold cross-validation procedure.

• Phase 2: Classification outcomes from each feature set are obtained in this
stage. Based on the outcomes, we can decide which feature set is the best for the
LR classifier to classify the MI signals.

9.3 Experimental Evaluation and Discussion

This section presents an implementation procedure and the experimental results of
the proposed algorithm for the two benchmark EEG datasets, IVa and IVb (de-
scribed in Chap. 3), used in the BCI Competition III. These datasets are used for the
evaluation of the proposed algorithm to classify different EEG signals during MI
tasks. In this study, MATLAB software package (version7.7, (R2008b)) is used for
the computation of the CC technique and Predictive Analytics Software (PASW)
Statistics 18 is used for the LR model.
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9.3.1 Implementation of the CC Technique
for the Feature Extraction

Detecting features reliably is one of the most challenging tasks in BCIs. The fea-
tures represent very weak signals from brain activities and are often corrupted by
noise and various interfering artefacts of physiological and non-physiological ori-
gins. In this study, we develop a CC technique to extract the representative features
from MI task EEG data. To reduce the dimensionality of a cross-correlation
sequence, three different statistical feature sets are extracted over the resultant data
(the reasons for choosing these features for are discussed in Sect. 6.2).

As mentioned in Chap. 3, dataset IVa of BCI Competition III contain MI task
EEG records from five healthy subjects labelled ‘aa’, ‘al’, ‘av’, ‘aw’, ‘ay’ which are
denoted as S1, S2, S3, S4 and S5, respectively, in this chapter. Each of the five
subjects performed two MI tasks categorized as two classes: right hand (denoted by
‘RH’) and right foot (denoted by ‘RF’). As discussed in the previous chapter, every
sample of the training trials contains class labels but the testing trials do not have
class labels attached to the samples. In this research, we used the training trials as
our proposed algorithm requires a class label at each data point.

In this study, each subject in both datasets is considered separately for the
experiments as the MI task EEG signals are naturally highly subject-specific
according to the physical and mental tasks being performed. In each subject of
dataset IVa, the C3 channel of the RH MI class is considered as a reference channel
(reference signal) for the CC approach. As there are 118 channels in each of the two
classes for a subject, the reference channel data is cross-correlated with the data
from the remaining 117 channels of the RH class and 117 cross-correlation
sequences are generated for this class. Again, in the RF class of the same subject,
the reference channel data is cross-correlated with each of 118 channel data and
produces 118 cross-correlation sequences. Thus, a total of 235 cross-correlation
sequences is obtained for the two-class MI data of each subject.

Figures 9.3, 9.4, 9.5, 9.6 and 9.7 show typical results of cross-correlation
sequences called cross-correlograms for the RH and the RF MI data of S1, S2, S3,
S4 and S5, respectively. It is important to note that the cross-correlogram or
cross-correlation sequences (Rxy) are calculated using Eq. (8.1) for each time lag.
From these figures, one can see that in most of the cases, the shapes of the two
curves are not exactly the same, indicating statistical independency. This means that
there is a greater chance of achieving better separation.

From each cross-correlogram of a subject in dataset IVa, the three sets of sta-
tistical features as described in Sect. 9.2 are calculated. Thus, for the RH class of
each subject, we obtain 117 feature vectors of two dimensions for the two-feature
set, 117 feature vectors of four dimensions for the four-feature set and 117 feature
vectors of six dimensions for the six-feature set. For the RF class, 118 feature vectors
with two dimensions are obtained for the two-feature set, 118 feature vectors with
four dimensions for the four-feature set and 118 feature vectors with six dimensions
for the six-feature set. Thus we obtain a total of 235 feature vectors of two
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Fig. 9.4 The typical cross-correlograms for the RH and the RF MI tasks signals of S2 of dataset IVa

Fig. 9.3 The typical cross-correlograms for the RH and the RF MI tasks signals of S1 of dataset IVa
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dimensions for the two-feature set, 235 feature vectors of four dimensions for the
four-feature set and 235 feature vectors of six dimensions for the six-feature set from
the two-class MI task EEG data for each subject in the dataset.

As discussed in Chap. 3, dataset IVb was generated from one healthy subject
who performed left hand (denoted by ‘LH’) and right foot (denoted by ‘RF’) MI
tasks. Here each task is considered as a class. Dataset IVb has two portions, the
training data and testing data. We use the training data for our experiment as they
include class labels with each observation but the testing data does not. The original
data size of the training set is 210259 � 118.

For dataset IVb, the C3 channel of the RF class is considered as a reference
channel (reference signal). This reference channel is cross-correlated with the data
of the rest of 117 channels of the RF MI class and results in 117 cross-correlation
sequences for this class. The reference channel is again cross-correlated with each
of 118 channels of LH MI class and produces 118 cross-correlation sequences.
Therefore, a total of 235 cross-correlation sequences are obtained from this dataset.

Figure 9.8 depicts the typical cross-correlograms for the RF and LH MI signals
for dataset IVb. From this figure, it is observed that the shapes of two waveforms
are not the same, so there is a greater chance of achieving better separation. The
three statistical feature sets mentioned before (see Sect. 9.2) are calculated from
each cross-correlogram.

Fig. 9.5 The typical cross-correlograms for the RH and the RF MI tasks signals of S3 of dataset IVa
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Fig. 9.6 The typical cross-correlograms for the RH and the RF MI tasks signals of S4 of dataset IVa

Fig. 9.7 The typical cross-correlograms for the RH and the RF MI tasks signals of S5 of dataset IVa
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For the RF MI class of dataset IVb, we obtain 117 feature vectors of two
dimensions for the two-feature set, 117 feature vectors of four dimensions for the
four-feature set and 117 feature vectors of six dimensions for the six-feature set.
For the LH MI class, we acquire 118 feature vectors of two dimensions for the
two-feature set, 118 feature vectors of four dimensions for the four-feature set and
118 feature vectors of six dimensions for the six-feature set. Finally we obtain a
total of 235 feature vectors of two dimensions for the two-feature set, 235 feature
vectors of four dimensions for the four-feature set and 235 feature vectors of six
dimensions for the six-feature set from the two-class MI EEG signals of the
dataset.

In both datasets, the feature vectors of each of the three sets are segregated
randomly as the training and testing sets through the k-fold cross-validation process
(k = 3). The performance of the proposed approach is evaluated in terms of
accuracy. The features are used as input variables to the LR classifier for classifying
the EEG-based MI tasks. In the next section, we are going to discuss how the
features of the three sets are used in the proposed LR model to classify the two-class
MI task EEG data, and the results obtained.

Fig. 9.8 The typical cross-correlograms for the RF and the LH MI tasks signals of dataset IVb
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9.3.2 MI Classification Results Testing Different Features

In this study, the LR model (Siuly et al. 2013, 2014) is employed to classify
two-class MI EEG signals where the three feature sets (discussed in Sect. 9.2) are
used separately as the input to the LR model. The expectation of this study is to find
an appropriate feature set that is accurate for the two-class MI classification in the
LR method. Feature vectors are extracted in such a way that they hold the most
discrimination information and represent the distribution of the MI EEG data. To
evaluate the general efficacy of the proposed classifier, the threefold
cross-validation method is utilized to calculate the classification accuracy on the
testing dataset for each of the three feature sets.

Based on the threefold cross-validation procedure, a total of 235 feature vectors
of each set from a subject are randomly divided into three subsets. The first two
subsets consist of 78 feature vectors (39 vectors from each class) and the last subset
consists of 79 feature vectors of the same dimensions (39 vectors from the reference
class and 40 vectors from another class). For each time iteration (?), a subset is used
as a testing set and the remaining two subsets comprise a training set. The proce-
dure is repeated three times (the folds) with each of the subsets as the test set.
Finally, the average classification accuracy is evaluated across all three folds on the
testing set; named threefold cross-validation accuracy. In this study, the training set
is applied to train the classifier and the testing set is used to verify the classification
accuracy and the effectiveness of the classifier. Note that all experimental results for
the datasets, IVa and IVb, are presented based on the testing set.

We utilize the training set and the testing set for the LR model in Eq. (8.2) to
estimate the probability of the dependent variable y. We consider the MI tasks with
two classes as the dependent variable y where the RH class is treated as 0 and the
RF is as 1 for dataset IVa. For dataset IVb, the RF class is denoted as 0 and the LH
is marked as 1. The statistical features mentioned in this study are considered to be
independent variables. In the case of both datasets, independent variables are
considered for the three feature sets in Eq. (8.2) as follows.

For the two-feature set:

x1 ¼ mean values; x2 ¼ standard deviation values

For the four-feature set:

x1 ¼ mean values; x2 ¼ standard deviation values; x3 ¼ skewness values and

x4 ¼ kurtosis values

For the six-feature set:

x1 ¼ mean values; x2 ¼ standard deviation values; x3 ¼ skewness values;

x4 ¼ kurtosis values; x5 ¼ maximum values and x6 ¼ minimum values
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The obtained classification results for the two, four and six-feature sets for each
subject in dataset Iva are presented in Table 9.1. Table 9.1 provides the classifi-
cation accuracy of the proposed algorithm through the threefold cross-validation
accuracy. The results of each subject are reported in terms of mean ± standard
deviation of the accuracy over a threefold cross-validation method on the testing
set. The proposed approach for the two-feature set produces the classification
accuracies of 55.33% for S1, 55.73% for S2, 95.37% for S3, 56.17% for S4 and
66.4% for S5. The classification accuracies for S1, S2, S3, S4 and S5, reach 80.8,
68.76, 97.47, 83.87 and 75.73% for the four-feature set, and 100, 94.23, 100, 100
and 75.33% for the six-feature, respectively. The results show that the classification
performance increases gradually for all subjects with additional features. Among
the three feature sets, the six-feature set results in the highest classification per-
formance for each subject where the six features are used as the inputs to the LR.
The four-feature set generates better performance compared to the two-feature set.

From Table 9.1, one can see that the average classification accuracy of the five
subjects is 65.80% for the two-feature set, 82.33% for the four-feature set and
93.91% for the six-feature set. The experimental results demonstrate that the per-
formance of the proposed method for the four-feature set has been improved by
16.53% compared to the two-feature set by adding two more features, skewness and
kurtosis. The performance of the six-feature set is increased by 11.58% compared to
the four-feature set by adding another two features, maximum and minimum. It can
be concluded that more features can substantially improve the performance for all
subjects. The results confirm that the six features; mean, standard deviation,
skewness, kurtosis, maximum and minimum are potential characteristics for repre-
senting the original data for the MI task signal classification in

BCI applications. Table 9.1 also shows that there are no significant differences
of the standard deviation in the threefold accuracies in a subject demonstrating the
consistency of the performance.

To provide more detailed information about the classification performance for
each of the three feature sets, we show the classification performance for each of the
three folds and also overall (average of the threefolds) performance for all subjects.
Figure 9.9a–e present the correct classification rate for the two-feature set, the
four-feature set and the six-feature set for each of the threefolds and also overall

Table 9.1 Cross-validation
results with the proposed
method on testing set for
dataset IVa

Subject Threefold cross-validation accuracy
(mean ± standard deviation) (%)

Two-feature
set

Four-feature
set

Six-feature
set

S1 55.33 ± 1.85 80.80 ± 10.22 100.0 ± 0.0

S2 55.73 ± 1.95 68.76 ± 5.42 94.23 ± 5.01

S3 95.37 ± 8.03 97.47 ± 4.39 100.0 ± 0.0

S4 56.17 ± 2.63 83.87 ± 4.05 100.0 ± 0.0

S5 66.40 ± 0.89 75.73 ± 3.49 75.33 ± 7.87

Overall 65.80 ± 2.84 82.33 ± 2.72 93.91 ± 3.68
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performance for all subjects in dataset IVa. From Fig. 9.9a–d, it is seen that the
six-feature set produces the highest accuracy among the three feature sets in each of
the three folds for S1, S2, S3 and S4, respectively. The overall performances also

Fig. 9.9 Correct classification rate for the two-feature set, the four-feature set and the six-feature
set in each of the three folds for: a S1 b S2 c S3 d S4 e S5 in dataset IVa (Error bars indicate the
standard error)

Table 9.2 Cross-validation results by the proposed method on testing set for dataset IVb

Feature Threefold cross-validation accuracy (mean ± standard deviation) (%)

Two-feature set 56.57 ± 2.41

Four-feature set 78.33 ± 8.24

Six-feature set 100.0 ± 0.0
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show the same results for those subjects. Figure 9.9e shows a slightly lower per-
formance for the six-feature set in the twofold, the threefold and overall S5 than the
other two-feature sets. Vertical lines on the top of the bar charts show standard error
of the three folds and the overall standard error. Figure 9.9a–d also report lower
standard errors for the six-feature set in S1, S2, and S3 and S4 which indicate a
reliable performance of the method compared to the other two features sets.
Figure 9.9e illustrates a slightly higher standard error for the six-feature set in S5
than in the other two sets.

Table 9.2 gives the threefold cross-validation accuracy with their standard
deviation for each of the three sets of features for dataset IVb. From this table, it can
be observed that the LR model classifies the LH and RF MI task EEG data with the
accuracy of 56.57, 78.33 and 100.0% for the two-feature set, the four-feature set
and the six-feature set, respectively. These results demonstrate that the accuracy rate
of the four features set increases by 21.76% on inclusion of two more features,
skewness and kurtosis, into the two-feature set and the accuracy rate of the
six-feature set is improved by 21.67% when adding another two features, maximum
and minimum, into the four-feature set. This table also reports that there is no
significant difference in standard deviation values, which is a good indication of a
reliable method. Finally, the experimental outcomes indicate that the proposed
algorithm is capable of classifying the MI signals for the six-feature set in BCIs.

Figure 9.10 illustrates detailed information for the classification rate for the
two-feature set, the four-feature set and the six-feature set in each of the threefolds
for a subject and the overall rate in dataset IVb. From this figure it is seen that,
among the three sets, the six-feature set yields the highest accuracy in each of the
threefolds for the proposed LR classifier. The figure also shows that standard error
is significantly lower in the six-feature set than the two-feature set and the
four-feature set; indicating the consistency of the method.

Fig. 9.10 Correct classification rate for the two-feature set, the four-feature set and the six-feature
set for each of the three folds in dataset IVb (Error bars indicate the standard error)
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From the experimental results for both test datasets, it is obvious that the CC
technique is capable of feature extraction by using the six mentioned characteristics
for the MI tasks data and the LR classifier has the ability to solve a pattern
recognition task in BCI applications.

9.3.3 A Comparative Study

As accuracy is the key criterion for the comparison of different methods in the BCI
technology, the classification accuracy of the proposed cross-correlation based
logistic regression algorithm is considered as an indicator for performance evalu-
ation. This section presents a comparative study of the performance of our modified
CC-LR with BCI III Winner (Blankertz et al. 2006), ISSPL (Wu et al. 2008),
CT-LS-SVM (Siuly et al. 2011), R-CSP with aggregation (Lu et al. 2010), SSRCSP
(Lotte and Guan 2011), TRCSP (Lotte and Guan 2011), WTRCSP (Lotte and Guan
2011) and SRCSP (Lotte and Guan 2011) for dataset IVa. We cannot present the
comparison results for dataset IVb as there are no reported research results avail-
able. The highest classification accuracy rate among the nine algorithms and their
averages for each subject is highlighted in bold font.

Table 9.3 provides a comparative study of the quantitative performance
achieved by employing this proposed algorithm, versus other recently reported
eight well-known algorithms including the BCI Competition III Winner for dataset
IVa. As can be seen in Table 9.3, the proposed algorithm yields the highest clas-
sification accuracy among the reported methods in three (e.g. S1, S3 and S4) out of
the five subjects, which is 100%. For S2 and S5, the accuracy rates are 94.23 and
75.33% respectively; a little less than the BCI Competition III winner (Blankertz
et al. 2006) and the ISSPL (Wu et al. 2008), while these values are 100 and 98.57%.
The literature summary given in Table 9.3, shows that compared to the eight other

Table 9.3 Comparison of the classification performance between our proposed algorithm and the
most recently reported eight algorithms for dataset IVa in BCI Competition III

Method Classification accuracy rate (%) for dataset IVa

S1 S2 S3 S4 S5 Average

Modified CC-LR (Proposed method) 100 94.23 100 100 75.33 93.91

BCI III Winner (Blankertz et al. 2006) 95.5 100.0 80.6 100 97.6 94.20

ISSPL (Wu et al. 2008) 93.57 100.0 79.29 99.64 98.57 94.21
CT-LS-SVM (Siuly et al. 2011) 92.63 84.99 90.77 86.50 86.73 88.32

R-CSP with aggregation (Lu et al. 2010) 76.8 98.2 74.5 92.9 77.0 83.90

SSRCSP (Lotte and Guan 2011) 70.54 96.43 53.57 71.88 75.39 73.56

TRCSP (Lotte and Guan 2011) 71.43 96.43 63.27 71.88 86.9 77.98

WTRCSP (Lotte and Guan 2011) 69.64 98.21 54.59 71.88 85.32 75.93

SRCSP (Lotte and Guan 2011) 72.32 96.43 60.2 77.68 86.51 78.63
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algorithms, the proposed method has produced the best performance for most
subjects.

