

ECE 134 Final

Matthew Daily – Fall 2015

Constructed using L^AT_EX

”Atta-Babe”

Updated Tuesday 4th July, 2017

Definitions

Q (Charge) [C]

\vec{E} (Electric Field) [$\frac{N}{C}$] or [$\frac{V}{m}$]

\vec{D} (Electric Flux Density) [$\frac{C}{m^2}$]

$\rho_{l,s,v}$ (Charge Density) [$\frac{C}{m}$] (ρ_l) or [$\frac{C}{m^2}$] (ρ_s) or [$\frac{C}{m^3}$] (ρ_v)

Φ (Electric Potential) [V] or [$\frac{J}{C}$]

\vec{J} (Current Density) [$\frac{A}{m^2}$]

C (Capacitance) [F]

U_E (Electric Potential Energy) [J]

\vec{B} (Magnetic Field) [T] = [$\frac{N}{m \cdot A}$] = [$\frac{kg}{A \cdot s^2}$] or [G]
 $\hookrightarrow (1T = 10^4 G)$

L (Inductance) [H] = [$\frac{V \cdot s}{A}$]

Φ_B (Magnetic Flux) [Wb]

Constants

$\epsilon_0 = 8.85 \times 10^{-12} \frac{F}{m}$ (Permittivity of Free Space)

$\mu_0 = 4\pi \times 10^{-7} \frac{H}{m}$ (Permeability of Free Space)

$\sigma_{SB} = 5.6703 \times 10^{-8} \frac{W}{m^2 K^4}$ (Boltzmann's Constant)

$Q_{e-} = -1.60217662 \times 10^{-19}$ [C] (Elementary Charge)

$m_{e-} = 9.11 \times 10^{-31} [kg]$ (Mass of an electron)

$c = 3 \times 10^8 \frac{m}{s}$ (Universal Speed Limit)

$\eta_0 = \sqrt{\frac{\mu_0}{\epsilon_0}} = 377 = 120\pi[\Omega]$ (Impedance of Free Space)

Vector Calculus

Gradient: $\nabla \Phi$

Cartesian: $\frac{\partial \Phi}{\partial x} \hat{x} + \frac{\partial \Phi}{\partial y} \hat{y} + \frac{\partial \Phi}{\partial z} \hat{z}$

Cylindrical: $\frac{\partial \Phi}{\partial r} \hat{r} + \frac{1}{r} \frac{\partial \Phi}{\partial \phi} \hat{\phi} + \frac{\partial \Phi}{\partial z} \hat{z}$

Spherical: $\frac{\partial \Phi}{\partial r} \hat{r} + \frac{1}{r} \frac{\partial \Phi}{\partial \theta} \hat{\theta} + \frac{1}{r \sin(\theta)} \frac{\partial \Phi}{\partial \phi} \hat{\phi}$

Divergence: $\nabla \cdot \vec{A}$

Cartesian: $\frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$

Cylindrical: $\frac{1}{r} \frac{\partial (r A_r)}{\partial r} + \frac{1}{r} \frac{\partial A_\phi}{\partial \phi} + \frac{\partial A_z}{\partial z}$

Spherical: $\frac{1}{r^2} \frac{\partial (r^2 A_r)}{\partial r} + \frac{1}{r \sin \theta} \frac{\partial (A_\theta \sin \theta)}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial A_\phi}{\partial \phi}$

Curl: $\nabla \times \vec{A}$

Cartesian: $\hat{x} \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \right) + \hat{y} \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} \right) + \hat{z} \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right)$

Cylindrical:

$\hat{r} \left(\frac{1}{r} \frac{\partial A_z}{\partial \phi} - \frac{\partial A_\phi}{\partial z} \right) + \hat{\phi} \left(\frac{\partial A_r}{\partial z} - \frac{\partial A_z}{\partial r} \right) + \hat{z} \frac{1}{r} \left(\frac{\partial (r A_\phi)}{\partial r} - \frac{\partial A_r}{\partial \phi} \right)$

