G .
IGI i 20 log |G| dB G

. SCS) (6 ) SO N VSt N DN . WY FROUON OV IO N WD gy =~ (S (e e T
s £ {
— (=005
FAR X
; 27 I =S-01
2 ; y/ 4V 4 \; -g:U,2
% i
[~ 0 i T I : 1 - Lhat I ? Ll 1 lno. s
1 o 0 s = TR radrs |
= —_—— T [ —) ~— T& N NS L
s ] g < Il -9 : N — (=05
~. 1 ez
b T \‘\‘ _-—-‘C-I,O
1 oI WY
w NN
0.2 <IN w\\.\
e e g S g e S g S e ——trm A== =90
0'1 1 - g':lla 3 \\
1 =05 Y T
0.05 (02 =] A N e
=01 L. P " N i "V
i i A\ ~ it
00— S T
e Ll L T e TN T 1180
i S Gt et e e e et ~
0.01 -0

Reglerteknik

Version 2 — Sammanstilld 2010 Rittad 2016



Exempel pa lineédra regulatortyper

Regulator | Funktion Overforingsfunktion G(s)
P-regulator| u(t) = u, + K - e(t) Gls) =K
[-regulator 1
wit) =— J t)dt G(s)=
=7, )0 ©=7
Deriveran- | u(t) = T, - e'(¢) Gis) =T, s
de block
PI-regula— 1 3 : 1
o u(t) = Kle(®) +— [ e(@)d] G(s)=K| 1+
PD-regula-| u(f) = K[e() L~ &'(B)] Gls)=K(1+Tp,-9)
tor
PID-regu- 1 ) 1
lator (ideal| 4() = Kle(®)+ = [e()dt +Ty -’01 | G()= K| 14~ —+Tp s
typ) "o '
Lead-filter | u(f) + Tu'(r) = e(t) + bTe'(r)
Gl e nsy
1+Ts
Lag-filter | w(f) + aTu'(f) = ale(t) + Te'(1)] Bt = 1+Ts dira sl
1+ aTs
PID-regu- L |
lator (med | (1) = Ke(r) + —-J.e(t)dt ~Th -y’ (O] UEG) = K(l + JE(;) ~KTpY(s) s
D-verkan T, 0 T -s
endast pa
métsigna-
len y(1))

I tabellen ovan géller:

u, = styrsignalens normalvirde (vid P-reglering)

K = forstirkningen
T, = integrationstiden

TD = derivatatiden

Specialfall av PID-regulatorer

Regulator Overforingsfunktion
PID-regulator med

lagpassfilter p3 Gli= B T4 g J
&gpassfilter pa 5) =

derivatadelen. T8 trody s
PID-regulator pé 14T, -5

serieform. G(s)=K Ts (1+7p -s).

PID-regulator pa
serieform med lag-
passfilter pa
derivatadelen.

G(s)=K

LT, -8 3 Tp-s
T,-s LA <F &

=
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Laplacetransformen

Definition pa laplacetransformen

F(s) =J e f(r) dt
0

dar f() = tidsfunktion och F(s) = transform

Tabell dver de viktigaste laplacetransformerna

Laplacetransform Tidsfunktion
F(s) flr)fore>0
i Impulsfunktion 6(z)
L Stegfunktion o(?)
::'Tz" Rampfunktion ¢
I il
s 2
1 L
s+a
—-_1___ e—at__e—br
(s+a)(s+b) b-a
I _t
s(1+as) I-¢e*
S I ae® be’
s(1+as)(I+bs) b DB
1 e—ar 4o e-br " e—cr
(s+a)(s+b)(s+c) (b—a)(c-a) (c-b)(a=b) (a—-c)(b—-c)
s+a (a=b)e" —(a=c)e’”
(s+b)(s+c) c-b
L -
(s+a) &
2] 3 i-Sin atr
5 +a a _
s
¢ +d cos at
i I
m Zz’[l — cos at]
I I )
m Ef{af—-sm at]
s+a
_"——(s+a)z+b2 e cos bt
b i
—“—"—’_(S+a)z+bz g™ - sin bt

o
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Rikneregler for Laplacetransformen
Superpositionsregeln
L[af,(t) +bf(0)]= aF,(s) + bFy(s)