As shown in Table 9.3, the average classification accuracy of the proposed
algorithm is 93.91% for the IVa dataset, while this value is 94.20% for BCI
Competition III Winner, 94.21% for the ISSL, 88.32% for the CT-LS-SVM algo-
rithm, 83.90% for the R-CSP with aggregation, 73.56% for the SSRCSP, 77.98%
for the TRCSP, 75.93% for the WTRCSP and 78.63% for the SRCSP. The results
demonstrate that the performance of the proposed method is very close to the best
results of the BCI Competition III Winner and the ISSL algorithm. Based on these
results, it can be concluded that the modified CC-LR method is better than the
recently reported eight methods for the MI tasks EEG signal classification.

9.4 Conclusions and Recommendations

This chapter presents a modified version of the CC-LR algorithm where the CC
technique is used for feature extraction and the LR model is applied for the clas-
sification of the obtained features. This study investigates the types of features most
suited to representing the distribution of MI EEG signals. The three sets of
two-feature, four-feature and six-feature are tested individually as the input to the
LR model. The overall classification accuracy for the six-feature set is increased by
28.11% from the two-feature set and 11.58% from the four-feature set for dataset
IVa. In dataset IVb, the performance of the proposed algorithm for the six-feature
set is improved by 43.43% from the two-feature set and 21.67% from the
four-feature set. The experimental results show that the six-feature set yields the
best classification performance for both datasets, IVa and IVb. The performance of
the proposed methodology is compared to eight recently reported methods
including the BCI Competition III Winner algorithm. The experimental results
demonstrate that our method has improved, compared to the existing methods in the
literature. The results also report that the CC technique is suitable for the six
statistical features, mean, standard deviation, skewness, kurtosis, maximum and
minimum, representing the distribution of MI task EEG data and that the C3 channel
provides better classification results as a reference signal. The LR is an efficient
classifier for distinguishing the features of the MI data.
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Chapter 10
Improving Prospective Performance
in MI Recognition: LS-SVM
with Tuning Hyper Parameters

This chapter intends to introduce a scheme which can improve the perspective
performance in MI task recognition. To achieve this purpose, we develop a CC
aided LS-SVM in this chapter. The motivation for considering the LS-SVM with
the CC method as the LS-SVM is a very powerful tool in pattern recognition due to
its equality constraints (rather than inequality constraints) and the reduction of the
computational cost and low risk of over-fitting. In the proposed approach, the
LS-SVM is introduced with a two-step grid search process for tuning hyper
parameters so that the optimal parameters of this method can be selected efficiently
and automatically for distinguishing the MI tasks improving the classification
performance. In the previous chapters, the LS-SVM classifier was used in the
epileptic EEG signals classification but the hyper parameters of this classifier were
selected manually (rather than using an appropriate method) even though the hyper
parameters of the LS-SVM play an important role in classification performance. In
addition, this chapter investigates the effects of two different reference channels, for
example ‘Fp1’ and ‘C3’, on performance. To compare the effectiveness of the
proposed classifier, we replace the LS-SVM with the logistic regression and kernel
logistic regression (KLR) classifier, and apply it separately, for the same features
extracted from the CC technique. The methodology proposed in this chapter is
tested on datasets IVa, IVb and BCI Comp III (see Chap. 3 for a description of these
datasets).

10.1 Motivation

The goal of this chapter is to improve the classification performance of MI task
recognition in BCI applications and to investigate whether the LS-SVM with tuning
hyper parameters is better than the logistic regression or KLR classifier with the CC
features in EEG-based MI classification. For this purpose, this chapter proposes a
different algorithm where the CC technique is developed for feature extraction apart
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from the MI EEG data because the recorded multi-channel EEG signals are highly
correlated and cannot supply independent information about brain activities. The
different signals from different scalp sites do not provide the same amount of
discriminative information (Meng et al. 2009). These signals are also usually very
noisy and so not directly usable in BCI applications. The CC technique can reduce
noise by means of correlation calculation. Hence the cross-correlation sequence is a
nearly noise-free signal that can provide more signal information compared to the
original signal (Hieftje et al. 1973). After feature extraction, the LS-SVM is
employed for classifying the obtained features. In this chapter, we consider the
LS-SVM in this MI classification owing to its robust and accurate and less com-
putational cost. The LS-SVM has the advantage over other techniques of con-
verging to a global optimum, not to a local optimum that depends on the
initialization or parameters affecting the rate of convergence. The computation of
the LS-SVM is faster compared with other machine learning techniques because
there are fewer random parameters and only the support vectors are used in the
generalization process (Esen et al. 2009).

In spite of its advantages, this method has never been applied [except (Siuly
et al. 2011a)] in MI task classification in BCIs. However, in the algorithm (Siuly
et al. 2011a), the hyper parameters of the LS-SVM were not selected optimally
through a technique. It is well known that the parameters of the LS-SVM play an
important role in affecting the classification performance. To obtain more reliable
results, this study, instead of using manual selection, employs a LS-SVM for the
MI EEG signal classification where the hyper parameters of the LS-SVM are
chosen optimally using a two-step grid search algorithm. The performance of the
LS-SVM classifier is compared to a logistic regression classifier and a KLR clas-
sifier for the same feature vector set. To further verify the effectiveness of the
proposed CC-LS-SVM algorithm, we also compare it with the eight most recently
reported methods in the literature.

10.2 Cross-Correlation Based LS-SVM Approach

The present study develops an algorithm that can automatically classify two cate-
gories of MI EEG signals in BCI systems. The proposed cross-correlation based
LS-SVM scheme for the MI signals classification is illustrated in Fig. 10.1. The
approach employs a CC technique to extract representative features from the
original signals, and then the extracted features are used as the inputs to the
LS-SVM classifier.

To evaluate the performance of the LS-SVM classifier, we test a logistic
regression classifier and a KLR classifier, employed separately. They also employ
the same features as those extracted from the CC method as the inputs. The block
diagram of the proposed method in Fig. 10.1 depicts the procedure for MI EEG
signal classification as described in the following steps.
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10.2.1 Reference Signal Selection

One signal is selected as a reference signal among all channel signals in one subject
of the two-class MI tasks. A reference signal should be noiseless as a signal with
noise will be incoherent with anything in the reference. In this work, any signal that
is not a reference signal is treated as a non-reference signal. In this study, we use
two datasets—IVa and IVb of BCI Competition III (see description of both datasets
in Chap. 3).

Dataset IVa consists of MI task EEG signals from the right hand class and the
right foot class. Dataset IVb consists of MI task EEG signals of the left hand class
and the right foot class. Both datasets contain 118 channel data in each class of a
subject. For all subjects, we consider the electrode position Fp1 in the international
10/20 system as the reference signal for the CC technique. For dataset IVa, Fp1 is
selected from the right hand class while the right foot class is used for dataset IVb.
Figure 10.2a, b show the typical reference signals of subject aa for dataset IVa and
dataset IVb, respectively.

Reference signal

Any non-
reference signal

Cross-correlation 
sequence (Rxy) 

Statistical feature 
extraction

Classification by 
LS-SVM

EEG signals 
of two 
classes

Classification 
outcomes

Fig. 10.1 Block diagram of the proposed CC-LS-SVM technique for MI EEG signal
classification in BCI development

Fig. 10.2 Typical reference signals: a dataset IVa and b dataset IVb
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10.2.2 Computation of a Cross-Correlation Sequence

A cross-correlation sequence, denoted by ‘Rxy’, is calculated recursively using a
reference signal and any other non-reference signal using the CC technique as
shown in Fig. 10.1. From Chap. 8, Eq. (8.1) of the CC method (Dutta et al. 2010;
Chandaka et al. 2009; Siuly and Li 2012; Siuly et al. 2011c) is used to compute a
cross-correlation sequence. The graphical presentation of a cross-correlation
sequence is called a cross-correlogram. The reference signal of a class is
cross-correlated with the data of the remaining signals of this class and the data of
all signals of another class. If we have two classes of EEG signals, and Class 1 has
n signals and Class 2 has m signals, and a reference signal is chosen from Class 1,
then a total of (n − 1) cross-correlation sequences are obtained from Class 1 and a
total of m cross-correlation sequences from Class 2.

As there are 118 signals in each of the two classes of a subject in datasets IVa
and IVb, in each subject from both datasets, the reference signal is cross-correlated
with the data from the remaining 117 signals of the reference signal class. This
reference signal is also cross-correlated with the data of all 118 signals of the
non-reference signal class. Thus, for each subject, a total of 117 cross-correlation
sequences/cross-correlograms are obtained from the reference signal class and 118
from the non-reference signal class. For example, in Subject aa, the signal of the
Fp1 channel is a reference signal, which comes from the right hand class and this
reference signal is cross-correlated with the data from the remaining 117 signals of
the right hand class. In the right foot class of Subject aa, this reference signal is also
cross-correlated with the data of all 118 signals of this class. Thus, for Subject aa, a
total of 117 Cross-correlation sequences/cross-correlograms are obtained from the
right hand class and 118 from the right foot class. The same process is followed for
Subjects al, av, aw and ay and the subject of dataset IVb in this study.

Figure 10.3 presents typical signals of the right hand and right foot MI data for
Subject aa of dataset IVa. The typical cross-correlograms for the right hand and the
right foot MI signals of the same subject are also shown in Fig. 10.3. The
cross-correlogram of the right hand signal is obtained using the reference signal and
the right hand MI signal, and the cross-correlogram of the right foot signal is
acquired using the reference signal and the right foot MI signal as depicted in
Fig. 10.3.

Figure 10.4 shows typical signals of dataset IVb for the right foot MI and the left
hand MI. This figure also presents typical results of the CC method for the right foot
MI signal and the left hand MI signal. As shown in Fig. 10.4, the cross-correlogram
of the right foot MI signal is obtained using the reference signal and the right foot
MI signal, and the left hand cross-correlogram is generated by the reference signal
and the left hand MI signal.

It is known that if two curves have exactly the same shape, this means that they
are highly cross-correlated with each other and CC is around 1. From Figs. 10.3 and
10.4, one can see that the shapes of the two curves are not exactly the same,
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indicating statistical independency. This means that there is a greater chance of
achieving better separation.

As mentioned in Chap. 8, if each of x and y signals has a finite number of
samples N, the resulting cross-correlation sequence has (2 N − 1) samples. Hence,
in each of Figs. 10.2, 10.3 and 10.4, the scale for each signal is shown over the
range of 0 to 10 � 104 samples and the scale for the corresponding
cross-correlogram is shown over the range of 0–2 � 105 samples. The
cross-correlogram signals convey greater signal information and consist of low
level noises compared to the original signal. It is worth mentioning that a
cross-correlogram contains information about the frequencies common to both
waveforms, one of which is usually the signal and the other a reference wave (Dutta
et al. 2009). Six statistical features, mean, median, mode, standard deviation,

Fig. 10.3 Typical right hand and right foot MI signals and their respective cross-correlograms for
subject aa in dataset IVa

Fig. 10.4 Typical right foot and left hand MI signals and their respective cross-correlograms for
dataset IVb
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maximum and minimum, are extracted from each cross-correlogram as discussed in
the following section.

10.2.3 Statistical Feature Extraction

To reduce the dimensions of the cross-correlation sequences, this study considers
six statistical features, mean, median, mode, standard deviation, maximum and
minimum, as the representatives ideally contain all important information of the
original signal patterns. These features are calculated from each cross-correlation
sequence or cross-correlogram to create feature vector sets. The six traits of the
cross-correlation sequences are found to serve as important indicators of the neu-
rological state of subjects (Hieftje et al. 1973; Wren et al. 2006; Siuly and Li 2012).
The reasons of choosing the feature sets are described in detail in Sect. 8.5.1 of
Chap. 8.

In this study, we obtain 117 cross-correlation sequences from the reference
signal class and 118 from the non-reference signal class for a subject in both
datasets. We calculate the mentioned six features from each cross-correlation
sequence. For example, Subject aa contains 117 cross-correlation sequences for the
right hand class (reference signal class) and 118 cross-correlation sequences for the
right foot class (non-reference signal class). As we calculate the six features from
each cross-correlation sequence, so we obtain 117 feature vectors of six dimensions
from the right hand class and 118 features vectors of the same dimensions from the
right foot class for Subject aa. Thus we acquire a total of 235 feature vectors with
six dimensions for this subject. We follow the same process for the other subjects in
both datasets. We use MATLAB ‘mean’, ‘median’, ‘std’, ‘max’, ‘min’ function for
calculating mean, median, standard deviation, maximum and minimum values,
respectively, from each cross-correlation sequence. In the mode calculation, we
compute a histogram from a cross-correlation sequence and then the peak of the
histogram is considered as an estimate of the mode for that cross-correlation
sequence. These feature vector sets are divided into a training set and a testing set
using a tenfold cross-validation method, which is discussed in Sect. 10.2.5. These
feature vectors are inputs for the LS-SVM and also for the logistic regression and
the KLR classifiers in the classification stage.

10.2.4 Classification

This study employs the LS-SVM with radial basis function (RBF) kernel as a
classifier to distinguish the features obtained from the CC technique. The decision
function of the LS-SVM in Eq. (4.10) is derived directly from solving a set of linear
equations (Thissen et al. 2004; Suykens et al. 2002; Siuly et al. 2009; Siuly and Li
2012). A detailed description of the LS-SVM algorithm is provided in Chap. 4.

194 10 Improving Prospective Performance in the MI Recognition …

http://dx.doi.org/10.1007/978-3-319-47653-7_8
http://dx.doi.org/10.1007/978-3-319-47653-7_4
http://dx.doi.org/10.1007/978-3-319-47653-7_4


In this study, the obtained a training feature vector of six dimensions used as the
input in Eq. (4.10) to train the LS-SVM classifier, and the testing feature vector sets
are employed to verify the performance and the effectiveness of the trained
LS-SVM for the classification of two-class of EEG signals in the both datasets. For
dataset IVa, yi is treated as right foot = +1 and right hand = −1, and for the dataset
IVb, yi is considered as right foot = + 1 and left hand = −1. In this study, the RBF
kernel is chosen for the LS-SVM after testing of the other kernel functions. The two
important parameters (c, r2) of the LS-SVM are selected by a two-step grid search
technique for obtaining reliable performance from the method discussed in Sect. 10.
3.1. The solution of Eq. (4.10) provides the prediction results that directly assign
the samples with a label +1 or −1 to identify the category to which it belongs.

To compare the performance of the proposed LS-SVM classifier, we employ the
logistic regression classifier instead of the LS-SVM for the same feature sets as its
inputs. In Chap. 8, the logistic regression (Caesarendra et al. 2010; Hosmer and
Lemeshow 1989; Siuly et al. 2011c) in Eq. (8.2) is applied for the classification of
the MI features. A detailed description of the logistic regression is available in
Chap. 8. In this work, we consider the mentioned six features of a feature vector set
(training/testing) as the six input variables (x1 = mean values, x2 = maximum
values, x3 = minimum values, x4 = standard deviation values, x5 = median values
and x6 = mode values.) in Eq. (8.2) for the both datasets. We treat the dependent
variable y as right hand = 0 and right foot = 1 for dataset IVa and right foot = 0
and left hand = 1 for dataset IVb. Finally, we obtain the prediction results that
directly provide the class label 0 or 1 for the samples.

We also compare the performance of the LS-SVM with a KLR classifier. KLR is
a nonlinear form of logistic regression. It can be achieved via the so-called “kernel
trick” which has the ability to classify data with nonlinear boundaries and can also
accommodate data with very high dimensions. A detailed description of the KLR is
available in (Cawley and Talbot 2008; Rahayu et al. 2009). A final solution of the
KLR could be achieved using the following equation.

f ðxÞ ¼
X

n

i¼1

aikðxi; xÞþ b ð10:1Þ

where xi represents ith input feature vector of d dimensions, n is the number of
feature vectors and b is the model parameter. The vector ai contains the parameters
which define decision boundaries in the kernel space and Kðxi; xÞ is a kernel
function. The most commonly used kernel in practical applications is the RBF

kernel defined as Kðxi; xÞ ¼ exp �ð xi � xk kÞ2=2r2
� �

which is also used in this

study. Here r is a kernel parameter controlling the sensitivity of the kernel. The
parameters of this method are automatically estimated by the iteratively re-weighted
least square procedure (Rahayu et al. 2009).