Spherical:

$\frac{\hat{r}}{r \sin \theta} \left[\frac{\partial (A_\phi \sin \theta)}{\partial \theta} - \frac{\partial A_\theta}{\partial \phi} \right] + \hat{\theta} \left[\frac{1}{r \sin \theta} \frac{\partial A_r}{\partial \phi} - \frac{\partial (r A_\phi)}{\partial r} \right] + \hat{\phi} \left[\frac{\partial (r A_\theta)}{\partial r} - \frac{\partial A_r}{\partial \theta} \right]$

Laplacian: $\nabla^2 \Phi$

Cartesian: $\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} + \frac{\partial^2 \Phi}{\partial z^2}$

Cylindrical: $\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \Phi}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 \Phi}{\partial \phi^2} + \frac{\partial^2 \Phi}{\partial z^2}$

Spherical: $\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \Phi}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \Phi}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \Phi}{\partial \phi^2}$

Integrals

$$\int_0^c \frac{dx}{a + \frac{b-a}{c}x} = \frac{c \ln(\frac{b}{a})}{b-a}$$

$$\frac{\partial}{\partial b} \ln \frac{b}{a} = -\frac{1}{b(\ln b - \ln a)^2}$$

Stupid Stuff I Sometimes Forget

Surface area of a sphere: $4\pi r^2$

Volume of a sphere: $\frac{4}{3}\pi r^3$

Surface area of a cylinder: $2\pi r l$

E field from a point charge: $\vec{E} = \frac{q}{4\pi\epsilon_0 r^2} \hat{r}$

Potential from a point charge: $\Phi = \frac{q}{4\pi\epsilon_0 r}$

How to Get Basic Stuff

Charge

$$Q = \iiint \rho(x, y, z) dV$$

Electric Field

$$\vec{D} = \epsilon \vec{E}$$

Gauss' Law:

$$\iint_S \vec{E} \cdot d\vec{S} = \frac{Q}{\epsilon} \text{ (Integral Form)}$$

$$\nabla \cdot \vec{E} = \frac{\rho}{\epsilon} \text{ (Differential Form)}$$

$$\vec{E} = -\nabla \Phi$$

$$\vec{E}(x, y, z) = \iiint \frac{\rho(x', y', z')}{4\pi\epsilon_0 R^2} dV$$

Dielectric Strength: $\vec{E}_{breakdown}$ [$\frac{V}{m}$]

Electric Potential

$$\Phi = - \int \vec{E} \cdot d\vec{l}$$

$$\nabla^2 \Phi = -\frac{\rho}{\epsilon} \text{ (Poisson's Equation)}$$

General Form: $\hookrightarrow \nabla \cdot (\epsilon \nabla \Phi) = -\rho$ (works for non-constant ϵ)

Potential Energy

From a charge distribution:

$$U_E = \frac{1}{2} \iiint \rho(\vec{r}) \Phi(\vec{r}) dV$$

$$U_E = \frac{1}{2} \iiint \epsilon |\vec{E}|^2 dV$$

Energy of a sphere of charge:

$$U_E = \frac{4\pi \rho^2 b^5}{15\epsilon_0}$$

Power

$$P_E = \iiint \vec{J} \cdot \vec{E} dV = VI = \frac{V^2}{R} = I^2 R$$

Electric Force

$$\vec{F}_E = q \vec{E}$$

In terms of energy: $\vec{F} = \pm \frac{\partial}{\partial l} (U_E(l)) \hat{l}$

Capacitance

$$C = \frac{Q}{V}$$

$$U_c = \frac{1}{2} CV^2 = \frac{1}{2} \frac{Q^2}{C}$$

$$C_{coax.} = \frac{2\pi\epsilon L}{\ln \frac{b}{a}}$$

Parallel Plate (Special Case)

$$E = \frac{\rho_s}{\epsilon} = \frac{V}{d}$$

$$C = \frac{\epsilon A}{d} \text{ where } \epsilon = \epsilon_r \epsilon_0$$

Boundary Conditions

Surface of a Conductor

$$\hat{n} \cdot \vec{E}_{surface} = \frac{\rho_s}{\epsilon}$$

$$\hat{n} \times \vec{E}_{surface} = 0$$

Expressed in terms of potential...