Fordrojningssatsen

Lift-T)]=F(s)-e™®

Deriveringssatsen
Lif' ()] =s- F(s) = f(0)
Om f(0) =f'(0) =f"(0) =0 erhalls

LIf'(t)]=s- F(s)
Lif"()]=5-F(s)
LfP)]=5"F(s)

Qsv

Integrationssatsen

L[ J rﬂr)dz] = %F(s)
0

Begynnelse- och slutvirdessatserna

lim f(t) = lim sF(s)

{__.01'- S—r

lim f(t) = !inzs -(F(s)

{—

b | [foa-3
= LY y(1) dt = 3

r Derivator Integraler Fordrojningar
gzz's-l’ /y(t) dr:—}s-, u(r-T)=>Ue-T5
t

W
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Samband mellan stegsvar och dverforingsfunktion

oversving (se
jven nedan)

Typ av process Overforingsfunktion Stegsvar (vid enhetssteg)
Process med G(s)=K 4
K ———
P-verkan
e
)
: G K " ‘ZC— ==
En tidskonstant (5)=775 ] 63 i
T
L |
En tidskonstant _Ke” Kp———= ;
+ dodtid BT G
L L*T
|
Integration G(s) = K K {
S
— ¢
!
Integration K )
+en tidskonstant | C(5)= S(1+Ts) K
=
T Tl
Integration K.e !
+ dodtid G(s)= K
-t
L L+!
Tva tidskonstanter | G(s)= K K
(se iven nedan) (1+Ts)(1+T25) ,
Andra ordningens K A~
process med & O e . ‘I//\"
-t

N
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Andra ordningens system med komplexa rotter

@

Gs)=5——""3
® &+ 2Ew,ys + wj

w, = oddmpade egensvingningen
¢ = relativa ddmpningen

<2

Maximal dversving M, = 100 % - exp [ ;‘ 1 :|

T

Tid f&r maximal Gversvang f, = -——V_—TT
we¥ 1 -G

yl(t)
)

20

’

(=0

| [

1.6 " ///__@k O(')i

L& ‘

0.6

0.4

0.2

10

11

12 wot

un
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Blockschematransformering

Regel Blockschema Ekvivalent
system
Seriekoppling
X Yy | X = Y
Parallellkoppling
G
X 4
r [T
‘ :
Aterkoppling X y
(negativ och positiv) =) L G _I-
=+ H 1:4Gj-G2

Matematiska modeller

Mekaniska system Elektriska system
2
Massa Y F= M%zx- (Newtons andra lag) Komplexa impedanser
i U
Fjader F=lhx (k = fjaderkonstanten) | Motstind = R
Dampare F= b—ix? (b = ddmpkonstanten) Kondensator _}[{ = é_
S
Spole —[;: =Ls

(R = resistansen)
(C = kapacitansen)

(L = induktansen)

Termiska processer

Energibalanslagen: %- =P,— P,

Virmeenergin hos ett system:

E = TVco

ddr

T = temperaturen [K]

V = volymen [m’]

¢ = varmekapacitiviteten [J/K - kg]
o = densiteten [kg/m’]

Nivareglering

Materialbalanslagen: % =y, = Uy,

dar V = volymen [m’]
u,, = inflodet [m>/s]
u,, = utflodet [m*/s]

=)
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Koncentrationsreglering
aM
Materialbalans: _d'zi = Qc, — Q¢

dir M, = total pulvermassa = V"¢,
O = fléde genom tanken [m’/s]
¢, = koncentration i inflodet [kg/m"]
¢, = koncentration i tanken och i utflodet [kg/m’]

Frekvensanalys

Om insignalen till ett linedrt, stabilt system G ir sinusformad med en
viss frekvens w, si kommer &ven utsignalen i stationdrtillstindet att
vara sinusformad med samma frekvens w. Amplitudforstirkning A och
fasvridning @ bestams av funktionerna

A(w) =|G(jw)|
p(w) = [G(jw)

Bodediagram for grundfaktorer

Konstant forstirkningsfaktor G(s) =K [y

Amplitudfunktion: 6|
Glw)| =K . /

Fasfunktion:

[Glw) =" / T
/6

Integration G(s) =1/s : |G|

. S 10
Amplitudfunktion: -20dB/dekad

IGlw)| ==

w

10

Fasfunktion: 0,1 !