In the KLR (Siuly and Li 2012), we utilize the feature vectors and their class
labels as the same process of the logistic regression for the inputs. Finally, we
acquire the output of the KLR as an estimate of a posterior probability of the class
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membership. In Sect. 10.3.3, the classification results of these three classifiers are
presented for datasets IVa and IVb. The following section discusses how the per-
formance of the proposed algorithm is evaluated through a tenfold cross-validation
procedure.

10.2.5 Performance Measure

The classification accuracy has been one of the main pitfalls in developed BCI
systems. It directly affects the decision made in a BCI output. Thus, this study
calculates classification accuracy using k-fold cross-validation (Abdulkadir 2009;
Ryali et al. 2010, Siuly et al. 2011b) for assessing the performance of the proposed
method. A detailed description of the classification accuracy and the k-fold
cross-validation method is provided in Chap. 3.

In this study, we select k = 10 as it is a common choice for the k-fold
cross-validation. As mentioned in Sect. 10.2.3, we obtain a total of 235 feature
vectors of six dimensions from the two-class MI EEG signals of a subject in each of
the two datasets, IVa and IVb. Figure 3.5 presents the design for the extracted
feature vectors of this study partitioned into 10 mutually exclusive subsets
according to the k-fold cross-validation system. As shown in Fig. 3.5, the feature
vector set of each subject is divided into 10 subsets and the procedure is repeated 10
times (the folds). Each time, one subset is used as a testing set and the remaining
nine subsets are used as training set (as illustrated in Fig. 3.5). The classification
accuracy, obtained for each of 10 times on the testing set, is averaged and called
‘tenfold cross-validation accuracy’ in this chapter.

10.3 Experiments and Results

Before classification, the hyper parameters of the LS-SVM classifier is tuned by the
two-step grid search algorithm discussed in Sect. 10.3.1 as the classification per-
formance of the LS-SVM depends on the parameters, and the values chosen for the
parameters significantly affect the classification accuracy. Section 10.3.2 discusses
how the variables are set up in the logistic regression classifier and the KLR
classifier. The results obtained by the LS-SVM, the logistic regression and the KLR
for the CC based features are compared to each other for datasets IVa and IVb (in
Sect. 10.3.3). Section 10.3.4 presents a comparative study for our proposed method
with eight existing methods in the literature. In this research, the classification by
the LS-SVM is carried out in MATLAB (version 7.7, R2008b) using the
LS-SVMlab toolbox (version 1.5) (LS-SVMlab toolbox (version 1.5)-online) and
the classification of the logistic regression and KLR are executed through
MATLABArsenal [MATLAB Classification Wrapper 1.00 (Debug version)]
package (MATLABArsenal-online).
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In this study, the training set is applied to train the classifier, and the testing
vectors are used to verify the accuracy and the effectiveness of the classifiers for the
classification of the two-class MI data. Our proposed algorithm is separately
employed on each subject for both datasets, as the MI EEG signals are naturally
highly subject-specific depending on the required physical and mental tasks. All
experimental results are presented based on the testing set in this study.

10.3.1 Tuning the Hyper Parameters
of the LS-SVM Classifier

To improve the generalization performance of the LS-SVM classifier, two param-
eters (c, r2) are chosen through an appropriate procedure. These parameters play an
important role in the classification performance. The regularization parameter c
(gamma) determines the trade-off between minimizing the training error and min-
imizing the model complexity. The parameter r2 (sig2) is the bandwidth and
implicitly defines the nonlinear mapping from the input space to a high dimensional
feature space. Large values of c and r2 may lead to an over-fitting problem for the
training data (Chandaka et al. 2009; Suykens and Vandewalle 1999), so the values
must be chosen carefully. This study applies a two-step grid search technique to
obtain the optimum values of the hyper parameters for the LS-SVM. This section
describes the process for parameter selection through a two-step grid search algo-
rithm. A grid search is a two dimensional minimization procedure based on an
exhaustive search in a limited range (Xie et al. 2009). It tries values of each
parameter across a specified search range using geometric steps. In each iteration,
one leaves a point, and fits a model on the other data points. The performance of the
model is estimated based on the one-point-left-out. This procedure is repeated for
each data point. Finally, all the different estimates of the performance are combined.
The two-step grid search procedure is provided in the free LS-SVM toolbox
(LS-SVMlab toolbox (version 1.5)-online), to develop the LS-SVM model (Li et al.
2008).

In this research, the two-step grid search method is applied in each of the
tenfolds of a subject of both datasets for selecting the optimal parameter values of
the LS-SVM. The obtained values of the parameters for each fold are used in the
LS-SVM algorithm to obtain a reliable performance of the proposed method.
Figure 10.5a, b show the process of the two-step grid search for optimizing the
parameters c (gamma) and r2 (sig2) of the LS-SVM classifier for dataset IVa (for
the onefold of Subject aa) and dataset IVb (for the 1-fold), respectively.

The optimal range of parameters is determined in the first step of a grid search.
The grids denoted as “◆” in the first step is 10 � 10, and the searching step is for a
crude search with a large step size. The optimal search area is determined by the
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error contour line. The grids denoted as “�” in the second step are also 10 � 10,
and the searching step is the specified search with a small step size. The contour
lines indicate the value levels of the cost function in the grid search. Using this
method, the optimal combinations of c and r2 obtained for the LS-SVM are pre-
sented in Table 10.1 for dataset IVa and in Table 10.2 for dataset IVb.

As shown in Tables 10.1 and 10.2, the optimal values of the hyper parameters
for the LS-SVM are obtained in each of tenfolds for each subject of the two datasets
through the two-step grid search algorithm. In this study, the classification results of
each fold are achieved using the optimal parameter values in each subject of both
datasets.

Fig. 10.5 a Process of the
two-step grid search for
optimizing the parameters c
(gamma) and r2 (sig2) of the
LS-SVM classifier in the
onefold of Subject aa of
dataset IVa. b Process of the
two-step grid search for
optimizing the parameters c
(gamma) and r2 (sig2) of the
LS-SVM classifier in the
1-fold of dataset IVb

198 10 Improving Prospective Performance in the MI Recognition …



10.3.2 Variable Selections in the Logistic Regression
and Kernel Logistic Regression Classifiers

Although the parameters of the logistic regression are obtained automatically
through the maximum likelihood estimation (MLE) method, the variable selections
are an important task for the logistic regression model. In this research, the logistic
regression presented in Eq. (8.2) is used to estimate the probability of the dependent
variable using independent variables as the input. For each of the two datasets, we
consider the MI tasks as a dependent variable, termed y, and the six statistical
features are treated as six independent variables. The six independent variables used

Table 10.1 Optimal values of the parameters c and r2 of the LS-SVM for dataset IVa

Subject Obtained optimal parameter values of c and r2 for the LS-SVM

aa al av aw ay

Parameters c r2 c r2 c r2 c r2 c r2

Onefold 82.13 8.84 65.89 5.52 22.16 5.06 260.30 11.74 58.12 4.69

Twofold 31.59 7.04 60.05 8.32 220.64 7.88 181.25 11.19 72.15 1.53

Threefold 202.90 16.09 245.97 2.24 7.33 6.46 401.84 14.81 45.85 1.88

Fourfold 128.22 18.62 80.27 5.66 921.84 1.78 343.21 12.92 92.86 1.05

Fivefold 30.79 9.48 315.18 14.67 4.94 8.66 200.97 0.79 42.59 0.65

Sixfold 58.76 20.79 632.36 13.27 10.11 3.92 141.36 12.81 78.74 1.39

Sevenfold 46.71 7.73 261.91 11.72 719.69 5.42 193.22 8.44 26.18 0.73

Eightfold 29.75 10.85 64.29 2.21 9.23 3.99 179.95 13.72 149.09 0.84

Ninefold 208.08 32.27 49.22 1.65 10.25 4.04 75.48 7.41 246.47 1.52

Tenfold 29.49 10.57 79.59 1.99 16.63 5.25 605.63 13.71 49.67 1.35

Note up to two digits decimal considered

Table 10.2 Optimal values of the parameters c and r2 of the LS-SVM for dataset IVb

Parameters Obtained optimal parameter values c and
r2 for the LS-SVM

c r2

Onefold 7.0451 5.3714

Twofold 6.9404 1.5538

Threefold 47.7992 3.7401

Fourfold 107.1772 1.7566

Fivefold 10.0366 1.8417

Sixfold 320.4905 3.3605

Sevenfold 57.1816 2.7994

Eightfold 820.5462 1.3092

Ninefold 569.3277 2.1852

Tenfold 31.9349 1.8465
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in Eq. (8.2) are x1 = mean values, x2 = maximum values, x3 = minimum values,
x4 = standard deviation values, x5 = median values and x6 = mode values. It is
known that, in logistic regression, the dependent variable y has two values, 0 and 1.
For dataset IVa, the right hand MI class is treated as 0 and the right foot MI class as
1. For dataset IVb, we denote the right foot MI class as 0 and the left hand MI class
as 1. In the KLR, the model parameters in Eq. (8.2) are automatically anticipated by
the iteratively re-weighted least square procedure (Rahayu et al. 2009). The feature
vectors and class labels of the KLR in Eq. (10.1) are considered to be same as those
in the logistic regression.

10.3.3 Performances on Both Datasets

Table 10.3 presents the classification results for the LS-SVM, the logistic regres-
sion and the KLR classifiers for the five subjects of dataset IVa. In Table 10.3, the
results of each subject are reported in terms of mean ± standard deviation of the
accuracy over a tenfold cross-validation method on the testing set. It is observed
from Table 10.3 that the proposed LS-SVM classifier for the CC features produces
an accuracy of 97.88% for Subject aa, 99.17% for Subject al, 98.75% for Subject
av, 93.43% for Subject aw and 89.36% for Subject ay; while the values are 95.31,
87.26, 94.89, 94.93, 75.33%, respectively, for the logistic regression classifier; and
97.03, 96.20, 95.74, 94.51, 83.42%, respectively, for the KLR with the same fea-
tures. Based on the experimental results, the classification success rates of the
proposed LS-SVM classifier are higher than those of the logistic regression and the
KLR in four out of five subjects.

Table 10.3 also reports that the standard deviations for the proposed approach
are much lower than those of the logistic regression and the KLR in these four
subjects. The lower values of standard deviation indicate the consistency of the
proposed method. As seen from Table 10.3, the proposed LS-SVM provides the
best results with an average classification accuracy of 95.72% whereas this value is
89.54% for the logistic regression and 93.38% for the KLR classifier. The average

Table 10.3 Classification results by the tenfold cross-validation method on testing set of dataset
IVa

Subject Tenfold cross-validation accuracy (%) (mean ± standard deviation)

LS-SVM Logistic regression Kernel logistic regression

aa 97.88 ± 4.56 95.31 ± 7.17 97.03 ± 5.62

al 99.17 ± 1.76 87.26 ± 10.07 96.20 ± 4.99

av 98.75 ± 2.81 94.89 ± 7.77 95.74 ± 7.32

aw 93.43 ± 6.87 94.93 ± 5.14 94.51 ± 4.88

ay 89.36 ± 5.74 75.33 ± 12.92 83.42 ± 10.97

Average 95.72 ± 4.35 89.54 ± 8.61 93.38 ± 6.76
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classification accuracy for the proposed method increases by 6.18% in comparison
to the logistic regression model and 2.34% to the KLR.

In what follows, we detail how the tenfold cross-validation system produces the
classification accuracy in each of the tenfolds for one subject applying the LS-SVM,
the logistic regression and the KLR classifiers. Figure 10.6a–e plot the comparative
results of each of the tenfolds for the five subjects for dataset IVa. The figures show
the individual classification accuracies against each of the tenfolds for the logistic
regression, KLR and the proposed LS-SVM on the testing sets for Subjects aa, al,
av, aw, ay, respectively. From these figures, it is observed that in most of the cases,
the proposed LS-SVM classifier yields a better performance for each of the tenfolds
compared to the logistic regression and the KLR. An increasing tendency of pre-
diction accuracy in every fold of all subjects for the LS-SVM is shown in these
figures.

From Fig. 10.6a–e, the fluctuations of the performance of the proposed method
are smaller among the tenfolds for each subject compared to the logistic regression
model and the KLR model, indicating that the proposed method is fairly stable.

Fig. 10.6 Comparisons of the individual classification accuracies for the logistic regression,
kernel logistic regression and the LS-SVM for each of the tenfolds: a subject aa, b subject al,
c subject av, d subject aw, e subject ay in dataset IVa
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In Table 10.4, we provide the classification accuracy for the proposed LS-SVM,
the logistic regression and the KLR models using the tenfold cross-validation pro-
cedure for dataset IVb. As shown in Table 10.4, the classification accuracy is 97.89%
for the LS-SVMwhile this value is 95.31% for the logistic regression and 94.87% for
the KLR. The results show a 2.58% improvement in the proposed LS-SVM compared
to the logistic regression and 3.02% over the KLR for the same inputs.

The standard deviation value is also smaller in the LS-SVM compared to the
logistic regression and the KLR, reflecting the consistency of the LS-SVM. The
results in terms of the tenfold cross-validation accuracy on both datasets displayed
in Tables 10.3 and 10.4, demonstrate that the proposed LS-SVM classifier is
superior compared to the logistic regression and the KLR methods for the same
features.

From Fig. 10.7, it is observed that in most of the tenfolds, the proposed LS-SVM
generates higher accuracies and the performance variations among the tenfolds are
smaller compared to those of the logistic regression and the KLR. These indicate
that the proposed method is more reliable for MI signal classification. From
Figs. 10.6a–e and 10.7, it is clear that the proposed algorithm achieves a better
classification performance, both individually and overall, compared to the logistic
regression and the KLR.

In order to report the performance with a different channel data as a reference
signal, we use the electrode position C3 (according to the 10/20 system) as a
reference signal instead of Fp1 in the present algorithm for each subject of the both
datasets. Like Fp1, C3 is selected from the right hand class from dataset IVa, while
it is selected from the right foot class for dataset IVb. Using the tenfold
cross-validation procedure, the proposed LS-SVM classifier yields the classification
accuracy of 99.58, 94.94, 98.64, 93.26 and 91.06% for Subjects aa, al, av, aw, ay,

Table 10.4 Classification results by the tenfold cross-validation method on testing set of dataset
IVb

Methods Tenfold cross-validation accuracy (%)
(mean ± standard deviation)

LS-SVM 97.89 ± 2.96

Logistic regression 95.31 ± 5.88

Kernel logistic regression 94.87 ± 6.98

Fig. 10.7 Comparisons of
the individual classification
accuracies for the logistic
regression, kernel logistic
regression and the LS-SVM
for each of the tenfolds in
dataset IVb
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respectively, for the reference signal of channel C3; whereas these values are 97.88,
99.17, 98.75, 93.43, and 89.36% for the reference signal of Fp1 in dataset IVa (as
shown in Table 10.5). The overall accuracy for the LS-SVM is 95.49% for channel
C3 and 95.72% for channel Fp1. For the same dataset, the logistic regression
generates the tenfold cross-validation accuracy of 97.88% for Subject aa, 78.32%
for Subject al, 97.83% for Subject av, 96.18% for Subject aw and 68.91% for
Subject ay using channel C3 as the reference signal; whereas those values are
95.31, 87.26, 94.89, 94.93, 75.33% for the reference signal of channel Fp1. The
average classification accuracy of the logistic regression reaches 87.82% for the
reference signal C3 and 89.54% for the reference signal Fp1.

For the same dataset, the KLR produces a classification accuracy of 96.16,
89.78, 96.58, 93.15, 85.09% for Subjects aa, al, av, aw, ay, respectively, for the
reference channel C3; whereas these values are 97.03, 96.20, 95.74, 94.51, 83.42%
for the reference channel Fp1 as (provided in Table 10.5). Thus, the KLR achieves
the overall accuracy for five subjects as 92.15% for the reference signal C3 and
93.38% for the Fp1. For dataset IVb, we obtain an accuracy of 97.88% for the
proposed LS-SVM algorithm with the reference signal C3; while this value is
97.89% for the reference signal Fp1, as shown in Table 10.6. On the other hand, the
logistic regression classifier produces a classification accuracy of 86.41% for the
channel C3 and 95.31% for the channel Fp1 for the same dataset. For reference
channel C3, the KLR is able to generate the classification performance of 95.36%
where as this value is 94.87% for the reference channel Fp1. From the results of
both the reference signals C3 and Fp1, it is observed that the performance of the
proposed algorithm does not differ significantly when changing the reference signal.
This proves the robustness of the method.

