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Foreword

The material in this book was developed for an undergraduate course in computa-
tional electromagnetics, initially given by Professor Anders Bondeson at Chalmers
University of Technology, Goteborg, Sweden. It was used in various forms for
almost a decade and it fostered a number of engineers who today work in academia
and industry with computational electromagnetics as a main tool. During this time,
we never managed to find any textbooks suitable for an introductory course on the
subject matter, so we eventually decided on compiling our material into a book.
The first edition of the book was published in 2005 and now, seven years later, the
second edition is completed with new material that hopefully makes the book even
more useful. In particular, we wish to thank students, readers and reviewers around
the world for contributing with important feedback on the book.

On the 20th of March 2004, before the first edition of the book was completed,
Professor Anders Bondeson passed away, suddenly and unexpectedly. This caused
shock and deep sorrow to all of us who worked with him, and naturally interrupted
the creation of the book. Nevertheless, we felt we should complete the first edition
of the book, and we would like to thank the publisher Springer for all the under-
standing, support, and encouragement during the difficult time after the passing of
our coauthor, colleague, friend and former advisor. In particular, we would like to
thank Donna Chernyk, Achi Dosanjh, Jamie Ehrlich, Yana Mermel, Brian Halm,
and Frank McGuckin at Springer. We are also grateful to the anonymous reviewers
who contributed with valuable comments on the manuscript.

We dedicate this book to the memory of Anders Bondeson.

Goteborg Thomas Rylander
Piér Ingelstrom
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Preface to the Second Edition

The first edition of this book was published 7 years ago, and since then it has been
used for courses and self-study around the world. We have received many useful
comments on the presentation of the material and the contents of the book from
students, lecturers, researchers, and other readers. In addition, we have used the
book ourselves for various courses that we teach on computational electromagnetics
(CEM), where we received direct feedback from our students on the book as a source
of information and its pedagogical development of the topic. Given the collection
of all comments that we received in combination with our own experience, we have
complemented the second edition of the book with material that we believe will
help the reader to learn the subject matter. In particular, we have strengthened the
discussion concerning numerical techniques for the first-order system of Maxwell’s
equations and, as a consequence, their relation to the corresponding second-order
differential equations. For finite-difference schemes, this is manifested in terms of
the staggered grids that are used to represent the electric and magnetic fields, where
particular emphasis is placed on analysis with complex exponentials. In the context
of finite element methods (FEMs), the first-order system is treated by means of
expanding the electric field in terms of curl-conforming elements and the magnetic
field in terms of divergence-conforming elements. This representation associates the
electric field with edges (referred to by some authors as a primal grid), and, similarly,
the magnetic field is associated with faces (which may be thought of as a dual grid).
In particular, for brick-shaped elements it is rather apparent that the primal grid and
the dual grid together make up the staggered grids that are used for finite-difference
schemes. Furthermore, we have incorporated a new Appendix B that features
the lowest-order curl-conforming and divergence-conforming basis functions on
the most common finite element shapes: the triangle and the quadrilateral, the
tetrahedron, the prism, and the hexahedron. The automatic generation of symbolic
expressions and vector field visualizations for these basis functions is provided in
terms of a MATLAB implementation that can be downloaded from a URL provided
at the end of this preface. The presentation of the material is further improved by
cross references between the description of the finite difference schemes and the
FEMs. In addition, the presentation of both finite differences and finite elements

ix
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references the material in the new Appendix B, which may be useful for obtaining
a unified perspective on CEM. In a similar fashion, the chapter on the method of
moments (MoM) exploits this new Appendix B.

Appendix B on the lowest-order curl-conforming and divergence-conforming
basis functions also contains basis functions for nodal elements (i.e., gradient-
conforming basis functions), a definition of reference elements, and suitable
quadrature rules. The concept of the reference element is useful for the imple-
mentation of the FEM (and MoM), where the reference element is related to the
physical element by means of a mapping. The mapping is expressed in terms of
the nodal basis functions, and the evaluation of discrete operators is formulated in
terms of numerical integration (or quadrature) on the reference element. This type of
approach is at the heart of most finite element programs and is particularly useful for
problems that involve inhomogeneous materials or nonlinear materials. The second
edition of the book contains a new Sect. 6.6 that describes in detail the concept of the
reference element and its relation to the physical element by means of a mapping,
where integration on the reference element is also featured. These concepts are
presented with the triangle as an example, and references to the new Appendix B
are used extensively to demonstrate how the techniques generalize to other element
shapes. In addition, the new Appendix B is very useful as a source of information
for computer implementations, where the reader can select and combine different
discretization techniques that are suitable for the specific situation at hand. We have
also added a new advanced real-world problem in Sect. 6.6.4 that demonstrates the
use of all these techniques, where we solve a 3D eigenvalue problem formulated in
terms of the FEM on tetrahedrons applied to the first-order system of Maxwell’s
equations with inhomogeneous and lossy media. The theoretical formulation is
described in detail, and the complete computer implementation is included in the
material that can be downloaded from the Internet, at the URL provided at the end
of this preface. Also, we present some results in terms of 3D visualizations for a cir-
cular cylindrical cavity of finite length and discuss their relation to the conventional
analysis. In addition, we solve a more challenging problem with inhomogeneous and
lossy media in a cavity. The reader can easily modify the computer implementation
to study, e.g., driven problems in the frequency domain or exploit the computer
implementation provided here as a platform for more advanced programs with other
features such as radiation boundary conditions, transient analysis, and nonlinear
media. The book also contains material on numerical methods that exploit higher-
order approximations, and this is demonstrated in particular in Sect. 3.3, which
provides a method for deriving higher-order finite-difference approximations.

The second edition of this book also features a new Appendix A with five
computer projects: (1) convergence and extrapolation, (2) finite differences in the
frequency domain, (3) finite-difference time-domain scheme, (4) FEM, and (5)
MoM. This collection of projects covers the material presented in the book, and
the projects are designed to progress the knowledge and skills of the reader. They
are useful for learning and understanding the material in the book and could be
used as assignments in a course. Such assignments could be examined in several
different ways such as (1) oral examination in a computer-laboratory setting, (2)
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presentation in a classroom setting where students and teacher ask questions, or (3)
student-authored written reports. Experience shows that it is useful to let students
work in small groups. This approach gives the students the possibility to present,
challenge, and discuss different ideas on how to work on the assignments.

To our knowledge, the open literature is sparse on books that present contempo-
rary CEM in an introductory manner that is appropriate for use at the undergraduate
level. This book is intended to provide such material and prepare the reader for the
more advanced literature on CEM. Apart from this text, the book by Davidson [22]
and the book by Sadiku [68] are some of the very few other examples with such
an aim. Additional books that present the main computational techniques in CEM
have been published in recent years. Those by Garg [29] and Jin [42] contain a fair
amount of classical analytical calculations for Maxwell’s equations apart from the
basic techniques in CEM. Warnick [88] and Sheng [72] have a stronger focus on
CEM; in addition, Warnick [88] also discusses numerical techniques in somewhat
more general settings.

The MATLAB implementations given in this book, together with the MATLAB
implementations that support the projects in Appendix A and some other useful
programs, are available for download at http://www.springer.com. We would appre-
ciate it if errors found were brought to our attention. These will be posted on the
aforementioned Web site.


http://www.springer.com.
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Chapter 1
Introduction

Our modern society relies on electromagnetic devices and systems: television, radio,
internet, microwave ovens, mobile telephones, satellite communication systems,
radar systems, electrical motors, electrical generators, computers, microwave
filters, lasers, industrial heating devices, medical imaging systems, electrical
power networks, transformers and many more. Each of these examples is used
in a broad range of situations. Radar, for example, is employed for fire-control,
weather detection, airport traffic-control, missile tracking, missile guidance, speed
control/enforcement, and traffic safety. Undoubtedly, electromagnetic phenomena
have a profound impact on contemporary society.

The understanding of electromagnetic phenomena is treated by electromagnetic
field theory: the study of interactions between electric charges at rest and in motion.
(Electric charges in motion are often referred to as electric currents.) Electromag-
netic field theory, or electromagnetics for short, describes the interactions between
electric charges by Maxwell’s equations: a system of coupled partial differential
equations that relate sources (charges and currents) to the electromagnetic fields and
fluxes. Analytical solutions in closed form are known for only a very limited number
of special cases, which hardly ever are directly applicable to real-world applications.
Instead, more or less crude approximations have been employed in various attempts
to bridge the gap between theory and advanced applications.

The advent of computers has changed our ability to solve Maxwell’s equations
in a profound way. Ahead of the computer’s time, it was advantageous to use
considerable effort to avoid computations, often at the price of lengthy analytical
manipulations and severely reduced applicability. With powerful computers at
hand, however, it is more attractive to use analytically simple methods that may
require large amounts of computation. Such computational methods can treat large
classes of problems without modifications of the computer algorithms or programs.
The part of electromagnetics that deals with computational methods is known as
computational electromagnetics (CEM).

It is of significant importance for modern engineers and scientists who work in
the area of electromagnetics to have a good command of the computational tools

T. Rylander et al., Computational Electromagnetics, Texts in Applied 1
Mathematics 51, DOI 10.1007/978-1-4614-5351-2_1,
© Springer Science+Business Media New York 2013



2 1 Introduction

developed for electromagnetics problems. CEM allows for a faster and cheaper
design process, where the use of expensive and time-consuming prototypes is
minimized. These tools can also provide crucial information and understanding of
a device’s electromagnetic operation, which may be difficult or even impossible to
achieve by means of experiments or analytical calculations. Automation of com-
putations allows for extensive parametric studies. It is only relatively recently that
optimization by computation has been used for electromagnetic design problems.
In times of a rapid pace of development, analysis and optimization of electromag-
netic devices by CEM tools may be crucial for maintaining competitiveness.

Today, there is a broad selection of commercially available computer pro-
grams that provide implementations of popular and powerful CEM algorithms.
These programs can handle many engineering and research problems. However, a
well-informed choice and correct use of software for reliable results and conclusions
require good knowledge of CEM. Furthermore, problems that extend beyond the
applicability of commercially available software packages demand modifications or
additions that again rely on a good command of CEM.

1.1 Computational Electromagnetics

CEM is a young discipline. It is still growing, in response to the steadily increasing
demand for software for the design and analysis of electrical devices. Twenty years
ago, most electrical devices were designed by building and testing prototypes, a
process that is both costly and slow. Today the design can be made faster and cheaper
by means of numerical computation. CEM has become a main design tool in both
industrial and academic research.

There are numerous application areas for CEM, and here we mention a few.
In electric power engineering, computation is well established for the analysis and
design of electrical machines, generators, transformers, and shields. In applications
to microwaves, CEM is a more recent tool, but it is now used for designing
microwave networks and antennas, and even microwave ovens. The analysis and
optimization of radar cross sections (RCS) for stealth devices has been the driving
force for the development of many new techniques in CEM. The clock frequencies
of modern microprocessors are approaching the region where circuits occupy a large
fraction of a wavelength. Then ordinary circuit theory no longer applies and it may
be necessary to solve Maxwell’s equations to design smaller and faster processors.
The increased demand for electromagnetic compatibility (EMC) also poses new
computational problems.

The performance of CEM tools is increasing rapidly. One reason for this is
the steady growth of computer capacity over half a century. Another equally
important reason is improvements in algorithms. The purpose of this book is to
give an introduction to the most frequently used algorithms in CEM. These are
finite differences (FD) (usually in the time domain), the finite element method
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(FEM), and the boundary element method (BEM), which is usually referred to, for
historical reasons, as the method of moments (MoM). Finite difference methods are
more or less straightforward discretizations of Maxwell’s equations in differential
form, using the field components, or the potentials, on a structured grid of points
as unknowns. Finite differences in general, and the finite-difference time-domain
(FDTD) method in particular, are very efficient and require few operations per grid
point. The FDTD is one of the most widespread methods in CEM, and it can be
applied to a large variety of microwave problems. One drawback of finite difference
methods is that they work well only on uniform Cartesian (structured) grids, and
typically use the so-called staircase approximation of boundaries not aligned with
the grid. Finite element methods in which the computational region is divided into
unstructured grids (typically triangles in two dimensions and tetrahedra in three
dimensions) can approximate complex boundaries much better, but are considerably
slower in time-domain calculations. The FEM is mainly used for time-harmonic
problems, and it is the standard method for eddy current calculations. The MoM
discretizes Maxwell’s equations in integral form, and the unknowns are sources such
as currents or charges on the surfaces of conductors and dielectrics. This method is
advantageous for problems involving open regions, and when the current-carrying
surfaces are small. The MoM is often applied to scattering problems. We will
discuss how the three types of methods, FD, FEM, and MoM, can be applied to
different electromagnetics problems, in both the time domain and the frequency
domain (time-harmonic fields and currents). Some other methods will be mentioned
in Chap. 8.

1.2 Maxwell’s Equations

Before discussing how to solve electromagnetics problems, we will first write down
Maxwell’s equations in the form in which they can be found in most textbooks on
electromagnetics, see e.g. [5, 19,32]. They are usually stated as Ampere’s law

oD
VxH=J+ —, (1.1)
ot
Faraday’s law
0B
VXE =——, 1.2
X o (1.2)
Poisson’s equation
V-D =p, (1.3)

and the condition of solenoidal magnetic flux density

V-B=0. (1.4)
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Here H is the magnetic field, J is the current density, D is the electric displacement,
E is the electric field, B is the magnetic flux density, p is the electric charge density,
and ¢ denotes the time variable. Moreover, we have

B
H=—-M, D=¢E-+P,
Ho
where (o = 4m - 1077 Vs/Am is the free-space magnetic permeability, ¢y =

1/(cpo) ~ 8.854-107'2 As/Vm is the free-space electric permittivity, M is
the magnetization and P is the polarization. In vacuum, the speed of light is
co = 299792 458 m/s.

In this book, we will restrict attention to linear, isotropic and nondispersive
materials for which the constitutive relations

B=uH, D=c¢cE

hold with frequency-independent electric permittivity € and magnetic perme-
ability p. The permittivity is often written as € = €p€,, where €, is called the
relative permittivity. Similarly, the permeability is often written = uop, where
W, 1s called the relative permeability.

For electrically conductive materials, an electric field causes a current density

J=0FE

where o is the electric conductivity.

1.2.1 Boundary Conditions

Consider the situation in which one medium, characterized by €; and u, shares an
interface with another medium, characterized by €, and w,. We use the subindices
1 and 2 to denote quantities that are associated with media 1 and 2, respectively.
At the interface, the tangential and normal fields must satisfy so-called boundary
conditions, which are consequences of Maxwell’s equations. For example, (1.4)
states the condition of solenoidal magnetic flux density, and Gauss’s theorem

/V-BdV:¢ B -ndS, (1.5)
14 b1

where 9V is the surface enclosing the volume V', applied to this conservation law
yields the boundary condition

n-(B,—B;)=0,
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where 7 is a unit normal to the interface that points into medium 2. Similarly,
Poisson’s equation (1.3) gives

'A"(DZ_DI)ZPM

where p; is the surface charge density on the interface. Stokes’s theorem

/(vxE)-dszgﬁ E-dl, (1.6)
S N

where S is the curve enclosing the surface S, applied to Faraday’s law (1.2) yields
nx(E,—E|)=0
and, analogously, Ampere’s law (1.1) gives
nx(H,—H,) = J,,

where J; is the surface current on the interface between the two media.

The electric field inside a perfect electric conductor (PEC) is zero and, conse-
quently, also the electric displacement. We get the boundary conditions 7 - D = py
and 7 X E, = 0 when medium 1 is a PEC. At finite frequencies, Faraday’s law
yields that the magnetic flux density is zero inside a PEC (which also applies to the
magnetic field) and we get the boundary conditions 2- B, = Oandnn x Hy = J
when medium 1 is a PEC.

Another kind of boundary conditions, which do not correspond to any physical
boundary, are absorbing boundary conditions (ABC). These are used to truncate
the computational domain in case of open region problems and can be implemented
using a variety of techniques. The most popular ABC is the perfectly matched layer
(PML), which will be described in Sect. 5.3.1.

For a more detailed discussion on boundary conditions, the reader is referred to
a textbook on electromagnetics; see, e.g., [5, 19, 32].

1.2.2 Energy Relations

For Maxwell’s equations, it is useful (and in some cases essential) to regard the
energy as being stored in the fields. For electrostatics, we have the energy density
we = €| E|?/2 and the work to assemble a static charge distribution is

1
W = E/e|E|2arV. (1.7)



6 1 Introduction

There are alternative expressions for the evaluation of W in terms of the charge
distribution and the electrostatic potential. In magnetostatics, the corresponding
energy density is wy, = |B|?/(2u). For a time-varying electromagnetic field, we
have the energy density we 4+ wp and this quantity is often used to form energy
conservation expressions that involve the electromagnetic phenomena.

1.2.3 Time Evolution

Before discussing schemes for evolving Maxwell’s equations (1.1)—(1.4) in time, we
must note that they are not all independent. For example, Poisson’s equation (1.3)
is best viewed as an initial condition for the charge density. To see this, take the
divergence of Ampere’s law, which gives

a%v.DJrV.J:o. (1.8)

Replacing V - J from the equation of continuity for electric charge

9
Pyv.s=o
ot

we see that the divergence of Ampere’s law (1.8) is the time derivative of Poisson’s
equation V - D = p. Therefore, if the initial fields satisfy Poisson’s equation, time
advancement of Ampere’s law together with the conservation of charge will ensure
that Poisson’s equation holds at later times. Similarly, the divergence of Faraday’s
law shows that the time derivative of V - B vanishes, so V - B = 0 need only be
given as an initial condition. Thus, V - B = 0 can be seen as a restriction on valid

initial conditions for Faraday’s law.
We conclude that the time evolution of the fields is completely specified by

—3 =VxH-J (1.9)
X .

¢ ot '

,u—aat =-VxE. (1.10)

This form is used in the FDTD method to advance E and H in time, as will be
described in Chap. 5. The initial conditions for this set of equations are the electric
and magnetic fields E and H, and they must satisfy (1.3) and (1.4).

The system of two first-order equations can be combined to a single second-order

equation for E:

’E 1 aJ

— 4+ VX —-VXE =——, 1.11
o TYVXVX o1 (11D
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which is often referred to as the curl-curl equation or the vector wave equation.
We will use Maxwell’s equations in this form in Chap. 6 on the FEM. The initial
conditions that need to be specified for (1.11) are the electric field and its time
derivative. In particular, FEM is generally used to solve the frequency domain form
of the curl-curl equation, sometimes referred to as the vector Helmholtz equation,
where exp(jwt) time dependence is assumed, so that the time derivative d/d¢ is
replaced by jow, where j is the imaginary unit and w is the angular frequency.

The full Maxwell equations (1.9)—(1.10) or (1.11) are commonly used for
microwave problems, such as antennas and microwave circuits. One of the diffi-
culties one has to face in solving these equations is that the computational domain
may extend over many wavelengths in all three coordinate directions, and that
consequently the required number of unknowns needed for an accurate computation
may be very large. To complicate matters, one may have to deal with complex three-
dimensional (3D) geometry, including details, such as wires, that are much smaller
than a wavelength. Moreover, microwave problems often involve open regions, and
to model this, the computational domain has to be truncated by means of absorbing
boundary conditions.

1.2.4 Dispersion Relation and Wave Velocities

The propagation of electromagnetic waves is often characterized in terms of the
dispersion relation, which relates spatial and temporal variation of a monochromatic
solution by means of its wavevector k and frequency w, respectively. Often, we
deal with nondispersive situations where the frequency is directly proportional to
the wavenumber k. When the frequency is not proportional to the wavenumber, we
have dispersion and this occurs physically for wave propagation in some media and
waveguides. However, the discretization process may also cause dispersion, which
is often referred to as numerical dispersion. In general, dispersion implies that a
wave packet containing several different spatial frequencies will change shape as
it propagates. Naturally, it is important that the numerical dispersion is small in
comparison to the physical dispersion of interest.

To provide a brief introduction to dispersion and related issues, we use (1.11) to
deduce the corresponding 1D wave equation:

2

g E(zt) = c? > E(z,t) (1.12)
atz Z7 - C 322 Zﬂ 9 .

where the transverse electric field is denoted E(z,¢). Here, the speed of light ¢ in
the medium is constant. The exact solutions of (1.12) on an infinite interval have the
form

E(z.t) = Et(z—ct) + E (z+ ct), (1.13)
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where ET and E~ represent waves traveling in the positive and negative
z-directions, respectively. This solution typically involves a range of frequencies
and, next, we consider one of these, i.e. the monochromatic case.

To obtain the dispersion relation for the 1D wave equation, we substitute £ =
exp(jwt — jkz) in (1.12), and then divide both sides by exp(jwt — jkz), which
gives w? = c?k?. Consequently, the dispersion relation for the 1D wave equation is

w = ck. (1.14)

The angular frequency w is a linear function of the wavenumber k and this implies
that all frequency components of a transient wave propagate with the same velocity.
The phase velocity v,, defined as the velocity of a constant phase surface, satisfies
(d/dt)(wt —kz) = w — kv, = 0, which gives

v, =w/k. (1.15)

Next, we consider the superposition of the two signals Ex = exp[j(w — Aw)t —
Jj(k — Ak)z] and Eg = exp[j(w + Aw)t — j(k + Ak)z]. The sum wave Ex + Ep
can be written as a carrier wave exp(jwt — jkz) times a slowly varying envelope
which is 2 cos(t Aw — zAk). We see that the propagation speed of the envelope is
Aw/ Ak and, in the limit where Aw and Ak become small, this is called the group
velocity

ow
T
The envelope can be identified with a wave-packet and, if an energy density is
associated with the magnitude of the wave, the transportation of energy occurs with
the group velocity.

For the wave equation (1.12), both the phase and group velocities are constant
and equal to the speed of light v, = v, = c. This is also evident from the
explicit solution (1.13). Given this analytical treatment, all waves propagate with
the same speed, independent of their wavenumber k. Therefore we say that there
is no dispersion. However, a numerical treatment of (1.12) will, in almost all cases,
suffer from numerical dispersion and this is discussed in Chap. 3, 4, and 5.

Ve (1.16)

1.2.5 Low-Frequency Approximation

A special case of (1.11) is the “low-frequency approximation,” used for instance
for electrical machines, generators, and transformers. The low-frequency approxi-
mation consists in setting g = 0, that is, one neglects the displacement current in
(1.11):

1 oE aJex erna
VX;VXE+05;=——3%J, (1.17)
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where the electrical current density was taken as J = 0E + Jexiema, and o
is the electrical conductivity. The low-frequency approximation gets rid of the
electromagnetic waves present in the full Maxwell equations (1.9)—(1.10) and makes
it possible to take time steps on the much longer time scale associated with the
penetration of eddy currents in conductors. However, the low-frequency approx-
imation is mathematically more complicated, because in regions where o = 0,
the time derivative of E drops out of (1.17). As a consequence, (1.17) gives no
information about V- E in the nonconducting regions, so that E itself is not actually
known. Since the low-frequency equations are important in the area of both electric
power engineering and electromagnetic compatibility, we will discuss, briefly, some
methods used to solve these equations in Sect. 6.8. Some challenges that frequently
occur in eddy current problems come from extremely complicated 3D geometry and
thin layers of currents caused by the skin effect.

1.2.6 Integral Formulation

A simple special case is electrostatics, where there is no time-dependence. For static
conditions, Faraday’s law implies V x E = 0, so that E = —V¢, where ¢ is the
electrostatic potential. Poisson’s equation then becomes

V- (eVg) = —p. (1.18)

The formulations mentioned so far are all differential equations. However,
sometimes integral equations are useful. In three dimensions, the “solution” to
Poisson’s equation in free space is

o(r) =/M. (1.19)

dreo|lr — 1|

This formulation is used in the MoM to solve for the charges on conductors needed
to produce specified potential distributions, as discussed in Chap. 7.

Similar reformulations in terms of surface integrals exist also for the time-
dependent Maxwell system. The integral equations are called the electric field inte-
gral equation (EFIE), the magnetic field integral equation (MFIE), and the combined
field integral equation (CFIE). We will derive and employ the EFIE for a scattering
problem in Chap. 7, which also contain discussions on the MFIE and CFIE.