Glw) = —90°
L.@)- — e — S —

o/ 1

Derivering G(s) =s LG_

Amplitudfunktion: |
10

|G(w)| =w
Fasfunktion: 0,1 !

[G(w) = +90°

0.
Gl

+20dB/dekad

10

~J
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Dodtidsfaktor G(s) =e ™~ i - )
G
Amplitudfunktion: ]/L
Gl)| =1 ; ”
s
Fasfunktion: 180 B o
G(w) = —w(—;L) 7\ _ 180°
(e N\ 4
\
X
Forstagradsfaktor i nimnaren G(s) =1 I(1+Ts)
Amplitudfunktio?: 1/r A
Gl == T :
1+ (Tw) 1
Fasfunktion: 3dB
/G(w) = — arctan (Tw) |6l -§Oda;
eka
)
% T
—_— 0°
6 ~k=———-| 45°
________ — e 900
Forstagradsfaktor i tiljaren G(s)=1+Ts
Amplitudfunktion: I g *204d8 )/dek ad |
|G(w)| =V1+ (Tw)?
Fasfunktion:
[G(w) = arctan (Tw) h/r
! 't
________ = 900
L+ = s
— ' Oo
T
5 _ 1
Andragradsfaktor i nimnaren G(s) = ——-————1 T o o
Amplitudfunktion:
|G(w)| =

V(I - TPo) + (2tTw)

F iomn:
asfunktion 26Tw

G(w)= —arctan (W)
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IGI 20 log |G| dB
fi og |G|

EF e e B
3
2
T
1':01 i "Q.Z 1 '.F ! iIJO—J
: = h‘-.__ rad/s | 0
0.5 L . — (05
-y
= < =§:1,0
i - Xi
0.2 \\
e LI [ e SN COE. SN PR KON (P 1 S COOSH IR | X
0.11-20 \\E\
0.05 ""-\
\\
] o s 9
0.02 ~ X 1
S ST R (P, | SO L O i —"'-r!-.s!_-__:__':":i'.\';—%-.._.. -180
0.01 10 i
PI- och PD-regulatorernas Bodediagram
161 § -20d8 /dekad | (G
Amplitudkurva ’
wh= ']_—I-
oG
- - 90°
Faskurva
Pl-regulatorns Bodediagram
161§ Wi
Ampli tudkurva
+ 20dB/dekad wp =%
" |
: +63° +90°
|
: Faskurva
f + B W
wp wp 2wy 0°

PD-regulatorns Bodediagram

=)

lertekn

ingireg
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Nyquists forenklade stabilitetskriterium

Ett iterkopplat linedrt system &r stabilt om amplitudforstarkningen
hos kretsoverforingen |G,| &r mindre dn ett vid den frekvens dar

==
&

fasvridningen /Gy ar — 180 grader. —

Kretsoverforingen Gy = GzGplg

w, = Sjilvsvangningsfrekvensen (den frekvens dér /Gy = — 180°%)
w. = Overkorsningsfrekvensen (den frekvens dar |Gkl =1)
. . I
A, = Amplitudmarginalen  Am=1=—7—77
d " Gy (@)
@.. = Fasmarginalen D=180+ [Gk(w)

Stabilitetsmarginaler ur Bodediagram for Gy

|Gl 4G

101

0,717

+-90°

-180°

Algebraiskt stabilitetsvillkor

For att ett linedrt system G(s) = B(s)/A(s) ska vara stabilt
fordras att samtliga rotter till systemets karakteristiska ekva-
tion A(s) = 0 (systemets s k poler) ir beldgna i den vénstra
delen av det komplexa talplanet.