In addition to investigating the performance of the proposed six features, we add
other three features: inter quartile range (IQR), 1/4 percentile (P25) (first quartile,
Q1 = P25) and 3/4 percentile (P75) (third quartile, Q3 = P75), into our existing
feature set. As mentioned before, our existing feature set consists of six features
which are {mean, median, mode, standard deviation, maximum and minimum}.
Adding the three features {IQR, P25 and P75} to the existing feature set, we get a
feature set of nine features which are {mean, median, mode, standard deviation,
maximum and minimum, IQR, P25 and P75}. Tables 10.5 and 10.6 present the
classification results for three classifiers (the LS-SVM, the logistic regression and
the KLR) for the nine feature set, comparing it with the results of the existing six
feature set for two reference signals, Fp1 and C3, for datasets IVa and IVb,
respectively. As shown in Table 10.5, the proposed LS-SVM based algorithm with
nine features achieves a classification accuracy of 96.51, 97.05, 97.48, 95.21 and
90.63% for Subjects aa, al, av, aw, ay, respectively, in dataset IVa, for the ref-
erence signal Fp1. These values are 97.88, 99.17, 98.75, 93.43 and 89.36% for the
existing feature set with the same reference signal. For the reference signal C3, the
proposed method with nine features is able to provide accuracy of 98.29% for
Subject aa, 95.78% for Subject al, 98.22% for Subject av, 94.91% for Subject aw
and 91.02% for Subject ay; while these values are 99.58, 94.94, 98.64, 93.26 and
91.06%, respectively, for the six feature set. From Table 10.5, it is also seen that the
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average classification rates of the proposed method are 95.38% for the nine features
and 95.72% for the six features with the reference signal Fp1; while these values are
95.65 and 95.49%, respectively, with the reference signal C3.

For the same dataset, Table 10.5 reports that the logistic regression with the
reference signal Fp1 obtains 97.90, 85.60, 95.31, 94.89 and 82.14% classification
accuracy for Subjects aa, al, av, aw, ay, respectively, for the nine features; whilst
those values are 95.31, 87.26, 94.89, 94.93 and 75.33%, respectively, for the six
features. With the reference signal C3, the logistic regression produces 97.05% for
Subject aa, 88.93% for Subject al, 97.83% for Subject av, 92.00% for Subject aw
and 66.36% for Subject ay for the nine features; while these are 97.88, 78.32,
97.83, 96.18 and 68.91% for the six features. As shown in Table 10.5, the overall
performance of the logistic regression model is 91.17% for the nine features and
89.54% for the six features with the reference signal Fp1, and 88.43 and 87.82%,
respectively, for the reference signal C3.

On the other hand, it can be seen from Table 10.5 that the KLR with the
reference signal Fp1 yields the classification accuracy of 98.30, 96.2, 95.74, 95.74
and 89.35% for Subjects aa, al, av, aw, ay, respectively, for the nine features;
whereas these values are 97.03, 96.20, 95.74, 94.51 and 83.42%, respectively, for
the six features. With the reference signal C3, this algorithm achieves 94.87% for
Subject aa, 90.18% for Subject al, 96.16% for Subject av, 94.86% for Subject aw
and 86.36% for Subject ay, respectively, for the nine features; while those values
are 96.16, 89.78, 96.58, 93.15 and 85.09%, respectively, for the six features. The
average accuracies of this algorithm are 95.07% for the nine features and 93.38%
for the six features with the reference signal Fp1; where the values are 92.49 and
92.15%, respectively, for the reference signal C3.

In dataset IVb, the LS-SVM classifier with the three added features {IQR, P25

and P75} generates 97.48% accuracy for the reference signal Fp1 and 97.88% for
the reference signal C3; where as these values are 97.89 and 97.88%, respectively,
for the six features as shown in Table 10.6. For the reference signal Fp1, the
classification accuracies of the logistic regression are obtained as 94.47% for the
nine features and 95.31% for the six features, while these values are 87.70 and
86.41% for the reference signal C3. On the other hand, the KLR with the nine
features provides the classification performance of 95.31% for the reference signal
Fp1 and 96.65% for the reference signal C3; while these values are 94.87 and
95.36% for the six features.

Table 10.6 Classification results of the three classifiers for nine features and six features for the
reference signals, Fp1 and C3, in dataset IVb

Methods Nine features Six features

Fp1 ref signal C3 ref signal Fp1 ref signal C3 ref signal

LS-SVM 97.48 97.88 97.89 97.88

Logistic regression 94.47 87.70 95.31 86.41

Kernel logistic
regression

95.31 96.65 94.87 95.36
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From this discussion, we can see that there is no significant difference of per-
formance between the nine features and the six features. If there are outliers (an
outlier is an observation that lies an abnormal distance from other values in a set of
data) in the data, the IQR is more representative than the standard deviation as an
estimate of the spread of the body of the data. The IQR is less efficient than the
standard deviation as an estimate of the spread when the data is approximately
normally distributed. For the same type of distribution (normal distribution), P25

and P75 are not good measures for representing a distribution. As the datasets used
in this study are almost symmetric and there are no obvious outliers, we do not
obtain significantly better performance when the three features {IQR, P25 and P75}
are added to the six features.

10.3.4 Performance Comparisons with the Existing
Techniques

To further examine the efficiency of the proposed algorithm, this section provides
the comparisons of our approach with eight other recently reported techniques.
Table 10.7 reports the comparison results of the classification accuracy rates for the
proposed method and the eight algorithms for dataset IVa. This table shows the
classification performance for the five subjects as well as the overall mean accuracy
values. The highest classification accuracy rate for each subject and their averages
is highlighted in bold font for each subject.

Table 10.7 Performance comparisons for dataset IVa

Method Classification accuracy rate (%)

aa al av aw ay Average

CC-LS-SVM (proposed) 97.88 99.17 98.75 93.43 89.36 95.72
CT-LS-SVM (Siuly et al. 2011a) 92.63 84.99 90.77 86.50 86.73 88.32

R-CSP with aggregation (Lu
et al. 2010)

76.8 98.2 74.5 92.9 77.0 83.9

SSRCSP (Lotte and Guan 2011) 70.54 96.43 53.57 71.88 75.39 73.56

TRCSP (Lotte and Guan 2011) 71.43 96.43 63.27 71.88 86.9 77.98

WTRCSP (Lotte and Guan
2011)

69.64 98.21 54.59 71.88 85.32 75.93

SRCSP (Lotte and Guan 2011) 72.32 96.43 60.2 77.68 86.51 78.63

R-CSP with generic learning (Lu
et al. 2009)

69.6 83.9 64.3 70.5 82.5 74.20

Sparse spatial filter optimization
(Yong et al. 2008)

57.5 86.9 54.4 84.4 84.3 73.50

Note CC CC technique; CT clustering technique; R-CSP regularized common spatial pattern;
CSP common spatial pattern
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From Table 10.7, it is noted that the proposed CC-LS-SVM algorithm provides
better classification accuracies than the other eight algorithms in all of the five
subjects, with the highest classification rates being 97.88% for Subject aa, 99.17%
for Subject al, 98.75% for Subject av, 93.43% for Subject aw and 89.36% for
Subject ay. Further looking at the performance comparisons in Table 10.7, it is
noted that the proposed algorithm is ranked first in terms of the average accuracy
(95.72%), while the CT-LS-SVM algorithm (Siuly et al. 2011a) comes second
(88.32%), R-CSP with aggregation (Lu et al. 2010) is third (83.9%) and so on.

The sparse spatial filter optimization (Yong et al. 2008) is the last (73.50%).
These results indicate that the proposed method achieves 7.40–22.22% improve-
ment over all the eight existing algorithms for BCI Competition III’s dataset IVa.

10.4 Conclusions

In this chapter, we present the CC-LS-SVM algorithm for improving the classifi-
cation accuracy of MI-based EEG signals in BCI systems. The proposed scheme
utilizes a cross-correlogram-based feature extraction procedure for MI signals, and
develops a LS-SVM classifier for the classification of the extracted MI features. We
apply the same features as the inputs to the logistic regression and KLR models to
compare the performance of the proposed LS-SVM classifier. In addition, we
compare our proposed approach with eight other recently reported methods. As the
parameters of the LS-SVM can significantly affect the classification performance,
we use a two-step grid search algorithm for selecting optimal combinations of
parameters for the LS-SVM classifier. The methods are tested on datasets IVa and
IVb of BCI Competition III. All experiments on both datasets are evaluated through
a tenfold cross-validation process, which indicates the reliability of the obtained
results.

The main conclusions of this study are summarized as follows:

1. The proposed CC-LS-SVM method is promising for two-class MI EEG signal
classification. The feasibility of the approach has been verified with BCI
Competition III datasets IVa and IVb

2. The CC feature extraction procedure is effective for the classification perfor-
mance even when the data size is very large. The experimental results from the
three classifiers, the LS-SVM, the logistic regression and the KLR, confirm that
the extracted features reliably capture the valuable information from the original
MI signal patterns

3. To further investigate the reliability of the obtained features, we add another
three features {IQR, P25 and P75}, to the current six features and then separately
employ the LS-SVM, the logistic regression and the KLR algorithms as the
inputs. The results show that the performance of the nine features is not much
improved in comparison to those of the six features for each of the three
algorithms
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4. The experimental results using the proposed algorithm are consistent because
the parameter values of the LS-SVM classifier are optimally selected through
the two-step grid search algorithm rather than by manual selection

5. The results show that the proposed LS-SVM classifier achieves a better per-
formance compared to the logistic regression and the KLR classifiers for the
same feature vectors in both datasets

6. The experimental results also indicate that the proposed approach is better than
the other eight recently reported methods in BCI Competition III’s dataset IVa,
by at least 7.40%. It demonstrates that our method is the best performing MI
signal classification in BCI applications.

This study concludes that the CC-LS-SVM algorithm is a promising technique
for MI signal recognition and it offers great potential for the development of
MI-based BCI analyses which assist clinical diagnoses and rehabilitation tasks.
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Chapter 11
Comparative Study: Motor Area EEG
and All-Channels EEG

This chapter reports a comparative study between motor area EEG and all-channels
EEG for the three algorithms which proposed in Chap. 10. In this chapter, we
intend to investigate two particular issues: first, which of the three algorithms is the
best for MI signal classification, and second, which EEG data, ‘motor area data or
all-channels data’ is better for providing more information about MI signal clas-
sification. In Chap. 10, we introduced the three methods; the CC-based LS-SVM
(CC-LS-SVM), the CC-based logistic regression (CC-LR) and the CC-based kernel
logistic regression (CC-KLR) for MI signal classification in BCI applications. We
implement these three algorithms on the motor area EEG and the all-channels EEG
to investigate how well they perform, and also test which area EEG is better for
MI EEG data classification. These three algorithms are also compared with the
other existing methods. Wang and James (2007) introduced the concept of selecting
EEG channels for MI tasks over the motor cortex area. In this study, we follow their
work for our consideration of motor area EEG data.

11.1 Motivations

As EEG signals present brain activities as multichannel time series from multiple
electrodes placed on the scalp of a subject, the different channels convey different
information about the brain. The different signals from different scalp sites do not
provide the same amount of discriminative information. Thus, this study aims to
explore the performance of the EEG channels from the motor cortex area and from
the all-channels EEG data. In the human brain, the motor cortex is a very important
area that controls the voluntary muscle movements discussed in detail in Sect. 9.2.
In this chapter, the EEG channels of the motor cortex area are considered according
to the suggestions of Wang and James (2007). The major aim of this study is to
investigate which area (motor area or the whole brain) is better for acquiring MI
information for classification and to discover which algorithm performs better for
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MI classification. Hence, this study addresses two questions: (i) Which algorithm is
the best for MI classification? (ii) Which EEG dataset is better for MI signal
classification? Is it the motor area data or is it the all-channels data? To answer these
two questions, this chapter uses our three algorithms, CC-LS-SVM, CC-LR and
CC-KLR, that were proposed in Chap. 10. We implement these three algorithms
considering electrode C3 (according to the International 10–20 electrode placement
system) as the reference signal on datasets IVa and IVb from BCI Completion III
(Blankertz et al. 2006; BCI Competition III 2005) in almost the same way they were
used in Chap. 10. There is only one difference which is, in Chap. 10, we used the
tenfold cross-validation method to evaluate the performances. But in this chapter,
we consider the threefolds cross-validation procedure to reduce computation time
and the number of experiments.

11.2 Cross-Correlation-Based Machine Learning Methods

11.2.1 CC-LS-SVM Algorithm

The CC-LS-SVM algorithm (see detailed description in Chap. 10) is a hybrid
approach where the cross-correlation (CC) technique is used for feature extraction,
and the LS-SVM is applied for the classification of the extracted features. A brief
description of this algorithm is provided below:

1. The C3 electrode position is considered as a reference channel
2. The C3 channel is cross-correlated with the data of the remaining channels and

the cross-correlation sequences are obtained using the reference channel and any
one of other channels. The detailed description of the CC technique is available
in Chap. 8 and also in Ref. (Siuly and Li 2012, 2014a, b; Dutta et al. 2010;
Chandaka et al. 2009)

3. The six statistical features, mean, median, mode, standard deviation, maximum
and minimum, are extracted from each cross-correlation sequence to charac-
terize the distributions of EEG signals, which reduce the dimension of the
cross-correlation sequence

4. The extracted features are segmented as a training set and testing set using a
threefolds cross-validation process

5. A two-step grid search technique (Siuly and Li 2012; Xie et al. 2009; Thissen
et al. 2004)is implemented separately to each of the threefolds of a threefolds
cross-validation method to select the optimum values of the hyperparameters
c; r2ð Þ for the LS-SVM

6. After selecting the optimal values of the hyperparameters, the training vector set
is used to train the LS-SVM classifier with a radial basis function (RBF) kernel
and the testing vector set is applied as the inputs to evaluate the classification
accuracy and effectiveness of the classifier with the selected parameters. Detail
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of the LS-SVM algorithm is provided in Chap. 4 and is also available in ref-
erence (Suykens et al. 2002; Siuly et al. 2009).

7. The outputs of the LS-SVM algorithm provide the prediction results that directly
assign the samples with a label +1 or −1 to identify the category to which it
belongs.

11.2.2 CC-LR Algorithm

The CC-LR algorithm combines two techniques, CC and logistic regression
(LR) for classifying MI tasks in BCI applications (presented in Chap. 10). This
algorithm performs in two stages: feature extraction and feature classification.
The CC approach is employed to extract the features from the original MI data and
the LR is used to distinguish the features. The main steps of the CC-LR algorithm
are given below:

1. This algorithm follows Steps 1–4 of the CC-LS-SVM algorithm to extract
features by using the CC technique

2. Then we employ the training and testing feature sets (separately) to the LR
classifier as the inputs. The performance of the LR classifier is assessed based on
the outcomes of the testing set. A detailed description of the LR method is
available in Chap. 8 and also in references (Siuly et al. 2013; Caesarendra et al.
2010; Hosmer and Lemeshow 1989; Subasi and Ercelebi 2005)

3. The parameters of the LR model are estimated separately by maximum likeli-
hood estimation (MLE) (Subasi and Ercelebi 2005) for each of the threefolds

4. The classification results are obtained at this stage. Based on the outcomes, we
can decide how many values the algorithm correctly predicts for each of the two
classes.

11.2.3 CC-KLR Algorithm

In the CC-KLR (see detailed description in Chap. 10) algorithm, we employed the
CC and kernel logistic regression (KLR) together for the classification of MI tasks
from EEG signals. In this method, we utilize the feature vectors and their class
labels with the same process as the logistic regression for the inputs. The brief
description of the CC-LR algorithm is provided below:

1. Steps 1–4 of the CC-LS-SVM algorithm are also followed to extract features in
this method

2. Then the training and testing feature sets are used individually, for the KLR
classifier as inputs where an evaluation is performed on the testing set
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3. The parameters of the KLR model are separately estimated by the MLE for each
of the threefolds

4. Finally, the outputs of the kernel logistic regression are obtained as an estimate
of a posterior probability of the class membership.

11.3 Implementation

To undertake an experimental evaluation, the three proposed methodologies (de-
scribed in Chap. 10), CC-LS-SVM, CC-LR and CC-KLR algorithms, are imple-
mented on two publicly available datasets, IVa and IVb of BCI Competition III
(Blankertz et al. 2006; BCI competition III-online), for experimental. We described
datasets IVa and IVb of BCI Competition III in Chap. 3. All of the EEG data of
these two sets were collected during MI tasks.

In this study, we intend to implement our three methods on the electrodes of the
motor cortex area of the brain, and on the all-channel electrodes for comparison of
the two. The channels recorded from the motor area are chosen to investigate the
activities of the motor cortex area of the brain for the proposed algorithms, and the
all-channels are considered to see how the classification algorithms handle feature
vectors of relatively high dimension data. We are interested to see the performances
of the three algorithms on the two areas (motor area and all-channels data) and also
to decide which algorithm is better for each given areas of the brain. We know that
only a particular part of the brain is activated in response to a MI task, and this area
is called the motor cortex. The motor cortex is an important brain area mostly
involved in the control and execution of voluntary motor functions, and is typically
associated with MI movements.