Chapter 2
Convergence

The usage of computational electromagnetics in engineering and science more or
less always originates from a physical situation that features a particular problem.
Here, some examples of such situations could be to determine the radiation pattern
of an antenna, the transfer function of a frequency selective surface, the scattering
from small particles or the influence of a cell phone on its user. The physical problem
is then described as a mathematical problem that involves Maxwell’s equations. In a
very limited number of cases, the mathematical problem can be solved analytically
such that we have an exact solution in closed form. If there exists a solution
to the problem that can not be calculated analytically, we can approximate the
mathematical problem and pursue an approximate solution. In the context of CEM,
such an approximate solution is often referred to as a numerical solution, since it
typically involves extensive numerical computations in combination with relatively
simple analytical expressions. These simple analytical expressions are normally
applied to small subdomains of the original problem-domain, where the subdomain
solutions are related to each other such that they collectively correspond to the
solution to the original problem. The difference between an approximate solution
and the exact solution is referred to as the error. It is desirable that the error can be
reduced to an arbitrary low level such that the approximate solution converge to the
exact solution, i.e. the accuracy of the numerical solution improves.

Thus, one must keep in mind that numerical tools never give the exact answer.
The accuracy of the numerical result depends on the so-called resolution. Resolution
may mean the number of grid points per wavelength in microwave problems, or how
well the geometry of an electrical motor is represented by a finite element mesh.
If the method works correctly, the computed answer will converge to the exact result
as the resolution increases. However, with finite resolution, the error is nonzero, and
one must estimate it to ensure that its magnitude is acceptable. This is particularly
true for large systems, where it may be hard to resolve details of the geometry or to
afford a sufficient number of points per wavelength. Examples of this state of affairs
are found in 3D-modeling of electrical motors and generators, large array antennas,
and computation of the radar cross sections of aircrafts.

T. Rylander et al., Computational Electromagnetics, Texts in Applied 11
Mathematics 51, DOI 10.1007/978-1-4614-5351-2_2,
© Springer Science+Business Media New York 2013
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Applied mathematicians have derived a posteriori error estimates, which can be
evaluated after an approximate numerical solution has been computed. However,
such error estimates are only beginning to be established for Maxwell’s equations,
and discussion of these would take us far beyond an introductory course. For further
information on this topic, see, e.g., [48,69]. Nevertheless, error estimates are useful
because they can be exploited for adaptive mesh refinement in regions that give
large contributions to the error. A simpler method to estimate the error of a given
computation is to do a convergence test by increasing the resolution uniformly,
finding out the order of convergence, and then extrapolating the computed results to
infinite resolution. That is the approach we will follow.

In general, one does not know the order of convergence of a computational
method for a given problem a priori. Even though standard centered finite differ-
ences or linear finite elements converge with an error of order 4% (where  is the
grid spacing or the cell size) for regular problems, singular behavior of the solution
decreases the order of convergence in most application problems. Singularities
are introduced by sharp edges and tips of objects such as metallic conductors,
dielectrics, and magnetic materials.

2.1 Extrapolation to Zero Cell Size

We will use a very simple problem, namely to calculate the electrostatic potential on
the symmetry axis of a uniformly charged square, to illustrate how computed results
can be extrapolated to zero cell size. The square is the region —a < x < a, —a <
y < a, z = 0, the surface charge density ps(x, y) = pso is constant, and we seek
the potential ¢ at two points on the symmetry axis: (0,0, a) and (0, 0, 0). Using the
symmetry, we can write the potential from this charge distribution as

a a !
$(0,0.2) = P50 / dx’/ dy — &](Z’a)’
x/'=—a y

drey g (X4 YAV we
with
a a dy/
I(z,a) = / dx’' / : 2.1
( ) x'=0 y/'=0 (XIZ + y’2 + Z2)l/2 ( )
To do the integral I(z, a) numerically, we split the square into n> smaller squares
of side h = a/n, and on each square, apply a simple integration rule such as

midpoint integration

x+h h
/ F()dx ~ hf (x + 5) 22
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or Simpson’s rule

x+h h h
/ f(x)dxmg[f(x)+4f(x+§)+f(x+h)}

in two dimensions. The integration can be written as a MATLAB function.

13

2.3)

function pot = integr(z, a, n, rule)

% Arguments:

% b4 = the height over the plate

% a = the side of the square

% n = the number of elements along each side of the plate
% rule = a string ‘midpoint’ or ’‘simpson’ that specifies

o°

the integration rule

o°

Returns:
pot = the potential at the point (0,0, z)

o°

x = linspace (0, a, n+l);
y = linspace(0, a, n+l);
h = a/n;
zs = z72;

if (strcmp(rule, ’‘midpoint’))

% Midpoint integration

s(l:n) = (x(1:n) + h/2)
ys(l:n) = (y(l:n) + h/2)
[xxs, yys] = meshgrid(xs,ys);

int = sum(sum(1l./sgrt(xxs + yys + zs)));
elseif (strcmp(rule, ’‘simpson’))

o

% Simpson’s rule

int = 0;
for i = 1:n
X1l = x(1)72; x2 = (x(i) + h/2)72; x3 = (x(i) + h)"2;
yl(l:n) = y(l:n)."2;
y2(1:n) = (y(1l:n) h/2)
y3(l:n) = (y(1l:n) h)."2;
int = int + sum( /sqrt (x1+y3+zs)

1./sqgrt (x3+yl+zs)

4./sqgrt (x1+y2+zs)

(
2
+
+
1./sqgrt (x1+yl+zs) +
+
+
+
+ 16./sqgrt (x2+y2+zs)

/36;

end

1. .
+ 1./sqrt (x3+y3+zs) ...

4./sqgrt (x2+yl+zs) + 4./sqgrt(x2+y3+zs)...
+ 4./sqrt (x3+y2+zs) ...
)
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Table 2.1 Integral /(1,1)
from numerical integration n ['] h [m] Imidp(ly 1) [m] ISimpson(L 1) [m]

with different cell sizes 5 0.20000  0.7943230171  0.79335 94378
7 0.14286  0.79385 04952  0.79335 92042
10 0.10000 0.79359 97873  0.79335 91413
15 0.06667 0.79346 60584  0.79335 91252
20 0.05000 0.79341 92684  0.79335 91225

else

error (['Only midpoint integration and Simpson’’s rule are '’
implemented’])

end

pot = int*xh"2;

We call this function with z = a = 1 [integr (1,1, n, rule) ] and different
numbers of grid points n for rule = ’simpson’ and ‘midpoint’, and then
extrapolate the results to zero cell size to get as accurate an answer as possible. The
first step is to establish the order of convergence. Table 2.1 shows some results of
calling the function for different cell sizes h = 1/n.

We can carry out the extrapolation using MATLAB routines, by collecting the
values of /1, Inmigp, and Isimpson in vectors. Plotting /iyigp versus i to some power
p, we find an almost straight line for p = 2, as shown in Fig. 2.1. This indicates
that the midpoint rule gives quadratic convergence, i.e., Imiap(h) = Io + Lh? + ..
where [ is the extrapolated result. The term L% in the Taylor expansion of Iiyigp
is the dominant contribution to the error when # is sufficiently small, and for such
resolutions the higher-order terms in the Taylor expansion can be neglected.

We extrapolate the computed results as a polynomial fit in 4% using the MATLAB
command

pfit = polyfit(h."2,I,m)

Here, m is the order of the polynomial, and the extrapolated value of the integral
is the coefficient for h°. [With the MATLAB convention for storing polynomials,
this is the (m + 1)th component of pfit]. A first-order fit (im = 1) gives the
extrapolation 7(1, 1) ~ 0.79335 88818, second-order (m = 2) gives 0.7933591208,
and a third-order fit gives 0.7933591213.

The results from the Simpson integration fall on an almost straight line when
plotted against 4%, and we conclude that the dominant error scales as h*. A fit of
Isimpson(1, 1) to a linear polynomial in h* gives the extrapolation 0.79335 91207,
and quadratic and cubic fits give 0.79335 91202.

The correct answer to eight digits is 0.79335912. Extrapolation allows us to
establish this degree of accuracy with a rather moderate effort: a second-order fit
of the low-order midpoint rule versus 42, using data computed for rather coarse
grids i > 0.05. This gives eight-digit accuracy of the extrapolation even though the
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0.7945

0.794 1

Imidp [M]

0.7935 |

7 - - -
0793 0.01 0.02 0.03 0.04

h2 [m?]

Fig. 2.1 Values of the integral I(1, 1) computed by the midpoint rule, plotted versus />

computed data has only three to four correct digits. Thus, extrapolation can bring
very significant improvements of accuracy. Another advantage of extrapolation is
that it makes us aware of how good the accuracy is. The example shows that good
accuracy can also be obtained by using the higher-order Simpson integration, even
without extrapolation, on a grid of moderate size.

A simple way to estimate the order of convergence is to carry out computations
for a geometric sequence of cell sizes such that h; / h;+1 = h;+1/hi+>. Assuming
that the lowest-order term in the expansion of the error is sufficient, i.e. /(h) =
Iy + 1,h*, and that the cell sizes form a geometric series, one can then estimate the
order of convergence as

— I(hi) — I(hi+1) hi
_ln|:1(hi+1)—1(hi+2):|/1n|:hi+l:|‘ 2.4)

When applied to the computed results for # = 0.2, 0.1 and 0.05, this formula gives
p = 2.002 for the midpoint rule and p = 3.985 for Simpson, indicating that the
convergence is quadratic and quartic, respectively, for the two methods.

2.1.1 A Singular Problem

It is instructive to consider a more singular problem, such as the potential on the
midpoint of the plate, z=0. Now, the integrand is singular, but the integral is
nevertheless convergent. For this problem, Simpson integration gives a divergent
result and cannot be used. (This illustrates the fact that high-order methods often
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experience difficulties in the presence of singularities.) However, the midpoint
integration still works, and for the cell sizes above we find the following val-
ues for /igp(0, 1): 1.684320, 1.706250, 1.722947, 1.736083, 1.742700. Plots of
I'migp versus h? reveal that the order of convergence is now lower, p = 1.
Nevertheless, we can still extrapolate using fits to polynomials in 4. The results
are linear, 1.762015; quadratic, 1.762745; cubic, 1.762748. This integral can be
done analytically: 7(0,1) = 2In(1 + +/2) a~ 1.762747. Thus, despite the
singularity, the midpoint rule gives six-figure accuracy with 2 > 0.05 and quadratic
extrapolation.

Review Questions

2.1-1 What is meant by resolution in the context of numerical computations? Give
some examples.

2.1-2 How can the error in a computation be estimated?

2.1-3 What influences the error and the order of convergence?

2.1-4 Give a couple of examples of numerical integration rules and provide a
simple comparison. Especially consider the differences for smooth and singular
integrands.

2.2 Practical Procedures

The example we have just studied is very simple. Real application problems have
more complex geometry than a square, but on the other hand, six-digit accuracy
is very rarely needed, or even possible to achieve. Furthermore, numerical results
converge in the very regular way we found here only if the grid can be refined
uniformly over the whole computational region. When this is not possible, the con-
vergence may be oscillatory, and the extrapolation to zero cell size becomes more
difficult. In practice, it is often possible to extract a main power of convergence with
the number of grid cells, but the remainder is too oscillatory to be convincingly fit
by higher-order polynomials. A more robust and practical procedure for such cases
is to use a linear fit of the computed results to 4”7, where p is the estimated order
of convergence. When the converged answer is not known, but the convergence
is sufficiently regular, the order of convergence can be estimated from results for
three different resolutions. To ascertain that the estimated order of convergence is
not accidental, at least four different resolutions should be used. Once the order of
convergence is established, extrapolation to zero cell size can be made by fitting a
lowest-order expansion

I(h) = Io + I,h” 2.5)

to the computed results.
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Review Question

2.2-1 Why can extrapolation to zero cell size be difficult for nonuniformly refined
grids?

Summary

* The accuracy of a numerical result depends on resolution. For example, a domain
of integration can be divided into segments of size &, and a numerical evaluation
of the integral / is then expressed as /(h) = lo+1,h” +- -, where I is the exact
result, /,h? is the dominant error term (provided that / is sufficiently small), and
p is the order of convergence.

* The order of convergence p can be estimated from

p=1n|: I(hi) — I(hi+1) :| ln|:£:|
I(hi+1) = I(hi+2) hivi]’

which requires at least three computations and where h;/ hi+1 = hi+1/ hito.
The result should preferably be verified for at least four resolutions to ascertain
that the estimated p is not accidental.

e A simple method to estimate the error of a given computation is to (i) do a
convergence test by uniform grid refinement, (ii) find the order of convergence,
and (iii) extrapolate the computed results to zero cell size.

e The order of convergence depend on the method and the regularity of the
solution. Singular behavior of the solution decreases the order of convergence
p in many real-world problems.

Problems

P2-1 Derive the order of convergence for midpoint integration (2.2) and Simp-
son’s rule (2.3) under the assumption that the integrand is regular. How does a
singular integrand influence your derivation?

P2-2 Show that (2.4) gives an estimate for p. Under what conditions is this
estimate accurate?
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Computer Projects

C.2-1 Repeat the calculations of I(1,1) and 7(0, 1), where I(z,a) is defined in
(2.1), using two-point Gaussian integration

[ =3[ (3 (=) o (o3 0 5)]

and find the order of convergence.

C.2-2 Calculate the integral fol x~“dx, with a singular integrand, numerically by
dividing the interval into equal elements and applying midpoint integration on
each. Investigate the cases o« = 0.5 and 0.8, find the order of convergence, and
extrapolate to zero cell size. The exact integral is 1/(1 — «).



Chapter 3
Finite Differences

Maxwell’s equations are usually formulated as differential equations (1.1)—(1.4),
where we have derivatives with respect to space (represented by the curl and diver-
gence operators) and derivatives with respect to time. The sought electromagnetic
field is a function of space and time that must satisfy Maxwell’s equations. A rather
simple way to pursue a numerical solution is to represent the electromagnetic field
by its function values at a (finite) set of discrete grid points, where we would
normally use a uniform Cartesian grid with respect to space and time. Then,
it is quite natural to approximate the derivatives of the electromagnetic field in
Maxwell’s equations by finite-difference approximations that involve the fields at
neighboring points on the grid. This type of approach is referred to as a finite-
difference method.

In a one-dimensional (1D) problem on the x-axis, for example, a finite-difference
method consequently introduces a set of grid points x1, x, ..., xy where a sought
function f(x) takes the values f(x1), f(x2),..., f(xn). In practice, it is often
convenient to use the notation fi, f>,..., fy instead of f(x1), f(x2),..., f(xn),
respectively. Thus, the objective with the finite-difference method is to determine the
unknown values f1, f3, ..., fy atthe known grid points x1, x,, ..., xy. If the finite-
difference method works correctly, the approximate numerical solution converges
to the exact solution as the number of grid points tends to infinity. (Naturally, the
required computational resources increase as the number of grid points increase.)
It should be noted that a finite-difference method does not normally incorporate an
intrinsic representation of the field solution between the grid points.

We will first recapitulate expressions for first- and second-order differences on a
uniform grid with grid points x,4+; = x, + ih, where i is an integer and 4 is the
distance between the grid points (often referred to as cell size). The basis for this is
the Taylor expansion

2 3
o8 = S+ 50 + 5 f1W + @ e G
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To get the first derivative on a grid point x, we could use the noncentered difference
[f(x+h)— f(x)]/h = f'(x) + O(h), but the error here is of first order in /2. One
way to increase the order of approximation is to take the difference across two cells,
which gives

Jx+hm)— fx—h)

2h

As we shall see shortly, this becomes very inaccurate for short wavelengths, in
particular, when the wavelength is less than four grid cells. A better alternative is
to use “staggered grids” and compute the first-order derivative on the “half-grid”
Xipl = Xi + h/2:

= f'(x) + O(h?). (3.2)

Sx+h)—f(x)

- = f (x + ﬁ) + o). (3.3)

2

A difference formula for the second derivative on an equidistant grid can be
developed by applying (3.3) repeatedly, which gives

fx+h)-2f(0)+ fx—h)
h2

= f"(x) + O(h?). (3.4)

We note that the O(h?) errors in (3.2)—(3.3) are achieved only if the solution is
sufficiently regular (for example, if f”(x), f””(x), etc are bounded).

3.1 A 2D Capacitance Problem

As an application of finite differences to an electrostatic potential problem, we will
compute the capacitance of a coaxial transmission line. The two-dimensional (2D)
geometry shown in Fig. 3.1 consists of an inner conductor of rectangular cross
section a x b, placed coaxially with an outer waveguide of rectangular cross section
cxd.

In the vacuum region between the inner and outer conductors, the electrostatic
potential ¢ satisfies Laplace’s equation

¢ 9*¢
Vp=—+-— =0, 35
where the potential is constant on the conductors. We let ¢; denote the value for
the potential on the inner conductor, and correspondingly, the potential on the outer
conductor is denoted by ¢,.
We assume that the geometry can be fitted on a grid of squares. (It is possible

to use nonsquare, and even nonuniform, finite difference grids. However, finite
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Fig. 3.1 Geometry of the
coaxial transmission line
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difference grids are often uniform and square, and we will not go beyond that.
Nonuniformities are better treated by finite elements.)
We use the square grid

xi=1ih,i=..,-1012,...,

yi=jh, j=...,—-1012,...,
illustrated in Fig. 3.2, and introduce the potential at the grid points
fij = ¢(ih, jh)

as unknowns.
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Then the discretized Laplace’s equation becomes

Po | PP ficry + firrg + foim + fij =4S

ax2 9y h?

=0. (3.6)

Equation (3.6) applies for all internal points (x;,y;) on the grid. As boundary
conditions, we let ¢ take the value ¢ = 0 V on the outer conductor (f; ; = 0 for
all the points that fall on the outer conductor) and ¢; = 1 V on the inner conductor
(fi,j = 1 for all the points that fall on the inner conductor). We will compute the
charge per unit length Q from the solution. Then the capacitance per unit length is
C = Q/V = Q, since the voltage across the capacitoris V =1 V.

3.1.1 Iterative Solution of Laplace’s Equation

Here, we introduce some straightforward (but rather old) methods, known as Jacobi
and Gauss—Seidel iteration, to solve the discretized Laplace’s equation (3.6). These
methods do not require that the system of linear equations be formed and stored
explicitly. Thus, only the solution itself must be stored in the computer memory,
which allows us to solve larger problems given the amount of memory available
on the computer at hand. An iterative method starts with an initial guess for the
solution f; ; at all internal grid points, e.g., f; ; = 0 or some other arbitrarily chosen
numbers. The iterative method then updates these values until we reach a converged
solution that satisfies the finite difference approximation (3.6) at all internal grid
points. Obviously, f; ; is set to its prescribed values on the boundaries, where the
solution is known from the boundary conditions, and these values are kept fixed.
The Jacobi iteration can be motivated by rewriting (3.6) as

1
fij= 7 (fi-rj + fivrj + fij—1 + fij+1),

which states that at every grid point, the potential is the average of the potential
at the four nearest neighbors. The Jacobi scheme uses this as the prescription for
assigning new values

oy _ 1w (n) (n) (n)
ij = Z(ﬁ'—l,j + fiv +fi,j—l+fi,j+l)’

where superscripts denote the iteration count. This scheme gives very slow con-
vergence, but one can do better by simple modifications. One modification is the
so-called Gauss—Seidel iteration, where the “old” values of f are immediately
overwritten by new ones, as soon as they are computed. If f is updated in the order
of increasing i and j, the Gauss—Seidel scheme is
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a+) 1 st ) (n+1) )
i = Z(fi—l,j + fiviy T 4 +fi,j+l)'

The other improvement is “overrelaxation,” which means that the correction in
going from iteration level n to n 4 1 is multiplied by a relaxation parameter R:

=15 6D

(n+1) (n) (n+1) (n)
LR (fi—l,j + v S+ S B f(n))
4 i

R > 1 greatly improves the convergence, but for stability reasons R must be less
than 2. For the Laplace’s equation, a heuristic estimate for the optimal value of R
varies with the number of grid points in one direction, N, as

ROPIZZ_C/N,

where ¢ is an N -independent number that depends on the geometry [7].

3.1.2 Computing the Capacitance

We now have all the elements needed to compute the capacitance between the two
conductors. The computation can be broken down into the following parts:

1. Generate a grid such that the conducting boundaries fall on the grid points. For
the particular problem here, we can exploit the symmetry and compute only on
the upper right quarter, to reduce the number of unknowns. (Around a line of
symmetry with a constant i, we enforce the symmetry by fi 1, ; = fi— ;j, where
n is a positive integer. Symmetry lines with a constant j are treated analogously)

2. Introduce the boundary conditions by setting f = 0 on the outer conductor and
f =V =1 on the inner conductor.

3. Set up an array to identify whether a grid point is inside the region where the
potential is computed from Laplace’s equation.

4. Tterate with the Gauss—Seidel scheme over the internal points to solve for the
potential.

5. The capacitance per unit length is C = Q/V = Q. The charge on the inner
conductor Q can be computed from Gauss’s law

Q:60¢E'ﬁdl:—60¢a—¢dl, (38)
on

where the closed integration contour encircles the inner conductor.

6. If the change of the capacitance in the last iteration is small enough, stop
iterating.

7. Once the calculation is finished, refine the grid several times and extrapolate the
result to zero cell size.
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3.1.3 MATLAB: Capacitance of Coaxial Cable

We will compute the capacitance for the geometry shown in Fig. 3.1 witha = b =
1 cm and ¢ = d =2 cm. Here, the capacitance is expressed in terms of the charge
on the inner conductor. As an alternative to the Gauss—Seidel iteration, we could
use MATLAB routines for solving linear systems of equations. However, we take
this opportunity to introduce a simple, yet quite efficient, iterative method. More
advanced iterative methods are discussed in Appendices C and D.

The following MATLAB function computes the capacitance following the
outline in Sect. 3.1.2.

o°

Compute capacitance per unit length of
a coaxial pair of rectangles

o°

o°

function cap = capacitor(a, b, ¢, d, n, tol, rel)

% Arguments:

% a = width of inner conductor

% o) = height of inner conductor

% c = width of outer conductor

% d = height of outer conductor

% n = number of points in the x-direction (horizontal)
% tol = relative tolerance for capacitance

% rel = relaxation parameter

o°

(a good choice is 2-c¢/n, where c is about pi)

o°

Returns:
cap = capacitance per unit length [pF/m]

o°

Make grids
0.5xc/n;
na = round(0.5xa/h) ;
= linspace(0,0.5xc,n+1) ;

5 o
1]

o°

Grid size

Number of segments on ’a’
x Grid points along x-axis
m = round(0.5%d/h); Number of segments on ’d’
mb = round(0.5xb/h) ; Number of segments on ’'b’
y = linspace(0,0.5xd,m+1l); % Grid points along y-axis

o° o o

o°

% Initialize potential and mask array

= zeros (n+l,m+1) ; 2D-array with solution
mask = ones (n+l,m+1) xrel; 2D-array with relaxation
[mask(i,j) = 0 implies
unchanged f(i,7)]

Hh
o o°

o°

o°

for i = 1:na+l
for j = 1l:mb+1l
mask(i,j) = 0;
f£(i,3) =1;
end
end
% Gauss Seidel iteration
oldcap = 0;
for iter = 1:1000 % Maximum number of iterations



3.1 A 2D Capacitance Problem 25

Perform Gauss-Seidel iteration
Compute the capacitance

o°

f = seidel (f,mask,n,m);
cap = gauss(n,m,h, f);
if (abs(cap-oldcap)/cap<tol)

o°

break % Stop if change in capacitance
% is sufficiently small
else
oldcap = cap; % Contiue until converged
end
end
str = sprintf ('Number of iterations = %4i’,iter); disp(str)

function f = seidel (f, mask, n, m)

% Arguments:

% f = 2D-array with solution

% mask = 2D-array with relaxation

% n = number of points in the x-direction (horizontal)

% m = number of points in the y-direction (vertical)

% Returns:

% £ = 2D-array with solution after Gauss-Seidel iteration

°

% Gauss seidel iteration

for i = 2:n
for j = 2:m
f(i,j) = £(i,3) + mask(i,j)=*
(0.25%( £(i-1,3) + £(i+1,3)
+ £(i,3-1) + £(i,j+1)) - £(i,3));
end
end

% Symmetry on left boundary i-1 -> i+1

i =1;
for j = 2:m
f(i,j) = £(i,3) + mask(i,j)=*
(0.25%(  £(i+1,3) + £(i+1,3)
+ £(1i,3-1) + £(i,3+1)) - £(i,3));
end

% Symmetry on lower boundary j-1 -> j+1

J 1;
for i = 2:n
i,

f(i,j) = £(i,3) + mask(i,j)=*
(0.25%x( £(i-1,3) + £(i+1,3) ...
+ £(i,3+1) + £(i,3+1)) - £(i,3));

function cap = gauss(n, m, h, f)

% Arguments:
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Table 3.1 Capacitance vs.