$$-\frac{\partial \Phi}{\partial \hat{n}} = \frac{\rho_s}{\epsilon}$$

$\Phi = \text{Constant}$

Dielectric Boundary

$$\hat{n} \cdot \vec{E}_1 \epsilon_1 - \hat{n} \cdot \vec{E}_2 \epsilon_2 = \rho_s$$

$$\hat{n} \times \vec{E}_1 = \hat{n} \times \vec{E}_2$$

Expressed in terms of potential...

$$\epsilon_1 \frac{\partial \Phi_1}{\partial \hat{n}} - \epsilon_2 \frac{\partial \Phi_2}{\partial \hat{n}} = \rho_s$$

$$\hat{n} \times \nabla \Phi_1|_{surface} = \hat{n} \times \nabla \Phi_2|_{surface}$$

Conductors, Current, and Resistance

Current: $I = \iint \vec{J} \cdot d\vec{S}$

Ohm's Law: $\vec{J} = \sigma \vec{E}$

For Moving Charges: $\vec{J} = \rho \vec{v}$

$\hookrightarrow \rho$ is charge density

Conductivity: σ [$\frac{S}{m}$]

Resistivity: ρ [$\Omega \cdot m$]

Resistance: $R = \frac{1}{\sigma} \frac{l}{A} = \rho \frac{l}{A}$

$\hookrightarrow (l \text{ is in the direction of current flow})$

$\hookrightarrow (A \text{ is the cross-section which current is flowing through})$

Drift Velocity: $\vec{v}_{drift} = \mu \vec{E}$

$\hookrightarrow (\mu \text{ is the electron mobility of a material})$

Sheet Resistors

\hookrightarrow Typically have a length (l), width (w) and thickness (t)

Resistance: $R = \frac{1}{\sigma} \frac{l}{A} = \frac{1}{\sigma} \frac{l}{w \cdot t} = r_{sh} \frac{l}{w}$

$$\hookrightarrow r_{sh} = \frac{1}{\sigma t}$$

Series of sheet resistors: $R = r_{sh} \left(\frac{l}{w} - 0.44 N_{corners} \right)$

Heat Transfer

Heat Capacity: $C_p \left[\frac{J}{K} \right]$

Specific Heat Capacity: $C_{sp} = \frac{C_p}{mass} \left[\frac{J}{gK} \right]$

$\Delta U_{heat} = C_p \Delta T$

Resistivity w/ Temperature: $\rho(T) = \rho_0[1 + \alpha_{TCR}(T - T_0)]$

↪ ρ_0 = resistivity at room temperature

↪ α_{TCR} = temperature coefficient of resistance

Methods of Heat Transfer

Energy Balance: $P_{in} = P_{stored} + P_{cond} + P_{conv} + P_{rad}$

$P_{stored} = C_h \frac{dT}{dt}$ (Zero for steady state!!!)

Conduction: $P_{cond} = \frac{T_1 - T_0}{\theta_{th}}$

Convection: $P_{conv} = hA_s(T - T_0)$

↪ h = convection coefficient

↪ A_s = surface area

Steady State: $\Delta T_\infty = \frac{I^2 R}{hA_s}$

Radiation: $P_{rad} = e\sigma_{SB}A_s(T^4 - T_0^4)$

↪ e = emissivity ($0 < e < 1$)

Elementary Magnetostatics

Ampère's Law:

$\oint \vec{B} \cdot d\vec{S} = \mu_0 I_{inside}$ (Integral form)

$\nabla \times \vec{B} = \mu_0 \vec{J}$ (Differential Form)