2,

Stabilt

70,

.’m

o

N
N

> He

\\\\
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Rouths metod

Karakteristisk ekvation:

B, + B~ + B, +...+B,=0 dir B,>0

Talschema:
B,B,— B,B
s | By B, By By .. | dir C=—Tp—2
1
s/ | B, B, B; B,
_ CI - 3134;13035
g 6 € ..
s | D, D, D, ... c2=B’B{’B‘B”B"
1
0 _CUBJ—BIC!
etc

Systemet 4r stabilt om alla koefficienter i den fdrsta kolumnen ir
positiva.

Kvarstaende fel
(vid enhetsiterkopplade system, dvs G;=1)

. Y P
o Vid stegformade borvirdesdndringar g = fl_f_?; 1+ G:G,

(a = steghdjden)

" - u L ; h
o Vid rampformade bérvirdesindringar &= fﬂm

(h = rampens lutning)
e Vid stegstérningar e, = lim

(a = steghdjden)

Snabbhet

1,4

W,

Stigtiden £, ~
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Ziegler-Nichols metod for PID-instéllning

Regulatortyp Parametrar
K TI—— TD
P-regulator 05K, = -
PlI-regulator 045K, 0,85T, -
PID-regulator 0,6K, 057, 0,1257,
déar
K, = Den forstirkning som ger sjalvsvéngningar vid P-reglering
£ o d
|GP(wrr)4
och
T, = Periodtiden fér motsvarande svdngningar
-
Wz
Framkoppling
Mdrgivare for
stérning Seorning V
G2
(Regularor,__¥_ _i i—rargsﬂ 3 —"_-‘I
I| Za NI =4
irstm | | ! + | ur-
f;:de %R I'% i e signal
| R N — | e =
Gr
Mdtgivare for
utsignal
ye e Y
Valj Gp= G5,

z-transformen

Definition pa z-transformen
F(z) = Y .f(k) z™*
k=0

dar f(k) = tidsfunktion och F(z) = transform

—
[\®}
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Tabell 6ver de viktigaste z-transformerna

Tidsdiskret z-transform F(z)
funktion f(k) Positiv Negativ
k=0 representation representation
Enhetspuls P, (k) 1
z 1
Enhetssteg S, (k) oy 7=
Enhetsramp f(k) = k| —2 il
(a1} (1-27)
~F y il
Enhetsparabel (22:_ Ij 3 -é—%j-
flk) =k
Exponentialfunktion -4 £ =7
z—a l—az
) = a*
Fdrdrdjd enhetspuls ﬁ g
P,(k~L)
Fordrsi 7 e z7n
ordrdjt enhetssteg e T
S, (k—L)
~ak Z 1
¢ z—e™" 1-¢z"!
sk z-Sinw z lsinw
Z—(2cosw)z+1 1-Q2cosw)z™!+ 272
-1 -1
X zZ(z —cosw) z71—z""cosw)
e Z—(2cosw)z+1 I—(Qcosw)z™! +z7*
ik z(1 —e™) g
(z—1)(z—e™ (I-z)(1-e?z7)

Rékneregler for z-transformen

Superpositionsregeln

Z[afj(k) +bfy(k)] = aF(z) + bFy(z)
Foérdrojningssatsen

Z[f(k— L)]=F(z)-z*
Begynnelse- och slutvirdessatserna

£0) = lim F(z)

z—®

lim f(k) = lim (z—1) F(z)
z—1

k— @

Formelsamling i reglerteknik



Diskretisering
Steginvariant transform:

) = (1- ) Z[L66) Drcs]

Tabell for diskretisering

Tabell for diskretisering av kontinuerliga processer under antagande
om styckvis konstant insignal. Samplingsintervallet = A. (Steginvariant
transform)

Formelsamling i reglerteknik

Kontinuerlig process Diskretiserad process
G(s) ' H(z)