. .. n[-] h [m] C [pF/m]
cell size for finite difference
solution 10 0.1000 92.09715

20 0.0500  91.18849
30 0.0333  90.94575
40 0.0250  90.83912
50 0.0200  90.78080

% n = number of points in the x-direction (horizontal)
% m = number of points in the y-direction (vertical)

% h = cell size

% f = 2D-array with solution

% Returns:

o°

cap = capacitance per unit length [pF/m]

q = 0;

1]
Y

for i :n
g=9qgq+ (£(i,m)+£(i+1,m))*0.5; % integrate along upper boundary
end

for j = 1:m
qg=qgq+ (f(n,j)+f(n,j+1))*0.5; % integrate along right boundary
end
cap = g*4; % 4 quadrants
cap = cap*8.854187; % epsilonOxlel2 gives answer in pF/m

Table 3.1 shows some results of calling the function with different grid sizes and
a=b=1cm,¢c=d =2cm, the tolerance 10~?, and the relaxation paramter 1.9.
When the results are plotted against 1?7, they appear to fall on a straight line for p &~
1.5. If we had the patience to wait for longer runs, write more efficient MATLAB
code, or program the calculation in a language such as Fortran or C, the resolution
could be improved, and we would find that the asymptotic order of convergence is
4/3. An important thing to learn from this example is that the convergence is slower
than the normal O(h?) convergence for the difference formula (3.4). In fact, the
O(h?) convergence occurs only when the solution is sufficiently regular, and the
decreased order of convergence in this example is the result of the singular behavior
of the solution at the corners of the inner conductor. As will be shown in Chap. 7, the
potential at such a “reentrant” corner, where the angle in the solution region is 270°,
varies as the distance r to the corner to the power 2/3. This implies that the electric
field is singular, E o r~'/3. With the computed results in Table 3.1, and assuming
that the order of convergence is 1.5, a second- or higher-order polynomial fit of the
data versus h!* gives an extrapolated answer for the capacitance as C = 90.6 pF/m.

Appendix C contains some information on more efficient algorithms for the
solution of linear systems. Many of these algorithms are also available in MATLAB.
Thus, we could use some of these routines to solve larger problems and get better
resolution. Another way to improve the convergence when the solution is singular
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is adaptive grid refinement. However, this is more easily done with finite elements
than with finite differences.

Review Questions

3.1-1 What are the constituents of a finite-difference method?

3.1-2 Derive (3.2)—(3.4) given (3.1). When are O(h?) errors achieved?

3.1-3 Use (3.4) to deduce (3.6). What will the corresponding discrete Laplace
operator look like in three dimensions?

3.1-4 How can a known potential distribution be used to compute the capacitance
of a coaxial cable?

3.1-5 What is the order of convergence for the problem shown in Fig. 3.1?

3.2 Finite Difference Derivatives of Complex Exponentials

For Laplace’s equation, straightforward application of finite differences works well.
However, when derivatives of odd order are involved, a different technique is
required to get good results. For demonstration purposes, we consider a simple case
that involves the important aspects of this problem. For Ampere’s law (1.1) and
Faraday’s law (1.2) in frequency domain, we consider a one-dimensional wave on
the form E = XE.(z) and H = y H,(z), which propagates in vacuum. Given these
circumstances, only the x-component is nonzero for Ampere’s law and only the y-
component is nonzero for Faraday’s law. Consequently, we have Faraday’s law and
Ampere’s law, respectively, on the form

dE(z) .
Y r —JjopoH,(2)
dH,
_ﬂ — j(l)éoEx(Z)
dz

Clearly, these equations involve the first-order derivative, where it operates on the
electric field in Faraday’s law and on the magnetic field in Ampere’s law. For
this problem, we wish to construct a lowest-order finite-difference scheme with a
truncation error that is proportional to 4. Thus, we have essentially two different
alternatives for the representation of the first-order derivative with respect to the
z-coordinate: (i) the finite-difference approximation (3.2) that extends over two
cells; and (ii) the finite-difference approximation (3.3) that extends over only one
cell. In addition, we must use the approximation for the first-order derivative at
the midpoint of the finite-difference stencil in order to achieve an error that is
proportional to /2.
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To summarize, it appears as if we have two solutions to this problem and that
these solutions are equally good. However, a more detailed analysis shows that one
of the two options must be abandoned since it features unphysical behavior. In order
to be more specific, the two options are listed below.

e Introduce a computational grid with the grid points z; = ih, where the electric
field is represented by E(z;) and the magnetic field is represented by H,(z;).
Thus, we can use finite-difference approximations of the first-order derivative
that extends over two cells, which yields the construction

Ex(zi+1) — Ex(zi-1)
2h

_Hy @) — Hy(zie1)
2h

= —jouoHy(z)

= jweoEy(zi)

This approximation of Faraday’s law and Ampere’s law has a truncation error that
is proportional to 422. At this point, this construction appears to be satisfactory but,
as shown later in this section, it actually is disastrous.

» The alternative solution is to use the finite-difference approximation (3.3) that
extends over only one cell. If we introduce the grid points z; = i & for the electric
field, we could write Faraday’s law as

Ex(zi+1) — Ex(z)
h

= —jopoH, (Zi+%)

where we are forced to evaluate the magnetic field at the midpoint between
zi+1 and z; in order to have a truncation error that is proportional to h2. As a
consequence, we use the grid points z; 1= i+ %)h for the magnetic field

H, (z,- +1 ) , where i is still an integer. Thus, the unknowns for the magnetic field

are shifted half a cell with respect to the unknowns for the electric field and this
is referred to as staggered grids. With this construction, we discretize Ampere’s
law as

_Hy (Zi+%) ;Hy (Zi_%) — ja)E()Ex(Zi)

where the electric field is located at the midpoint z; between the grid points z; 1
and z;_ 1 for the magnetic field.

The heart of the problem (associated with the finite-difference approximation that
extends over two cells) can be described and understood by means the dispersion
relation (1.14), which states that = ck. Given the ansatz E,(z) = Egexp(—jkz)
and H,(z) = Hoexp(—jkz), we recall that the dispersion relation is a consequence
of Faraday’s law and Ampere’s law. At this point, it’s important to recall that
the frequency w represents the time variation of the electromagnetic field. As the
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frequency w increases, the time variation becomes more and more rapid. According
to the dispersion relation @ = ck, the wavenumber k is proportional to the
frequency given that the speed of light in the medium of propagation is constant
with respect to frequency and, consequently, an increase in frequency implies an
increase in the wavenumber. Here, the wavenumber k = 27/ A represents the spatial
variation of the electromagnetic field, where A is the wavelength. Thus, the spatial
variation becomes more and more rapid as the wavenumber increases. However,
and this is the crucial point, the spatial variation is not explicitly represented by the
wavenumber in our finite-difference scheme, but instead it is the finite-difference
approximation of the first-order derivatives that evaluates the spatial variation.
Nevertheless, a function that varies rapidly yields a large derivative and, according
to Faraday’s law and Ampere’s law, this must be associated with a high frequency .
Similarly, a slow variation with respect to space yields a low frequency. We note that
this is all in agreement with the dispersion relation (1.14), which is derived from
Faraday’s law and Ampere’s law. Indeed, the dispersion relation reflects important
physical properties of an electromagnetic wave problem. These aspect are assessed
quantitatively in the rest of this section.

It is instructive to consider how the difference approximations (3.2)—(3.4) act on
complex exponentials. Two reasons for studying complex exponentials are these:

* All functions can be decomposed as sums over complex exponentials (the Fourier
transform).

e The complex exponentials exp(jkx), where j is the imaginary unit and k is the
wavenumber (k = 27 /A, where A is the wavelength) are eigenfunctions of the
derivative operator, (/9x) exp(jkx) = jk exp(jkx).

We consider a uniform 1D grid with grid points
xi =ih, i=...,-2,-1,0,1,2,...,

and we will examine the difference approximations by evaluating them for complex
exponentials, f = exp(jkx). The wavenumbers can be restricted so that |kA| < 7.
This is because, when any harmonic function is represented on a grid of points with
spacing £, one can always shift k& by any integer multiple of 27 so that kh €
[—7, 7], without changing the value of f at any grid point.

Derivative operators can be defined as

DX:f//fv Dxx:f///f, 3.9)
and for f = exp(jkx), the exact analytical results are

D, = jk, D,y = D? = —k*. (3.10)
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3.2.1 First-Order Derivative

For the first derivative, the numerical difference formulas applied to f(x) = e/**
give the results shown as functions of k% in Fig. 3.3:

 Equation (3.2), derivative across two cells, f’ on the “integer grid”:

Sf(xi) fxi +h)— f(x; —h) _ efkh _ a—jkh j

D, = = = =sin(kh).
Fx) 2h f(x) 2h j Sk
(3.11)
This gives an effective numerical wavenumber
inkh k2h?
k;‘ﬁ;cell:%:k(l—T—i—---). (3.12)

The leading term in the expansion is correct, and the relative error is —k2h?/6,
so the error increases with decreasing wavelength.
 Equation (3.3), derivative across one cell, f/ on the half-grid:

b S'0d)  fea+h)— fx) e/ —e K2 0y (kh
T ) | Wit/ h w2
FGi1)
(3.13)
This gives an approximation with a smaller error
2 . kh k2h?
krslﬁlng]gered = E sin 7 =k (1 — 7 + "') . (314)

Such an arrangement, where the first derivative is computed on the half-grid, is
called staggered grids.

The difference formula across two cells gives very poor results when ki > /2.
In particular, for kh = 7, it gives the rather strange result f" =0 and kW%l = 0.
Fig. 3.4 illustrates how this comes about: when kh = 7, f(x;) jumps between
plus and minus the same value between neighboring points. Points at the distance
of 24 have the same value of f, and therefore /' = 0 at every point on the integer
grid. Thus, the most rapidly oscillating function has the derivative equal to zero
everywhere on the integer grid. Notice also that the two-cell difference formula
gives 0kWoeell /gk < 0 for 7/2 < kh < m. In a wave-propagation problem, this
would have the consequence that the group velocity (v, = dw/0k) changes sign,
and signals propagate in the wrong direction.

The expression (3.14) for the more compact derivative on the staggered grid is
clearly better at the shortest wavelength ki = 7. Although the result kpoggeredy — o
for kh = 7 is not very accurate, it is at least nonzero and this arrangement gives no
negative group velocity.
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Fig. 3.3 Finite difference approximation of wavenumber from first derivative k = —jf’/f,

with f = exp(jkx) for staggered and nonstaggered grids. Note the bad approximation of the
nonstaggered form when kh — 7

1.5

x/h [-]

Fig. 3.4 Fastest oscillating function on a finite difference grid with k2 = 7 has the derivative

equal to zero at all integer points on the grid

3.2.2 Spurious Solutions and Staggered Grids

The inability of the difference formula across two cells to see rapid oscillations can
cause difficulties known as “spurious modes.” By spurious modes we mean solutions
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of a discretized equation that do not correspond to an analytic (or “physical”)
solution.

As an example to illustrate how spurious solutions can appear, we take the first-
order equation

f'=jA x>0, f(0)=1

If this is discretized on a uniform grid of step length &, the nonstaggered approxi-
mation using (3.2) is

S(xit1) = f(xi-1)
2h

= jASf(xi). (3.15)

This will have solutions of the form exp(jkx), and the wavenumber can
be determined from (3.12): ko<l = ). Evidently, this gives two solutions,

because k'Wo~<ll(kh) is nonmonotonic as shown by Fig. 3.3. One is an acceptable
approximation k14 = arcsin(Ah), but the other is a bad approximation, or “spurious
mode,” having kspurious? = 7 — arcsin(Ah) = w — kih. If Ah is small, this branch
for kh approaches m, so that the solution resembles the most rapidly oscillating
function shown in Fig. 3.4, even though the correct solution varies slowly on the

scale of the grid. If we use the approximation on a staggered grid, with the stencil

S X)) = f(xi)

i
- = L [f (i + £ (3.16)

such spurious solutions do not occur (however, the behavior is not entirely physical
for this representation either when kh — 7).

The more compact formula (3.3) for the first derivative gives an approxima-
tion with acceptable behavior even when kh = . The derivative is computed
on the half-grid, and the grids are staggered. A 3D generalization of this is used
in the FDTD method for Maxwell’s equations, as will be described in Chap. 5.
Equations (3.11) and (3.13) show that the relative error of the discretized derivatives
is proportional to k2h?.

3.2.3 Second-Order Derivative

For the second derivative, the standard difference formula (3.4) applied to f(x) =
e/*¥ gives

e/l —2 4 e /kh 4 ,(kh
Dy = - 2 = ) sin’ (7) . (3.17)
Therefore,
4 kh k*h?
kﬁum = (kiﬁl[%gered)z = ﬁ sin? 7 = k2 (1 _ T + .. ) , (3.18)

which is illustrated in Fig. 3.5.
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Fig. 3.5 Finite difference approximation of k2 = — f”/f, with f = exp(jkx) analytically and
with standard three-point difference formula

The result is only moderately accurate at the shortest wavelength (—D,, =
4/h%, when kh = m, to be compared with the analytic result 72/ h?). But at
least —D, grows monotonically with k, so this approximation does not introduce
spurious solutions. To achieve 1% accuracy in computed frequencies (which means
2% accuracy in D,,), one needs k>h*> < 0.24, or 13 grid points per wavelength.
If we consider the problem of calculating the fields from a mobile telephone, at 900
MHz with A = 33 cm, in a car of length 5 m, we see that the number of cells in one
direction required to get 1% phase (or frequency) error is at least 13x5/0.33 ~ 200.
Evidently, a 3D computation for mobile phones in cars requires several million cells.
We emphasize the absolute error will accumulate as the wave propagates. When
the wave has propagated 15 wavelengths with 1% relative phase error, the absolute
phase error is 15 - 360/100 = 54 degrees.

Review Questions

3.2-1 Why is it useful to study finite difference derivatives of complex exponen-
tials?

3.2-2 Why is the wavenumber restricted by |kA| < 7 on a grid with cell size h?

3.2-3 Derive the results in (3.12) and (3.14). Establish a value for ki when the
first two terms in the expansions give 0.5% error of the numerical wavenumber.
Repeat this analysis for (3.18).

3.2-4 What is a staggered grid and why is it useful?
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3.2-5 What is a spurious solution? Can such solutions be avoided? Give an example
of a situation where spurious solutions occur and explain why they exist under
the given circumstances.

3.2-6 Can the finite difference approximation of D,, be expressed in terms of a
finite difference approximation of D, ? Which approximation do you choose for
the first-order derivative?

3.3 Derivation of Finite-Difference Stencils

The lowest-order approximations of derivatives are rather easy to derive and the
final expressions are very intuitive. For higher-order approximations, it may not be
obvious how such stencils should be derived. Here, we introduce a procedure to
derive finite-difference stencils for the approximation of a given derivative operator.
In addition, the procedure allows for a rather arbitrary number of grid points to be
involved in the finite-difference stencil. We expect that a larger number of grid points
yields a leading error term that decays faster as the grid is refined, i.e. we achieve
a higher order of convergence. Clearly, a larger number of grid points also implies
that a larger number of floating point operations must be executed to evaluate the
finite-difference approximation.

The procedure is based on the Taylor expansion (3.1), which is repeated here for
convenience

8 §3
f(x+8) = f(x)+68f'(x) + Ef”(x) + gf”’(x) + -

In order to demonstrate the procedure, we consider some examples where we derive
new and useful finite-difference stencils.

3.3.1 Higher-Order Approximation of First-Order Derivative

First, we intend to derive a finite-difference stencil that resembles the one-cell
finite-difference approximation, where the main difference is that we include one
additional grid point on each side of the lowest-order stencil. Consequently, we
consider an approximation to the first-order derivative that involves the four grid
points —3h/2, —h/2, h/2 and 3h/2.

Thus, we have

3h 3h 9h? 9h3
fry= £ (x=5) = 10 = T+ Zp 0 =2 170

3

h h h? h
= £ (r=3) = 10 =510+ 0 = G

fi- 2 8
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h h h? h?
froy = (x4 5) = 0+ 21+ 170+ s+

h 3h 2 h?
fog =1 (x4 ) = o0+ 30+ 20700+ 501w 4

We now introduce the unknown constants a; 3, a;_1, a;,1 and a;, 3, which
2 2 2 2

are used as coefficients in the finite-difference approximation. Thus, we have the
following finite-difference approximation of the first order derivative

i—*f—7+az—ff——+a1+1f+1+al+3f+3:
:(ai—g ta; 1 ta 1+ ai+g)f(x)
3h h h 3 ,
+(_7ai—% 2 l—* + 2 l-‘rl + 2 ;)f (x)
(9h2 h? h? 9h?
+

"
ERERATNES UNES S A

(T~ s gt gy ) 1700 e

In order to determine the coefficients, we impose the following requirements

0=ai_% +ai_% +ai+% +ai+% (3.19)
3h h h 3h
l=—5a_3 =S4y + 50,4 + S0, (3.20)
9h? h? h? 9h?
0= Tai_% + ?ai_% + ?ai+% + ?ai+% (3.21)
0 —9p3 h3 h3 4o 9h3 (3.22)
= —Ad. .
16 %17 g%t T gttt T
that essentially state that the coefficients a;_3, ER al_E i+1 and a; +3 are chosen such

thatal._%fi._% +ai_%fi_% +ai+%fi+%.+ a3 fivs ™ f(x). The solution to the
system of linear equations (3.19)-(3.22) is

1 9 9 1

G n NPT TR YT T o

and we have the approximation

i-3 =27y +27fi41 = Jiss

f10) ~ =
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Expressed in terms of the notation used previously, this stencil is given by

Jio1 =27fi + 27fiv1 — fit2
24h

! ~
fi ~

+

o=

This finite-difference approximation differentiates fourth-order polynomials exactly.

3.3.1.1 Complex Exponentials

Given this higher-order approximation of the first-order derivative, we perform the
analysis with complex exponentials, which yields

e=J3kh/2 _ 27e=ikh/2 | 27eikh/2 _ j3kh/2
24h

e () (%)

A Taylor expansion around k1 = 0 gives the numerical wavenumber

k4lhorder =kl1= 3k4h4 4o
fum 640

which has a leading error term that is proportional to 4*. Thus, a reduction of the
cell size h by a factor of two reduces the error in the wavenumber by a factor 16,
which should be compared with the corresponding lowest-order approximation that
reduces the error by only a factor 4.

3.3.1.2 Difficulties for Higher-Order Approximations

It is non-trivial to impose boundary conditions for finite-difference schemes that
exploit higher-order stencils. For a problem with a boundary that is aligned with
the Cartesian coordinate axes and coincides with the grid points used in the finite-
difference discretization, the lowest-order approximation stencil can be applied
to every interior point of the domain without difficulties. For the lowest-order
approximation stencils that are located closest to the boundary, the outermost points
of the stencil do not normally extend beyond the boundary but, instead, they would
be located on the boundary which makes it possible to incorporate information from
the boundary conditions in a natural manner. For a higher-order finite-difference
stencil, however, such a situation would imply that some points of the stencil are
located outside of the computational domain. A common solution to this problem is
to use the lowest-order stencil in the very vicinity of the boundary in combination
with the higher-order stencil applied to internal grid-points that are at a sufficiently
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4th order approximation -
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Fig. 3.6 Finite difference approximation of wavenumber from first derivative k = —jf’/f, with

f = exp(jkx), for the fourth order finite-difference stencil on staggered grids, as compared to the
lowest-order approximation and the analytical result. Note that the fourth order finite-difference
approximation yields a more accurate dispersion curve for the entire interval 0 < kh < m, as
compared to the lowest-order approximation

large distance from the boundary. However, this yields a numerical scheme that
mixes different types of approximations and, as a consequence, the error analysis
becomes more difficult. Furthermore, the order of convergence is reduced since it is
determined by the poorest approximation present the numerical scheme.

A considerably better solution is to use higher-order finite element methods. Such
methods can exploit the higher-order approximation also in the very vicinity of the
boundary and, in addition, the boundary can be curved and does not have to coincide
with the Cartesian coordinate axes.

3.3.2 Higher-Order Approximation of Second-Order Derivative

We exploit the same technique to derive the corresponding result for finite-
difference approximation of the second-order derivative. The lowest-order stencil
involves three grid points and, again, we include one grid point on each side of
the lowest-order stencil. Thus, we use the five grid points —2h, —h, 0, h and 2h.
This yields five equations that can be used to compute the five unknown coefficients
aj—, aj—1, a;i, a;+1 and a; 4,. Following the same procedure as above, we get the
five equations

O=ai2+ai+ai+aiv1+aip
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0= —-2ha;—, — ha;—; + ha;+1 + 2ha; 4>

h? h?
1= 2h2a,-_2 + 7ai_1 + ?a,‘.l,_l + 2h2ai+2
4h3 h h3 4h3
0= —3 i e din + g Gt + 3 it
2h* h* h* 2h*
0= Tai—z + ﬁai—l + ﬁai+l + Tai+2

The solution with respect to the coefficients a; 5, a;—1, a;, a;+1 and a; 4, yields the
approximation

" _ _fi—2 + 16fi—l - 30fi + 16fi+l - fi+2
12h2

This finite-difference approximation gives the exact second-order derivative for
fourth-order polynomials.

1" (xi) = f;

3.3.2.1 Complex Exponentials

The analysis with complex exponentials for the higher-order approximation of the
second-order derivative yields

—eJ2kh 4 16e—Ikh _ 30 4 16e/Kh — g/ 2kh
1242

—i 4 — cos? ﬁ sin’ ﬁ
352 2 ))"\2

A Taylor expansion around k& = 0 gives the numerical wavenumber

D, =

4th0rder2_ 2 _@ )
(S (1 Lt

which has a leading error term that is proportional to 4*. Thus, a reduction of the
cell size i by a factor of two reduces the error in the wavenumber by a factor 16,
which should be compared with the corresponding lowest-order approximation that
reduces the error by only a factor 4.
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Summary

» Derivatives can be approximated by differences between neighboring points on a
grid. A so-called uniform grid uses a constant grid point spacing #; i.e., the grid
points are given by x,,4+; = x,, + ih, where i is an integer.

e The first-order derivative of a function f on a staggered grid (evaluated at the
midpoint (x;+; + x;)/2) is

Jiv1— fi
/ N —
fz - ho

i+

o=

and that across two cells (evaluated at the center grid point x;) is

Jiv1— fi—l_

/’\/
fim 2h

The second-order derivative (evaluated at the center grid point x;) is

p  Jirn—=2fi + fic L
~ -

Ji
* The discretized Laplacian operator is

82]’ 82f Jficij + fivrj + fijo1+ fijv1—4fi;
+ .
0y2 h?

sz_

Two iterative procedures for solving Laplace’s equation are Jacobi and Gauss—
Seidel iteration. These can be accelerated with so-called overrelaxation.

e Numerical derivatives acting on complex exponentials f(x) = exp(jkx) are
useful when analyzing finite difference schemes. The first-order derivative on a
staggered grid gives

f = — Sin )

ity _ 1 fii—fi _2j . (kh
1 h h ’
5 i+

=

First-order derivatives across two cells with no staggering should be avoided,
since

SV fim— S _J
fi f, 2h h

which is nonmonotonic and gives a zero derivative for solutions that vary on the
scale of the grid, i.e., kh — .

sin (kh) ,
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The second-order derivative gives

7 fim =2fi 4 fio 4 ,z(kh)
—_— = — ——= S1n 7 .

f’, fz h2 - h?

