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Definitions

Q (Charge) [C]

~E (Electric Field) [N
C

] or [ V
m

]

~D (Electric Flux Density) [ C
m2 ]

ρl,s,v (Charge Density) [ C
m

] (ρl) or [ C
m2 ] (ρs) or [ C

m3 ] (ρv)

Φ (Electric Potential) [V] or [ J
C

]

~J (Current Density) [ A
m2 ]

C (Capacitance) [F]

UE (Electric Potential Energy) [J]

~B (Magnetic Field) [T] = [ N
m·A ] = [ kg

A·s2 ] or [G]

↪→ (1T = 104 G)

L (Inductance) [H] = [V ·s
A

]

ΦB (Magnetic Flux) [Wb]

Constants

εo = 8.85× 10−12 [ F
m

] (Permittivity of Free Space)

µo = 4π × 10−7 [H
m

] (Permeability of Free Space)

σSB = 5.6703× 10−8 [ W
m2K4 ] (Boltzmann’s Constant)

Qe− = −1.60217662× 10−19 [C] (Elementary Charge)

me− = 9.11× 10−31[kg] (Mass of an electron)

c = 3× 108[m
s

] (Universal Speed Limit)

ηo =
√
µo
εo

= 377 = 120π[Ω] (Impedance of Free Space)

Vector Calculus

Gradient: ∇Φ

Cartesian: ∂Φ
∂x
x̂+ ∂Φ

∂y
ŷ + ∂Φ

∂z
ẑ

Cylindrical: ∂Φ
∂r
r̂ + 1

r
∂Φ
∂φ
φ̂+ ∂Φ

∂z
ẑ

Spherical: ∂Φ
∂r
r̂ + 1

r
∂Φ
∂θ
θ̂ + 1

r sin(θ)
∂Φ
∂z
φ̂

Divergence: ∇ · ~A
Cartesian: ∂Ax

∂x
+
∂Ay
∂y

+ ∂Az
∂z

Cylindrical: 1
r
∂(rAr)
∂r

+ 1
r

∂Aφ
∂φ

+ ∂Az
∂z

Spherical: 1
r2

∂(r2Ar)
∂r

+ 1
r sin θ

∂(Aθ sin θ)
∂θ

+ 1
r sin θ

∂Aφ
∂φ

Curl: ∇× ~A

Cartesian: x̂
(
∂Az
∂y
− ∂Ay

∂z

)
+ ŷ

(
∂Ax
∂z
− ∂Az

∂x

)
+ ẑ

(
∂Ay
∂x
− ∂Ax

∂y

)
Cylindrical:

r̂
(

1
r
∂Az
∂φ
− ∂Aφ

∂z

)
+ φ̂

(
∂Ar
∂z
− ∂Az

∂r

)
+ ẑ 1

r

(
∂(rAφ)
∂r

− ∂Ar
∂φ

)
Spherical:

Laplacian: ∇2Φ

Cartesian: ∂2Φ
∂x2

+ ∂2Φ
∂y2

+ ∂2Φ
∂z2

Cylindrical:

Spherical:

Integrals
ˆ c

0

dx

a+ b−a
c
x

=
c ln( b

a
)

b− a
∂

∂b

1

ln b
a

= −
1

b(ln b− ln a)2

Stupid Stuff I Sometimes Forget

Surface area of a sphere: 4πr2

Volume of a sphere: 4
3
πr3

Surface area of a cylinder: 2πrl

E field from a point charge: ~E = q
4πεor2

r̂

Potential from a point charge: Φ = q
4πεor

How to Get Basic Stuff

Charge

Q =
˝

ρ(x, y, z)dV

Electric Field

~D = ε ~E

Gauss’ Law:‚
S
~E · d~S = Q

ε
(Integral Form)

∇ · ~E = ρ
ε

(Differential Form)

~E = −∇Φ

~E(x, y, z) =
˝ ρ(x′,y′,z′)

4πεoR2 dV

Dielectric Strength: ~Ebreakdown [ V
m

]

Electric Potential

Φ = −
´
~E · d~l

∇2Φ = − ρ
ε

(Poisson’s Equation)

General Form: ↪→ ∇ · (ε∇Φ) = −ρ (works for non-constant ε)

Potential Energy

From a charge distribution:

UE = 1
2

˝
ρ(~r)Φ(~r)dV

UE = 1
2

˝
ε| ~E|2dV

Energy of a sphere of charge:

UE = 4πρ2b5

15εo

Power

PE =
˝

~J · ~EdV = V I = V 2

R
= I2R

Electric Force

~FE = q ~E

In terms of energy: ~F = ± ∂
∂l

(UE(l))l̂

Capacitance

C = Q
V

Uc = 1
2
CV 2 = 1

2
Q2

C

Ccoax. = 2πεL

ln b
a

Parallel Plate (Special Case)

E = ρs
ε

= V
d

C = εA
d

where ε = εrεo

Boundary Conditions

Surface of a Conductor

n̂ · ~Esurface = ρs
ε

n̂× ~Esurface = 0

Expressed in terms of potential...

− ∂Φ
∂n̂

= ρs
ε

Φ = Constant

Dielectric Boundary

n̂ · ~E1ε1 − n̂ · ~E2ε2 = ρs

n̂× ~E1 = n̂× ~E2

Expressed in terms of potential...

ε1
∂Φ1
∂n
− ε2 ∂Φ2

∂n
= ρs

n̂×∇Φ1

∣∣
surface

= n̂×∇Φ2

∣∣
surface

Conductors, Current, and Resistance

Current: I =
˜
~J · d~S

Ohm’s Law: ~J = σ ~E

For Moving Charges: ~J = ρ~v

↪→ ρ is charge density

Conductivity : σ [ S
m

]

Resistivity : ρ [Ω · m]

Resistance: R = 1
σ
l
A

= ρ l
A

↪→ (l is in the direction of current flow)

↪→ (A is the cross-section which current is flowing through)

Drift Velocity: ~vdrift = µ~E

↪→ (µ is the electron mobility of a material)

Sheet Resistors

↪→ Typically have a length (l), width (w) and thickness (t)

Resistance: R = 1
σ
l
A

= 1
σ

l
w·t = rsh

l
w

↪→ rsh = 1
σt

Series of sheet resistors: R = rsh( l
w
− 0.44Ncorners)



Heat Transfer

Heat Capacity: Cp [ J
K

]

Specific Heat Capacity: Csp =
Cp
mass

[ J
gK

]

∆Uheat = Cp∆T

Resistivity w/ Temperature: ρ(T ) = ρo[1 + αTCR(T − To)]
↪→ ρo = resistivity at room temperature

↪→ αTCR = temperature coefficient of resistance

Methods of Heat Transfer

Energy Balance: Pin = Pstored + Pcond + Pconv + Prad

Pstored = Ch
dT
dt

(Zero for steady state!!!)

Conduction: Pcond = T1−To
θth

Convection: Pconv = hAs(T − To)
↪→ h = convection coefficient

↪→ As = surface area

Steady State: ∆T∞ = I2R
hAs

Radiation: Prad = eσSBAs(T
4 − T 4

o )

↪→ e = emissivity (0 < e < 1)

Elementary Magnetostatics

Ampère’s Law:´
~B · d~S = µoIinside (Integral form)

∇× ~B = µo ~J (Differential Form)

Magnetic Field Strength (H): ~B = µ ~H

Force on a wire: ~FB = I~l × ~B

Lorentz’s Force Law: ~F = q( ~E + ~v × ~B)

↪→ ~FB = q~v × ~B

Magnetic Fields from Different Objects

Field from a wire: B = µoI
2πr

Field inside a solenoid: B = µnI

↪→ n = turn density = N
l

Field inside a toroid: B = µNI
2πr

Field from an infinite current sheet: B = µoJ
2

Vector Potential ( ~A)

∇2 ~A = −µo ~J
~A(~r) = µo

4π

˚
~J(~r)
R
dV ′

↪→ R = ~r − ~r ′

Faraday’s Law and Induction

Magnetic Flux: ΦB =
˜
~B · d~S

Faraday’s Law: Vemf = − dΦB
dt

↪→ For EMF induced in a coil: Vemf = −N dΦB
dt

Inductance

In general...