K K(1—e™T) _ K(l—-e"*T)z!
I+Ts z—e M7 ] —e ¥
K K-kt _ K h-z!
$ ‘ z—1 1-z7!
e gl

ST M o Ty By,
(e I+=)z7 + (1= (1+=))z
K KT T T

s(1+ Ts) 1—(1+e Mzl +e Mz

K K(I1 —cosah) (z7'+27%)
s*+a a (I-2cosahz™ +27)
K KK (427
il 2 (I-2z"'+z7)

Lineir algebra — nagra formler

Multiplikation av 2 X 2-matriser:

[“u au} . [bu b12:| _ [a”b” +apby  aubpt af?bzzJ

ay  ayp| by bx y by + apby  aybpp +anty

Enhetsmatrisen:
10
= [0 1]

Invertering av en 2 X 2-matris:

-1
[a“ alz} _ 1 [ ayn "au}
a;; Ay a8y — G5 d;; | =4 9n

Determinanten for en 2 X 2-matris:
a, a

der [ N Iz] = a8z = 41
Gy G2

Invertering av en allmén matris:

A=t

det A
dir elementen i C-matrisen bestams av C; = (=1 )i*! det Mjoch dér M;
4r den matris som erhalls da rad i och kolumn ; i A-matrisen stryks.

—
=



Minsta kvadratmetoden

Overbestimt ekvationssystem
y=A-r

"Felutjamnat™ ekvationssystem
ATy=(ATA)r

Ldsning

r=(ATA)"'ATy

dar

y = utsignalvektorn
A = mitdata-matrisen
r = parametervektorn

Frekvensanalys

Om insignalen till ett lineart, stabilt tidsdiskret system H(z) &r sinus-
formad med viss frekvens w, blir dven utsignalen sinusformad med
samma frekvens w. AmplitudfSrstarkning A och fasvridning @ bestams

av funktionerna:
A(w) = |H(e")] () = [H(e™)

Lagfrekvensforstirkning K, .= H(I)

Aliaseffekten intriaffar om samplingsfrekvensen f; 4r ligre an dubbla

insignalfrekvensen f.

fi<2f

Stabilitet

Im

/

N
N\

For stabilitet hos ett tidsdiskret system H(z) = B(z)/A(z) krivs
att samtliga poler 4r beldgna inom enhetscirkeln:
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Schur-Coons stabilitetskriterium

Karakteristiskt polynom A(z) =a,2" + 4,z ' +... +a,

dar a,>0.

b,=a,a;,—a,a,_; for O<i<n-—1I
Ci=b0bf bn—fbﬂ—f-i fﬁ)r 051&”"‘2
d;=¢pC;— CpzCpoz—i for 0<i<n-3
etc

Systemet ar stabilt om och endast om:

a,>0, by>0, ¢,>0, ...

Kvarstaende fel

(vid enhetsaterkopplade system)
Vid st de borvardesindri = lim ———
o Vid stegformade borvardesindringar €, 51_':711 7T HRHP
(a = steghojden)

. . Sl h
R q
e Vid rampformade borvirdesandringar e, = fzﬂ RS

(h = rampens lutning)

; - —Hpa
e Vid stegstorningar lsz TE H &0
(a = steghdjden)
Polplacering
I_ SR e e e
|
| + ! L U 8(z)
B 0 | ol Hiz) = ) =
I |
D(z) =
| l
S
Gradtalsregler n,<n, +n, — 1
I‘Ic = nb _— 1
wy=h,~l (Obs! Vid negativ representation)

Clz)=1+cz " +cz?+...+¢,z
D(z)=dy+d;z +dz 7 +.. . +d, 2"

Onskat karakteristiskt polynom
Pz)=(1-pz )1 -pz)-...(1=pz")
Polplaceringsekvationen

A(z) C(z) + B(z) D(z) = P(z)

Om integralverkan anvinds s ska faktorn (I-z7"ingaiC- polyno~
met. Vid berikningarna av gradtal ska integralfaktorn dock ingd i A-
polynomet.