* Higher-order finite-difference stencils can be derived by means of the Taylor
expansion and two important fourth-order approximations are

o i +27fi11 = 27fi + fie

/
ff+§ ~ 24
s —Jfiv2 +16fi41 =30fi + 16fi—1 — fi
RS

1242

Problems

P3-1 Use the technique in Sect. 3.1.1 to solve the Laplace’s equation at the
midpoint of a square 3 x 3 grid where the potential is known on the boundary.
How does the solution depend on the cell size?

P.3-2 Show that if the grid is nonuniform, the finite difference approximation of the
second-order derivative is

f//(xi) ~

2 (ﬁ+1—ﬁ f, —f,-_l)

Xig1 = Xie1 \Xig1 =X Xi —Xi—1 )

Derive the leading error term for this finite difference approximation. A nonuni-
form grid implies that x;+; — x; does not have to be equal to x; — x;_;. Discuss
when nonuniform grids can be useful for computations.

P.3-3 Derive a finite difference expression for f’(0) in terms of f(0), f(h), and
f(2h) that has an O(h?) error.

P.3-4 For a problem with the grid points x; = ik, where i = 0,1,2,..., derive a
finite difference approximation of the Neumann boundary condition f'(0) = 0
by the use of a “ghost” grid point x_; = —h (outside the computational domain)
such that the error is O(h?).

P.3-5 The capacitance can also be computed from C = 2W/V?2, where W is the
electrostatic energy and V' the potential difference between the two conductors
of the capacitor. Write down an expression for W in terms of the electrostatic
potential distribution and suggest a method for computing W given the finite
difference solution to an electrostatic problem.

P.3-6 Discuss how the derivative operators in (3.9) and (3.10) can be related to, and
useful in the context of, the one-way wave equation df/dx + (jw/c)f = 0,
where c is the speed of the wave.
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P.3-7 Show that the Helmholtz equation, 9> f/0x> + (w/c)*>f = 0, can be

factorized into
ad n jw A 10} =0
ox c ox c -

and interpret the two factors of the Helmholtz operator. Discretize the above
factorized operator by finite differences (on staggered grids) and multiply the
two factors to derive the corresponding Helmholtz operator.

P.3-8 Discuss how the derivative operators in (3.9) and (3.10) can be related to, and
useful in the context of, the wave equation 9 f/9x> — ¢ =23% f/dt> = 0, where ¢
is the speed of the wave f = f(x,t). Here, f(x + ct) and f(x — ct) solve the
wave equation, and the lines where x + ¢t and x — ct are constant are referred
to as characteristics.

P.3-9 Demonstrate that the Helmholtz equation is equivalent to the two coupled
equations df/dx + (jw/c)g = 0 and dg/dx + (jw/c)f = 0. What is the
meaning of the new function g? How should the first-order system of coupled
equations be discretized by finite differences?

P.3-10 Show that the analysis with complex exponentials applied to (3.16) gives
A = (2/h)tan(kh/2),so that A — oo as kh — 7.

P3-11 The 1D Helmholtz equation for a transversal wave E, in a homogeneous
medium with losses reads

2
(_8_ + jouo — wz,ue) E,=0.
dx2

Use the finite difference approximation to discretize this equation. Calculate and
compare the dispersion relation of the continuous and the discretized problems.
Does the discretized problem reproduce the physics for well-resolved solutions?
What happens for poorly resolved solutions? How does the angular frequency @
and the material parameters u, €, and o influence the accuracy of the dispersion
relation of the discretized equation?

Computer Projects

C.3-1 Write down the system of linear equations that results from the discretization

of the capacitance problem shown in Fig. 3.1. Let ¢ = d = 3a = 3b and use a
square grid with one grid point between the inner and outer conductors. Let the
potential be ¢; on the inner conductor and ¢, on the outer conductor. How are
these boundary conditions incorporated into the system of linear equations? Is it
possible to use symmetries in the solution of this problem?
Generalize the result so that it is possible to specify the number of points between
the inner and outer conductors. Write a computer program that generates the
system of linear equations Af = b in terms of a matrix A and a vector b, where
the solution vector f stores the potential values at grid points between the inner
and outer conductors.
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C.3-2 Write a computer program that uses Jacobi and Gauss—Seidel iteration to
solve for the electrostatic potential on a square domain of side a. Use the
boundary conditions ¢(x,0) = ¢(0,y) = 0, ¢(x,a) = ¢o - (x/a) and
¢(a,y) = ¢o-(y/a), where ¢y is a constant. Study and compare the convergence
of the iterative methods in Sect. 3.1.1. Implement the overrelaxation method
and investigate how the value of R influences the convergence. The analytical
solution to this problem is ¢ (x, y) = ¢ - (xy/a?).

C.3-3 Use the finite difference scheme to compute the capacitance for a coaxial
cable of two concentric circular cylinders with inner radius a and outer radius b.
For this case, the capacitance per unit length can be calculated analytically, and
itis 27e/ In(b /a). The circular boundaries do not fall on grid points in a natural
way, and one way to proceed is to approximate these boundaries in some sense
given the structured Cartesian grid. This type of approximation is often referred
to as the staircase approximation. How does the error depend on the cell size h?
Can you extrapolate the results to zero cell size?

C.3-4 Try to reformulate the previous problem using polar coordinates (it can be
reduced to a 1D problem) to avoid the staircase approximation and use the
finite difference scheme to solve for the capacitance. Determine the order of
convergence. Is it possible to extrapolate the capacitance to zero cell size?



Chapter 4
Eigenvalue Problems

Maxwell’s equations can be solved either in the time domain, by evolving an initial
condition in time, or in the frequency domain, assuming harmonic exp(jwt) time
dependence. In both cases, the application can be either

e a driven system, where one seeks the response to a source, for instance an
antenna, or

e an eigenvalue calculation, where one seeks the natural oscillation frequencies of
the system.

The field solution to the eigenvalue calculation is a nonzero field that satisfies
the homogeneous problem, i.e. the field problem without sources. This type of
situation occurs typically for an electromagnetic system with a source that is
nonzero for a finite time. Once the source vanishes, the field solution can be
expressed as a superposition of eigenmodes, where each eigenmode oscillates at
a particular eigenfrequency. For an electromagnetic system that features losses of
some type, the eigenfrequencies are in general complex and, as a consequence,
the corresponding eigenmodes are damped such that their instantaneous amplitudes
decrease with respect to time. In this chapter, we consider eigenvalue problems
in both the frequency domain and the time domain. In addition, we analyze a
popular explicit finite-difference time-stepping scheme by means of decomposing
the time-domain field solution into its constituent eigenmodes. This analysis yields
a stability condition for the time step, which is referred to as the Courant condition.
The analysis itself is referred to as von Neumann stability analysis and it can be
applied to a wide range of time-stepping schemes.

4.1 Maxwell’s Equations

In a linear, dispersion-free medium (i.e., € and u depend only on the coordinate
vector), Maxwell’s equations can be written as the single second-order curl-curl
equation (1.11) for the electric field

T. Rylander et al., Computational Electromagnetics, Texts in Applied 43
Mathematics 51, DOI 10.1007/978-1-4614-5351-2_4,
© Springer Science+Business Media New York 2013



44 4 Eigenvalue Problems

1
—e— =Vx—-VxE + —. 4.1
o x m B ot @D

In the absence of sources, J = 0, and with harmonic time dependence exp(jwt),
the curl-curl equation gives the following eigenvalue problem:

1
wieEm =Vx-—-VxE,. “4.2)
7

For nontrivial solutions (E ,, # 0), w2, plays the role of an eigenvalue, and E ,, is the
corresponding eigenfunction, or eigenmode. (Sometimes the subindex m is omitted
in order to simplify the notation.) If the region §2, where (4.2) applies, is a closed
cavity with a perfectly conducting boundary 952 (i.e., 7 x E = 0), the operator on
the right-hand side, L = V x M_IVX, is self-adjoint, that is,

/EI-L[Ez]def E,-L[E\|dV (4.3)
2 2

for all vector fields E| and E, that satisfy the boundary conditions. This can be
shown using the vector identity

V~[Axl(VxB)i|:l(VxA)~(VxB)—A~VlexB. 4.4)
M M M

For all electric fields E| and E, satisfying the boundary condition, z x E = 0,
(4.4) gives

1 1
/El'VX—VXEde: —VXEl'VXEde
2 M QM

1
:/Ez-VX—VXEldV, (45)
2 M

where we have applied integration by parts twice. Integrating (4.2), multiplied by
the complex conjugate of E over £2, and integrating by parts once, we obtain
w? [ €elEPdV = [ou”'|V x E[*dV. This gives the following expression for
the eigenvalue:

2 _ fQ uw IV x E2dV
Jo€lEPdV
which is manifestly real and nonnegative. Thus, the eigenfrequencies w are real for
any lossless region bounded by perfect conductors. Damping can appear if there is

dissipation of energy, for example from regions with finite electrical conductivity,
or if the region is not completely enclosed by a perfect conductor.

(4.6)
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Review Questions

4.1-1 What is an eigenvalue problem? What does the solution consist of and
physically correspond to? To what extent is the solution uniquely defined?

4.1-2 What is required for an operator to be self-adjoint?

4.1-3 Show that (4.5) is valid.

4.1-4 Show that the eigenfrequencies w are real for any lossless region bounded by
perfect conductors. What are the physical implications of this result?

4.2 Model Problems

In the previous section we showed that Maxwell’s equations are self-adjoint in
the absence of losses, and that this leads to real eigenfrequencies. Self-adjoint
equations occur in many branches of science and technology. One example is the
Schrodinger equation, where real eigenvalues describe well-defined energy levels
of states with infinite lifetime. Another example is provided by the equations of
linear elasticity, which have many properties in common with Maxwell’s equations.
This similarity comes from the fact that both can be written as a vector equation
with second-order derivatives in time and space. The only difference is that the curl-
curl operator of the Maxwell equations is replaced by another second-order vector
operator, involving the modulus of elasticity for bulk compression and shearing.
Because of the many similarities between the two fields, it has been possible to
carry over techniques originally developed in computational mechanics (see, e.g.,
[38]) to CEM.

The self-adjoint curl-curl equation (4.2) leads us to consider eigenvalue problems
of the type

L[f]=-w*f inf 4.7

together with a suitable boundary condition on d£2. We will assume that L is a linear
self-adjoint operator with nonpositive eigenvalues. As a simple example to illustrate
general principles, we will study the 1D Helmholtz equation:

dz_f:_sz, 0<x<a, f(0)=f(a)=0. (4.8)
dx?

This equation models many 1D wave phenomena, not only in electromagnetics. We
will use it to introduce both frequency- and time-domain techniques that will be
used later to determine eigenfrequencies of more complex electromagnetic systems
in two and three dimensions.

The eigenvalue problem (4.8) is easy to solve analytically. The solutions of the
differential equation are of the form f = Acoskx 4+ Bsinkx. The boundary
condition f(0) = 0 gives A = 0, and then f(a) = 0 gives sinka = 0. Therefore,
the wavenumber k can take the following values:
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Amplitude [-]

_1 .5 1 1 1 1
0 0.2 0.4 0.6 0.8 1
x/a[-]

Fig. 4.1 The three lowest eigenmodes of the 1D Helmholtz equation with f = 0 on the
boundaries

mm .

k, = —, m an integer,

a

so the eigenvalues —k2 = —m?n?/a® are all real and negative. The three lowest

eigenfunctions, or eigenmodes, are shown in Fig. 4.1.

Review Question

4.2-1 Calculate analytical eigenvalues and eigenfunctions to the eigenvalue prob-

lem d? f/dx* = —k?* f with f(0) = f(a) = 0.

4.3 Frequency-Domain Eigenvalue Calculation

Frequency-domain eigenvalue problems of the form L[f] = Af are generally
transformed into corresponding algebraic eigenvalue problems of the form Af = Af
by, for example, a finite difference approximation. Therefore, the numerical solution
of a frequency-domain eigenvalue problem involves the solution of an algebraic
eigenvalue problem.
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4.3.1 MATLAB: The 1D Helmholtz Equation

To discretize the 1D Helmholtz equation (4.8) by finite differences, we divide the
interval [0, a] into N subintervals of equal length 7 = a/N. The simplest finite
difference approximation of (4.8) is

Ji-1 = 2fi + fira
2

=—k*f;,, i=12,...,N—1. (4.9)

The boundary conditions are fy = fy = 0, so there is no reason to include fy and
fn as unknowns. Equation (4.9) can be written as a linear system with an (N — 1) x
(N — 1) matrix A:

Af = Af.

Note that the matrix A is tridiagonal, with nonzero elements on the main diagonal
and one lower and one upper subdiagonal; for six interior points, it is

2100 00
1-21 00 0
A l]or—2100
oo 1-210
000 1-21
0000 1-2

When 7 is large, A consists mostly of zeros, and this can be exploited by saving the
matrix in sparse form (see MATLAB example below). Note that when the right-
hand side is as simple as in (4.9), the physical eigenvalues —k? are simply the
eigenvalues of the matrix A. These eigenvalues can be computed with the MATLAB
routine eig, which computes all eigenvalues and corresponding eigenvectors of an
algebraic eigenvalue problem. We will use this routine without discussing how it
finds the eigenvalues. The following MATLAB program computes the eigenvalues,
that correspond to wavenumbers, for the discretized 1D Helmbholtz equation.

% Arguments:

% a = length of interval

% N = number of subintervals (equal length)
% Returns:

% k = eigenvalues

h a/N; % Grid size

spalloc (

o°

Allocate sparse matrix
with 3% (N-1) nonzeros

o°

N-1,
N-1, ...
3% (N-1)) ;
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Table 4.1 The two lowest
wavenumbers from FD NI1  him] ky [1/m] ka [1/m]
discretizations with different 10 0.1000  0.99589 27352 4357  1.96726 32861 6693
resolutions 20 0.0500  0.99897 22332 4854  1.99178 54704 8714
30 0.0333  0.99954 31365 0068  1.99634 65947 4160
40 0.0250  0.99974 29988 6918  1.99794 44664 9703
d = -2/h"2; % Value of diagonal entries
s = 1/h"2; % Value of upper and lower
% diagonal entries

o

% Initialize the diagonal entries
1:N-1
= d; %

for i =
A(i, 1)
end

Diagonal entries

°

% Initialize the upper and lower diagonal entries

for i = 1:N-2
A(i,i+1) = s; % Upper diagonal entries
A(i+1,1) = s; % Lower diagonal entries
end
% Computing the eigenvalues
lambda = eig(A);
k = sqgrt(sort(-lambda)) ;

For this small example, we can rely on the MATLAB routine eig. It should be noted
that eig is limited to systems with at most a few thousand unknowns. This means
it is very useful in one dimension, and works for moderate-sized 2D problems. In
three dimensions, more powerful routines, such as the MATLAB routine eigs, are
generally needed.

We calculate the first two numerical wavenumbers k on the interval [0, 7] for four
different resolutions. The analytical results are k = 1,2,3,..., and the numerical
results are shown in Table 4.1.

Plots of k,, versus h? show a straight line when p 2, which means
that the convergence is quadratic. Extrapolation of the first eigenvalue to zero
cell size using polyfit gives the following values for k;: linear extrapolation
0.99999 93697 896, quadratic 0.99999 99999437, and cubic 0.99999 99999 997,
which is very close to the exact value 1. For the second eigenvalue, linear
extrapolation gives 1.99997 98747 162, quadratic 1.99999 99928 090, and cubic
1.99999 99999 989. Thus, the two lowest eigenvalues could be computed with 12-
digit accuracy using the cubic fit for extrapolation, even though the computations
have only about 4-digit accuracy. The accuracy of the extrapolated values may at
first be surprising, but it is typical for problems where the solution is completely
regular, i.e., has bounded derivatives of arbitrarily high order. However, if the
problem contains some singular behavior, caused for instance by a reentrant 270°-
degree corner, as in Fig. 3.1, or a tip in three dimensions, the derivatives of
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the solution will diverge at the corner, the order of convergence decreases, and
extrapolation becomes more difficult.

The error is larger for the second eigenmode. The second eigenmode oscillates
twice as fast and needs twice the resolution to be computed with the same accuracy
as the first, as is confirmed by Table 4.1.

Review Questions

4.3-1 Use finite differences to discretize the eigenvalue problem d?f/dx> =
—k? f with f(0) = f(a) = 0. Write down the corresponding matrix eigenvalue
problem.

4.3-2 What is the order of convergence for k in (4.9)?

4.3-3 Why is the error, in general, larger for higher eigenmodes? What situations
could change this?

4.4 Time-Domain Eigenvalue Calculation

One common way of determining eigenfrequencies in CEM is to time-step a
solution, using for example a finite difference program, record the field at some
location, and then Fourier transform this signal to locate its main frequency
components. This technique can be used for more general methods than the finite
differences. It can be used to find the eigenvalues of any spatial operator L with real
and negative eigenvalues,

Lif]=-w"f. (4.10)

Equation (4.10) is written in such a form that it is the frequency-domain form of the
time-domain equation
0’ f
— = L[f], 4.11
5 = LU/] (.1
which is, most likely, what the eigenvalue problem (4.10) was derived from.
The simplest time-discretization of (4.11) is

(n+1) _ o ) (n—1)
: (Ly+f = L[f™], (4.12)

where At is the time step. An important advantage of this formulation is that the
time-stepping is explicit, that is, no matrix inversion is needed to compute f"'+1:

FOtD — g ) _ p0=D 4 (AL £, (4.13)
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Such time-stepping schemes, often referred to as “leap-frog,” are very efficient, and
allow determination of the complete eigenvalue spectrum of (4.10). An important
issue for explicit time-stepping schemes is how to choose the time-step Az. This is
mainly determined by stability.

4.4.1 Stability Analysis

Before working out a specific example, we discuss how one can analyze the stability
of a time-stepping algorithm such as (4.13). The following technique is known as
von Neumann stability analysis.

The analysis is based on the fact that any discrete time equation, which has
no explicit time dependence, has solutions of the form f = f, p" that
is, geometrical sequences in discrete time. This is true even if the equation
involves space-dependent coefficients, as long as it has no explicit time-dependence.
Here, p is called the amplification factor of the eigenmode f,, and stability

requires |p| < 1 for all eigenmodes. Substituting f™ = £, p" into (4.13),
and using L[f,] = —? f,,, we obtain a quadratic equation for the amplification
factor

0°—[2—(@A)]p+1=0 (4.14)

with the solutions

1 [ 1
p=1-— E(a)Az)2 + jwAt,/1— Z(a)Az)Z. (4.15)

If (wAt)? < 4, there are two complex conjugate solutions such that
oI = Rep)® + (Imp)® = 1.

On the other hand, if (a)At)2 > 4, there are two real solutions, whose product is
unity, so one of them has modulus larger than 1. Figure 4.2 shows how the roots
move in the complex plane as w At varies.

The roots stay on the unit circle |p| = 1 as long as |w At| < 2, but when |w At| >
2, one root has modulus larger than unity. Therefore, if |w Az| > 2, the solution will
grow exponentially in time, and the scheme for time-stepping is unstable. Thus,
the explicit time-stepping scheme in (4.13) has a stability limit for the time-step:
At < 2/|w|. Since this has to hold for all the eigenmodes of (4.10), the condition
on the time-step for the explicit scheme is

At <

| Wmax |

(4.16)
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Fig. 4.2 Trajectories in the complex plane of the two roots for the amplification factor p in (4.15)

This means that the time-step times the highest eigenfrequency fmax = ®max/27
should be at most 1/7.

If we apply this stability limit to the operator L = d?/dx?* discretized on a
uniform grid with cell size h, the largest numerical eigenvalue is w2, = 4/h>
[see (3.17)]. Thus, wm.x = 2/h, and stability requires At < 2/wmx = h. We
conclude that the time-step for our simple explicit scheme for the wave equation
0% f/3t*> = 92 f/0x? should not be larger than the space step, for stability reasons.

We can also see how well the time-stepping reproduces the true oscillation

frequency. The amplification factor per time-step ought to be
exp(jot) =1=x jot — %(a)At)2 F Jé(wAtf’ + e
whereas (4.15) gives
p=1%jot — %(a)At)z ¥ %(a)At):” +e

The difference between p and exp(jwt) is & j(wAt)? /24, which corresponds to a
relative frequency error of (wAt)?/24.

The von Neumann stability analysis is closely related to the analysis in Sec.
3.2.3. To see the connection, assume that the solution f of the time-discretized
problem varies harmonically in time, f o exp(j2t), i.e., f" o exp(jn2At).
We will examine how the frequency £2 of the time-discretized solution is related to
o of the frequency-domain eigenvalue problem L[f] = —w? f. [Of course, this is
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just redoing the analysis leading to (4.15), replacing the amplification factor p by
exp(j$§2t).] Using the same rewrite for the second derivative as in (3.17), we obtain

4 At
e sin’ — = w? (4.17)

for the frequencies §2 generated by the leap-frog time-stepping. [This is also the
same as the numerical second-order derivative in (3.18).] In order for (4.17) to have
real solutions for £2, w At must not exceed 2 for any w.

In the FEM chapter, we will also study implicit time-stepping schemes, which
make it possible to remove the limit on the time-step. The price to pay for this is
that one has to solve a system of equations to update the solution at each time step.
Also, the accuracy may be poor if the time-step becomes too large.

4.4.2 MATLAB: The 1D Wave Equation

As a simple illustration of how to extract spectral information by explicit time-
stepping, we seek the spectrum —w? of the operator L = 92/9x? on the interval
0 < x < a with the boundary conditions f(0,¢) = f(a,t) = 0. The true
eigenfrequencies are

mm

Wy, =—, m=12,....
a

The spectrum of L can be found by solving the wave equation

’fPf

W_ W’ 0<x<a, f(O,t)zf(a,t):O. (418)

We use the simplest finite difference scheme:

FE Z g g ”+( )(f(”’ FO=2f7) @)

We will write this as a MATLAB function that records two signals [ f(¢) at two
locations, the midpoint and a point close to the left boundary] and stores them
in arrays to be analyzed afterwards. More than one signal is recorded because
some eigenmodes can be undetected if the eigenfunction f has a node (i.e., zero
amplitude) at the “detector” location. An eigenmode may also be undetected if the
initial condition does not excite it at sufficient amplitude.

function [omega, sl1, s2] = WavelD(a, time, nx)
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% Arguments:
% a = the length of the interval
% time = the total time interval for the simulation
% nx = the number of subintervals in the domain (0, a)
% Returns:
% omega = the angular frequencies
% sl = the complex Fourier transform of data at x = a/5
% s2 = the complex Fourier transform of data at x = a/2
fo = randn(nx+1, 1); % Initialize with random numbers
fo(1,1) = 0; % Boundary condition at x = 0
fO0(nx+1,1) 0; % Boundary condition at x = a
f1 = randn(nx+1, 1); % Initialize with random numbers
£f1(1,1) = 0; % Boundary condition at x = 0
f1(nx+1,1) 0; % Boundary condition at x = a
dx = a/nx; % The cell size
d2tmax = 1.9xdx; % The time step must satisfy

% 2+xdt < 2xdx for stability
ntime = round(time/d2tmax + 1); % The number of time steps
dt = time/ (2+ntime) ; % The time step

% Initialize the coefficient matrix for updating the solution £

A = spalloc(nx+1,nx+1,3* (nx+1));

for i = 2:nx
A(i,i)
A(i,i+1)
A(i,i-1)
end

o° o° o

for itime = 1

fo

signl (2xitime-1)
sign2 (2xitime-1)

f1

signl (2xitime)
sign2 (2xitime)

end

°
3
o

3

spectrl =

°

2% (1-(dt/dx) "2) ;
(dt/dx) "
(dt/ax) "

:ntime

o
5
o

°

2;
2;

o° o° o°

Time step and sample the solution
Sample location #1 is close to the left boundary
Sample location #2 is at the midpoint of the domain

3 (nx+1)

Sparse empty matrix with

nonzero entries

Diagonal entries
Upper diagonal entries
Lower diagonal entries

Every ’‘itime’ means two time steps ’dt’

Axfl - fO;
f0 (round (1+nx/5) ) ;
£f0 (round (1+nx/2)) ;

Axf0o - f1;
f1 (round (1+nx/5)) ;
f1(round (1+nx/2)) ;

Compute the discrete Fourier transform
the time-domain signals

fft (signl) ;
spectr2 = fft(sign2);

o° o° o°

o® o° o°

of

Update
Sample
Sample

Update
Sample
Sample

at
at

at
at

% In the MATLAB implementation of the function fft (),

location #1
location #2

location #1
location #2
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Fig. 4.3 Amplitude of Fourier coefficient s; (measured at one-fifth from the left boundary) versus
angular frequency for the 1D wave equation. Every fifth mode is undetected because the detector
is located at a node for the eigenfunction

% the first half of the output corresponds to positive frequency
sl(l:ntime) = spectrl(l:ntime) ;
s2(l:ntime) = spectr2(l:ntime) ;

% Frequency vector for use with ‘sl1’ and ’'s2’
omega = (2xpi/time) *linspace (0, ntime-1, ntime);

We call the routine by
[omega,sl,s2] = WavelD(pi,200,30);

to compute the spectrum of the second derivative on the interval [0, r]. Figures 4.3
and 4.4 show the absolute values of s; and s, versus angular frequency. The spectral
peaks fall very close to integers, as they should. Because of the spatial locations
of the observation points, the even peaks are absent in s, and those divisible by
51in s;. These are the eigenmodes that have zero amplitudes (nodes) at the respective
observation points.

