
Formelsamling Linjära system 

Fouriertransformen 

Funktionen )(tf  är reellvärd och periodisk med perioden T  och därmed grundvinkelfrekvensen 0ω  

som ges av πω 20 =T  

 

Analoga signaler 

PERIODISKA EFFEKTSIGNALER 

 

KOMPLEX FOURIERSERIE 

En periodisk signal ( )tf  med perioden T  kan skrivas 
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REELL FOURIERSERIE 

En periodisk signal ( )tf  med perioden T  kan skrivas 
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ENERGISIGNALER 

Funktionen )(tf  är reellvärd och absolut integrerbar:  
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Diskreta signaler 

 
[ ]{ }nx  är en tidsdiskret funktion (signal) som uppstår när ( )tx  samplas med frekvensen sf . 

De diskreta tidpunkterna ges av  sTnt ⋅=  
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vinkelfrekvens hos ( )tx . 
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Periodisk effektsignal:   

 

[ ]nx  är en periodisk effektsignal samplad  N gånger per period, så att sTNT ⋅= , där T  är periodtiden 

hos den signal ( )tx   som samplas. 
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N = signalens period (antal sampel per period) 
 
 
Diskret fouriertransform , DFT 

 
Den diskreta Fouriertransformen [ ]kY  för en signal [ ]ny  definieras som 
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Signalen [ ]ny  kan återvinnas ur sin DFT [ ]kY  enligt 
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Laplacetransformen 

 

Definition:    ( ) ( )∫
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 Tidsfunktion Transformuttryck 
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INVERTERINGSSATSERNA 
 
Vi betraktar rationella uttryck av typen )(/)()( sNsTsF = , där )(grad)(grad sNsT <  

 
1. 

En enkelpol as =  till en rationell laplacetransform  )(/)()( sNsTsF =   ger vid 

inverstransformering upphov till en term  atA e⋅  ,  där konstanten  A  kan beräknas enligt 

formeln 
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En pol  as=   av multipliciteten  n   till en rationell laplacetransform )(/)()( sNsTsF =   ger vid 

inverstransformering upphov till en term ( )tf1  i tidsuttrycket som kan beräknas enligt följande 

formel: 
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3. 

Ett komplexkonjugerat polpar  ωα j±=s   av multipliciteten 1 till en rationell laplacetransform  

)(/)()( sNsTsF =   ger vid inverstransformering upphov till en term    )cos(e ϕωα +⋅⋅ tA t  ,   där 

de reella konstantern   ϕ och A    kan bestämmas med hjälp av följande samband: 
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BEGYNNELSEVÄRDESSATSEN 

Om  )(grad)(grad sNsT <   gäller      )(lim)(lim
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SLUTVÄRDESSATSEN 

Om alla poler till  )(sFs ⋅  ligger i det vänstra komplexa halvplanet, gäller 
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z-transformen 

Definit ion:  ( ) [ ]∑
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Dämpningssatsen:   
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INVERTERINGSSATSERNA 

Satserna avser bestämning av tidfunktionen ]}[{ nx  svarande mot transformen  
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där )(zT  och )(zN  är polynom med reella koefficienter och  där )( grad)( grad zNzT < . 

Satserna avser vidare det fall att polerna är  av mult ip lici teten 1.  

 
1. 

Om cz =  är en enkelpol, reell eller komplex, till transformen ovan ger denna som bidrag vid 

inverstransformeringen en term i den tiddiskreta funktionen ]}[{ nx  av formen  }{ ncK  

där konstanten K  kan bestämmas enligt formeln 
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2. 

Om az =  är en reell multipelpol med multipliciteten m  kommer [ ]nx  att innehålla termen  
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3. 

Om Ωjrjbaz e1 =+=  och Ωjrjbaz −=−= e2  är ett komplexkonjugerat polpar till transformen )(zX  

ovan ger detta polpar som bidrag vid inverstransformeringen en term i den tiddiskreta funktionen 

]}[{ nx  av formen )}cos({ ϕΩ +nnrA  

där konstanterna A  och ϕ  kan bestämmas enligt formeln 
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GRÄNSVÄRDESSATSERNA 
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Komplettering till bokens formelsamling 

Komplexa tal 
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Rektangulär form:    z = x + jy  x = r⋅cosϕ   och  y = r⋅sinϕ 
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Några prefix 63369 10M10k10m10µ10n ↔↔↔↔↔ −−−  
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Elektriska kretsar 
 

 Tidplanet   s-planet 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

Några elektroniksamband 
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