L = NΦB
I

[H]

↪→ Sanity Check: L should have a factor of N2

Magnetic Energy from Inductance: UB = 1
2
LI2

Magnetic Force: FB = ± ∂
∂l

(UB(l))l̂

For a 2-circuit system (Mutual Inductance):

Flux from Ckt 1 in Ckt 2: Φ21 =
˜
~B1 · d~S2

Induced voltage in Ckt 2: Vemf = −dΦ21
dt

= L21
dI1
dt

Mutual Inductance: L21 = Φ21
I1

Self-Inductance:

Flux from Ckt 1 in Ckt 1: Φ11 =
˜
~B1 · d~S1

Self-Inductance: L11 = Φ11
I1

In general...

L21 = L12, but L11 6= L22

We must include both mutual and self-inductance terms!

V1 = L11
dI1
dt

+ L12
dI2
dt

V2 = L22
dI2
dt

+ L21
dI1
dt

Magnetic Flux Circuits

Analogous to Resistive Circuits!

For an N-turn Coil On a High-µ Core...

V = NI

R = R = µ l
A

(Reluctance)

↪→ (l is in the direction of flux flow)

↪→ (A is the cross-section which flux is flowing through)

I = ΦB = NI
R

Ideal Transformers (Perfect Flux Sharing)

Voltage and Turns:
Vp
Vs

=
Np
Ns

↪→ (p = primary, s = secondary)

Current and Turns: NpIp = NsIs

Phasors

f(t) = A cos (ωt+ φ) =⇒ F = Aejφ

f(t) = A sin (ωt+ φ) =⇒ F = −jAejφ

Euler’s Identity: ejθ = cos θ + j sin θ

<[ejx] = cosx

=[ejx] = sinx

Plane Waves

Source-Free Wave Equations: ∇2 ~E + k2
o
~E = 0 & ∇2 ~H + k2

o
~H = 0

Solutions are linear combinations of:

~E/ ~H = ~E+
o / ~H

+
o e
−j~k·~r (Forward Propagating Wave)

~E/ ~H = ~E−o / ~H
−
o e

+j~k·~r (Reverse Propagating Wave)

↪→ ~k points in direction of wave propagation (kxx̂+ ky ŷ + kz ẑ)

↪→ ~r is a generic position vector (xx̂+ yŷ + zẑ)

↪→ e.g. for a wave moving in the +ẑ direction, ~k · ~r = kz

General form of an EM Wave: Ho/Eo cos / sin (ωt± k/βz + φ)

Typical Parameters of Plane Waves

Angular Frequency: ω = 2πf [ rad
s

]

Wavenumber: k/β = ω
√
µε = ω

v
= 2π

λ

↪→ Free Space Wavenumber: ko = ω
√
µoεo = ω

c
= 2π

λo

Impedance: η =
√

µo
εoεr

= ηo
1√
εr

↪→ Impedance of Free Space = ηo =
√
µo
εo

= 377Ω = 120π

To go from H to E: ~E = −η(ân × ~H)

To go from E to H: ~H = 1
η

(ân × ~E)

↪→ ân is a unit vector in the direction of propagation

↪→ ~E and ~H point in the direction of polarization

Propagation Through Lossy Media

General form for an attenuated wave: Ex = Eoe−αze−jβz

↪→ wave propagating in +ẑ direction

↪→ wave polarized in x̂ direction

Attenuation factor: e−αz

↪→ how much the amplitude has shrunk through distance z

Phase Constant : β (similar to k)

↪→ tells us how much phase changes as wave propagates

Low-Loss Medium (Dielectric): tan δ = σ
ωε
<< 1

Attenuation Constant: α = σ
2

√
µ
ε

[Np
m

]

↪→ 1Np
m

= 8.686 dB
m

Phase Constant: β = ω
√
µε

Phase Velocity: vp = ω
β

Intrinsic Impedance: ηc =
√
µ
ε

(1 + j tan δ
2

)

Skin Depth: δ = 1
α

[m]

Lossy Medium (Good Conductor): tan δ = σ
ωε
>> 1

Attenuation and Phase Constant: α = β =
√
πfµσ

Phase Velocity: vp = ω
β

=
√

2ω
µσ

Wavelength: λ = 2π
β

=
vp
f

= 2
√

π
fµσ

Intrinsic Impedance: ηc = (1 + j)α
σ

Skin Depth: δ = 1
α

= 1
β

= λ
2π

[m]
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