A significant advantage of such a time-domain calculation is that we can find the
whole spectrum (except the few peaks that are accidentally missed) from a single
simulation.

4.4.3 Extracting the Eigenfrequencies

Let us briefly consider how to extract the eigenfrequencies from a time-domain sim-
ulation. We first run the simulation and record the signals. The longer the simulation
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Fig. 4.4 Amplitude of Fourier coefficient s, (measured at the midpoint of the interval) versus
angular frequency for the 1D wave equation. All modes with even number are undetected because
the detector is at a node for those modes

is run, the sharper the spectral peaks become, and the better the eigenfrequencies
are determined, but the convergence of the estimated frequencies is slow. One can
see that when there is no damping, the estimates are sensitive to how close the
various frequency components are to making an integer number of oscillations
during the simulation. This is because the fast Fourier transform (FFT), which is
used to transform the recorded signal into the frequency domain, treats the signal
as if it were periodic with a period equal to the simulated time. If the time interval
is not an integer number of wave periods, either the signal or its time derivative
will have a jump at the end of the time window, and this broadens the Fourier
spectrum of a sinusoidal signal. As an example, compare the spectrum obtained
by calling the time-stepping routine by WavelD (pi, 20+pi, 30), which gives
10 (analytical) oscillation periods for the first mode, and where all the low-order
modes make approximately an integer number of oscillations, with that obtained
from WavelD (pi, 21xpi, 30), where the first mode has 10.5 oscillation periods
and all the odd modes will be strongly broadened by the FFT. In the first case,
where the low-order modes make an integer number of oscillations, the FFT finds
very sharp peaks for these modes, despite the rather short time interval; see Fig. 4.5.
In the second case, see Fig. 4.6, the odd modes, with half-integer number of periods,
are broad.

One way to avoid the dependence on how the time sequence is terminated is to
multiply the time signal by an exponential damping factor exp(—yt), and choose
y such that ytn, is large enough, say in the range of 3 to 5. (This makes the
FFT an approximation of the Laplace transform.) Now the FFT produces a cleaner
spectrum. The frequencies can be extracted almost automatically by fitting the
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Fig. 4.5 FFT spectrum for the 1D wave equation when the time interval is 10 periods for the
lowest mode (and an integer number of modes for all the lowest modes)
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Fig. 4.6 FFT spectrum for the 1D wave equation when the time interval is 10.5 periods for the
lowest mode (and a half-integer number of modes for all the odd modes)

output from the FFT (Laplace transform) to a so-called Padé approximation. This
consists in fitting the frequency response by a ratio of polynomials

_ P(w)
s() = ) (4.20)
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The idea behind this (which is correct only when the signal decays to zero at the end
of the recorded interval) is that we expect the Laplace transform to consist of simple
poles

®w—w,

sy~ Y 4.21)

and this pole expansion is a rational function of the same type as the Padé
approximation (4.20).

4.4.4 MATLAB: Padé Approximation

The following MATLAB function computes the coefficients of P and Q and then
uses MATLAB’s residue function to find the poles w, and residues ¢, in (4.21).

function [poles, res] = Pade(omega, s, 1, n)
% Arguments:
% omega = the array of the independent frequency
% s = the function of omega to be Pade approximated as
% the ratio of polynomials P (omega)/Q (omega)
% 1 = discrete index of center frequency
% n = degree of polynomials P and Q
% Returns:
% poles = the poles of the Pade approximation
% res = the residues of the Pade approximation
% Setup the matrix for computing coefficients of P and Q
A = zeros (2xn+1l) ;
for 1 = 1:2xn+1
% Shift frequencies
oshift (i) = omega(l-1-n+i)-omega(l) ;

o

% P entries
for k = 1:n+1

A(i,k) = oshift (i)~ (k-1);
end

% Q entries
for k = 1:n

A(i,n+1+k) = -s(l-1-n+i)+oshift (i) "k;
end

% Q 0 set to 1
i) = s(l-1-n+1i);

(

X
end

°

% Compute the coefficients
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coef = (A\(x.")).";
for k = 1:n+1
P(k) = coef (n+2-k);

end

for k = 1:n

Q(k) = coef (2%*n+2-k) ;
end
Q(n+l) = 1;

% Find the poles and the residues
[res, poles] = residue(P, Q);
poles poles + omega(l); % Restore the frequency shift

Applying this routine to an approximate Laplace transform, one can make the
frequencies converge very well with about 10 periods of oscillation. A standard
method used for frequency determination in the literature is Prony’s method; see for
instance [80]. However, more modern techniques of signal processing can be used to
give much more efficient extraction of frequencies, in particular when the frequency
spectrum is dense [65].

Review Questions

4.4-1 How are the eigenvalues extracted from a time-domain eigenvalue calcula-
tion? Can the corresponding eigenmodes be extracted in a simple way?

4.4-2 What considerations should be taken into account in selecting the
time-step Ar?

4.4-3 What is an explicit time-stepping method?

4.4-4 Describe the meaning and the use of the amplification factor in words.

4.4-5 How does the highest eigenfrequency relate to the maximal stable time-step
for (4.13)?

4.4-6 How well is the true oscillation frequency reproduced by (4.15)? Quantify
your answer.

4.4-7 How do the excitation and detector positions influence the frequency spec-
trum computed from a time-domain method?

4.4-8 Why are the frequency estimates of the FFT sensitive to how close the various
undamped resonances are to making an integer number of oscillations during the
simulation?
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Summary

e The solution of the eigenvalue problem L[f,] = A, fn consists of pairs of
eigenvalues A,, and eigenvectors f,, where the pairs typically are indexed by
an integer m. (Sometimes the subindex m is omitted in order to simplify the
notation.) Here, the operator L and boundary conditions are given. For Maxwell’s
equations, we have

Vxu'VxE,=weE,,

2

where the eigenfunction is E,, and the eigenvalue is w;),.

* For the 1D Helmholtz equation d? f/dx* = —k?f on the interval 0 < x < a
with the boundary conditions f(0) = f(a) = O, the eigenvalues are
k> = (wm/a)® with integer m = 1,2,... for the continuous problem, and

the discretized problem has

kK = i sin® mmh
2a

for the cell size handm = 1,2, ..., N, where N is the number of internal nodes
in the grid.

* A time-domain computation of eigenvalues is based on the inverse Fourier
transform of L[f] = —w?f, ie., L[f] = 0*>f/0t?, and a finite difference
discretization with respect to time gives

Ot 00 4 £

L[] = A

The substitution £ = f,p", where p is an amplification factor and L[ f,] =

—w? f,, gives
1 , I
p=1-— E(a)At) + joAry1— Z(wAt)z.

We have |p| = 1 for wAt < 2. If At < 2/|®Wmax|, no mode will grow,
and every mode is multiplied by a phase-factor in each time-step. Thus, stable
time-stepping is achieved for At < 2/|Wmax|, Where wma is the highest
eigenfrequency.

e The output s(¢) from a time-domain simulation can be represented by its Fourier
transform:

N P(w) Cn
O G T ey

Peaks in the spectrum of s(w) fall close to the resonance frequencies w;,.

n
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Problems

P.4-1 Calculate the eigenvalues k? of the vector wave equation V x V x E = k?E
for a 2D rectangular cavity with PEC boundaries. Consider the two cases with
E =ZE.(x,y) and E = XE.(x,y) + YE,(x,y), where the second case is
easier to treat if it is reformulated in terms of the magnetic field.

P.4-2 Show that the eigenvalues of the discretized 1D Helmholtz equation (4.9), for
a = m, are

—k? = —%sinz'%h, m=1,273,...,
and find how the error in k depends on the mode number and resolution.

P.4-3 Let the electric field be E = ZE_(x) for a 1D cavity with PEC walls and
constant i and €. Use the finite difference scheme and show that (4.6) can be
rewritten as

, 1 eTAe
0 =— ,
ue eTe

where e is a vector with the electric field at the interior grid points. Determine
A and interpret the products eTAe and e'e in terms of a numerical integration
scheme.

P.4-4 In one dimension, Helmholtz equation gives L = d?/dx>. Find a nonzero
solution f that yields L[f] = 0 and solve (4.10) and (4.11) for that particular
solution. Can this solution exist in a region of finite size, and if so, what boundary
conditions are satisfied by this solution?

P.4-5 Consider the questions in the previous exercise when the operator L =
d?/dx? is discretized by finite differences. How do you treat the boundary
conditions so that the order of convergence associated with the finite difference
stencils of the interior grid points is preserved? How does the discretized problem
compare to its continuous counterpart? Does the discretized problem have a
nonzero solution f with L[ f] = 0?

P.4-6 Discretize L = 9?/0x* with finite differences so that the dominant term in
the error is O(h*) (more than three points are needed) and derive the stability
limit on At for (4.13). Compare the stability limit with the case in which the
error is O(h?).

P.4-7 Compute the discrete Fourier transform of the signal sin(w¢?) sampled at ¢ =
nAt, wheren = 0,1,..., N — 1. Compare some arbitrarily chosen value of @
with the special case @ = 2mwq/(NAt) for some integerg = 0,1,..., N — 1.
How and why do these cases differ?

P.4-8 For three resonances, rewrite (4.21) as a ratio of polynomials s(w) =
P(w)/Q(w). Consider the output signal y(w) = s(w)x(w), where x(w) is the
input signal to the system. Use the inverse Fourier transform to derive the time-
domain expression for y(w). Interpret your findings.
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Computer Projects

C.4-1 The transverse electric (TE) modes and the corresponding eigenvalues k> for
a closed metal waveguide satisfy

~V?H, = k?H, in S,
n-VH,=0 onL.

Similarly, the transverse magnetic (TM) modes and their eigenvalues k,2 fulfill

—V?E, = k’E, in S,
E.=0onlL.

Here, the metal boundary of the waveguide cross section is denoted by L, and
it encloses the interior S of the waveguide. Write a program that solves for the
eigenmodes and the eigenvalues based on a finite difference discretization of
the TE and TM problem for a waveguide with rectangular cross section. The
analytical eigenvalues are k2 = (mm/a)> + (nm/b)* for integers m and n
excluding the combination m = n = 0 for the TE case and mn = 0 for the
TM case. Here, the rectangular cross section has width a and height b.

C.4-2 Equation (4.2) with losses and constant permeability is givenby VXV X E =
w(w*e — jwo)E, and for a problem with E = ZE_(x, y), we get

—V2E. = p(w’e — jwo)E.,

which is a nonlinear eigenvalue problem in w. Rewrite this problem to a linear
eigenvalue problem in terms of E, and wE,. Implement a finite-difference
algorithm and solve for the resonance frequencies and quality factors of a square
cavity with a boundary of a PEC. For constant material parameters, derive the
analytical eigenfrequencies and compare the numerical and analytical results.
How is the spectrum influenced by losses? Explore the case in which o > 0 in
a part of the domain and study the dependence of the lowest eigenmodes as a
function of ¢. Try to explain your findings.



Chapter 5
The Finite-Difference Time-Domain Method

The finite-difference time-domain (FDTD) scheme is one of the most popular
computational methods for microwave problems; it is simple to program, highly
efficient, and easily adapted to deal with a variety of problems. The FDTD scheme
is typically formulated on a structured Cartesian grid and it discretizes Maxwell’s
equations formulated in the time domain. The derivatives with respect to space
and time are approximated by finite-differences, where the field components of the
electric and magnetic field are staggered in space with respect to each other in a
particular manner that is tailored for Maxwell’s equations.

A major weakness of the method lies in the way it deals with boundaries that
are not aligned with the Cartesian grid: for oblique boundaries, FDTD programs
typically resort to the “staircase approximation.” The error due to the staircase
approximation can be difficult to assess, but some examples can be found in the
literature [14, 63]. The finite element method (FEM), which will be discussed in
Chap. 6, is better suited for problems with oblique and curved boundaries and fine
structures that may need higher resolution locally.

However, the FDTD allows for explicit time-stepping, and this makes it much
more efficient than time-domain FEM, which in general is implicit (i.e., a system of
equations must be solved at each time step). Another advantage of the FDTD is that
no matrix has to be stored. This reduces memory consumption and makes it possible
to solve problems with a very large number of unknowns.

The FDTD has a time-step limit Az < /1/c+/3 in three dimensions, where At is
the time-step, / is the cell size, and ¢ is the speed of light (in vacuum, the speed of
light is g = 299792 458 m/s). This is a serious limitation in problems involving
time scales much longer than it takes a light wave to cross the simulation region.
An important example of this is eddy current problems, in which the FDTD cannot
be used because of its short limit to the time-step.

The type of problems for which the FDTD is particularly suited involves the
propagation of electromagnetic waves and geometries where characteristic lengths
are comparable to a wavelength. This typically includes microwave problems.
Similar conditions also apply for optical devices whose dimensions are comparable
to the wavelength.

T. Rylander et al., Computational Electromagnetics, Texts in Applied 63
Mathematics 51, DOI 10.1007/978-1-4614-5351-2_5,
© Springer Science+Business Media New York 2013
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Fig. 5.1 The grid used to t A
numerically solve the 1D
wave equation
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A powerful way to find several resonant frequencies of a microwave cavity is
to perform an FDTD simulation and then Fourier transform selected signals in
time. This is the same procedure that we discussed for finding the eigenvalues
of the 1D Helmholtz equation in Chap.4. For many applications, for instance
scattering problems, selected time signals from an FDTD simulation can be Fourier
transformed while the simulation proceeds, and a single FDTD run can produce
frequency-domain results at any desired number of frequencies. This is a major
advantage of time-domain methods.

The FDTD algorithm was originally proposed by K.S. Yee in 1966 [93]. Since
then, it has been used for a variety of applications, and many extensions of the
basic algorithm have been developed. The literature on the FDTD is vast, and over
the period 1975-1995 the number of research papers in which the FDTD method
was used grew exponentially in time. By now, the FDTD is considered a basic tool
in CEM, and research articles now tend to be on more complicated methods. The
books by Taflove et al. [80-82] give a good overview and describe many important
extensions of the FDTD.

5.1 The 1D Wave Equation

To solve the wave equation (1.12) numerically, we divide the z-axis into intervals of
length Az and the time axis into intervals of length Az (see Fig.5.1).

Let |, be an index that refers to the z-coordinate and let |" refer to the time
coordinate such that E|! = E(rAz,nAt). We get the discrete equation by using
standard difference approximations for the derivatives:

Ept' 2B+ Ep _ L Ely, 2Bl + Bl
(A1) (A2

5.1
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Equation (5.1) gives an explicit expression for E at the next time level n + 1 in terms
of E at the previous levels:

A\
E[ = 2Bl — B 4 (A—Z) (Bl — 2B+ E[), (52)

which is identical to (4.19) when the speed of the wave ¢ is set to unity. Two time
levels of E must be given as initial conditions. For the analytical wave equation one
needs £ and 0E /0t as functions of zatz = 0.

The dispersion relation for the finite difference approximation in (5.1) can be
found by substituting E|” with exp(jw nAt — jk rAz) and dividing the equation by
exp(jonAt — jk rAz):

eja)At —24 e—ijt _ CZ e—jkAz -2+ ejkAz
(Ar)? (Az)?

This can be rewritten as

/A2 _ o= jwAt]2 2_ AL\ [ kB2 _ g jkAz/2 2
2j Az 2j ’

Taking the square root, we get the dispersion relation for the numerical scheme:

wAt cAt kAz
i = +—— sin —. 5.3
sin > A sin 5 (5.3)

For the numerical solutions, the angular frequency w is only approximately a linear
function of the wavenumber k, unless Az = cAt. Consequently, waves with
different wavenumbers will propagate with different velocities. This means that a
wave package containing several different spatial frequencies will change shapes
as it propagates. This is referred to as the dispersion of the numerical scheme, or
numerical dispersion for short.

5.1.1 Dispersion and Stability

How does the choice of At and Az affect the dispersion? Equation (5.3) shows that
the important parameter is R = cAt/ Az, that is, how many grid cells the exact
solution propagates in one time-step. Dispersion relations for different values of
R <1 are shown in Fig. 5.2.

We have the following distinct situations:

R=1: If At = Az/c,then R = 1 and (5.3) simplifies to = Z£ck, which is
exactly the analytical dispersion relation (1.14). This choice of Az is called the
magic time step. The errors of the spatial and temporal difference approximations
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Fig. 5.2 Numerical dispersion relations for different values of R = c At/ Az

cancel, and the signals propagate exactly one cell per time-step, in either
direction.

R < 1: If At < Az/c, the numerical dispersion relation differs from the analytical.

The smaller R is, the stronger is the numerical dispersion (see Fig.5.2). The
dispersion properties improve as At approaches the magic time-step.

R > 1: If At > Az/c, then R > 1 and (5.3) yields complex angular frequencies

for wavenumbers such that | sinkAz/2| > Az/cAt = 1/R. As a consequence,
some waves will be exponentially growing in time, i.e., the algorithm is unstable.
This exemplifies the type of instability discussed in Sect. 4.4.1. When c At > Ag,
the signal of the true solution propagates more than one cell per time-step, and
that is not possible with the explicit scheme in (5.2), which involves only nearest
neighbors. The stability condition cAt < Az is often called the Courant (or
Courant—Friedrichs—Levy, CFL) condition. Similar conditions, implying that the
signal can propagate at most one grid cell per time-step, hold for practically all
explicit schemes for any differential equation.

5.1.1.1 Example: A Square Wave

A square wave can be represented as an infinite sum of harmonic components with
different frequencies, and it is rich in high-frequency components. When such a
wave propagates in a dispersive medium, the different sine waves propagate with
different velocities, and the shape of the wave will change as it propagates. The 1D
wave equation can be time-stepped using selected parts of the MATLAB function
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Fig. 5.3 Propagation of a square wave when At is equal to the magic time-step, R = cAt/Az =
1. There is no dispersion: the shape of the pulse stays the same as it propagates
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Fig. 5.4 Propagation of a square wave when At is smaller than the magic time-step, R =
cAt/Az = 1/ /3 A& 0.58. In this case, there is significant numerical dispersion: the shape of
the pulse changes as it propagates
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Fig. 5.5 Propagation of a square wave when At is slightly greater than the magic time-step, R =
c¢At/Az = 1.01. The scheme is unstable and the wave amplitude increases rapidly in an unphysical

way

WavelD givenin Sect. 4.4.2. Figures 5.3-5.5 show the propagation of a square wave
for three different values of R.

5.1.1.2 Example: A Smooth Wave

An initial condition in the form of a square wave highlights the dispersion of the
numerical scheme. As a second example, we take as initial condition a Gaussian
pulse that is well resolved on the grid, with 12 points across the 1/e width; see
Fig.5.6. This pulse can propagate many pulse widths before the dispersion becomes
apparent to the eye, even when R = 1/+/3. This illustrates an important point:
numerical results are accurate only when the solution is well resolved by the grid.
Of course, a square wave is not well resolved on any grid.
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Fig. 5.6 Propagation of a Gaussian pulse with 12 points across the 1/e width when At is smaller
than the magic time-step, R = cAt/Az =1/ V3. Although the scheme has some dispersion, it is
hard to see with the naked eye when the pulse is well resolved
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Fig. 5.7 Propagation of a Gaussian pulse with 6 points across the 1/e width when Af is smaller
than the magic time-step, R = cAt/Az = 1/ /3. Here the resolution is not very good, and the
effect of the dispersion is clearly visible to the eye

Similarly, if we compute a Gaussian pulse with insufficient resolution, the
dispersion will be strong. Figure 5.7 shows a case in which the 1/e width of
the Gaussian is 6 points. Here, the dispersion manifests itself as short-wavelength
oscillations trailing behind the main pulse. The oscillations are behind the main
pulse because the phase velocity is smaller for short wavelengths.

Review Questions

5.1-1 List some pros and cons of the FDTD scheme.

5.1-2 What is a dispersion relation? Derive the dispersion relation for the 1D wave
equation discretized by the standard finite difference approximation. Compare
the numerical dispersion relation with its analytical counterpart.

5.1-3 Under what conditions will E(z,1) = ET(z—ct) + E~(z + ct) satisfy the
discretized 1D wave equation?

5.1-4 Generally, higher resolutions lead to more accurate results, but in some cases
this is not true. Give an example of this and explain why.

5.1-5 Explain how and why a pulse is distorted when propagated by the wave
equation discretized by finite differences.
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5.2 The FDTD Method: Staggered Grids

The wave equation is a second-order differential equation for the electric field only.
It can also be stated as a system of coupled first-order differential equations for both
E and H. In three dimensions, Maxwell’s equations (1.9)—(1.10) in a source-free
region give six scalar equations, three for Ampere’s law,

O0E, OH, 0H,

= —_— 4

o T oy o >4
oE, oH, 0H,

it — , 5.5

o T ez ox (53)
J0E, . 0H, 0H,

or T ox oy (5.6)

and three for Faraday’s law,

0H | 0E, OF,

* = _ 3 5.7

H ot 0z dy (5.7)

0H, . dE, OE, (5.8)

B = ox 0z’ '

0H, JE, OE

== (5.9)

Bor =%y " ox

The FDTD is a finite difference scheme particularly suited to the structure of these
six first-order equations. In particular, it uses difference formulas that are as local
as possible and centered.

5.2.1 One Space Dimension

To illustrate the use of staggered grids, which is central to the FDTD, we will start
with a 1D problem. Consider a plane wave propagating in the z-direction through a
medium such that all quantities are constant in planes perpendicular to the z-axis.
We assume that the electric field is oriented in the x-direction, and the magnetic
field in the y-direction. Then, (5.4)—(5.9) reduce to

oF 0H,
6_3t = __3z , (5.10)
0H,  JE,
— = — . 5.11
# ot 0z ( )
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Fig. 5.8 Staggered grid used in the 1D leap-frog algorithm. The two “stencils” show which values
of E, and H, are used in solving (5.13) with (r = 1, n = 3) and in solving (5.12) with (r = 4,
n=1)

The “trick” used to get a good algorithm is to put the different E- and H-
components at different positions on the grid, and also to evaluate the equations
at different positions. As we saw in Sect. 3.2, first-order derivatives are much more
accurately evaluated on staggered grids, such that if a variable is located on the
integer grid, its first derivative is best evaluated on the half-grid, and vice versa.
This holds with respect to both space and time. Therefore, if we choose to place
E on the integer points both in space and in time, H, should be on the half-grids
in both variables, as illustrated in Fig.5.8. This arrangement is called “staggered
grids.”