Magnetic Field Strength (H): $\vec{B} = \mu \vec{H}$

Force on a wire: $\vec{F}_B = I\vec{l} \times \vec{B}$

Lorentz's Force Law: $\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$

↪ $\vec{F}_B = q\vec{v} \times \vec{B}$

Magnetic Fields from Different Objects

Field from a wire: $B = \frac{\mu_0 I}{2\pi r}$

Field inside a solenoid: $B = \mu n I$

↪ n = turn density = $\frac{N}{l}$

Field inside a toroid: $B = \frac{\mu NI}{2\pi r}$

Field from an infinite current sheet: $B = \frac{\mu_0 J}{2}$

Vector Potential (\vec{A})

$\nabla^2 \vec{A} = -\mu_0 \vec{J}$

$\vec{A}(\vec{r}) = \frac{\mu_0}{4\pi} \iiint \frac{\vec{J}(\vec{r}')}{R} dV'$
↪ $R = \vec{r} - \vec{r}'$

Faraday's Law and Induction

Magnetic Flux: $\Phi_B = \iint \vec{B} \cdot d\vec{S}$

Faraday's Law: $V_{emf} = -\frac{d\Phi_B}{dt}$

↪ For EMF induced in a coil: $V_{emf} = -N \frac{d\Phi_B}{dt}$

Inductance

In general...

$$L = \frac{N\Phi_B}{I} \quad [H]$$

↪ Sanity Check: L should have a factor of N^2

Magnetic Energy from Inductance: $U_B = \frac{1}{2} LI^2$

Magnetic Force: $F_B = \pm \frac{\partial}{\partial l}(U_B(l))\hat{l}$

For a 2-circuit system (Mutual Inductance):

Flux from Ckt 1 in Ckt 2: $\Phi_{21} = \iint \vec{B}_1 \cdot d\vec{S}_2$

Induced voltage in Ckt 2: $V_{emf} = -\frac{d\Phi_{21}}{dt} = L_{21} \frac{dI_1}{dt}$

Mutual Inductance: $L_{21} = \frac{\Phi_{21}}{I_1}$

Self-Inductance:

Flux from Ckt 1 in Ckt 1: $\Phi_{11} = \iint \vec{B}_1 \cdot d\vec{S}_1$

Self-Inductance: $L_{11} = \frac{\Phi_{11}}{I_1}$

In general...

$L_{21} = L_{12}$, but $L_{11} \neq L_{22}$

We must include both mutual and self-inductance terms!

$$V_1 = L_{11} \frac{dI_1}{dt} + L_{12} \frac{dI_2}{dt}$$

$$V_2 = L_{22} \frac{dI_2}{dt} + L_{12} \frac{dI_1}{dt}$$

Magnetic Flux Circuits

Analogous to Resistive Circuits!

For an N-turn Coil On a High- μ Core...

$$V = NI$$

$$R = \mathcal{R} = \mu \frac{l}{A} \quad (\text{Reluctance})$$

↪ (l is in the direction of flux flow)

↪ (A is the cross-section which flux is flowing through)

$$I = \Phi_B = \frac{NI}{\mathcal{R}}$$

Ideal Transformers (Perfect Flux Sharing)

Voltage and Turns: $\frac{V_p}{V_s} = \frac{N_p}{N_s}$

↪ (p = primary, s = secondary)

Current and Turns: $N_p I_p = N_s I_s$

Phasors

$$f(t) = A \cos(\omega t + \phi) \implies F = Ae^{j\phi}$$

$$f(t) = A \sin(\omega t + \phi) \implies F = -jAe^{j\phi}$$

$$\text{Euler's Identity: } e^{j\theta} = \cos \theta + j \sin \theta$$

$$\Re[e^{jx}] = \cos x$$

$$\Im[e^{jx}] = \sin x$$

Plane Waves

Source-Free Wave Equations: $\nabla^2 \vec{E} + k_o^2 \vec{E} = 0$ & $\nabla^2 \vec{H} + k_o^2 \vec{H} = 0$

Solutions are linear combinations of:

$\vec{E}/\vec{H} = \vec{E}_o^+/\vec{H}_o^+ e^{-jk\vec{r}}$ (Forward Propagating Wave)

$\vec{E}/\vec{H} = \vec{E}_o^-/\vec{H}_o^- e^{+jk\vec{r}}$ (Reverse Propagating Wave)

↪ \vec{k} points in direction of wave propagation ($k_x \hat{x} + k_y \hat{y} + k_z \hat{z}$)

↪ \vec{r} is a generic position vector ($x \hat{x} + y \hat{y} + z \hat{z}$)

↪ e.g. for a wave moving in the $+\hat{z}$ direction, $\vec{k} \cdot \vec{r} = kz$

General form of an EM Wave: $H_o/E_o \cos/\sin(\omega t \pm k/\beta z + \phi)$

Typical Parameters of Plane Waves

Angular Frequency: $\omega = 2\pi f \left[\frac{rad}{s} \right]$

Wavenumber: $k/\beta = \omega/\sqrt{\mu\epsilon} = \frac{\omega}{v} = \frac{2\pi}{\lambda}$

↪ Free Space Wavenumber: $k_0 = \omega/\sqrt{\mu_0 \epsilon_0} = \frac{\omega}{c} = \frac{2\pi}{\lambda_0}$

Impedance: $\eta = \sqrt{\frac{\mu_0}{\epsilon_0 \epsilon_r}} = \eta_0 \frac{1}{\sqrt{\epsilon_r}}$

↪ Impedance of Free Space = $\eta_0 = \sqrt{\frac{\mu_0}{\epsilon_0}} = 377\Omega = 120\pi$

To go from H to E: $\vec{E} = -\eta(\hat{a}_n \times \vec{H})$

To go from E to H: $\vec{H} = \frac{1}{\eta}(\hat{a}_n \times \vec{E})$

↪ \hat{a}_n is a unit vector in the direction of propagation

↪ \vec{E} and \vec{H} point in the direction of polarization

Propagation Through Lossy Media

General form for an attenuated wave: $E_x = E_o e^{-\alpha z} e^{-j\beta z}$

↪ wave propagating in $+\hat{z}$ direction

↪ wave polarized in \hat{x} direction

Attenuation factor: $e^{-\alpha z}$

↪ how much the amplitude has shrunk through distance z

Phase Constant: β (similar to k)

↪ tells us how much phase changes as wave propagates

Low-Loss Medium (Dielectric): $\tan \delta = \frac{\sigma}{\omega \epsilon} \ll 1$

Attenuation Constant: $\alpha = \frac{\sigma}{2} \sqrt{\frac{\mu}{\epsilon}} \left[\frac{Np}{m} \right]$

↪ $1 \frac{Np}{m} = 8.686 \frac{dB}{m}$

Phase Constant: $\beta = \omega \sqrt{\mu \epsilon}$

Phase Velocity: $v_p = \frac{\omega}{\beta}$

Intrinsic Impedance: $\eta_c = \sqrt{\frac{\mu}{\epsilon}} (1 + j \frac{\tan \delta}{2})$

Skin Depth: $\delta = \frac{1}{\alpha} \text{ [m]}$

Lossy Medium (Good Conductor): $\tan \delta = \frac{\sigma}{\omega \epsilon} \gg 1$

Attenuation and Phase Constant: $\alpha = \beta = \sqrt{\pi f \mu \sigma}$

Phase Velocity: $v_p = \frac{\omega}{\beta} = \sqrt{\frac{2\omega}{\mu\sigma}}$

Wavelength: $\lambda = \frac{2\pi}{\beta} = \frac{v_p}{f} = 2\sqrt{\frac{\pi}{f\mu\sigma}}$

Intrinsic Impedance: $\eta_c = (1 + j) \frac{\alpha}{\sigma}$

Skin Depth: $\delta = \frac{1}{\alpha} = \frac{1}{\beta} = \frac{\lambda}{2\pi} \text{ [m]}$