P(1)

Borvirdesfaktorn K, = W

(Y
(=)
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Kompletterande formler-
tillstandsmodeller mm

Grundliggande lag for roterande system

YM=J-0

dar ZM = summan av alla vridande moment (Nm)
J = troghetsmomentet (kgm® )
© = vinkelaccelerationen (rad/s*)

Virmeforlust genom vagg
PUT =k(T2 —-_T;)’

dir k = virmegenomgéngstalet (J/Ks) , Pyr = varmeforlusten (W)
Formel for berdkning av k

_AA

X

k diir A = arean pé viiggen (m®), A= virmekonduktiviteten

(J/Ksm) och x = véggens tjocklek (m)

Virmekonduktiviteten = matt pd hur bra ett dmne leder virme. Hittas i fysikaliska
tabeller. Exempel:

Stal A=45J/Ksm
Glas A=0,93 J/Ksm
Furu A=0.35 J/Ksm

Luft A=0,025 J/Ksm (giller stillastdende luft)



Modellbaserad dimensionering

Gp -G G,
Gror = ‘_li"‘_fﬁ"'“ = G0g = 107

Otto-Smith-regulatorn
E + u

—
r N

e-Ts

A

regulator dimensionerad for den dodtidsfria processen.

Q
=
I

Gp = modell av process som ska regleras, med dddtiden borttagen.

Digital implementering av analoga regulatorer
Steginvariant transform

H=1a —z_I)Z{L“l(@] }
S Ji=kn

Rampinvariant transform

(z 1) _I(G(s))
o B o Bl 5
H(z) e [L = .

Bilinedr transform (dven kallad Tustins metod)

s 2=l
h(z+1)
Euler-transformen (Euler-bakat)
L 1)

zh



Tillstandsmodeller

Allménna tidskontinuerliga system

Ti]lsténdct hos ett system definieras som den information som behovs om ett system (vid
tidpunkten noll) fér att tillsammans med senare insignaler kunna berikna systemets fram-
tida beteende,

Ett allmént system kan beskrivas pA tillstdndsform:
x(t) = f(x,u,1) |
{ } (1)
y() = g(x,u,1)
ddr foch g dr godtyckliga funktioner, x 4r en n-kolonnvektor kallad tillstindsvektorn, u 4r

en m-kolonnvektor (insignalvektor) och y dr en k-kolonnvektor (utsignalvektor). Ett system
dr av n:te ordningen om tillstdndsvektorn har n komponenter.

Linedra tidskontinuerliga system

Grundekvationer
For linedra system géller:

x(1)= Az +Bu
= Cx + Du
med matriserna A, B, C, D av dimensionerna (n X n), (n X m), (k Xn) och (k X ).

Karakteristisk ekvation
det(s/I-A)=0

Tillstandsmodell till dverféringsfunktion
G(s)=C(sI-A'B+D

Linearisering
Linearisering av ett allmént oline#rt system (1) kring den stationéra punkten x, y,, Uy

{Ax = AAx+BAu < o
Ay = CAx + DA
c-%| p.%
ox u
X0, Y0 ‘ x0:Yo

Byte av koordinater

Lat z= Tx: Da fas:
(t)=TAT "'z +TBu
y(£)=CT 'z + Du



Overfdringsfunktion till tillstandsmodell
Ett dynamiskt system med dverforingsfunktionen
s s R L B,

n-1

+..+a,

G(s):b1 +D

s"+ a8

kan alltid skrivas pa foljande tillstdndsformer:

Styrbar kanonisk form Observerbar kanonisk form

-a; —a, -a,, -a,| [1] [ —a, 1 0 0 [ b, ]
1 0 0 0 0 -a, 01 -+ 0 b,
=1 D 1 0 0 |'x+{0w x=| : £ x| P |u
: : ; : 0 -a,, 0 0 - 1 b, _i
| 0 0o - 1 0 | 1 0] | —a, 00 0] b, |
y=[b b b,] x y=[1 0 0 0]x
Diagonalform

Om overforingsfunktionen kan partialbriksuppdelas i en summa av forsta ordningens gver-
foringsfunktioner (se nedan), dvs om systemet har reella enkelpoler, kan det ocksd skrivas
pé diagonalform enligt foljande:

G($)=%+%+~-+%+D
4, 0 0 o] 8]
0 A, O 0 B,
x={0 0 A, O |'x+|fB5|u
: . : : : Systemets karakteristiska ekvation, liksom
. Ao 5. | dess overforingsfunktion, 4r invariant under
= [V} Y2 ¥ ] -x+ Du koordinatbyte.