Let |, be an index that refers to the z-coordinate and let |" refer to the time
coordinate such that f|!' = f(rAz, nAt). Then, (5.10) is applied at integer space
points (indexed by r) and half-integer time points (indexed by n + 1/2) using
centered and local finite differences in both z and ¢. Similarly, (5.11) is applied
at half-integer space points (indexed by r + 1/2) and integer time points (indexed
by n) points, also using centered and local finite differences in both z and ¢. The
finite difference approximation of (5.10)—(5.11) on the staggered grids reads

nty n+3%
Bt - By 1l =

At € Az ’

(5.12)
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n+% n—3
—H,"2
r+1 y|r+% _ LEJL, — B}

At ou Az

H,|

(5.13)

As initial conditions we need one time level for E, and one for H,.

For problems with variable permittivity and permeability, it is important to keep
in mind that (5.12) is evaluated on the integer grid and (5.13) is evaluated on the
half-grid. Consequently, it is natural to sample the permittivity on the integer grid
that gives € = €(z,) with zr = rAz. Similarly, the permeability is evaluated on the
half-grid which gives that p = (z, . 1 ).

Interfaces between regions with homogeneous but different material parameters
can be treated in the following way: we place a grid point z, (where the electric
field is defined) at the interface and choose the permittivity at this grid point to be
the average of the permittivities in the two media sharing the interface, i.e., ¢ =
(ea + €B)/2 at z,, where €5 and €g denote the permittivities in the two media. The
permeability is then unproblematic, since it is evaluated at least half a cell from the
interface. This approach maintains the order of convergence for the FDTD scheme,
whereas other approaches may yield deteriorated convergence properties.

It is instructive to eliminate H,, from (5.12)—(5.13):

E " —2E " + E, ")

(Ar)?
n+1 _ E In E In —E In—l
{rearrange} = L (Bl xro_ Zxlr xlr
At At At
+l +l _1 _1
1 Hy|j+12 - Hylj_f Hylf_,_zi - Hy|:l_12
{5.12)} = ——— 2 z 2 2
€At Az Az
n+% n—% n+% n—%
1 Hy|,.+L - Hy|,+1 Hy|,_i - Hy|,._L
{rearrange} = ——— 2 z 2 2
€Az At At
1 E' ,—E? E.|"—E.|"
{(513)} — x|r+1 X|1 _ 2 |1 2 |1—1
€nAz Az Az

Ex|’r1+l B 2EX|:"I + EX|:I—1

2
rearrangey = ¢
{ ge} (407

(5.14)

Thus, E, evolved according to the coupled first-order equations (5.12)—(5.13) on the
staggered grid satisfies the 1D wave equation on standard integer grids, which we
studied in Sect. 5.1. Therefore, the dispersion properties and the stability condition
of the coupled first-order system are the same as for the wave equation; for instance,
At < Az/c is necessary for stability.
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Fig. 5.9 Unit cell in the 3D
FDTD algorithm

q+1
r+1

r+1/2

p+1

If we had not used staggered grids for £, and H, but taken the first derivative in
z across two cells, then the resulting difference approximation for the second-order
z-derivative in (5.14) would involve E.[},, and E,[}_,. This is less accurate and
makes the grids with r even and odd decouple. E, components with r odd would
evolve completely independently of those with r even. We conclude that in order to
get the same accuracy and robustness as the 1D wave equation for £, it is necessary
to place one of E, and H, on a half-grid; that is, we must use a staggered grid for
the coupled first-order equations.

5.2.2 Three Space Dimensions

The Yee scheme extends the staggering to three dimensions with a special arrange-
ment of all the components of E and H . The electric field components are computed
at “integer” time-steps and the magnetic field at “half-integer” time-steps. Space
is divided into bricks with sides Ax, Ay, and Az (usually one uses cubes with
Ax = Ay = Az = h). The different field components are placed in the grid
according to the unit cell shown in Fig.5.9.

The electric field components are placed at the midpoints of the corresponding
edges; E, is placed at the midpoints of edges oriented in the x-direction, £, at the
midpoints of edges oriented in the y-direction, and E, at the midpoints of edges
oriented in the z-direction. Thus, E is on the half-grid in x and on the integer grids
in y and z, etc. The magnetic field components are placed at the centers of the faces
of the cubes and oriented normal to the faces. H, components are placed at the
centers of faces in the yz-plane, H, components are centered on faces in the xz-
plane, and H, components are centered on faces in the xy-plane. Thus, H, is on
the integer grid in x and on the half-grids in y and z, etc. This arrangement was
introduced by Yee [93], and the unit cell in Fig. 5.9 is also known as the Yee cell.
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Let |,4. be indices that refer to the x, y, and z coordinates and let |" refer

to the time coordinate such that f|

n
p.q.r

= f(pAx,qAy,rAz,nAt). With the

Yee arrangement for the field components, the finite difference approximation of

Maxwell’s equations (5.4)—(5.9) reads

Ex|n+l1 _Ex|n |
+5.q.r pt+5.q.r
PTa4 2
At
n+% n+% n+% n+%
Hz| 1 1 _Hz| 1 1 Hy| 1 1_Hy| 1 1
pr3.q+5.r Pr3.4=3.r pr3.47r+5 P+3.4.r=3 (5.15)
Ay Az T
E n+1 _ n
Mpg+i.r y|p,q+%,r
At
ln-‘r% ln-‘r% H ln-‘r% |n+%
gt pg+tor—1 _ p+lg+ir HUp—tg+ir (5.16)
Az Ax ’ '
n+1 _ |n
Upgr+i “pgr+i
At
1 1 1 1
H |n+2 _ |n+2 |n+2 . |n+2
_ T ptgarts Yp=tarts T Upgtiorts “pa—3r+3 5.17)
Ax Ay ' '
and
ln-‘r% _H ln—%
* p,q+%,r+% * p,q+%,r+%
At
E,|" —E," E.|" — E.|"
_ ylp,q+%,r+l y|p,q+%,r ZIp,q-‘rl,r+% ZIp,q,r-‘r% (5.18)
Az Ay ’ '
|n+% _H ln—%
" Yip+iqgr+i Yip+igr+i
At
E.|" - E|" E.|" —E.|"
_ zll’-l—l,q,r+% le,q,r-i—% _ x|p+%,q,r+l x|p+%,q,r (5.19)
Ax Az ’ '
|n+% . |n—%
Up+lagt+in Hpt+iatir
At
E.|" —E.|" E,|" —E,"
_ X|p+%,q+l,r x|p+%,q,r _ y|p+1,q+%,r y|p,q+%,r (5 20)

Ay

Ax
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The Yee scheme, or FDTD scheme, has proven very successful for microwave
problems. All derivatives are centered and as compact as possible, that is, they are
taken across a single cell.

Chapter 6 treats the FEM and, there, we return to this type of approximation
and demonstrate how it can be deduced by means of the FEM formulated for a
discretization with brick shaped finite elements. For such brick shaped elements,
we use the so-called edge elements (also known as curl-conforming elements) to
approximate the electric field, which is associated with the edges of the Cartesian
grid. In addition, we exploit so-called face elements (also known as divergence-
conforming elements) to approximate the magnetic field, which is associated with
the faces of the Cartesian grid. The mathematical expressions for these field
approximations are given in Appendix B.2.3 and their usage is described in Chap. 6.
However, it can be useful to know already at this point that the FDTD scheme can
be derived in a different manner. In fact, it is possible to view the FDTD scheme as
a special case of the finite element method formulated for brick shaped elements.
Such FEM arrangements for the spatial discretization are also used for frequency-
domain microwave calculations and eddy current calculations.

5.2.3 MATLAB: Cubical Cavity

In this example we will use the FDTD to compute the resonant frequencies of an
air-filled, cubical cavity with metal walls. By evolving the electric field in time and
sampling it at some locations in the cavity, we get the electric fields at these locations
as functions of time. We then use a discrete Fourier transform to find the resonant
frequencies of the cavity.

5.2.3.1 Discretization

First the cavity must be discretized. Let us divide the cavity into N, x N, x N, cells.
A cavity divided into 3 x 4 x 2 cells is shown in Fig. 5.10. To store the fields both
inside the cavity and on the cavity wall, we need to store the values of

Eiat3x5x3= N, x(N,+1)x (N;+ 1) positions,
E,at4x4x3=(N,+1)x N, x(N;+ 1) positions,
E.at4x5x2=(N,+1)x(N,+1)x N, positions,

Hyat4x4x2=(Ny+1)x N, x N, positions,
Hyat3x5x2= Ny x(N,+1)x N, positions, and
H at3x4x3= N, x N, x(N;+1) positions.
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Fig. 5.10 An illustration of how the different field components are placed on a grid with 3 X 4 X 2
cells. The dotted lines indicate the number of unknowns (cells) that have to be stored

5.2.3.2 Boundary Conditions

At microwave frequencies, metal surfaces behave, to a good approximation, as
perfect electric conductors (PEC). Therefore, we set the tangential component of
the electric field to zero on the metal boundaries.

Taking into account the arrangement of E and H, with the PEC boundary
condition, we can write FORTRAN-styled loops over indices, for updating H, as

follows:

% Update Hx
for i = 1:Nx+1
for j = 1:Ny
for k = 1:Nz
Hx(1i,3j,k) = Hx

(1,3.,k)

+ (Dt/mu0) %
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((By(i,3j,k+1)-Ey(i,3,k))/Dz - (Ez(i,j+1,k)-Ez(i,],k))/Dy);
end
end
end

H\, and H, are updated in corresponding ways. For E, the scheme becomes

% Update Ex everywhere except on boundary
for i = 1:Nx
for j = 2:Ny
for k = 2:Nz
Ex(i,3j,k) = Ex(i,j,k) + (Dt /eps0) =
((Hz(i,3,k)-Hz(i,3j-1,k))/Dy-(Hy(i,7,k)-Hy(i,3,k-1))/Dz);
end
end
end

Note that only the most recent values of the field components have to be stored.
Therefore, we store the updated values at the same location in memory as the old
values in order to reduce memory requirements.

Although this will produce the correct result, it may execute rather slowly in
MATLAB. To improve on efficiency, operations should be done on entire arrays or
matrices. This is accomplished by rewriting the three nested for loops as single
statements:

°

% Update Hx everywhere
Hx = Hx + (Dt/mul)=*((Ey(:,:,2:Nz+1)-Ey(:,:,1:Nz))/Dz
- (Ez(:,2:Ny+1,:)-Ez(:,1:Ny, :))/Dy);

% Update Ex everywhere except on boundary
Ex(:,2:Ny,2:Nz) = Ex(:,2:Ny,2:Nz) + (Dt /eps0) x
((Hz(:,2:Ny,2:Nz)-Hz (:,1:Ny-1,2:Nz)) /Dy
- (Hy(:,2:Ny,2:Nz)-Hy(:,2:Ny,1:Nz-1)) /Dz) ;

Finally, the differences in the discretized curl operator can be written even more
compactly by using the dif££ function, as will be shown in the complete program
that follows.

5.2.3.3 Initial Conditions

In order to observe an eigenfrequency in the resulting frequency spectrum, the
corresponding eigenmode must be excited. An initial condition for E in the form
of a random field ensures that most modes are excited. [This leads to V- E # 0
in the initial condition. Since there is no electric current, the resulting electrical
charge density p = ¢V - E should be time-independent. Fortunately, one of the
good properties of the FDTD scheme is that it preserves this property of Maxwell’s
equations exactly.]
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5.2.3.4 Sampling

It is important to sample the fields in such a way that all desired frequencies (modes)
are detected. With only a bit of bad luck, some modes will have a node (zero) at the
chosen detector location. To avoid this problem, it is a good idea to record several
field components at several detector locations.

5.2.3.5 Choice of Time Step

The larger the time step, the smaller the dispersion and the faster the simulation.
Therefore, we choose At as big as possible, i.e., at the stability limit (5.33).

A MATLAB program that simulates the field inside a brick-shaped cavity with
PEC walls is listed below. In the time-stepping part, (5.15)—(5.20) are evaluated
using the MATLAB function diff. For a vector X, of length N, diff (X) is
the vector [X (2) -X (1) X(3)-X(2) ... X(N)-X(N-1)] oflength N —1.
The second argument of diff is the order of the difference, in this case 1, for the
first derivative. The third argument specifies the dimension in which differences are
taken (x — 1, y — 2, z — 3).

The frequency spectrum we get from the Fourier transform of the columns of Et
is plotted in Fig. 5.11 together with the analytical resonant frequencies:

Sop = 5 [0/ L + /L, + (/L] 7. (5.21)

In this case there are two kinds of modes, referred to as TM,,,, and TE,;,,, modes
(see, e.g., [19]). For TM,,,, modes, m # 0, n # 0. For TE,,,, modes, p # 0, m or
n is nonzero.

5.2.4 Integral Interpretation of the FDTD Method

The Yee-scheme, (5.15)—(5.20), can also be derived using the integral representation
of Maxwell’s equations:

/a(eE) dS =@ H-dl. (5.22)
s Oof 3s

/a(“H) .dS =—¢ E.dl. (5.23)
s 0t 39S

To obtain the equation for dH,/dt we first compute the surface integral over a face
on the grid cells z = rAz, pAx < x < (p+ 1)Ax,qAy <y <(qg+ 1)Ay:
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Fig. 5.11 Frequency spectrum obtained from an FDTD simulation of an air-filled brick-shaped
cavity. The solid curve shows the frequency spectrum of the sum of the sampled E,, E,, and E.
components. The dotted lines show the exact eigenfrequencies

n+i n—1

/ I(uH) HZIP+%J{+%J _HZ|p+%,q+%,r
S

.dS ~ AxAy. 5.24
ot * At ey ( )

The corresponding line integral of E along the line circulating H.| p+latds
according to the right-hand rule, shown in Fig. 5.12, is calculated as

é}s E-dl ~ EXIIH_%J”Ax + Ey|p+l,q+%,rAy
- E"|’;+%,q+1,z~Ax - Ey|r,l,,q+%,,AJ’- (5.25)

Here, the Yee arrangement has the nice property that the components of E that are
needed for this integral appear exactly at the midpoint of the edges along which they
are to be integrated.

Combining (5.23)—(5.25) we obtain

n+% |
ptiatyr Ut iatyr
At

1
n—1
i1 ’

_ Ey|p+1,q+%,r N Eylp,q+%,r EX|p+%,q+l,r - EX|p+%,q,r
= + (5.26)
Ax Ay
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Fig. 5.12 An illustration
showing how H, and E, are
“circulated” by four electric
and magnetic components
respectively in the Yee grid

p-1/2

which is exactly the same as the previously derived (5.20).

Another interesting property of the Yee scheme is that the condition of solenoidal
magnetic flux density (1.4) is implicitly enforced for all times, provided that the
initial conditions are correct. To demonstrate this, we apply Gauss’s theorem to
(1.4), and this gives gSS B - 7idS = 0, where the closed surface S is taken as the
surface of the unit cell shown in Fig. 5.9. This integral is divided into three Cartesian
components: ¢ B-ii dS = fs,, B-n dS+qu B-n dS+fS, B -ndS. For example,
S is the two surfaces in the yz-plane that are defined by constantindex p and p +1.
It is instructive to study the time derivative of | s, B - ndS in the discrete setting.
The integrals over the surfaces p and p + 1 are evaluated as in (5.24), and given
this result, we form the time derivative (in the leap-frog sense) centered at n. Next,
we change the order of the (numerical) time derivative and surface integral, which
yields an expression that features the time derivative of the normal component of
the magnetic field for the two surfaces. These are shown in (5.18), which is the x-
component of Faraday’s law, and we use this relation to replace the time derivative
of the magnetic field with the curl of the electric field, still working only with
the x-component. The last step is to rewrite the x-components of the curl into the
circulation of the electric field along the contour of the surfaces p and p + 1. Here
are the detailed calculations:

d N Mo n+% n+%
5/; B-ndS ~ A_[|:(HX|P+1,C]+£J'+£ _Hxlp,q-l—%,r-l—% AyAz
N ~H[TH, L ]ava
p+lg+ir+i pa+3 yaz
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n+3%

1
\'| 1 1 _Hxln : 1 1
" |: Tptlgtzr+s prlg+5r+3
= Mo

At

v+

H,| — H,|
gt3rts “patiots
B A S PAT2TT0 1Ay Ag

At

E n — E n E n — E n
y|p+l,q+%,r+l y|p+l,q+%,r Z|p+l,q+l,r+% z|p+1,q,r+%
Az Ay

E," —E," E.|" — E.|"

ylp,q+%,r+l y|p,q+%,r Z|p,q+l,r+% Z|p,q,r+%

_ — AyAz
Az Ay

Az—E,l',, Ay

— n _ n
o |:Ey|p+1,q+;,r+1Ay EZ|p+l,q+l,r+% pHla+ir

+E2|n +%AZ—EY|n +1Ay_EZ|n +%AZ

p+Llq.r P,q+%,l‘ p.q.r
n n
+Ey Ip,q+%,rAy + EZ|p,q+l,r+% AZ:| ’

The corresponding results for the other two surface integrals, evaluated over S; and
Sy, are given by cyclic permutations of the final result for §,,. When these three
expressions are added, we find that the circulations on the six faces of the cube
give, in total, two contributions to each edge of the unit cell that cancel each other.
Consequently, the condition of solenoidal magnetic flux density (1.4) is preserved
numerically at all times, given appropriate initial conditions. A similar analysis can
be applied to Gauss’s law (1.3).

5.2.5 Dispersion Analysis in Three Dimensions

To simplify the dispersion analysis (and also to allow later comparison with the
finite element approach in Chap. 6), we note that one can eliminate H by forming
the second-order time derivative for E, in the same way as we did for the 1D case in
(5.14). Starting from (5.15)—(5.20), a somewhat lengthy calculation (assuming that
€ and p are constant) gives

E n+1 —2E.|" +E n—1
1 =¥ plgr X|p+%,qs’ X|P+%,q,r

2 (A1)?

(5.27)
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E|" 2E|" + E|"

_ p+%,q+l,r - p+%,q,r p+%,q—l,r
(Ay)?
n _ n n
+Ex|p+%,q,r+l 2Ex|p+%,q,r + Ex|p+%,q,r—l
(Az2)?
n _ n _ n n
_Ey|p+l,q+%,r Ey|p,q+%,r Ey|p+l,q—%,r + Ey|p,q—%,r
AxAy
n _ n _ n n
_EZ|p+1,q,r+% Ele,q,r+% EZ|p+1,q,r—% + EZ'p,q,r—%
AxAz '
This is the finite difference form of
1 0%E, 02 92 0 (0E oE
— 2 =—+=)E,—— _y+ < ,
c? 0r? ay2 072 dx \ dy 0z
which, in turn, is the x-component of the curl-curl equation for E:
1 3*E )
——=VE-V(V-E)=-VXxVXE. (5.28)
c? 0r?

The dispersion relation for FDTD in three dimensions can be found in several dif-
ferent ways. For instance, one can start from the electric field formulation (5.28) for
all three components and plug in a plane wave solution E = (e,, e, e;) exp[j(wt —
kyx —k,y — k.z)]. From the analysis in Sect. 3.2, we know that on staggered grids,
where first-order derivatives are taken across one cell and second-order derivatives
across two cells, numerical derivatives acting on such exponentials simply multiply
the function by the following imaginary factors:

0 2j

— Dt — _‘] sin CU_AZ"
Jt At 2

a =D —2j sin ki Ax
R = —— 81 N
ox * Ax 2

0 —2j k,A
2 D, = Lgn22 (5.29)
ay Ay 2

d =2j . k.Az
— D, = — .
0z - Ax ; 2

Thus, for complex exponentials, the matrix equation corresponding to the three
vector components of (5.28) is
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D; + D? - D}/c? -D,D, -D, D, ex 0
-D.D, D? + D? — D?/c? —-D, D, e, =10].
—-D.D, —-D, D, DI+ D2 —D}/c? ] \e. 0

(5.30)

where D, = jw for the continuous case and D, = (2j/At) sin(wAt/2) for the
discretized system, etc. By setting the determinant of the matrix to zero, we find

two roots,
D} = c*(D; + D} + D?). (5.31)

representing transverse electromagnetic waves with two polarizations e L k. We
get the usual (and exact) dispersion relation for light waves w? = cz(k)% + ki + kzz)
by replacing D, — jw and D, ,. — —jk.,., where the polarizations of the
two solutions are completely orthogonal as expected. In addition, there is one root
th = 0 of (5.30), which translates into @ = 0. This represents an ‘“‘electrostatic”
solution with e || k, i.e., a longitudinal, time-independent solution. Note that this
solution does not propagate. It gives a purely static response of the electric field to
space charge.

It is interesting to see how the electrostatic solutions are treated by the FDTD.
Clearly, any electrostatic field E = —V¢, with ¢ constant in time, and an arbitrary
function of space, is a solution of the curl-curl equation (5.28). One can verify that
a solution E = —V¢ does not evolve in time with the FDTD algorithm. This
time-independent solution corresponds to the root th = 0 of (5.30). Thus, the
Yee scheme preserves the null-space of the curl-curl operator, and this is one of its
many good properties.

The numerical dispersion relation for the electromagnetic waves is obtained
by substituting the discrete derivative operators (5.29) into the general dispersion
relation (5.31):

sinza)At/Z_sinzkxAx/Z sinzkyAy/Z sin® k. Az/2
(cAr?  — (Ax)? (Ay)? (Az)?

(5.32)

This is a natural generalization of the result in one dimension (5.3). Taylor expansion
of the sine functions shows that w? = ¢?(k? + ki + kH)[1 + O(k*h?)], so that the
deviation from the correct dispersion relation for electromagnetic waves is O (k2h?)
for a cubic grid with Ax = Ay = Az = h. Note that the dispersion is anisotropic.
The wave propagation is the slowest along the coordinate directions, and faster (and
closer to the correct result) in oblique directions.

The maximum time-step for stability follows from the requirement

sin?(wAt/2) < 1 forall k,

just as in one dimension, and this gives
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(5.33)

At<[ 1 1 1 r/z
C =

@Ax? " @yr T

For a cubic grid with Ax = Ay = Az = h, the stability condition simplifies to

=

At < (5.34)

B

Cc

In comparison with the 1D case, the maximum time-step has been reduced by a
factor /3. Because of this stability requirement, the spatial discretization error is
generally larger than the temporal discretization error for the FDTD scheme in three
dimensions, but they cancel each other to some extent. This means, for example,
that there is no magic time-step in this case. (Actually, for fields varying equally
fast in all directions, |k h| = |k,h| = |k;h|, the stability limit (5.34) is the magic
time-step, but this works only for propagation in those particular directions.)
Waves propagating along the coordinate axes suffer most from numerical
dispersion. To quantify the effects of the numerical disperions, we consider a wave
propagating in the x-direction, i.e., kK, = k and k, = k; = 0. Further, we assume
that Ax = Ay = Az=handcAt/h = 1/«/5 In this case (5.32) simplifies to

sin(wAt/2) = % sin(kh/2). (5.35)

An expression for the phase velocity v, = w/k of this wave can be derived from a
series expansion of (5.35):

w

v, =—=c 1—@+0(k4h4) . (5.36)
Pk 36

If we demand the relative error in phase velocity to be less than 1%, we require
(kh)* < 36/100, which, since k = 27 /A, leadsto A/ h < 7/+/0.09 ~ 10.5, that
is, at least 10.5 cells per wavelength. This takes account of the partial cancellation
of the spatial and temporal errors in (5.32).

The same assumptions as in the preceding paragraph yield the following
expression for the group velocity:

27,2
v = g_; — e (1 - % + 0(k4h4)) . (5.37)

From this we find that a resolution of about 18 cells per wavelength is required to
reduce the relative error of the group velocity to 1%. This is a stricter requirement
on the resolution as compared to the result derived from (5.36). Typically, about 18
cells per wavelength is used as a rule of thumb for problems that involve only a few
wavelengths and engineering accuracy requirements.
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The FDTD often requires even higher resolutions if one asks for a fixed absolute
phase error across the whole computational domain, in particular for problems that
are large in terms of wavelengths, since the phase errors accumulate. The absolute
phase error is

- kK3h2L
ePhase:(k_k)Lz( @ w)LN

c(1—(kh)2/36 +---) ¢)  ~ (5.38)
for a system with fixed size L. To keep eppase constant, the cell size must scale with
frequency as w~/2, and consequently, the computational time is proportional to
1/(h3At) o« w®.