As we are looking for a response specifically in the motor cortex area, we
manually select the 18 electrodes around the sensorimotor cortex based on the
placement of the international 10–20 system which includes the channels of elec-
trodes C5, C3, C1, C2, C4, C6, CP5, CP3, CP1, CP2, CP4, CP6, P5, P3, P1, P2, P4,
and P6 from each of the two datasets. Wang and James (2007) also considered the
same electrodes for their research and their experimental results suggested that these
electrodes are the best channels for obtaining MI information.

As previously described, both datasets are originally recorded from 118 elec-
trodes. Figure 11.1 presents the locations of electrodes of datasets, IVa and IVb
from BCI competition III. 118 electrodes are shown labelled according to the
extended international 10–20 system. This figure was made in EEGLAB
(MATLAB toolbox for processing data from EEG, magnetoencephalography
(MEG), and other electrophysiological signals) and the electrode system is
described in (Oostenveld and Praamstra 2001). Wang and James (2007) explained
that the selected electrodes cover the motor cortex area. Thus, prior knowledge as
well as the results of the following electrodes are investigated in this study.
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In this study, we first consider the electrode position C3 of the RH class as a
reference channel from each subject of the both datasets for the CC technique. This
study uses the channel of the C3 electrode in the international 10–20 system as the
reference channel. The C3 electrode is the best candidate for supplying MI infor-
mation about brain activities during the MI tasks in the international 10–20 system
(Sander et al. 2010). For each subject, the C3 channel is used as a reference channel
for both the motor imagery EEG data and the all-channels EEG data.

Second, in the motor area data, the reference channel C3 of the RH class is
cross-correlated with the data of the remaining 17 channels of that class and the data
of all 18 channels of the RF class for each subject of both datasets. Thus, a total of
35 cross-correlation sequences are obtained from the two classes of each subject.
Next, the six mentioned statistical features, mean, maximum, minimum, standard
deviation, median and mode values are calculated from each cross-correlation
sequence and a feature vector set of 35 � 6 size is created. In the all-channels data,
the reference channel C3 of the RH class is cross-correlated with 117 channels of
this class and also 118 channels’ data of the RF class in each subject of both
datasets. Thus, we acquire a total of 235 cross-correlation sequences from the
two-class MI data of a subject and then we extract the previously mentioned six
statistical features from each cross-correlation sequence to generate a feature vector
set of 235 � 6 size.

Fig. 11.1 Locations of electrodes for datasets IVa and IVb in BCI Competition III [118 electrodes
are shown labelled according to the extended international 10–20 system described in (Oostenveld
and Praamstra 2001)]
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Third, we divide the feature vector set randomly as the training set and the
testing set using the threefolds cross-validation method (Siuly et al. 2011a;
Abdulkadir 2009) in both the motor cortex set and the all-channels data, separately.
In the threefolds cross-validation procedure, a feature vector set is partitioned into
three mutually exclusive subsets of approximately equal size and the method is
repeated three times (folds). Each time, one of the subsets is used as a test set and
the other two subsets are put together to form a training set. Then the average
accuracy across all three trials is computed.

Finally, we employ these feature vector sets as the input to the LS-SVM, the LR
and also to the KLR. In the CC-LS-SVM algorithm (Siuly and Li 2012; Siuly et al.
2014a, b), the training set is applied to train the LS-SVM classifier and the testing
set is used to verify the effectiveness of the classifier for both datasets. As the result
of the LS-SVM relies largely on the choice of a kernel, the RBF kernel is chosen
after many trials. Before the classification, the two parameters c; r2ð Þ of the
LS-SVM method are selected by applying a two-step grid search procedure (Xie
et al. 2009) on each of the threefolds for to obtain a reliable performance of the
method as these parameters play an important role in the classification performance.
In the LS-SVM, the RF is treated as +1 and RH as −1 for dataset IVa, and the RF is
considered as +1 and LH as −1 for dataset IVb.

In the CC-LR algorithm (Siuly and Li 2012; Siuly et al. 2014a, b), we separately
employ the training and testing sets as the inputs to the LR classifier, but we use the
testing set to validate the classification accuracy of the classifier in both datasets. In
the LR model, we consider independent variables x1 as mean values, x2 as maxi-
mum values, x3 as minimum values, x4 as standard deviation values, x5 as median
values and x6 as mode values. We treat the dependent variable y as RH = 0 and
RF = 1 for dataset IVa, and RF = 0 and LR = 1 for dataset IVb. The parameters of
the LR model are obtained automatically using the maximum likelihood estimation
(MLE) method.

In the CC-KLR algorithm (Siuly and Li 2012; Siuly et al. 2014a, b), we utilize
the feature vectors and their class labels as the same process of the logistic
regression for the inputs. In Sect. 11.4, the classification results of these three
classifiers are presented for datasets IVa and IVb. The following section discusses
the performance of those three algorithms through a threefolds cross-validation
procedure.

11.4 Experiments and Results

This section discusses the experimental results of the three algorithms for the motor
area EEG and the all-channels EEG in datasets, IVa and IVb, and report a com-
parative study with existing methods. As accuracy is a major concern in BCI
systems, this study uses classification accuracy as the criterion to evaluate the
performance of the proposed method. The classification accuracy is calculated by

216 11 Comparative Study: Motor Area EEG and All-Channels EEG



dividing the number of correctly classified samples by the total number of samples
(Siuly et al. 2010, 2011a, b). It is worth mentioning that all experimental results in
both datasets, are presented based on the testing set. In this study, MATLAB
(version7.7, R2008b) is used for mathematical calculations of the CC technique.
Classification by the LS-SVM is carried out in MATLAB using the LS-SVMlab
toolbox (LS-SVMlab toolbox (version 1.5)-online), classification by the LR is
performed using PASW (Predictive Analytics SoftWare) Statistics 18 and the KLR
algorithm is executed through MATLABArsenal [MATLAB Classification
Wrapper 1.00 (Debug version)] package (MATLABArsenal-online).

11.4.1 Results for Dataset IVa

The complete experimental results for dataset IVa are summarized in Table 11.1. The
table provides the classification performance as well as the overall mean of the
CC-LS-SVM, CC-LR and CC-KLR algorithms for the motor area EEG and the
all-channels EEG. The results of each subject are reported in terms ofmean ± standard
deviation of the accuracy over a threefolds cross-validationmethod on the testing set. In
the motor area, the CC-LS-SVM algorithm yields a classification accuracy of 100,
94.19, 100, 96.97, 94.45% for Subjects aa, al, av, aw and ay, respectively while these
values are 88.90, 77.0, 75.0, 100, 100% for theCC-LRalgorithm and 85.61, 97.22, 100,
100, and 93.94% for the CC-KLR algorithm. The average accuracy rate is 97.12% for
the CC-LS-SVM algorithm, 88.18% for the CC-LR algorithm and 95.35% for the
CC-KLR algorithm in the motor area data. So, the CC-LS-SVM algorithm provides an
8.940%of improvement over the CC-LRmethod and 1.77% over the CC-KLRmethod
on average. The standard deviation value of a subject describes the variation of the
classification accuracies among the threefolds. If the variation of the accuracies among
the threefolds is less, it indicates robustness of the method. For the motor area data, we
can see that the standard deviation among the threefolds in each subject is relatively
small in the CC-LS-SVM algorithm, indicating the strength of the CC-LS-SVM
algorithm.

For the EEG data recorded from the all-channels, the CC-LS-SVM algorithm
produced a classification accuracy of 99.57% for Subject aa, 94.88% for Subject al,
99.16% for Subject av, 97.45% for Subject aw and 98.72% for Subject ay, whereas
these values are 100, 95.67, 98.7, 100 and 73.6%, respectively, for the CC-LR
algorithm and 99.57, 91.47, 97.86, 98.73, 95.75% for the CC-KLR algorithm,
respectively. The average accuracy was 97.96% for the CC-LS-SVM algorithm,
93.59% for the CC-LR method and 96.68% for the CC-KLR algorithm. Thus, the
average accuracy of the CC-LS-SVM algorithm was increased by 4.37% from the
CC-LR method and 1.28% from the CC-KLR algorithm for the all-channels data. In
the all-channels data, the standard deviation value in each subject was relatively low
in the three algorithms. So, it can be claimed that the performance of the three
algorithms is reliable in the all-channel data. The results reveal that the
CC-LS-SVM algorithm performs better on both the motor area and all-channels
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data than the CC-LR approach and the CC-KLR algorithm. The performance of the
CC-LS-SVM method is better for the all-channels data than it is for the motor area
data.

Figure 11.2 presents a comparison of the classification accuracy between the
motor area EEG data and the all-channels EEG data for the CC-LS-SVM algorithm.
From the figure, it may be seen that the CC-LS-SVM algorithm produces a higher
performance for Subject aa and Subject av in the motor area EEG data than the
all-channels data. On the other hand, the performance of the all-channels data is
better for Subject al, Subject aw and Subject ay compared to the motor area data.
Figure 11.2 also illustrates that the overall classification performance of the algo-
rithm is much better for the all-channels data than for the motor area data. Error bars
of the motor area EEG data are also higher than the all-channels data. The error bars
indicate the superiority of the CC-LS-SVM algorithm for the all-channels EEG data
over the motor area data.

Figure 11.3 displays the comparison of the classification accuracy between the
motor area EEG and the all-channels EEG data for the CC-LR algorithm. From the
Fig., it can be observed that, compared to the motor area data, the classification
accuracy rates for the all-channels data are substantially higher for Subjects, aa, al
and av and are the same for Subject aw. The motor area data provided better results
only for Subject ay over the all-channels data. The overall accuracy for the
all-channels data is significantly higher than the motor area data for the CC-LR
method.

Figure 11.4 shows the comparison between the motor area EEG and the
all-channels EEG data for the CC-KLR algorithm in dataset IVa. From this figure,
we can see that the motor area EEG data produce slightly better results in Subjects
al, av and aw than the all-channels EEG data for the CC-KLR algorithm. The
all-channels EEG data provide higher performance in Subjects aa and ay compared

Fig. 11.2 Comparison of the performance between the motor area EEG and the all-channels EEG
data for the CC-LS-SVM algorithm (The vertical lines show the standard errors of the test
accuracies)

11.4 Experiments and Results 219



to the motor channel data. The average performance of the all-channels is better
than the motor area data for this algorithm. Figures 11.2, 11.3 and 11.4 show that
the EEG data recorded from the all-channels gives the best result for both algo-
rithms when compared to the data recorded from the motor cortex area.

Table 11.2 presents a comparison of the performances for the motor cortex area
of the CC-LS-SVM, CC-LR, and CC-KLR algorithms with the previously existing
methods; SVM on constraints independent component analysis (cICA) power
features (Wang and James 2007) and SVM on dynamical system (DS) features
(Song et al. 2007). From Table 11.2, it can be seen that the highest accuracy was
obtained by the CC-LS-SVM algorithm for Subject aa and Subject av. The CC-LR

Fig. 11.3 Comparison of the performance between the motor area EEG and the all-channels EEG
data for the CC-LR algorithm (The vertical lines show the standard error of the test accuracies)

Fig. 11.4 Comparison of the performance between the motor area EEG and the all-channels EEG
data for the CC-KLR algorithm (The vertical lines show the standard error of the test accuracies)
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method achieved a better performance for Subject aw and Subject ay than the other
methods. The CC-KLR method produced the best performance for Subjects al, av
and aw. In Table 11.2, it is noted that the CC-LS-SVM algorithm provided the best
result with an average classification accuracy of 97.12% while this value is 88.18%
for the CC-LR algorithm, 95.35% for CC-KLR algorithm, 85.64% for the SVM on
DS algorithm and 84.06% for the SVM based on cICA approach. The CC-LS-SVM
method achieves improvements of 1.77% to 13.06% for the motor area data over
the four algorithms for dataset IVa.

Table 11.3 lists a comparison study for the all-channels data of our three
algorithms with BCI III Winner (Blankertz et al. 2006) and iterative spatiospectral
patterns learning (ISSPL) (Wu et al. 2008) for dataset IVa. The CC-LS-SVM
algorithm produced an excellent result for Subjects av and ay, while the CC-LR
algorithm achieved the best results for Subjects aa and aw. Our CC-KLR method
also provided better results for Subjects, aa and ay, than the two popular existing
methods, the BCI III Winner algorithm and the ISSPL algorithm. The BCI III
Winner method gave the best performance for Subjects al and aw. Both the BCI III
Winner and ISSPL methods achieved a 100% accuracy for Subject al. Obviously,

Table 11.2 The comparison of our three algorithms with two existing methods for the motor area
data in dataset IVa

Subject Classification accuracy on the motor area data (%)

CC-LS-SVM CC-LR CC-KLR SVM on cICA
power features
(Wang and James
2007)

SVM on DS
features (Song
et al. 2007)

aa 100.0 88.9 85.61 85.7 83.3

al 94.19 77.0 97.22 89.3 96.3

av 100.0 75.0 100 75.0 72.7

aw 96.97 100.0 100 85.3 86.9

ay 94.45 100.0 93.94 85.0 89.0

Average 97.12 88.18 95.35 84.06 85.64

Table 11.3 The comparison of our three algorithms with two existing methods for the
all-channels data in dataset IVa

Subject Comparison of accuracy on the all-channels data (%)

CC-LS-SVM CC-LR CC-KLR BCI III Winner
(Blankertz et al. 2006)

ISSPL
(Wu et al.
2008)

aa 99.57 100 99.57 95.50 93.57

al 94.88 95.67 91.47 100.0 100.0

av 99.16 98.7 97.86 80.6 79.29

aw 97.45 100 98.73 100 99.64

ay 98.72 73.6 95.75 97.6 98.57

Average 97.96 93.59 96.68 94.20 94.21
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the average classification accuracy of the CC-LS-SVM method is excellent for the
all-channels data. Table 11.3 shows that the CC-LS-SVM algorithm is able to
increase the classification accuracy by 4.37% from the CC-LR algorithm, 1.28%
from the CC-KLR algorithm, by 3.76% from BCI III Winner and by 3.75% from
the ISSPL.

Generally, it can be observed from Tables 11.2 and 11.3 that there is an
improvement in the performance of the CC-LS-SVM algorithm for both the motor
cortex area data and the all-channels data over previously existing methods. Based
on these results, it can be concluded that the LS-SVM method has more potential
than the existing methods for MI task EEG signal classification on the motor cortex
area data and the all-channels data, and the all-channels data performs better than
the motor area data in MI classification.

11.4.2 Results for Dataset IVb

Table 11.4 reports the classification results of the CC-LS-SVM algorithm, the
CC-LR algorithm and CC-KLR algorithm on the motor cortex area data and the
all-channels data for dataset IVb. These results are listed in Fig. 11.5. For the
CC-LS-SVM algorithm, the classification accuracy reaches 94.45% in the motor
cortex area data while this value is 88.90% for the CC-LR algorithm and 83.08%
for CC-KLR algorithm. For the all-channels data, the CC-LS-SVM method is able
to yield an accuracy of 98.72%, where the CC-LR method produces 96.83% and the
CC-KLR method produces 97.04%.

Therefore, the performance for the all-channels data is 4.27% higher for the
CC-LS-SVM, 7.93% higher for the CC-LR method and 13.96% higher for the
CC-KLR method than the performance of the motor area data. For the three
algorithms, the standard deviations among the threefolds are relatively lower for the
all-channels data than for the motor cortex area data. The lower value of the
standard deviation proves the reliability of these three methods in the all-channels
data.

Figure 11.5 shows a clearer picture of the performance for the CC-LS-SVM, the
CC-LR and the CC-KLR algorithms applied to the motor cortex area and the
all-channels data for dataset IVb. From Fig. 11.5, it is observed that the three
algorithms produce better results on the all-channels data than on the motor area
data, and the classification accuracy of the CC-LS-SVM method is higher for the
all-channels data than for the motor area data. Note that we could not compare the

Table 11.4 Experimental
results of the three algorithms
reported in terms of the
threefolds cross-validation
accuracy (mean ± standard
deviation) for dataset IVb

Method Classification accuracy (%)

Motor area data All-channels data

CC-LS-SVM 94.45 ± 4.81 98.72 ± 1.28

CC-LR 88.90 ± 19.22 96.83 ± 0.72

CC-KLR 83.08 ± 21.91 97.04 ± 3.18
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results of the CC-LS-SVM, CC-LR and CC-KLR algorithms with any other pre-
viously existing methods for this dataset because there are no reported research
results available.

The experimental results for both datasets demonstrate that the CC-LS-SVM
algorithm is better for the motor cortex area data and the all-channel data than the
CC-LR and CC-KLR algorithms. The results also indicate that the CC-LS-SVM
algorithm provides the best performance for the all-channels data and the
all-channel data produces better performance than the motor area data.