Tillstandsaterkoppling

Allmént {x = Ax + Bu

Om systemet
y=Cx

aterkopplas med regulatorn u = —Lx + K r
. x=(A-BL)x+BK,r
erhélls det slutna systemet
y=Cx

Om systemet ir styrbart kan man vilja L s att det slutna systemet fir 6nskad polplacering.
Bérviirdesfaktorn K, viljes ddrefter normalt s att det totala systemets légfrekvensforstark-

ning blir ett, vilket kriver:

K, =(c(BL-A)" B)‘]

Styrbarhetsmatrisen
S=[B AB A8 - A"'B]
Systemet r styrbart om matrisen S har full rang, dvs rang(S) = n, dir n 4r systemets ord-

ning.

Observerbarhetsmatrisen
F

CA
0 =| €A®

-
[CA™™ |
Systemet ir observerbart om matrisen O har full rang, dvs om rang(0) = n, dédr n 4r syste-

mets ordning.

Tillstandsrekonstruktion
For ett tidskontinuerligt system med mitsignalen y:
x=Ax+ Bu
{ y=Cx
kan tillstindsvektorn x(¢) skattas med observatdren
%= AR() + Bu() + K[y(1) - Cx(t)]
For observationsfelet e(f) = x(t) — x(¢t) giller vid avsaknad av storningar
e(t) = (A—KC)e(t) ’

Observatorsdynamiken bestims av egenvirdena till matrisen (A-KC). Om systemet ir
observerbart kan observatéren dimensioneras genom att valja K si att matrisen (A-KC) far

ldmpliga poler.



Multivariabel reglering

Process med tvd in- och tvd utsignaler

|:Yli|=1:Gll Gl2:|_|:UI} uy Gy(ls) + "
Y, Gy Gyp] U, ; +
. G21fs)
Matt pa interaktionen e
1215
o ] ‘ —-L—: i
Jm—;?:ix;wlj(.]w) (7] 1 622(5) ¥
. ) = sz(jm) i GZI(jm)
dir J(G®) =G, (jw) Guljo)
Statiskt sdrkopplingsfilter
£y 2 [G“w) Gu(0>]“
star G21 (O) G22 (O)
Aterkopplat multivariabelt system
Definitioner
' RJ E[ " Uj’ _ [YI] &
R = [Rz] E= [Ez] U—[Uz] Y= Y Ri % £ 5 Ul‘ G”
5 G2y
F:[’ ] G—[G” Giz G
0 R =Gy Gy 12
Rz + E. U
2 2 21_. o

s : ; F2
Total matris-6verforingsfunktion = i

L—Yr

H, = %= ([+GF)'GF

Overféringsfunktion pa komponentform

H, = “I_IiFI(Gu‘*'FE(GuGzz—Grszz)) - EGp
N EGy B(G2n+ F(Gi/Ga ~ G Gyy))
dir N=(1+G,F)(I + G,F,) - G,,G,F/F,=

2232

Karakteristisk ekvation

(1+GyF)(I1+GyF) - G\,G,F\F,=0



Stegsvarsanalys

Process med s-format monotont stegsvar

Det férekommer att man kinner stegsvaret for en process — se exempel i vidstdende figur —
och man vill ha en sa enkel matematisk modell som méjligt. Om modellen kan bestd av
endast tvd tidskonstanter, som har kallas 7 och a7, kan man bestimma 6verforingsfunk-
tionen med hjélp av slutvdrdet samt tidpunkterna nir 1/3, respektive 2/3 av slutvérdet upp-
natts. Man utnyttjar d4 framtagna diagram, dir man far fram dels a, dels en storhet P som
ingdr i virdet av 7. Diagrammen bygger pd storheten Q som idr kvoten mellan £, 5 och t,,.