The error associated with the numerical dispersion relation provides important
understanding for one of the contributions to the total error. It must be emphasized
that convergence studies or other means of estimating the actual error are, in general,
necessary to achieve reliable results for real-world problems.

Review Questions

5.2-1 Draw the unit cell for the FDTD scheme in three space dimensions and add
all the field components for both the electric field and the magnetic field.

5.2-2 Reduce the FDTD scheme for the full Maxwell’s equations to one and
two dimensions. Derive the corresponding wave equations by eliminating the
magnetic (or the electric) field.

5.2-3 How many time-levels of the electric and magnetic fields must be stored in
the computer’s memory for the FDTD scheme?

5.2-4 Derive the Yee scheme from the integral representation of Maxwell’s equa-
tions.

5.2-5 Show that (5.27) can be derived from (5.15)—(5.20).

5.2-6 Derive the stability condition given the numerical dispersion relation. Moti-
vate the steps in your derivation.

5.3 Boundary Conditions for Open Regions

The FDTD is often applied to microwave problems such as calculation of:

* Radiation patterns from antennas
» Radar cross sections (RCS) for different targets, e.g., aircraft

These problems involve open regions, and in principle, the computational domain
extends to infinity. Of course it is not practical to discretize an infinite region, and
instead, special boundary conditions can be applied to terminate the computational
region. Such boundary conditions serve to absorb outgoing waves, and are called
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Fig. 5.13 Typical setup for Perfect Electric Conductor

computing the radiation \

pattern of an antenna with the

FDTD Absorbing layer, e.g. PML
Antenna

surface

absorbing boundary conditions (ABC). Then, the fields in the near zone can be
transformed to the far zone, several wavelengths or more from the antenna, by means
of a so-called near-to-far-field transformation (NTF). Figure 5.13 illustrates its use
in an FDTD calculation of the radiation pattern of an antenna.

5.3.1 The Perfectly Matched Layer

A popular set of absorbing boundary conditions is the perfectly matched layer
(PML) invented by Bérenger [9]. The PML is a layer of artificial material sur-
rounding the computational region and designed to damp waves propagating in
the normal direction. The region is then terminated by a PEC. If the waves are
sufficiently damped out in the absorbing layer, very little reflection will occur at this
PEC surface. The thicker the absorbing layer is, the more efficient is the damping
that can be achieved.

Here, we indicate how Bérenger’s PML works. The basic idea behind the method
is to introduce both an electric conductivity o and a magnetic conductivity o* in the
absorbing layer:

oE
GOW—FO'E:VXH, (539)

oH
o 2" 4 6*H = —V x E. (5.40)

ot
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One can define a wave impedance as the ratio of the transversal electric and
magnetic fields, and for such an artificial material, it takes the value

5 3 po + 0*/jw 1/2
pML— € +o/jo '

For a wave that is normally incident on such a layer, the wave reflection coefficient
is [5]
_ Zo—ZpuL

FO_ £
Zo+ Zpur

where Zy = /po/€o is the wave impedance in free space. Evidently, if the
magnetic and electric conductivities are related as

o* o

—_ =, (5.41)
Ho €0
we get Zpy = Zo, and there is no reflection at any frequency.

For oblique incidence, things become more complicated, and it is harder to avoid
reflection. However, Bérenger found a trick that achieves this. It consists in splitting
each component of E and H into two parts, for instance, £y = Ey, + Ey,
according to the direction of the curl operator that contributes to dE /d¢. Then,
one uses nonzero o and o* only for the derivative in the direction normal to the
absorbing layer.

As an example, let us assume that the PML has Z as the normal direction. The
two equations for E, and E, are split into four:

éaExy B(Hzx + sz)

ey _ - (5.42)
o (543
éafaztyz _ a(nya;r Ho) _ k. (5.44)
Gagtyx _ _a(HzxajC‘ Hy) (5.45)

The evolution equation for E is not modified for a layer with Z as normal. The
magnetic field is treated in a similar way. What is achieved with this trick is that the
layer modifies the propagation only in the z-direction, which is the normal direction
of the PML, not in the tangential directions x and y. Therefore, no reflection occurs
even for waves obliquely incident on the Bérenger PML.

In practice, some reflection occurs if o varies strongly on the scale of the grid.
Therefore, one often chooses profiles for the conductivity, such as parabolic o (z) =
00[(z—z0)/L:]?, for a layer that extends from z = zo to z = zo + L. Such layers are
very good absorbers; 6-8 cells can give a reflection coefficient of —60 to —80 dB.
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The PML works well, even when placed very close to the radiating structure
or scatterer. This means that it is effective in decreasing the number of cells and
consequently reducing the computational cost.

There are alternatives to Bérenger’s PML. One that gives the same dispersion

properties, without splitting the field components, uses anisotropic, tensorial €, and
Jr [55):

L 1—jo/we 0 0
€r=Hr= 0 1 — jo/we 0 : (5.46)
0 0 (1 —jo/we)™!

This involves modifications of the time-stepping.

5.3.2 Near-to-Far-Field Transformation

Figure 5.13 shows a typical setup for computing the radiation pattern of an antenna.
The result of main interest is the fields in the far zone, several wavelengths from the
antenna. This can be computed without extending the computational domain to the
far zone by using a near-to-far-field transformation (NTF) close to the antenna and
adding an ABC just outside the NTF surface. Formulas for the NTF can be found in
the book on FDTD by Taflove [80]. Without going through the derivation, we state
the formulas for the far field in frequency domain based on the Fourier transform
of the near field computed by the FDTD scheme. (The Fourier transform can be
computed as part of the time-stepping procedure for selected frequencies.) The field
can be expressed in terms of the electric (A) and magnetic (F) vector potentials as

; |
E=-22VxVxA4d——-VxF,
k2 €0

; 1
H=-22VxVxF+—VxA.
k2 Mo

The potentials can be calculated from the equivalent electric current J, = i x H

and magnetic current My = —n x E on the NTF surface (72 denotes the outward
normal of the NTF surface 042):

—jkR
A= &Sg 7. PEIEB) o
471' IR R

F = G—Osﬁ M, () ZPEIRR) o0 (5.47)
4.7t IR R
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Here R denotes the distance between the source point, r’, and the point where we
observe the field, r. For large distances, one can approximate R in the denominators
of (5.47) as a constant, Ry, and in the argument of the exponential as R ~ Ry —
r’ cos ¥, where v is the angle between r and r’. The fields in the radiation zone are

E ~ jo(f x# x A+ Zy# x F),

1
Hr\v,ja)(f'xfo——fo).
Zy

Review Questions

5.3-1 What is meant by an open-region problem and how are these problems
handled by FDTD programs?

5.3-2 Use the wave impedance to explain why a normally incident wave is not
reflected by the PML at any frequency.

5.3-3 How did Bérenger avoid reflections by the PML for oblique incidence?

5.3-4 How are the electric and magnetic conductivity profiles usually chosen for the
PML in an FDTD implementation? What reflection coefficients can be achieved
with a PML that is 6-8 cells thick?

5.3-5 Outline a technique for the computation of the fields in the far zone given an
FDTD solution in the near zone. Mention some practical situations in which this
technique can be used.

Summary

e The FDTD is a standard tool for microwave problems in which the geometrical
dimensions are comparable to the wavelength. Its main advantage is that it is both
efficient and simple to implement.

e Although the FDTD scheme is very popular, the method suffers from some
drawbacks:

— A main drawback of the FDTD is the way it deals with curved and oblique
boundaries, where the standard FDTD solution, known as “staircasing,” does
not give very accurate results. In this respect, finite elements can do much
better.

— Another disadvantage of the FDTD (in common with finite elements) is that
the phase error can become significant when the computational domain is
many wavelengths. In this respect, the method of moments is better.

— Furthermore, the time-step is limited by At < h/(c \/§), which means that
the FDTD cannot be used for eddy current problems.
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e The time-dependent system of two first-order equations (Faraday’s and Ampere’s
laws) allows for staggering in both space and time. The discretization of this
system exploits centered differences and offers explicit time-stepping. In 1D, we
discretize

E, 0H, 0H,  OJEy

dz or 0z ar
with £, = E.(r,n) and H, = H,(r + %,n + %), where r is an integer
space index and 7 is an integer time index. [The corresponding wave equation
0?E/0t> = ¢?0*> E/0x? can be treated by centered second-order differences and
explicit time-stepping.]

e Staggering in three dimensions:

n n n
Exl 1 ’ Ey| 1 EZl 1°
pt5.qr pat+r parts;
1 1 1
n+= n+= n+x
Hel 20 0 Hy 5 4. 4T
pgt5r+y rt3.4r+5 pt3.aty5.r

Electric field components are placed on the midpoint of the edges aligned with
the field components. Magnetic field components are centered on the surfaces
normal to the field components.

* Numerical dispersion relations (relations between w and k for E o exp[j(wt —
k - r)]) are derived from the finite-difference equations. In three dimensions, we
get

sin*(wA1/2)  sin’(kyAx/2) | sin*(k,Ay/2) | sin’(k.Az/2)
(cAr)> — (Ax)? (Ay)? (Az)?

* The stability condition (Courant condition) cAt/h < 1/./n in n dimensions.
This can be derived from the numerical dispersion relation.

* Several extensions of the FDTD, such as absorbing boundary conditions, near-
to-far-field transformation, and subgrid models for thin wires and slots have been
developed, and these allow the FDTD to be applied to a wide range of problems.

Problems

P.5-1 For finite difference computations on unbounded domains, the finite grid
must be terminated by boundary conditions that mimic a free-space problem.
Use (1.13) to derive boundary conditions for (5.2) when R = 1.

P.5-2 Consider a specific point zy at a specific time #) in Fig.5.1. A perturbation
of the field at this point and time influences the field at later times ¢ > t#; in the
region zg — c(t — t9) < z < 7o + c(t — tp). Similarly, the field values at earlier
times ¢ < ty within the region zo — c(tp — t) < z < 20 + c(tp —t) will have an
influence on the field at z = zp and t = 9, and this region is referred to as the
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light-collecting sector. Relate the stability condition for the 1D FDTD scheme to
the light-collecting sector. What happens when the light-collecting sector covers
a larger angle than the stencil in (5.2)?

P.5-3 Show that the dispersion relation of the 1D wave equation (5.1) can be
expanded as

(kAz)?
24

w=ck [1 — (1—R?* + 0((kAz)4):| . (5.48)

How many points per wavelength are required to get the frequency correct (a) to
1%, (b) 10 0.1% if R = 1/+/3?

P.5-4 Consider the case in which the coupled first-order system shown in (5.12)
and (5.13) is applied to solve a problem with continuously varying material
parameters. Where should €(z) and j(z) be evaluated on the grid? How would
the corresponding problem be treated when the wave equation

a( 1 8EX) 0PE
— — —6 —
9z \u(z) oz e

is used instead? Where should €(z) and pt(z) be evaluated in this case?

P.5-5 Consider the case in which the coupled first-order system shown in (5.12)
and (5.13) is applied to a problem with piecewise continuous materials; i.e.,
there are material discontinuities. Let the grid points associated with an electric
field tangential to the material interface be placed on the material interface. How
should €(z) and j(z) be evaluated in order to maintain an O(h?) error? How
would the corresponding problem be treated when the wave equation

ad 1 0E, 0’E,
a—(m = )‘G@W =0

is used instead? Where are €(z) and u(z) evaluated in this case? Can optimal
convergence be maintained?

P.5-6 Suppose that a current-carrying and electrically perfectly conducting wire
with radius ro < h, where h = Ax = Ay = Az denotes the grid spacing, runs
along the z-axis. Use the near-field approximations H, o 1/r and E, o 1/7 (in
cylindrical coordinates) to derive appropriate difference approximations taking
into account the wire.

P.5-7 Maxwell’s equations can be written in terms of the scalar potential ¢ and the
vector potential A:

How should the potentials be placed on the grid in order to match Yee’s locations
for the fields?
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P.5-8 In two dimensions (say the solution is independent of z), one can separate
electromagnetic fields into TE components, with E, = 0, and TM, with H, = 0.
The simplest way to compute these is to use the wave equations for H, and
E ., respectively, in two dimensions. However, it is also possible to describe
TE polarization by a set of first-order equations for E,, E,, and H_, while
TM polarization can be described by first-order equations for H,, H,, and E..
Write down the relevant sets of equations and show how suitable staggered finite
difference schemes can be found, e.g., as subsets of the 3D Yee scheme.

P.5-9 Derive the finite difference equation for updating E | starting from the
integral form of Ampere’s law (5.22).

P.5-10 Show that about 11 points per wavelength gives 1% error in the numer-
ical dispersion relation for a cubic grid by Taylor expanding the dispersion
relation (5.32) for w?(k) to order k*h* and using the approximation w? =
¢*(k} 4k} + k2) in the term o w*. When the time-step is at the stability limit
of (5.34), the result can be written

p+%,q,r

2 2

=k k- %[(kg — K2 (k2= kD) + (K2 — K22,
[Thus, when the time-step is at the stability limit, only solutions that propagate
maximally obliquely have zero dispersion. In all other directions, the spatial
dispersion dominates, and the phase speed is below c¢. For smaller time steps,
the phase speed is less than ¢ in all directions.]

P.5-11 The curl-curl equation (5.28) also has electrostatic solutions that are linear
functions of time, i.e. E(r,t) = tV¢(r). Can such a solution appear in an
FDTD simulation without sources?

P.5-12 Does the FDTD scheme preserve the electric charge if there are no electric
currents?

P.5-13 Carry out the derivation of the numerical dispersion relation for the 3D
FDTD scheme by rewriting (5.28) in matrix form and setting the determinant
of this matrix to zero.

P.5-14 Derive the impedance Z pys; from (5.39)—(5.40) by assuming that the field
components vary as exp(—jk - r) and that E and H are perpendicular to k.

P.5-15 Consider the computation of an electrical motor at f = 50 Hz and a spatial
resolution of # = 5 mm. How many time-steps are needed if we want to time-
step 5 wave periods, or 0.1 s?

P.5-16 We note that 1% relative phase error is obtained with about 10 points per
wavelength. How much does the computation time for a 3D problem increase if
we want to reduce the relative phase error by a factor 10?
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Computer Projects

C.5-1 Propose some different ways of visualizing the numerical dispersion re-
lation (5.32). Write a program that given the different parameters needed
implements your ideas for the visualization. Experiment with different reso-
lutions, spatial and temporal. It can be beneficial to use k, = k sin6 cos¢,
ky, = ksinfsin¢, and k; = k cos 8. How do the results depend on the direction
of propagation?

C.5-2 Implement the 1D FDTD scheme for 0 < z < a; see Sect.5.2.1. Extend
your program to include the losses shown in (5.39)—(5.40). Let € = €9, it = Ko
and introduce a conductive region for a — w < z < a where the losses satisfy
the condition shown in (5.41) and w is the width of the conductive region.
Where should o(z) and 0*(z) be evaluated on the staggered grid? Set up a
numerical experiment so that you can study the reflection coefficient for the
electric field E,(z,¢), which satisfies the boundary conditions E,(0,7) = g(¢)
and Ey(a,r) = 0. Let g(t) = exp[—(¢ — 10)?/dg] sin[27 fo(t — 1o)] and choose
appropriate values for fy, dy, and fy. Experiment with different conductivity
profiles 0(z) and 0*(z) given by (5.41). Try a constant conductivity profile and
optimize the value ocos for the conductivity. A very common choice is the
quadratic profile 0(z) = Omax[(z — (@ — w))/w]?, Where oy is a constant to be
optimized. Plot the reflection coefficient as a function of o¢onst and oax. Explain
your findings. What happens if the condition (5.41) is violated? How does the
reflection coefficient depend on frequency?

C.5-3 Write a program that implements the 2D FDTD scheme. Use it to compute
the resonant frequencies of a circular cavity with metal boundaries. How do you
represent the circular boundary on the Cartesian grid? How do you excite the
problem? Suggest and implement some different excitations and compare the
approaches.

C.5-4 Modify the program in Sect. 5.2.3 so that inhomogeneous materials €(r) and
i (r) can be considered. Extend the implementation so that also a source current
J (r) can be included. Let the electric and magnetic field be identically zero as
an initial condition. Is the condition of solenoidal magnetic flux density (1.4)
preserved numerically at all times? Does the solution computed by your program
satisfy the equation of continuity for electric charge?



Chapter 6
The Finite Element Method

The finite element method (FEM) is a standard tool for solving differential equations
in many disciplines, e.g., electromagnetics, solid and structural mechanics, fluid
dynamics, acoustics, and thermal conduction. Jin [40,41] and Peterson [54] give
good accounts of the FEM for electromagnetics. More mathematical treatments of
the same topic are given in [12, 48]. This chapter gives an introduction to FEM
in general and FEM for Maxwell’s equations in particular. Practical issues, such as
how to handle unstructured grids and how to write FEM programs, will be discussed
in some detail.

In the FEM, the domain with the sought electromagnetic field is subdivided into
small subdomains of simple shape and, as an initial example, we may consider a
circular domain in two dimensions that is subdivided into triangular subdomains.
The collection of triangular subdomains cover the original circular domain and the
triangular subdomains do not overlap each other. (Thus, the circular boundary is
approximated by a polygon that consists of the outermost edges of the triangular
subdomains.) The field solution is expressed in terms of a low-order polynomial
(for example a linear polynomial) on each of these subdomains and, consequently,
we have a piecewise low-order polynomial representation of the field on the circular
domain. In general, such a representation of the field is not flexible enough to be able
to exactly fulfill the differential equation and its boundary conditions in a pointwise
manner. The FEM relaxes this requirement slightly and, instead, it attempts to find
a field solution that fulfills the differential equation and its boundary conditions in
an averaged sense. There are different approaches to how to construct this relaxed
fulfillment of the differential equation and its boundary condition and two important
methods are (i) to set the weighted average of the residual to zero and (ii) to exploit
a variational method to find a stationary point of a quadratic form. For a FEM that
works correctly, the approximate solution tends to the exact solution as the size of
the subdomains tends to zero and, consequently, the number of subdomains tend to
infinity. Clearly, the smaller subdomains allows for a better approximation of both
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Fig. 6.1 Different element shapes: a line in one dimension, a triangle and square in two
dimensions, and a tetrahedron, prism, pyramid, and cube in three dimensions

the circular domain and the exact field solution. This chapter describes the FEM
in terms of the weighted residual method for a range of situations and, towards the
end of the chapter, also the variational methods are introduced and contrasted to the
weighted residual method.

A very strong point of the FEM, and the main reason why it is a favorite method
in many branches of engineering, is its ability to deal with complex geometries.
Typically, this is done using unstructured grids, which are commonly referred to as
(unstructured) meshes. These meshes may consist of triangles in two dimensions
and tetrahedra in three dimensions. However, there are several types of element
shapes, as shown in Fig. 6.1: triangles and quadrilaterals in two dimensions,
tetrahedra, prisms, pyramids, and hexahedra in three dimensions.

Unstructured meshes with, for instance, tetrahedra allow good representations of
curved objects, which are hard to represent on the Cartesian grids used by finite
difference methods. Moreover, unstructured meshes allow for higher resolution
locally in order to resolve fine structures of the geometry and rapid variations of
the solution. Another nice property of the FEM is that the method provides a well-
defined representation of the sought function everywhere in the solution domain.
This makes it possible to apply many mathematical tools and prove important
properties concerning stability and convergence.

A disadvantage of the FEM, compared to the FDTD, is that explicit formulas
for updating the fields in time-domain simulations cannot be derived in the general
case. Instead, a linear system of equations has to be solved in order to update the
fields. Consequently, provided that the same number of cells are used for the two
methods, the FEM requires more computer resources, both in terms of CPU time
and memory.
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Normally, the FEM is used to solve differential equations. However, it is also
possible to apply the FEM to integral equations, where the unknown field is part of
the integrand. In CEM, the FEM applied to integral equations is referred to as the
Method of Moments and this technique is discussed in Chapter 7.

6.1 General Recipe

We start by giving the general recipe for how to solve a differential equation by the
FEM. The equation is written as L[f] = s, where L is an operator, s the source,
and f the unknown function to be computed in the region 2.

e Subdivide the solution domain £2 into cells, or elements. For example, a 2D
domain can be subdivided into triangles or quadrilaterals.

e Approximate the solution by an expansion in a finite number of basis functions,
ie, f(r)~ Y "_, figi(r),where f; are (unknown) coefficients multiplying the
basis functions ¢; (r ). The basis functions are generally low-order polynomials
that are nonzero only in a few adjacent elements.

e Form the residual r = L[ f]— s, which we want to make as small as possible. In
general, it will not be zero pointwise, but we require it to be zero in the so-called
weak sense by setting a weighted average of it to zero.

e Choose ftest, or weighting, functions w;, i = 1,2,...,n (as many as there
are unknown coefficients) for weighting the residual r. Often, the weighting
functions are the same as the basis functions, w; = ¢;, and this method is then
called Galerkin’s method.

* Set the weighted residuals to zero and solve for the unknowns f;; i.e., solve the
set of equations (w;,r) = [ow;rd2 =0,i =1,2,....n.

In mathematical definitions, the term finite element usually refers to an element
(e.g., a triangle) together with a polynomial space defined in this element (e.g., the
space of linear functions) and a set of degrees of freedom defined on this space
(e.g., the values of the linear functions in the corners (nodes) of the triangle). This
definition is seldom used in electrical engineering, where one tends to focus on the
basis functions used to expand the solution instead.

Review Questions

6.1-1 List some pros and cons of the finite element method.

6.1-2 Compare the steps of the general recipe for the FEM to the typical discretiza-
tion procedure employed for finite difference methods. Identify similarities and
differences.

6.1-3 What is a finite element?
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6.2 1D Finite Element Analysis

As the first model problem we choose a second-order ordinary differential equation,
namely the 1D Helmholtz equation:

d df _
_g(aa)-}-ﬂf_s, a<x<bh, (6.1
f@) = fa, (6.2)
f(b) = fp. (6.3)

Here f = f(x) is the sought solution, and the material properties « = «(x) and
B = B(x) and the source s = s(x) are prescribed functions of x.

There are many physical systems that are modeled by (6.1), for example, a
transversal wave in a 1D medium, such as a light wave propagating and being

reflected in dielectric layers. In this case we have f(x) = E,(x), and the
coefficients are a(x) = 1/u(x), B(x) = jwo(x) —w?e(x), where w is the angular
frequency, and s(x) = —jwJ,(x) (which vanishes, unless there are current-carrying
conductors).

We seek the function f(x) on the interval @ < x < b. According to the general
recipe for the FEM, we first divide this interval into subintervals (elements). Let

us assume, for example, ¢ = —2 and b = 5 and divide the x-axis into 7 equally
large elements. We call the endpoints of each element nodes, and they have the
coordinates x; = i—3 wherei = 1,2,...,8. We introduce the nodal basis functions

@i (x), which are linear on each interval, one at node i and zero at all other nodes,
as shown in Fig. 6.2. These basis functions are often called “tent functions.”

_ P4
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o 0
(2]
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Fig. 6.2 1D linear elements. ol
In particular, the basis B :
-2 -1 0 1 2 3 4 5

function @4(x) is emphasized
by a thick line x[m]
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We seek approximate solutions that are expanded in the basis functions (in the
following, f will denote this approximate solution):

8
&)= 19, (x). (6.4)

J=1

Note that f(x;) = f;, so that the expansion coefficients are the values of f at the
nodes. Since f(a) = f, and f(b) = f; are known, we set f; = f, and fg = f;.
In the next step, we follow Galerkin’s method and choose the test functions
wi(x) = ¢;i(x), where i = 2,3,...,7 (the endpoints are excluded because the
corresponding function values are known). We multiply the residual of (6.1) by
the test function w; (x) and integrate from x = a to x = b. To move one of the
derivatives from f to the test function w;, we use integration by parts. This gives
the weak form of the original problem, which is the weighted average of the residual:

b
/ (aw f"+ Bwi f —wis) dx = 0. (6.5)

In this case, the boundary term [w; ozf/]Z vanishes, since w; (a) = w; (b) = 0.