11.5 Conclusions and Contributions

In this chapter, we have employed the CC-LS-SVM, CC-LR, and CC-KLR algo-
rithms to compare the performances between the motor imagery EEG data and the
all-channels EEG data. The CC-LS-SVM algorithm assembles the CC technique
and the LS-SVM classifier; the CC-LR algorithm combines the CC technique and
the LR model; and the CC-KLR algorithm mixes the CC technique and the KLR
classifier for MI task classification. To investigate the effectiveness of these three
algorithms, we implemented them individually on the EEG data recorded from the
motor cortex area and also on the all-channels EEG data. The results on the two
datasets, IVa and IVb of BCI Competition III, demonstrate that the CC-LS-SVM
method produces a better accuracy for the all-channels EEG data and the motor area
EEG data than the CC-LR and the CC-KLR algorithms. The performance of the
CC-LS-SVM algorithm is higher for the all-channels data than for the motor area
data for the EEG signal classification. The results also suggest that the CC-LS-SVM
algorithm performs better than the reported existing algorithms in the literature for

Fig. 11.5 The comparison of the performance for the CC-LS-SVM, CC-LR and CC-KLR
algorithms between the motor area data and the all-channels data (The vertical lines show the
standard errors of the test accuracies)
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both the motor area and the all-channels data. Thus, it can be concluded that the
CC-LS-SVM algorithm is the best algorithm for MI EEG signal classification and
the all-channels EEG can provide better information than the motor area EEG for
MI classification.
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Chapter 12
Optimum Allocation Aided Naïve Bayes
Based Learning Process for the Detection
of MI Tasks

This chapter presents a reliable and robust analysis system that can automatically
detect motor imagery (MI) based EEG signals for the development of brain–
computer interface (BCI) systems. The detection of MI tasks provides an important
basis for designing a means of communication between brain and computer in the
creation of devices for people with motor disabilities. In this chapter, we present a
synthesis approach based on an optimum allocation scheme and the Naive Bayes
(NB) algorithm for detecting mental states based on EEG signals where the opti-
mum allocation scheme is introduced to discover the most effective representatives
with minimal variability from a large number of MI based EEG data. The NB
classifier is employed on the extracted features for discriminating MI signals. The
feasibility and effectiveness of the proposed method is demonstrated by analyzing
the results on two public benchmark datasets.

12.1 Background

In BCI development, users produce EEG signals of different brain activity for
different MI tasks that will be identified by a system and are then translated into
commands. These commands will be used as feedback for motor disabled patients
to communicate with the external environments. If the MI tasks are reliably dis-
tinguished through detecting typical patterns in EEG data, a motor disabled people
could communicate with a device by composing sequences of these mental states.
Thus, a MI-based BCI provides a promising control and communication means for
people suffering from motor disabilities. Therefore, the detection of MI tasks is
essential for BCI development to generate control signals. In most current MI based
BCIs, the detection algorithms are carried out in two stages: feature extraction and
feature detection (Mason and Birch 2003). A successful EEG-based BCI system
mainly depends on whether the extracted features are able to differentiate
MI-oriented EEG patterns. How to improve the recognition performance of MI
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signals remains a vital issue for the development of BCI systems. The goal of this
study is to develop an approach for detecting different MI EEG signals, thus
improving classification performance. The present study proposes a methodology
where the OA is employed for the feature extraction stage and a probabilistic
classifier, NB is employed for the detection of the obtained features.

In this study, there are strong grounds for using an optimum allocation technique
to obtain a representative sample from each group of a category of MI data. An
optimum allocation technique is introduced to allocate the numbers of sample units
into different groups with minimal variation, thus providing the greatest precision.
This method is applicable when a dataset is heterogeneous and very large in size.
When measuring an EEG, a large amount of data with different categories is
obtained over a time period and this huge amount data is not directly usable in BCI
applications. The dataset must be divided into several groups to make homogeneity
within a group according to the specific characteristics, and used to select repre-
sentative samples from the groups such that those samples reflect the entire data.
Thus, instead of random sampling, this study intends to develop an optimum
allocation technique based sampling method to select representative sample points
from every time group. In optimum allocation based sampling, sample points are
selected from each group considering the variability of the observations, while
random sampling does not consider variability. To describe the original patterns of
EEG signals more representatively, the variability consideration is the most
important thing to provide the highest precision of a sample for the least cost during
the selection of sample points from a group. In this study, a sample is defined as a
subset (or small part) of observations from a group.

To the best of our knowledge, an optimum allocation based NB approach has not
been used on MI data for the detection of MI tasks in BCIs. The reason for choosing
the NB method as a classifier for this study is due to the simplicity of its structure
and the speed of the learning algorithm it employs (Mitchel 1997, Wiggins et al.
2011). Another advantage is that a small amount of bad data or ‘noise’ does not
perturb the results much. The proposed approach is evaluated on two datasets, IVa
and IVb of BCI Competition III (BCI competition III, Blankertz et al. 2006), where
both sets contain MI EEG recorded data. A popular k-fold cross-validation method
(k = 10) is used to assess the performance of the proposed method for reducing the
experimental time and the number of experiments in the MI task EEG signal
classification. This cross-validation procedure is applied to control overfitting of the
data. The performance of the proposed approach is also compared with five most
recently reported methods.

12.2 Optimum Allocation Based Naïve Bayes Method

The proposed approach aims to develop a methodology for the detection of MI
based EEG signals for application in BCI systems that can work automatically. The
scheme developed in this study is labeled as four stages as described in Fig. 12.1.
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The first stage is the data acquisition, the second is feature extraction, the third is
detection and the final stage is performance evaluation. These stages are discussed
in the following sections.

12.2.1 Signal Acquisition

In this study, we used two datasets, IVa and IVb from BCI Competition III
(Blankertz et al. 2006; BCI competition III, 2005), which were provided by
Fraunhofer FIRST, Intelligent Data Analysis Group (Klaus-Robert Müller
Benjamin Blankertz), and Campus Benjamin Franklin of the Charité-University
Medicine Berlin, Department of Neurology, Neurophysics Group (Gabriel Curio).
The descriptions of both datasets are provided in Chap. 3.

12.2.2 Feature Extraction

This study develops an optimum allocation based approach for feature extraction to
identify a suitable representation of the original EEG recordings. The extracted
features provide the inter-class discrimination information for detecting different
categories or different classes (e.g., right hand movement; right foot movement) of
MI tasks. The proposed optimum allocation based approach consists of the steps
described below.

EEG signals of a MI task                             Feature extraction                                   Detection & Evaluation

Brain

……..

..…. ….…….

G1

G2

Opt. S1

Opt. S2

Opt. Sk

A
O
S 

Statistical 
Features 

Gk

Detect
ion by 

NB 

Per. 
Evaluati

on

Imagin-
ation

Fig. 12.1 Diagram of the proposed methodology for the detection of MI EEG signals. Note
G1 Group 1; G2 Group 2; Gk Group k; Opt.S1 = Optimal allocated sample 1; Opt.S2 Optimal
allocated sample 2: Opt.Sk Optimal allocated sample k; AOS All of the Optimal allocated samples
together from the groups of a class
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12.2.2.1 Data Partition

In this step, all the data for the EEG signals of each category (e.g., right hand
movement) of MI tasks is partitioned into various groups to properly account for
possible stationarities as signal processing methods require stationarity of signals.
Although an overall EEG signal may not be stationary, smaller windows or parts of
those signals will usually exhibit stationarity. The partitions of the observations are
performed with respect to a specific time period. The time period is determined to
view the signals’ periodic patterns in each class. In this work, each partition is
called ‘group’ and the groups of data for a particular MI task are denoted as G1, G2,
…, Gk as shown in Fig. 12.1. The number of observations of k groups are denoted
as N1, N2, …, Nk, respectively. It is worth mentioning that the groups must be
non-overlapping.

Based on the data structure, we segment the recorded EEG signals of every MI
task in each subject into seven (k = 7) groups, such as G1, G2,…, G7 for dataset IVa
and into ten (k = 10) groups, such as G1, G2 …, G10 for dataset IVb. For the RH
class of dataset IVa, we get the number of observations for each of the seven groups
as 11,627 which means that N1 = N2 = … = N7 = 11,627, while the RH class
holds 81,389 data points of 118 dimensions. For the RF class of the same dataset,
we determine that the sizes of each group is 15,689, meaning that
N1 = N2 = …. = N7 = 15,689 while the RF consists of 109,823 observations of the
same dimension. For dataset IVb, we get 9743 data points in each of the groups for
the LH class, e.g. N1 = N2 = … = N10 = 9743 and 11,065 data points in each of the
groups of the RF class, e.g. N1 = N2 = … = N10 = 11,065, while the LH class and
RF class hold 97,430 and 110,652 data points of 118 dimensions, respectively.

12.2.2.2 Determination of an Optimal Allocated Sample (Opt.S) Size
and the Selection of the Opt.S by the Optimum Allocation

This step aims to select a representative sample from every group of a MI task in
each subject considering minimum variance. Generally, in a random sampling
process, variability is not considered within a group but it is the most important
thing to provide sample precision. This study presents optimum allocation to
determine the number of observations to be selected from different groups con-
sidering minimum variability among the values. If the variability within a group is
large, the size of a sample from the group is also large. On the other hand, if the
variability of the observations within a group is small, the sample size for that group
will be small. Furthermore, this optimum allocation is also used to determine how a
given total sample size (denoted as n) for an entire dataset of each MI task in a
subject, should be allocated among k groups with the smallest possible variability.
To obtain an optimum sample size for each group, we employ Eq. (12.1). In this
study, the observation of EEG signals of each MI class (e.g. movement of right
hand) is considered as a population. The detailed discussion of the optimum
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allocation technique is available in Chap. 6 and also in references (Siuly and Li
2014a; Siuly et al. 2015, 2016).

ni ¼
Ni

ffiffiffiffiffiffiffiffiffiffiPh
j¼1

s2ij

s

Pk
i¼1 Ni

ffiffiffiffiffiffiffiffiffiffiPh
j¼1

s2ij

s !� n; i ¼ 1; 2; . . .; k and j ¼ 1; 2; . . .; h ð12:1Þ

Thus Eq. (12.1) is derived to calculate the best sample size for the ith group
solving a set of equations by optimum allocation. Using Eq. (12.1), a sample
selected from a group of a MI task in a subject is called the ‘optimum allocated
sample’ denoted as Opt.S. All of the Opt.S (s) from the groups of a MI task together
makes a matrix called AOS as described in Fig. 12.1. For example: if we select
three Opt.S from three groups of a MI class with the sizes OF 10, 12, 11,
respectively, then the size of the AOS will be 33. In Eq. (12.1), the total sample
size, n is determined (Cochran 1977; Islam 2007) by using Eq. (12.2).

n ¼ n0
1þ n0�1

PS

ð12:2Þ

Here, n0 ¼ z2�p�q
d2 , where n0 means the initial sample size, z is the standard

normal variate (Z-value) for the desired confidence level; p is the assumed pro-
portion in the dataset estimated to have a particular characteristic; q = 1-p and d is
the margin of error or the desired level of precision; and PS denotes the population
size which considers the total number of data points in a class.

Generally, the sum of all of the Opt.S sizes from all the groups in a MI class
should be approximately equal to the total sample size (n) of that class (for example,
n ¼ n1þ n2þ . . . þ nk) as all the groups come from individual MI classes.
Sometimes, the calculated n may be a little larger than the given n due to the
rounding figure of the calculated sample size. In this research, we get Z = 2.58
considering 99% confidence level; d = 0.01 for 99–100% confidence interval. If the
estimator p is not known, 0.50 (50%) is used as it produces the largest sample size.
The larger the sample size, the more sure we can be that their answers truly reflect
the entire set of data. Thus, we consider p = 0.50 so that the sample size is the
maximum and q = 1-p = 0.50 (50%). With Eq. (12.2), for dataset IVa, we obtain,
n = 13816 for the RH class with a data size of 81,389 and n = 14,451 for the RF
class with a data size of 109,823. For dataset IVb, we have n = 14,213 for the LH
class with a size of 97,430 and n = 14,466 for the RF class with a size of 110,652.

The sizes of the Opt.S (ni) for each group of every MI class in every subject for
datasets IVa and IVb are calculated by Eq. (12.1) as presented in Tables 12.1 and
12.2, respectively. As the number of data points in each of the five subjects in
dataset IVa is the same, the calculated sample sizes for each group of every class in
Table 12.1 are applicable for every subject. As shown in both tables, the sample
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sizes are not equal in every group in a class, due to a different variability of the
observations in different groups. Using the obtained sample size of each group
(displayed in Tables 12.1 and 12.2), we select a sample from every group in each
class in both datasets. As previously mentioned, a sample selected from a group is
called Opt.S and all Opt.S in a class for a subject are integrated and denoted as the
AOS set of that class. For example, as shown in Table 12.1, for the RH class of
dataset IVa, we obtain seven Opt.S for each subject with the sizes of 3786, 1895,
1674, 1567, 1344, 2150, 1401 (e.g. n1 = 3786, n2 = 1895, n3 = 1674, n4 = 1567,
n5 = 1344, n6 = 2150 and n7 = 1401), while they are 1702, 1473, 2360, 3945,
2429, 1476 and 1067 for the RF class. Thus, the AOS set for the RH class and the
RF class in every subject of dataset IVa consists of 13,817 and 14,452 observations
respectively, as displayed in Table 12.1. Again, for dataset IVb, it can be seen in
Table 12.2 that the sizes of the AOS set for the LH class and the RF class are
14,822 and 14,468, respectively. Then these AOS sets are used to extract repre-
sentative characteristics. Note that in both datasets, the dimension of each AOS set
for every subject is 118.

12.2.2.3 Statistical Feature Extraction

Choosing good discriminating features is the key to any successful pattern recog-
nition system. It is usually hard for a BCI system to extract a suitable feature set

Table 12.1 Calculated
sample size by the optimum
allocation approach for
dataset IVa

Groups Sizes Obtained sizes of the
Opt.S in each of the
seven groups for every
two classes

RH RF

G1 n1 3786 1702

N1 11,627 15,689

G2 n2 1895 1473

N2 11,627 15,689

G3 n3 1674 2360

N3 11,627 15,689

G4 n4 1567 3945

N4 11,627 15,689

G5 n5 1344 2429

N5 11,627 15,689

G6 n6 2150 1476

N6 11,627 15,689

G7 n7 1401 1067

N7 11,627 15,689

AOS Total n 13,817 14,452

Total N 81,389 109,823
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which distils the required inter-class discrimination information in a manner that is
robust to various contaminants and distortions. This study considers eleven statis-
tical features: mean, median, mode, standard deviation, maximum, minimum, first
quartile (Q1), third quartile (Q3) (75th percentile), inter-quartile range (IQR),
skewness and kurtosis. These features are calculated from each AOS set of every
class to achieve representative characteristics that ideally contain all the important
information of the original signal patterns. The reasons for considering those fea-
tures are described here. Mean corresponds to the centre of a set of values while
median is the middle-most observation. Mode is the value in the data set that occurs
most often. In a tabular form, the mode is the value with the highest frequency.
Mean and median are the measures irrespective of data being discrete or continu-
ous, however, the mode is most suitable for discrete data but is tricky in the case of
continuous data. The mode of a continuous probability distribution is defined as the
peak of its histogram or density function. Mean, median and mode are the most
used features that describe almost all distributions with a reasonable degree of

Table 12.2 Calculated
sample size by the optimum
allocation approach for one
subject for dataset IVb

Groups Sizes Obtained sizes of the
Opt.S in each of the
seven groups of every
two classes

LH RF

G1 n1 1219 1506

N1 9743 11,065

G2 n2 1052 1312

N2 9743 11,065

G3 n3 2445 924

N3 9743 11,065

G4 n4 1024 2141

N4 9743 11,065

G5 n5 1031 1473

N5 9743 11,065

G6 n6 1922 1705

N6 9743 11,065

G7 n7 1291 2218

N7 9743 11,065

G8 n8 1625 869

N8 9743 11,065

G9 n9 1922 949

N9 9743 11,065

G10 n10 1291 1371

N10 9743 11,065

AOS Total n 14,822 14,468

Total N 97,430 110,652
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accuracy (Siuly and Li 2012; Siuly et al. 2016; Cochran 1977; Islam 2004) and
provide a fairly good idea about the nature of the data.

Standard deviation gives information about the spread of data or how close the
entire set of data is to the average value in the distribution. Maximum and minimum
values are used to describe the range of observations in the distribution. Q1 and Q3,
measure how the data is distributed in the two sides of the median. IQR is the
difference between Q3 and Q1 and is used to measure the spread of a data set that
excludes most outliers. Skewness describes the shape of a distribution that char-
acterizes the degree of asymmetry of a distribution around its mean (Siuly et al.
2014c). Kurtosis measures whether the data are peaked or flat relative to a normal
distribution.