\
100 % Ks
66,7 %
Q = rzi 33‘31:%
L3
> f
fys
tass
ned e
n=73 n=2 P
0 \
10 114 \
» TN
\ 112
05
N \
\ 11
\\ N \\
: \\\‘==§T=- Zﬂj \\\:
\\g "
0 109
16 18 20 22 24 26 a 16 18 20 22 4k 250
t2/3
Vid process med tvi tidskonstanter: P }a)
O = T Toa+ aTs)

Om diagrammen visar att det inte rdcker med tvé tidskonstanter kan man fa en bra modell
om man riknar med tre tidskonstanter, varvid dessa hér valts till 7, aT och a”T. Foljande
formler géller da:

IZIB

Pl+a+a®)
K

= A+ 7o) + als)(1 + a’Ts)

Vid process med tre tidskonstanter:

G(s)




Andra ordningens process med 6versving
1) Bestdm parametrarna K, T, och d med hjilp av stegsvaret (antag att insignalstegets
héjd = 1):

To

d=

0 L f

2) Bestim den relativa ddmpningen ¢ och oddmpade egenfrekvensen @, med hjilp av ned-
anstdende formler, och ddrefter overforingsfunktionen G(s).

1

2 &
SR 1 2
e (mdj T = Gy o
o7 $* +26w,s + W}

\a)O:TOVl—GZ

Fullstandiga Nyquistkriteriet

For att undersoka om den karaktiristiska ekvationen 1 + G,G,G = 0 har nigra nollstéllen
i hogra halvplanet, dvs om det aterkopplade systemet 4r instabilt, understks argumentvaria-
tionen for kretsoverforingen Gy = GpG,G lings den s k Nyquistkonturen.

Ajo 4 Im Gy(w)
\: ‘4\ r'
I e Lo
" h ' L B , Re Gg(w)
Poliorigo | & /
hos Ge(s) | .~
Nyquistkontur i komplexa talplanet. Nyquistdiagram = Avbildningen @ — G (j®)

lings Nyquists kontur i s-planet.

Stabilitetsvillkor:
Lat: Z = antalet nollstdllen i HHP hos 1 + G,.
P = antalet poler 1 HHP hos G,.
N = antal medurs omslingringar kring punkten (-1,0)

D4 galler att Z = P + N, dvs det aterkopplade systemet 4r stabiltom NV + P = 0.

Kommentar: Eventuella poler pd imaginidraxeln for G, kringgés med halvcirklar vars radie
gar mot noll.



Multivariabel reglering — Extra formler

Process med tvad in- och tvd utsignaler

{K}:[Gn G12i|.|:U::l uy 1 Gyls) | ¥
.0 [Gn Gn] U, N\ .
Gails)
Matt pa interaktionen
: Giz2(s)
+
Jmax::g":iim \J(J(U)\ up Gols) 5
. Doy — Gp(j®) Gul(j®)
dar J(jo) =G, (jo) Galjw)
Sarkopplingsfilter
) {Gucm Gua‘»r
srar G21 (0) G22 (0)
Aterkopplat multivariabelt system
Definitioner
‘ R E; UI - Yn'] .
R = [Rﬂ E= [EZ] U=[U:J be [Yz R+~ A, Ei E A Gy s T
L Gzt
S L R "
j G Gz Ry +  Ez U
2 2} 1T Y,

F2
Total matris-overforingsfunktion ¥ i

H

fot

= X~ (1+GF)'GF

Overforingsfunktion pé komponentform

H, = L[E(Gu +B(GnGn - GrGa)) £Gy,
N £ Gy F(Gan +F(Gy G2 — G12Gy1))

dir N=(1+ G, F )1 + G,F,) - G,,G,F F,=

Karakteristisk ekvation

(1 +G,F)(1+ GyF,)-G,,G,F,F,=0