In this step, we calculate a feature set of eleven features from each AOS set in
each class from a subject in both datasets. From every AOS set of each MI class, we
acquire a feature vector set of size 118 with 11 dimensions. Thus, we obtain a
vector set of size 236 with 11 dimensions for two-class MI data of every subject in
datasets IVa and IVb. In each subject, the obtained feature vector set is divided into
a training set and a testing set using the 10-fold cross-validation approach. The
training set is applied to train a classifier and the testing vectors are used to verify
the accuracy and the effectiveness of the classifiers for discriminating MI tasks. In
our experiments, the proposed method is separately trained on a single subject in
the both datasets, as MI-based EEG signals are naturally highly subject-specific
depending on the physical and mental tasks to which they are related. In this
research, we present all experimental results from the testing set.

12.2.3 Detection

This study employs the Naive Bayes (NB) classifier to detect two-class MI tasks for
the application of BCI systems as it provides a flexible means of dealing with any
number of attributes or classes, and it is the fastest learning algorithm that examines
all its training inputs. The NB (Mitchel 1997; Wiggins 2011; Richard et al. 2000;
Bhattacharyya et al. 2011) is a straightforward and frequently used probabilistic
classifier based on applying Bayes’ theorem with strong (naive) independence
assumptions. The NB classifier assumes that the presence (or absence) of a par-
ticular feature of a class is unrelated to the presence (or absence) of any other
feature. Depending on the precise nature of the probability model, the NB classifier
can be trained very efficiently in a supervised learning setting. In practical appli-
cations, the parameter estimation for naive Bayes models uses the method of the
maximum likelihood. In this classifier, each class with highest post-probability is
addressed as the resulting class.

Suppose, X = {X1, X2, X3, …, Xn} is a feature vector set that contains Ck (k = 1,
2, … m) classes’ data which must be classified. Each class has a probability P(Ck)
that represents the prior probability of detecting a feature into Ck and the values of P
(Ck) can be estimated from the training dataset. For the n feature values of X, the
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goal of the classification is, to find the conditional probability P(Ck| x1, x2, x3, …,
xn). By Bayes’s rule NB (Mitchel 1997, Wiggins 2011; Richard et al. 2000;
Bhattacharyya et al. 2011), this probability is equivalent to

P CkjX1; X2; X3; . . .; Xnð Þ ¼ PðCkÞPðX1;X2;X3; . . .XnjCkÞP
PðCkÞPðX1;X2;X3; . . .; XnjCkÞ ð12:3Þ

Using the chain rule for the reaped application of conditional probability, we
have,

P Ck;X1;X2;X3; . . .;Xnð Þ ¼ P Ckð Þ:P X1;X2;X3; . . .;XnjCkð Þ
¼ P Ckð Þ:P X1jCkð Þ:P X2jCk;X1ð Þ:P X3jCk;X1;X2ð Þ . . .P XnjCk;X1;X2; . . .Xn�1ð Þ

ð12:4Þ

For the joint probability and for the independent assumption of Naïve Bayes
theorem, we get

P Ck;X1;X2;X3; . . . ;Xnð Þ ¼ P Ckð Þ:P X1jCkð Þ:P X2jCkð Þ:P X3jCkð Þ . . .P XnjCkð Þ
¼ P Ckð Þ

Yn
i¼1

PðXijCkÞ

ð12:5Þ

Thus from Eq. (12.3) we have,

P CkjX1;X2;X3; . . . ;Xnð Þ ¼ PðCkÞ
Qn

i¼1 PðXijCkÞPk
j¼1 PðCjÞ

Qn
i¼1 PðXijCjÞ

ð12:6Þ

Equation (12.6) is the fundamental equation of the NB classifier. If we are
interested only in the most probable value of Ck, then we have the NB classification
rule

Ck  argmax
Ck

PðCkÞ
Qn

i¼1 PðXijCkÞPk
j¼1 PðCjÞ

Qn
i¼1 PðXijCjÞ ð12:7Þ

which simplifies to the following because the denominator does not depend on Ck

Ck  argmax
Ck

PðCkÞ
Yn
i¼1

PðXijCkÞ ð12:8Þ

Thus the NB classifier combines this model with a decision rule. The decision
rule for the NB classifier is defined as below:
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classify ðX1;X2; . . .; XnÞ ¼ argmax
Ck

pðCkÞ
Yn
i¼1

PðXijCkÞ ð12:9Þ

In this work, we use the obtained feature vector set as the input in Eq. (12.9). In
the training stage, P(Xi|Ck) is estimated with respect to the training data. In the
testing stage, based on the posterior probability P(Ck|Xi), a decision whether a test
sample belongs to a class Ck is made. For dataset IVa, Ck (k = 1, 2) is treated as
RH = −1 and RF = +1 and for the dataset IVb, Ck (k = 1, 2) is considered as
LH = −1 and RF = +1. Thus in this research, we achieve the detection results of
each fold for each subject from the both datasets.

12.3 Experiments, Results and Discussions

This section presents experimental outcomes of the proposed optimum allocation
based NB approach for two datasets, IVa and IVb of BCI Competition III, and a
comparison of the present method with five recently reported methods for dataset
IVa. As we did not find any research reports for the dataset IVb in the literature, we
could not compare the experimental results with other methods. In this research, the
experiments of the proposed method are performed separately on one single subject
in the both datasets as MI based EEG signals are naturally highly subject-specific
depending on the related physical and mental tasks. This study uses a 10-fold
cross-validation (Siuly and Li 2012; Siuly et al. 2011b, 2014b) process to assess the
performance of the proposed approach using the most standard statistical measures
such as accuracy, true positive rate or sensitivity and true negative rate or specificity
(see their descriptions in Chap. 3) and also available in references (Siuly et al.
2011a; Gu et al. 2009; Siuly et al. 2013). All of the experimental works of this
research are executed in MATLAB (version 7.14, R2012a). In this study, all the
experimental results are presented based on the testing set.

12.3.1 Results for BCI III: Dataset IVa

Table 12.3 presents the accuracy for each of the 10 folds and the overall perfor-
mances over the ten folds for dataset IVa. The overall performances for each subject
are reported in terms of mean ± standard deviation (SD) of the accuracy over the
ten folds. As shown in Table 12.3, most of the accuracy values for each of the folds
are close to 100. The overall performances for Subjects, aa, al, av, aw and ay, are
97.92, 97.88, 98.26, 94.47 and 93.26%, respectively, and the average of the per-
formances for all of the subjects is 96.36%. Table 12.3 also reports that there is no
significant variation in the accuracies among the different folds, indicating the
stability of the proposed method.
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Figure 12.2 presents the patterns of the true positive rate (TPR) for each subject
of dataset IVa. Here the TPR is the correct detection rate for the RH class for this
dataset. This figure shows the individual TPR against each of the 10-folds for the
five subjects, aa, al, av, aw and ay. As can be seen in Fig. 12.2, most of the values
of the TPR for the proposed approach are close to 100 for each of the folds of each
subject, and the variations of the TPR among the 10-folds for each subject is not
substantial, thus indicating that the proposed approach is fairly stable.

The contour of the true negative rate (TNR) for each of the five subjects is
provided in Fig. 12.3. For dataset IVa, the TNR refers to the correct detection rate
for the RF class. This figure displays the separate TNR for each of the ten folds for
each of the five subjects. From Fig. 12.3, it is observed that the TNR in most of the
folds for each subject is approximately 100%, and there are no significant variations
of the TNR among the ten folds for each subject. This indicates that the proposed
method is reliable and robust. Along with Table 12.3, Figs. 12.2 and 12.3, it can be
concluded that, although there is a little variability in performances over the

Fig. 12.2 Patterns of the true positive rate (TPR) for each subject in dataset IVa

Fig. 12.3 Patterns of the true negative rate (TNR) for each subject in dataset IVa
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subjects, generally the proposed approach provides higher performances for all of
the subjects, and it is consistent and fairly stable.

12.3.2 Results for BCI III: Dataset IVb

The experimental outcomes for the proposed optimum allocation based NB
approach for dataset IVb are presented in Table 12.4. As mentioned in the data
description (in Chap. 3), this dataset holds data for one male subject. This table
displays the individual accuracy rate for each of the ten folds of that subject and the
overall performance of the proposed method in terms of mean ± standard deviation
of the accuracy over the ten folds. As shown in the table, the method provides
higher accuracy values for most of the folds and the variation among the different
folds is not significant. The overall performance for this dataset is 91.97% and the
standard deviation is 7.02%.

Figure 12.4 shows the pattern of the TPR of each of the ten folds for a healthy
male subject in dataset IVb. Here the TPR is the correct detection rate for the LH
class of this dataset. From this figure, it can be seen that most of the values of the
TPR lie in approximately 95–100. There are no significant differences in the TPR
values among the ten folds, indicating the consistency of the proposed method.

Table 12.4 Experimental outcomes for the proposed approach for dataset IVb of BCI
Competition III

Subject Accuracy for each of the 10 folds (%) Overall
performance1 2 3 4 5 6 7 8 9 10

One
healthy
male

79.17 83.33 91.67 91.67 95.83 95.83 100 95.83 100 86.36 91.97
– 7.02

Fig. 12.4 Pattern of the true positive rate (TPR) for dataset IVb
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The shape of the TNR for each of the ten folds for one healthy subject is
illustrated in Fig. 12.5. Here the TNR refers to the correct detection rate of the RF
class for dataset IVb. This figure demonstrates that most of the values of the TNR
are close to 100 and the variation among the TNR values of the ten folds is not
substantial. This proves the reliability of the proposed approach. Thus, it is obvious
from Table 12.4, Figs. 12.4 and 12.5 for dataset IVb, that the proposed algorithm
produces a good performance for both individuals and the overall.

12.3.3 Comparison to Previous Work

To further examine the efficiency, this section provides a report for the comparison
between the proposed approach and five recently developed methods for dataset
IVa. As mentioned before, we cannot present the comparison results for dataset IVb
as there were no reported research results available in the literature. Table 12.5
presents the comparison results of the performances for the proposed method and
the five existing algorithms for dataset IVa. This table shows the classification
performance for each of the five subjects, as well as the overall mean and the SD of
the performances for all the subjects. As shown in Table 12.5, the proposed method
yields the excellent performances of 97.92 and 93.26% for Subjects, aa and ay,
respectively. The performance of the proposed method for Subject av is also very
high (98.26%), and this is close to the highest performance (98.75%). The CC
based LS-SVM (Siuly and Li 2012) and Z-LDA method (Zhang et al. 2013) pro-
vides better results for Subjects al and aw, respectively. The highest mean for all
five subjects is obtained by the proposed approach, which is 96.36%, and the SD
value is the lowest (2.32%). Therefore, it can be stated that generally the proposed
approach significantly outperforms the five existing methods.

Fig. 12.5 Pattern of the true negative rate (TNR) for dataset IVb
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Looking further into the performance comparison in Table 12.5, it is noted that
the proposed algorithm is ranked first in terms of overall performance (96.36%),
while the CC based LS-SVM method (Siuly and Li 2012) comes into second
position (95.72%), and the CT based LS-SVM algorithm (Siuly et al. 2011) is third
(88.32%). The Bayesian spatiospectral filter optimization algorithm (Suk and Lee
2013) is the last (75.46%). The results indicate that the proposed method achieves
up to 20.90% improvement over the five existing methods for dataset IVa of BCI
competition III.

12.4 Conclusions

There are many challenges in detecting EEG signals of MI activities for the
applications of BCIs. In this study, we propose an automatic approach that inter-
prets how EEG signals are organised to detect different categories of MI tasks. Our
proposed approach develops an optimum allocation based algorithm to determine
representative sample points from every group of the original data considering the
minimum variation within each group. Eleven statistical features are extracted from
a group of sample points for a particular MI activity. A probabilistic model, NB
classifier is employed to detect different MI tasks based on the extracted features. In
our experiments on two public databases, IVa and IVb of BCI Competition III, the
proposed method outperforms the state-of-the-art methods in terms of the overall
detection performances. The adoption of the optimum allocation technique with the
NB resulted in an improvement of performance up to 20.90%, compared to the
other five reported methods. The performances also show that two-class MI based
EEG signals can be reliably identified using the proposed approach.

Table 12.5 A comparison report over five most recent reported methods for dataset IVa

Authors Methods Detection performance (%)

aa al av aw ay Mean SD

Proposed
approach

OA & NB based
approach

97.92 97.88 98.26 94.47 93.26 96.36 2.32

Suk and Lee
(2013)

BSSFO 79.46 94.64 57.65 91.96 53.57 75.46 19.06

Zhang et al.
(2013)

Z-LDA 77.7 100.0 68.4 99.60 59.9 81.1 18.2

Siuly and Li
(2012)

CC based
LS-SVM

97.88 99.17 98.75 93.43 89.36 95.72 4.35

Siuly et al.
(2011)

CT based LS-SVM 92.63 84.99 90.77 86.50 86.73 88.32 3.22

Lu et al.
(2010)

R-CSP with
aggregation

76.80 98.20 74.50 92.90 77.00 83.90 10.86
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Chapter 13
Summary Discussion on the Methods,
Future Directions and Conclusions

In this book, we intended to develop some computer-aided diagnostic methods for
the analysis and classification of EEG signals, especially focused on the diagnosis
of epilepsy and the recognition of mental states for BCI applications. All proposed
methods are tested on several real-time EEG databases and their results give a
valuable contribution to the understanding of brain dynamics. This chapter provides
a summary discussion on each of the developed methods along with their findings.
Furthermore, this chapter provides concluding remarks and suggestions for further
research.

13.1 Discussion on Developed Methods and Outcomes

The EEG is an important measurement of brain activity and has great potential in
helping the diagnosis and treatment of mental and brain neuro-degenerative dis-
eases and abnormalities. The classification of EEG signals is a key issue in
biomedical research for the identification and evaluation of brain activity.
Identifying various types of EEG signals is a complicated task, requiring the
analysis of large sets of EEG data. Representative features from a large dataset play
an important role in classifying EEG signals in the field of biomedical signal
processing. In this book, we studied and developed EEG signal processing and
classification techniques to identify different types of EEG signals with three main
objectives:

• Develop methods for the classification of epileptic EEG signals to improve the
classification rate

• Introduce methods to identify EEG signals during MI tasks for the development
of BCI systems

• Investigate which algorithm and which EEG data (motor area data or the
all-channels data) is better for MI signal classification.
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To achieve these objectives, we first developed four methods; simple sampling
technique based least square support vector machine (SRS-LS-SVM), clustering
technique based least square support vector machine (CT-LS-SVM), optimum
allocation (OA) technique based methodology and injecting PCA in the OA scheme
to contribute to epileptic EEG signal classification.

In the SRS-LS-SVM method (Siuly et al. 2011a), we introduced a simple
sampling (SRS) technique in two stages for the feature extraction process (see
Chap. 4). In the first stage, we selected ten “random samples” from each EEG
channel data and then we selected five “sub-samples” from each random sample at
the second stage. Finally, we calculated nine features from each sub-sample set to
represent the distribution of the original EEG signals reducing the dimensionality of
the data. In the experiments, the sample and sub-sample sizes were determined
using a sample size calculator of the “Creative Research System” a considering 99–
100% confidence interval and a 99% confidence level. We employed the LS-SVM
with the RBF kernel for classification where these features were employed as the
inputs. First, we implemented this method to the EEG epileptic data (EEG time
series 2005) to classify epileptic signals. In order to supplementary test the effec-
tiveness of the method, we employed this method to the mental imagery task EEG
data (Chiappa and Millán 2005) for the classification of different categories of
mental tasks. From the experimental evaluation, we achieved an average classifi-
cation accuracy of 95.58% for EEG epileptic data and 98.73% for mental imagery
task EEG data. We were able to achieve a classification accuracy of 100% on the
EEG epileptic database for the pair of healthy subjects with eyes open and epileptic
patients during seizure activity. To further test the efficacy of the method on
non-EEG data, we also applied this method to two-class synthetic data from Ripley
(1996) and we obtained impressive results again. Therefore, the experimental
results demonstrated that the SRS-LS-SVM is promising for capturing represen-
tative characteristics of EEG signals by the SRS technique, and for the classification
of these signals by the LS-SVM, which can be used as a new intelligent diagnostic
system.

To reduce the experimental time and to improve the classification performance,
we developed the CT-LS-SVM (Siuly et al. 2011b) for epileptic EEG signals
classification (see Chap. 5). In this method, we proposed the clustering technique
(CT) approach as a new process for feature extraction from EEG data. In this
procedure, each set of EEG channel data is divided into n (n = 16) mutually
exclusive groups named “clusters” with a specific time duration. Each cluster is
again partitioned m (m = 4) into “sub-clusters” over a specific time period and then
nine statistical features; minimum, maximum, mean, median, mode, first quartile,
third quartile, inter-quartile range, and standard deviation, are extracted from each
sub-cluster, representing the distribution of EEG signals. These features are applied
to the LS-SVM classifier as the input for classifying two-class EEG signals. We
implemented this method to an epileptic EEG dataset. For further evaluation, we
applied the method to motor imagery EEG data to classify different pairs of
two-class EEG signals. This proposed approach has two main advantages compared
to the SRS-LS-SVM. The first advantage is that the method uses all data points for
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the experiments. The second advantage is that, using the CT technique, much less
time is taken to run the program. We evaluated the performance of this method
through the tenfold cross-validation procedure.

The performance of the CT-LS-SVM algorithm was compared, in terms of
classification accuracy and execution (running) time, with the SRS-LS-SVM
method. We also compared the proposed method with other existing methods in the
literature for the three databases. The experimental results showed that the proposed
algorithm takes much less execution time compared to the SRS-LS-SVM technique.
The research findings indicate that this proposed approach is very efficient for the
classification of two-class EEG signals with less computational complexity. The
CT-LS-SVM algorithm can help to provide clinical information about patients who
have a neurological disorder, and mental or physiological problems.

The sample size is an important component of an empirical study’s ability to
obtain results that reflect the original population. Chapter 6 presents a new method
for determining an appropriate sample size from each time-window, considering the
variability of the values, to be reliable enough to meet the objectives of a study. In
this book, we developed an innovative OA technique (Siuly and Li 2014a) for
selecting representative sample points from each epoch considering the variability
of the observations in the epileptic signal classification. In the proposed method, we
first calculate an appropriate sample size for each class from the whole EEG data
using the “Sample size calculator”, with a desired confidence interval and confi-
dence level. Second, the data of each class is segmented into different epochs,
considering a specific time period. Third, the OA technique is employed to deter-
mine the best sample size for each epoch with a minimal variance. Fourth, the
samples are selected from the epochs considering the size that is obtained by the
OA procedure. Finally, these samples obtained from all epochs in each class are
used as the input to the multiclass LS-SVM (MLS-SVM) with the RBF kernel. Four
output coding approaches: MOC, ECOC, 1vs1, and 1vsA are applied in the
MLS-SVM and their individual effectiveness is investigated. Before the classifi-
cation process, the parameter values (c = 10 and r2 = 100) of the MLS-SVM
method are determined after an extensive experimental evaluation. To examine the
consistency of the method, the experiments of the proposed algorithm are repeated
10 times for each of the four output coding approaches with the selected optimal
parameter values. The experimental results show that our developed algorithm is
very consistent in each repetition, and yields very high classification performances
for each of the four output coding approaches. There are no significant differences
among the performances by the MOC, ECOC, 1vs1, and 1vsA approaches. This
research leads us to confirm that the OA is reliable for capturing valuable infor-
mation from the original EEG data and the MLS-SVM is very promising for the
classification of multiclass EEG signals.

In order to reduce the dimension of the obtained sample set, we develop another
new approach injecting PCA in the OA scheme (Siuly et al. 2015) in the epileptic
seizure detection from multiclass EEG signal data in Chap. 7. The PCA method is
employed on the OA sample set to produce uncorrelated variables and also to
reduce the dimensionality because there is a possibility of much correlation among
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the brain electrical activities through the brain volume, and correlation may exist
among different channels. The obtained principal components are treated as features
in this study, and called OA_PCA feature set. To identify an efficient classifier for
the OA_PCA feature set, we employ four prominent classifiers: MLS-SVM, NB,
KNN, and LDA. To further evaluate the performances, we compare our proposed
methods with other existing algorithms. The experimental results show that the
LS-SVM_1v1 approach yields 100% overall classification accuracy, improving up
to 7.10% over the existing algorithms for epileptic EEG data.

Concerning MI task classification, we further developed four algorithms: Cross-
correlation based logistic regression (CC-LR); Modified CC-LR with diverse fea-
ture sets; Cross-correlation based least square support vector machine (CC-LS-
SVM); OA aided Naïve Bayes approach. If the MI tasks are reliably distinguished
through identifying typical patterns in EEG data, motor disabled people could
communicate with a device by composing sequences of these mental states. These
four methods were tested on two benchmarks datasets, IVa and IVb of BCI
Competition III (BCI competition III 2005; Blankertz et al. 2006). In both datasets,
each subject was considered separately for experiments as MI tasks’ EEG signals
are naturally highly subject-specific, depending on physical and mental tasks being
performed.

In the CC-LR algorithm (Siuly et al. 2013), we have combined the
cross-correlation (CC) feature extraction and the logistic regression (LR) classifi-
cation to identify MI tasks in BCI applications (in Chap. 8). In this algorithm, the
CC technique follows three steps to extract features from MI task data. At first, one
of the EEG channels was selected randomly as a reference channel from a class of a
subject, as there are no specific requirements for selecting a reference signal in the
cross-correlation analysis. Then, the reference channel of a class was cross-
correlated with the data of the remaining channels in this class and the data of all
channels of another class. Next, six statistical features: mean, median, mode,
standard deviation, maximum and minimum, were calculated from each cross-
correlation sequence to reduce the dimensions, which ideally represents the dis-
tribution of the signal containing important information. These values were
employed to the LR model as input variables for the classification. The performance
of this algorithm was measured in terms of classification accuracy using a threefold
cross-validation method. The experimental results have demonstrated the effec-
tiveness of the CC-LR algorithm, especially its superiority over some reported
algorithms. Moreover, the CC-LR method is efficient for the identification of MI
tasks, and can provide a positive contribution to the development of BCI systems.

To select a more suitable feature set to enhance the classification performance
and give more reliable results for BCI systems, we modified the CC-LR algorithm
with three diverse feature sets (see Chap. 9). In the modified CC-LR method (Siuly
et al. 2014b), we provided an important framework to classify the two-class
MI-based EEG signals for BCI data. The building components of this proposed
scheme are divided into two major parts where the feature extraction procedure is
described in the first part and the classification technique in the second. In this
algorithm, we provided an outline of how a reference channel is selected for the CC
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method considering the structure of the brain associated with MI tasks. To inves-
tigate which features are suitable for the representation of the distribution of the MI
signals, three statistical feature sets are extracted from each cross-correlation
sequence of a subject. The performance of each of the three feature sets is evaluated
through the threefold cross-validation method. This study finally reached a con-
clusion on which features better characterize the distribution of EEG signals. The
experimental results reported that the CC technique is suitable for the six statistical
features, mean, standard deviation, skewness, kurtosis, maximum and minimum,
representing the distribution of MI task EEG data and the C3 channel providing
better classification results as a reference signal. The results also demonstrated that
the method is an improvement over some of the existing methods. The findings of
this study also indicated that the CC technique has the capability to extract repre-
sentative characteristics from MI task EEG data and the LR has the potential to
identify MI tasks in BCI systems. The modified CC-LR algorithm can be used to
properly identify MI tasks which can help to generate control signals for BCI
systems.

With tuning hyper parameters of the LS-SVM, we developed a CC-LS-SVM
method where the CC technique is used for feature extraction and the LS-SVM
classifier for the classification of the extracted features (see Chap. 10). To evaluate
the performance of the LS-SVM classifier, we tested a logistic regression classifier
(LR) and a kernel logistic regression classifier (KLR) separately, on the same
features extracted from the cross-correlation method as the inputs. Individually, we
used two electrode positions, Fp1 and C3 (according to the international 10–20
system), as a reference signal for each subject of both datasets to report on the
performance (Siuly and Li 2012). From each cross-corrologram, we calculated six
statistical features, mean, median, mode, standard deviation, maximum and mini-
mum, to reduce the dimensionality of the sequence. In addition, to investigate the
performance of the proposed six features, we added a further three features, inter-
quartile range (IQR), 1/4 percentile (P25) and 3/4 percentile (P75), to our existing
six feature set. From the experimental results, it was seen that there is no significant
difference in performance between the existing six feature set and the new feature
set after adding three features. In this method, we used a two-step grid search
process for selecting optimal hyper parameters of the LS-SVM as the parameters
can significantly affect the classification performance. We used the tenfold
cross-validation method for the evaluation of classification performance. The
experimental results showed that the proposed LS-SVM classifier achieved a better
performance compared to the logistic regression and the kernel logistic regression
classifiers for the same feature vectors in both datasets. To further verify the
effectiveness of the CC-LS-SVM algorithm, we also compared it with the eight
most recently reported methods in the literature. The experimental results also
indicated that this proposed approach does better than the other eight recently
reported methods in BCI Competition III, dataset IVa, by at least 7.4%. It
demonstrated that our method performed the best for MI signal classification in BCI
applications. This study concluded that the CC based LS-SVM algorithm is a
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promising technique for MI signal recognition and it offers great potential for the
development of MI-based BCI analyses which will assist clinical diagnoses and
rehabilitation tasks.

Finally, in Chap. 11, we investigated two issues for MI task based EEG signal
classification. First, we sought to discover which algorithm performs better, and
second which EEG data is more suitable for obtaining information about the MI. To
answer these two questions, we applied three algorithms: the CC-LS-SVM, the
CC-LR and the CC-KLR. These three algorithms were implemented on motor area
EEG data and all-channels EEG data to investigate how well they performed, and to
test which EEG area is better for MI classification. We manually selected the 18
electrodes around the sensorimotor cortex based on the international 10–20 system.
The following channels were considered from each of the two datasets: C5, C3, C1,
C2, C4, C6, CP5, CP3, CP1, CP2, CP4, CP6, P5, P3, P1, P2, P4, and P6. Wang and
James (2007) also considered the same electrodes for their research and their
experimental results suggested that these electrodes are the best channels for
obtaining MI information. These algorithms were also compared with some existing
methods, which revealed their competitive performance in classification. In this
algorithm (Siuly et al. 2014c), we used the C3 channel as the reference channel and
employed the threefold cross-validation procedure for the evaluation of the per-
formance. The results on both datasets, IVa and IVb from BCI Competition III,
showed that the CC-LS-SVM algorithm performed better than the CC-LR and
CC-KLR algorithms on both the motor area EEG and the all-channels EEG. Based
on these results, it can be concluded that the CC-LS-SVM algorithm is the best
algorithm for MI EEG signal classification and the all-channels EEG can provide
better information than the motor area EEG for MI classification. Furthermore, the
LS-SVM based approach can correctly identify discriminative MI tasks, demon-
strating the algorithm’s superiority in classification performance over most of the
existing methods.

To improve performance, in Chap. 12, we presented a synthesis approach based
on an optimum allocation system (OA) aided Naive Bayes (NB) probabilistic model
(Siuly et al. 2016) for detecting mental states based on EEG signals. The proposed
approach was developed to determine representatives sample points from every
group of the original data considering the minimum variation within each group.
Then eleven statistical features: mean, median, mode, standard deviation, maxi-
mum, minimum, first quartile (Q1), third quartile (Q3) (75th percentile), inter-
quartile range (IQR), skewness and kurtosis, are extracted from a group of samples
points for a particular MI activity. After that, the NB classifier is employed to detect
different MI tasks based on extracted features. The experimental results on two
public databases, IVa and IVb of BCI Competition III, demonstrate that the pro-
posed method outperforms the state-of-the-art methods in terms of overall classi-
fication performance. The adoption of the OA technique with the NB resulted in an
improvement of performance up to 20.90% compared to the other five reported
methods.
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13.2 Future Directions

EEG signal processing is a very difficult task, due to the noise, non-stationarity,
complexity of the signals and the limited amount of training data available.
Furthermore, the existing tools are still not perfect, and many research challenges
are remain open. To facilitate further development in this research area, the authors
have emphasized a few key below

• Removal of artefacts for the advanced classification

EEG brain signals often contain unwanted signals (artefacts) which may bias the
analysis of the signals, and lead to incorrect conclusions. Although the area of
artefact removal is ripe, very few methods have been employed to eliminate arte-
facts. Most of the investigations performed to date, have been performed offline due
to the computational overheads. Artefacts are, however, a dramatic problem in
real-life scenarios. Thus, further investigations are necessary to enable the removal
of artefacts without contaminating the EEG signals. Therefore, before going to the
feature extraction stage, removal of artefacts (called noise) is essential to have clean
classification results. This requires a significant signal processing work to develop
the appropriate real-time algorithms.

• Advance features extraction algorithms

Extracting representative features from EEG signals is a very difficult task due to
the noise, non-stationarity, and complexity of the signals. Thus, it is essential to
explore and design EEG features that are more informative, in order to obtain better
performances. For example, in BCIs, it is important to derive signal features to
robustly identify and distinguish the command-related activities because the
recorded signals change over time due to technical, biological and psychological
factors.

• Improve machine learning techniques

To achieve robust performances, improvements in machine learning algorithms
are also necessary for excellent classification and diagnosis. In the literature, it has
been observed that in most of the cases, the methods suffer from a trade-off between
accuracy and efficiency. It is, therefore, necessary to be improved online as the
experts require online computer-aided diagnosis (CAD) systems for real-time
evaluation.

• Diagnosis as an interdisciplinary challenge

Research into the diagnosis of brain diseases/disorders is a multidisciplinary
endeavour that requires a broad base of skills from several fields such as neuro-
science, clinical rehabilitation, psychology, computer science, engineering and
mathematics. To expedite the development of the technology, it requires successful
collaborations between multiple disciplines.
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• Extension of goals to promote diverse application development

The current BCI technology aims to develop a replacement communication
medium for severely disabled people. If the systems can manage to improve the
bit-rates, applications targeted at the broad population, such as multimedia, beha-
viour monitoring and video gaming applications may come to fruition. It is
important that the community distinguishes between the goal of aiding people with
disabilities and the development of BCI systems and related applications. The main
direction for BCI research, for the present and near future, will remain the
improvement of the communication and control capabilities for people who have
severe neuromuscular disorders.

13.3 Conclusions and Further Research

13.3.1 Conclusions

The aim of this monograph is to introduce enhanced methodologies for the auto-
matic analysis and classification of different categories of EEG signals. This book
presents new methodologies combining statistical concepts and machine learning
techniques which are quite different from the existing methods. In this book, we
especially focus on the epileptic seizure detection and mental states recognition for
BCI applications using EEG signal data. We developed a total of eight method-
ologies for EEG signal analysis and classification; four for epileptic seizures
detection and another four for mental state recognition for BCI applications. We
tested the proposed methods on several real-time databases. The results imply that
the classification systems developed in this book are very promising and also are
very helpful to efficiently manage and analyze the large size of EEG data. Taken
together, it can be concluded that the research presented in this book provides new
and successful methods for the reliable classification of EEG signals. These tech-
niques will enable experts to diagnose brain degenerative diseases correctly and
efficiently, and will also be helpful in the development of BCI systems to assist
individuals with high-level impairments. The outcomes will help brain disorder
patients to improve the quality of their lives. In addition, our proposed methods will
also assist the experts with an online CAD tool for analyzing EEG signals.

13.3.2 Further Research

We believe that the methods presented in this book will provide promising out-
comes in the EEG signal processing and classification areas. Extensive future work
will examine the possibility of using the methods in the applications of EEG signal
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classification. To facilitate further developments of those proposed methods, we
have highlighted a few key issues which are addressed below.

Concerning the SRS-LS-SVM algorithm, it would be beneficial to study the
distribution of different random samples, sub-samples and populations (whole EEG
channel data) using a hypothesis testing procedure. In this process, first the distri-
bution of the random samples and sub-samples in each EEG channel data will be
tested to discover whether they are homogeneous or not. If they are homogenous, then
sub-samples could be considered as representatives of the random samples, meaning
the sub-samples could be used for feature extraction instead of the random samples.
Then, the distribution of the sub-samples would be compared with the distribution of
a population, whether they are homogeneous or not. If the sub-samples follow the
same distribution as the population, it can be concluded that the sub-sample’s features
are the best representatives for exploring the original EEG signals.

The CT-LS-SVM method can be improved following the same process as the
SRS-LS-SVM algorithm. In addition, the SRS-LS-SVM and CT-LS-SVM algo-
rithms can be improved by tuning hyper parameters of the LS-SVM method
through a two-step grid search technique. These two algorithms could be extended
for multiclass EEG signal classification. For the CC-LR and modified CC-LR
algorithms; these can be developed using multivariate logistic regression instead of
binary logistic regression for multiclass classification, and then compared with the
kernel logistic regression.

As the frequency bands of EEG signals are important key issues in identifying
EEG characteristics, in the near future, the SRS-LS-SVM, CT-LS-SVM, the
CC-LR, modified CC-LR and CC-LS-SVM algorithms can be considered for
classification based on frequency bands. To this aim, a slight modification of the
current methodologies may be required. The CC-LS-SVM algorithm will be
extended for the classification of multiclass EEG signals. In this book, our proposed
methods were implemented on noise free EEG databases. We did not employ any
methods for removing noise from the EEG data. Further studies are needed to
successfully remove artefacts without contaminating the EEG signals for our pro-
posed algorithms.
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