By substituting (6.4) into the weak form (6.5) and choosing wy(x) = @a(x),
we generate an equation involving six unknowns: the coefficients f; for the interior
nodes x;, where j = 2,3,...,7. Next, we pick w3 (x) = ¢3(x) to generate a second
equation, and so on. In the end, we have six equations and six unknowns, and this is
formulated as a system of linear equations Az = b with

b
Ajj =/ ((w{w} +,3§0i§0j) dx, (6.6)
zj = Jj 6.7)
b
b; =/ ;s dx. (6.8)

Here,i = 2,3,...,7 (for the equations) and j = 1,2, ..., 8 (for the coefficients),
so A has 8 columns and 6 rows, z has 8 rows, and b has 6 rows. The coefficients f
and fg are known from the boundary conditions and can be moved to the right-hand
side:

Ay Az ... Ay 2 by Ao fi + Axs fs
Az Azz ... Az /3 _ b3 Az fi + Ass fs
Ap Az ... A7 f by A7 fi + Az f3

The part of the system matrix A that remains on the left-hand side is square; that
is, we have as many unknowns as equations. In the present case, the function
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values at the endpoints are known, and we do not use the corresponding weighting
functions. The matrix A is sparse because the basis functions give only nearest-
neighbor coupling of the unknowns. Also note that A is symmetric, 4;; = Aj;.
This is related to the fact that the Helmholtz operator is self-adjoint and we used
Galerkin’s method.

The boundary conditions (6.2) and (6.3) specify the value of the function f(x) at
the boundary. Other types of boundary conditions can specify the derivative of f(x)
or a linear combination of f(x) and its derivative. At either boundary, for instance
the left one x = a, we can apply conditions of the following standard types:

fla)=p (6.9)

or
f'@)+vyfa) =q. (6.10)

Equation (6.9) is called a Dirichlet boundary condition, and it eliminates an
unknown. Equation (6.10) is called a Neumann boundary condition when y = 0 and
a Robin boundary condition when y # 0. For the Neumann and Robin boundary
conditions, f(a) must be introduced as an extra unknown. We generate the extra
equation by testing with w; (x) = ¢;(x). Dirichlet boundary conditions are referred
to as essential, whereas Neumann and Robin boundary conditions are called natural.
Further, if g or p is zero, the boundary conditions are called homogeneous.

Review Questions

6.2-1 Write down an explicit expression for the nodal basis function ¢; (x) and its
derivative for a nonuniform discretization in one space dimension.

6.2-2 Explain the terms Galerkin’s method and weak form.

6.2-3 How many test functions are needed for a 1D finite element problem?

6.2-4 Explain the difference between Dirichlet, Neumann, and Robin boundary
conditions.

6.2-5 Are the numbers of basis functions and test functions always the same?

6.3 2D Finite Element Analysis

We extend the model problem (6.1) to two dimensions, but still f is a scalar-valued
function:

—V.-(@Vf)+Bf =sinS. (6.11)
f =ponlLy, (6.12)
a-(aVf)+yf =qonlL,. (6.13)
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Fig. 6.3 A 2D conducting

plate. The computational 0.6f
domain S, i.e., the plate, is
divided into triangular 04}t

elements. Automatically, the
boundary of S is discretized

into line segments. This 0.2y
boundary divides into the two =
parts, denoted by L and L, = 0

with different types of
boundary condition according _02}
to (6.12) and (6.13)

-0.4}

-0.5 0 05
x [m]

The boundary of the solution domain S has two parts, L; and L,, with different
types of boundary conditions.

Analogously to the 1D model problem, there are many physical situations that
can be modeled by (6.11). Let us consider a specific example where we wish to
compute the resistance between the left and bottom edges of the conducting plate
shown in Fig. 6.3. In this case, f is the electrostatic potential, & the conductivity,
B = 0, and s = 0. The electric potential along the thick solid line on the boundary
is set to 10V, i.e., a Dirichlet boundary condition f = 10. Along the thick dashed
line the potential is set to 0 V. The remaining part of the boundary is an insulating
material. On this part of the boundary, we use a Neumann boundary condition,
a -V f =0, which means no flux of charge across the boundary. We now continue
with the derivation based on the general model problem, and at the end of this
section, we will show the solution for the specific example concerning the resistance
computation.

We multiply (6.11) by a test function w; and integrate over S:

/wi -V - (aVf)+BfldS = / wis dS.
s s
Next, integrate by parts using the identity
V. -wi@V)]=aVw, -V +wV-(aVf) (6.14)

and Gauss’s theorem in 2D:

/V-FdS:/ n-F di,
S Li+L>
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with F = w;aV f. This gives the weak form of (6.11)—(6.13):

/(ani -Vf+Bwif) dS—/ wi(q —yf) dl:/w,-s ds, (6.15)
s

Ly s

where we have used the boundary condition (6.13). The boundary integral over the
part of the boundary where the solution is known (L) vanishes because the test
functions vanish there. It should be noted that in addition to the differential equation
with the sources, the weak form (6.15) also contains the boundary conditions.

The nodes are labeled by the integers i and they are located at r;, where
i = 1,2,...,N,. The elements are triangles, and again, we choose piecewise
linear, or nodal, basis functions ¢;(r ) where the subindex i refers to the node
associated with the basis function. The nodal basis functions are linear inside each
triangle, with @;(r;) = 1 and ¢;(r;) = 0 when i # j. There is one such basis
function associated with each node, and two of them are shown in Fig. 6.4. The
finite elements associated with the nodal basis functions are called nodal elements.

We expand the, again approximate, solution f(r ) in terms of the basis functions:

Nn
fr)y=>"fiejr). (6.16)

J=1

Next, we substitute (6.16) into the weak form (6.15) and use Galerkin’s method,
i.e., choose w; (r ) = ¢;(r ) for all nodes where f is unknown. This gives a linear
system of equations Az = b, where the elements are given by

Aij = /(ongoi -Vo; + Boip;) dS +/ Yeip; dl, (6.17)
S L

4= £ (6.18)

b :/%sd“/ 0iq dl. (6.19)
S Ly

Here, the index j runs over all nodes, and i only over those nodes where f is
unknown (not those on the boundary L; with the Dirichlet condition). The variables
are reordered to collect those where f is known in the vector z., while z, denotes
the remaining unknowns,

(~

The matrix A is partitioned in the same way. This results in a square matrix A, and
a rectangular part A, accounting for the Dirichlet boundary condition. The final

A, ) [Z} = Az, + Az, =b.

'n
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Fig. 6.4 Illustration of two
nodal basis functions, one on
the boundary and one in the
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system of equations to be solved for z, is A,z, = b — A.z,, where A, and

b — A.z, contain only known numbers. In Sect. 6.2, this procedure is shown at a
very detailed level. Here, it is expressed in terms of matrices and vectors, which is
more convenient for 2D and 3D problems.

Finally, we return to the specific example in which we wanted to compute the
resistance of the metal plate, where the thickness of the plate is denoted by /4. The
numerical solution, i.e., the approximate electrostatic potential, is shown in Fig. 6.5.
Based on the potential, the resistance can be computed in two ways:

* Integrate the normal component of the current density J = —oV¢ over a cross-
section of the plate to obtain the total current that flows through the plate. For
example,

h 0.5 9
I = / / a—¢ dx. (6.20)
=0Jx=0 0y y=—05

The resistance is then obtained from R = U/I, where U = A¢ = 10 V.
* Compute the total power dissipation in the plate (see Sect. 6.3.3 for a similar
approach used for a capacitance computation);

P:/J.EdVZ/a|v¢|2dvzhzTAz=hsz, (6.21)
|4 Vv

and then calculate the resistance from P = U?/R, which gives R = U?/P.

The latter approach is generally preferred, since it is trivial to compute and often

leads to better accuracy.

6.3.1 The Assembling Procedure

In practice, the matrix and vector components in (6.17)—(6.19) are computed by
assembling contributions from all elements. To illustrate the assembling procedure,
we consider the capacitance calculation in Sect. 3.1. The differential equation is
again V2¢ = 0, and only the boundary conditions differ from the previous example.
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Fig. 6.5 The potential
distribution in the conducting
plate
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Fig. 6.6 The numbering of local nodes for the element e

The elements A;; of the system matrix are computed by evaluating the integral
Js Vi -Vg; dS over the domain S between the inner and outer conductors. In the
assembling procedure, we break up this integral into integrals over each element S°,
and sum the contributions from all the elements, i.e.,

Ne
Ajj = / Vi -Vo; dS = Z/ Vgi - Vo, dS, (6.22)
S e=1 S¢

where N, is the total number of elements.

Now we will concentrate on evaluating the integrals restricted to a single element.
We use a local numbering of the nodes for the element e, as shown in Fig. 6.6, and
denote the coordinates of the nodes by r{, r5, and r {, respectively.
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a2

Fig. 6.7 The three basis functions for element e. The adjacent elements sharing an edge with
element e are also shown

6.3.1.1 The Nodal Basis Functions

The local basis functions (i.e., the basis functions restricted to one element) are
denoted by ¢{ (x, y), where the superindex labels the element (e = 1,..., N,) and
the subindex the local node number (i = 1,2, 3). There is one local basis function
associated with each node of the element, and these are shown in Fig. 6.7. The
global basis function associated with node i is built up by the local basis functions
associated with that particular node in the surrounding elements.

The basis functions have the following properties:

 Inside each element, they are linear in x and y, i.e.,
oi(x,y) =a; +bix +c}y. (6.23)
e They equal unity on one node and vanish on the others:
Py =1 gf (xS y8) = 0.Vi # J. (6.24)

We will now construct explicit expressions for ¢f (x, y) with these properties. To
do this, we divide the element e into three triangles as shown in Fig. 6.8. Here, A{ is
the area of subtriangle i, opposing vertex i of the element, and Ag, = A{+ A$+ AS.
The point inside the element, where we evaluate ¢f (x, y), has the position r =
XX +yJy.

The basis functions ¢{ (x, y) can be constructed by means of the area coordinates
Af as

e

A¢
@i (x,y) = —. (6.25)
Afy

[We note that the functions ¢{ also are called simplex coordinates and barycentric
coordinates.] It is easy to verify that these elements satisfy the requirements (6.23)—
(6.24). A{ can be written as

A= 2 (rf =) (r —rf).
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Fig. 6.8 Partition used to construct ¢{ (x, y)
e 1" e e e
A = 52 (ri—rs5)x(r—ry5),
e 1’\ e e e
A3:§Z (ry—rf)x(r—rf).
or more compactly
1 A
Al = E(r —ri) xS, (6.26)
where
si =1 —riy (6.27)

is the edge in the counterclockwise direction opposing node i . The total area of the
element is

1,
Ateot = EZ < 8§y X §3. (628)

Now it is simple to find the gradients of the local basis functions,

e ZXS;

Voo = ,
YT

(6.29)

and these are, of course, constant inside each element. Therefore, the integral over
one element e, contributing to the system matrix in (6.22), can be evaluated by
multiplying the scalar product of the local basis functions by the area of the element:

§;i8;
445

a5 = /S Ve Vgt dS = 630)
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Notice that we need to relate the three local node numbers of element e to their
corresponding global node numbers before we add the element contributions A4j; to
the global system matrix A.

6.3.1.2 The Element Matrix

Here we give a MATLAB function that computes all the contributions to A from a
single finite element described by its coordinates given in the argument xy. Since
there are three basis functions in each element, we can store all its contributions in a
3 x 3 matrix, which we will refer to as the element matrix. We name the MATLAB
function CmpE1Mtx, and for the element shown in Fig. 6.6, this should be called
with the argumentxy = [-0.5 0.0 0.6; 0.5 -0.2 0.4].

function Ae = CmpElMtx(xy)

o°

Arguments:

xy = the coordinates of the nodes of the triangle
Returns:

Ae = element matrix corresponding to the Laplace operator

o° o

o°

% Edges
sl = xy(:,3)-xy(:,2);
s2 = xy(:,1)-xy(:,3);
s3 = xy(:,2)-xy(:,1);
% Area of the triangle
Atot = 0.5%(s2(1)*s3(2)-52(2)*s3(1));

o

% Check whether area is negative (nodes given counterclockwise)

if (Atot < 0)

error (' The nodes of the element given in wrong order’)
end
% Compute the gradient of the vectors.
grad phile = [-s1(2);s1(1)]/(2*Atot) ;
grad_phi2e [-82(2);82(1)]/ (2%xAtot) ;
grad phi3e = [-s3(2);s3(1)]/(2*Atot) ;

grad _phi = [grad phile grad phi2e grad phi3e];
% Compute all the integrals for this particular element.
for iIdx = 1:3
for jIdx = 1:3
Ae(iIdx,jIdx) = grad phi(:,iIdx)’ =% grad phi(:,jIdx) = Atot;
end
end
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Fig. 6.9 A 2D mesh. The node numbers are shown next to the corresponding nodes and the
element numbers in the center of the corresponding triangles

The right-hand side b is constructed following the same assembling procedure,
i.e., by summing the contributions b from each element. Often, A,‘.’j and b are
evaluated by numerical rather than analytical integration.

Now, we have one row in A and b for every node in the mesh, since we have
tested the differential equation at all the nodes, including those where the solution
is known from the Dirichlet boundary condition. This is not exactly what we want,
since the test function must be zero along the Dirichlet boundary. We correct this by
removing the rows in A and b corresponding to nodes where the solution is known.
A more efficient approach, in particular for large problems, is to compute the local
contribution for each element but assemble only the rows that are not associated
with a Dirichlet boundary.

6.3.2 Unstructured Meshes in Practice

When writing FEM programs it is important to treat unstructured meshes in an
efficient and well-organized way. The most common way is explained here for
the small mesh shown in Fig. 6.9. The mesh consists of 6 nodes and 4 triangular
elements.

We will use the fact that a triangle is built up by three nodes. Therefore, we store
the coordinates of the nodes in a table no2xy; i.e., given a global node number the
table no2xy provides its coordinates. Next, we construct the triangles by listing the
nodes that are the vertices of each triangle in another table e12no; i.e., given an
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Table 6.1 Given a global

node number, this table Node 1 2 3 4 5 6
(no2xy) provides its X 0.0 —0.5 —0.8 0.6 0.0 1.0
coordinates y 1.0 0.5 0.0 0.4 —0.2 —0.1
Table 6.2 Given an element
number, this table (e12no) Element 12 3 4
provides its global node Nodel 1 4 3 5
numbers Node 2 2 2 5 6
Node 3 4 5 2 4

element number the table el2no provides its global node numbers. For the mesh
shown in Fig. 6.9, the information in no2xy is given in Table 6.1, and el2no in
Table 6.2.

This is how it looks in MATLAB:

>> NO2XYy
no2xy =
0 -0.5000 -0.8000 0.6000 0 1.0000
1.0000 0.5000 0 0.4000 -0.2000 -0.1000
>> el2no
el2no =
1 4 3 5
2 2 5 6
4 5 2 4

The same idea can be used to store other types of elements such as lines and
quadrilaterals.

6.3.3 MATLAB: 2D FEM Using Nodal Basis Functions

We will present a program showing the assembling procedure for the capacitance
calculation in Sect. 3.1. However, first it is useful to show how the mesh can be
generated and used for computation in MATLAB.

6.3.3.1 Generate a Mesh of Triangles

Mesh generation is a discipline in itself, and it is an active field of research. An
overview of both commercial and free mesh generators (a program that creates
a FEM mesh) is available at the Meshing Research Corner [53]. Many of these
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programs use their own input and output format. However, most likely the output
is based on the ideas presented in Sect. 6.3.2. Thus, if we understand the basic
principles of how an unstructured mesh is organized, we can extract the necessary
information from most mesh generators. Of course, we will need the documentation
of the mesh generator and to work with simple examples in the beginning.

6.3.3.2 Solving the Laplace Equation

Now we are ready to write the program solving for the potential ¢(r) =
Zy”zl ¢, ¢;(r) atthe nodes (vector z). Once the potential is known, the capacitance
per unit length C can be computed from the energy relation C = 2W/U?, where W
is the electrostatic energy per unit length and U is the potential difference between
the inner and outer conductors. The electrostatic energy per unit length can be
computed using the following quadratic form (see Sect. 6.9):

1 1
Wg] = 5/ E-DdS = 5/60|V¢|2dS
S S
‘ N, N,
0
=93> | [ o v aso,
i=1j=1
= @ZTAZ.

2

The MATLAB calculation can be done as follows:

o

% Physical constants
mul = 4xpixle-7;
c0 = 299792456;
epsO0 = 1/ (muOxcOxcO0) ;

o°

Permeability in vacuum
Speed of light in vacuum
Permittivity in vacuum

o°

o°

% Voltage between inner and outer conductor.
=1;

(e

% Read the grid from the file ’‘unimeshO.mat’.

% This file contains the variables no2xy, el2no, noInt, noExt
load unimeshO

noNum = size(no2xy,?2);

elNum = size(el2no,?2);

% Scale the domain to measure 2cm x 2cm.

% The initial mesh fitted the unit square:
$ -1 <x < 1land -1 <y < 1.

no2xy = le-2xno2xy;

Assemble the matrix A and vector b.
= zeros (noNum) ;
= zeros (noNum, 1) ;

o oo
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for elIdx = 1l:elNum

Get the nodes and their coordinates
for the element ’‘elIdx’.

no = el2no(:,ellIdx);

Xy = no2xy(:,no);

o° H

oe

Compute the element matrix and add
the contribution to the global matrix.
. el = CmpEIMtx(xy) ;
(no,no) = A(no,no) + A el;

Q. P M oo o°

en

o

% Get the indices of the nodes.
no _ess = union(noInt, noExt) ;

no_all = 1:noNum;

no nat = setdiff (no_all, no_ess);

% Pick out the parts of the matrix and the vectors
% needed to solve the problem.

A ess = A(no_nat,no_ess);

A nat = A(no_nat,no nat);

b = b(no nat);

Z = zeros(length(no all),1);

z (noInt) = U*ones (length(noInt),1);

Z_ess = z(no_ess);

% Solve the system of linear equations.
_nat = A nat\(b - A essxz_ess);

N

o°

Build up the total solution.

z = zeros (length(no_all),1);
z(no_ess) = z_ess;
z(no_nat) = z nat;

o°

Compute the capacitance.

W = 0.5xepsO0x (z’' *Axz) ;
C = 2xW/U"2;
disp([’C per unit length [pF/m] = ' num2str(C/le-12)])

The potential distribution computed by the MATLAB program is shown in
Fig. 6.10, and the calculated value of the capacitance is 91.47360 pF/m. Not all
these digits are correct, and we will discuss how to improve the accuracy in the
next section. Note that there are large gradients near the reentrant corners of the
inner conductor where the electric field is singular, but these gradients are not well
resolved on the rather coarse mesh in Fig. 6.10.
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Fig. 6.10 The potential distribution between the inner conductor (¢ = 1 V) and the outer
conductor (¢ =0 V)

Review Questions

6.3-1 Explain how Dirichlet, Neumann, and Robin boundary conditions are incor-
porated into the system of linear equations for a FEM.

6.3-2 Derive the weak forms of the 2D Helmbholtz equation with homogeneous
Dirichlet and homogeneous Neumann boundary conditions. What are the differ-
ences between the two weak forms?

6.3-3 What is done in the assembly procedure?

6.3-4 Explain the difference between local and global node numbers.

6.3-5 Is a solution expanded in nodal basis functions ¢; guaranteed to be continu-
ous?

6.3-6 How are unstructured finite element meshes constructed, represented, and
stored by computers?

6.3-7 List the steps involved in computing the capacitance for a coaxial cable by
the FEM.

6.4 Adaptivity

Triangular elements allow for local refinement of the mesh. Hence high resolution
can be used where it is required, for example close to singularities and fine
geometrical features, whereas lower resolution can be used where that is sufficient.
This allows us to use the computational power where it contributes the most to the
overall accuracy.
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In general, one does not know a priori how to refine the mesh in order to get
optimal efficiency. Therefore, adaptive schemes are usually based on a posteriori
error estimates or error indicators (see, e.g., [48,69]). A typical adaptive algorithm
repeats the following steps until a satisfactory solution is obtained:

1. Compute the numerical solution on the current mesh.

2. Compute a posteriori error indicators for all individual elements.

3. Refine the mesh by splitting the elements with largest errors into smaller
elements.

Algorithms for splitting selected elements into smaller elements may be quite
complicated (see, e.g., [10]). However, software for mesh generation often includes
this functionality.

To illustrate the advantages of adaptivity, we return to the capacitance calculation
that we have already used as an illustration in Sects. 3.1 and 6.3 (see also Appendix
C.3). For uniform meshes, this singularity reduces the convergence from O (h?) =
O(1/N,) to O(h*3) = O(N, *?), where N, is the number of nodes in the mesh.
By using FEM with adaptively generated meshes it is possible to restore quadratic
convergence so that the error scales as O(1/N,,) despite the singularity. We use the
code shown in Sect. 6.3.3 and two sets of meshes. The first set of meshes is generated
by uniform refinement (all elements are split into smaller elements), and the second
set is generated by adaptive refinement (only selected elements are refined). A close-
up of one of the adaptively refined meshes is shown in Fig. 6.11.

The relative error of the computed capacitance is shown in Fig. 6.12 for both
uniformly and adaptively refined meshes. The horizontal axis shows the total
number of nodes N, in the mesh. The circles show the relative error |C(N,) —
Co|/Cop of the computed capacitances for different N,. The exact value of Cy is
unknown in this case, but a sufficiently accurate reference solution (Cy = 90.6145
pF with 6 correct digits) is obtained by careful extrapolation of the computed values.

The solid curves in Fig. 6.12 fit the error model e(N,) = a/N,/ to computed
values of the capacitance C(N,). With uniform mesh refinement we find that the
capacitance converges as N, %7 o h'“4. This is quite close to the theoretical
asymptotic convergence rate 7*/3. With adaptive mesh refinement we find that the
convergence rate is restored to N ™! oc 42, which is the rate we get for uniformly
refined meshes when the solution is smooth (sufficiently regular).

Review Questions

6.4-1 Why and when is adaptivity useful? List advantages and disadvantages of
adaptivity. Write down a general formulation, in words, for the objective of an
adaptive computation. How could you achieve this objective?
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Fig. 6.11 The mesh after adaptive mesh refinement at one of the corners of the inner conductor
where the potential changes rapidly. The smallest triangles at the corner measure approximately
40 pm
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Fig. 6.12 The relative error in the capacitance as a function of the number of nodes in the mesh
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6.4-2 Can adaptivity restore the nominal order of convergence even if the solution
is singular? What implications does this have for the error as a function of the
number of degrees of freedom?

6.5 Vector Equations

In this section, we will discuss a vector equation: the curl-curl equation of
electromagnetics. However, as an intermediate step, we will first see how to choose
elements for the 1D Maxwell equations written in terms of two variables, one
component each of E and H .

6.5.1 Mixed-Order FEM for Systems of First-Order Equations

In Sect. 6.2 we studied the model problem (6.1), i.e., the second-order equation for
the electric field £ in one dimension:

d (1dE
dx \u dx

) + w?E = 0. (6.31)

The second-order equation can be split into two first-order equations involving also
the magnetic field H (a factor of j is removed in order to avoid complex variables):

dE
— —wuH =0, (6.32)
dx
dH
— +weE =0. (6.33)
dx

To solve this pair of first-order equations, we first seek finite element representations
for E and H that are suited for this. Somewhat arbitrarily, we choose to expand E,
as before, in piecewise linear functions /; (x) (often referred to as “tent functions”).
This gives

N
E(x) =Y Eili(x). (6.34)
i=0

Equation (6.32) then leads us to expand H in the same class of functions as d E /d x,
that is, in piecewise constants ¢; (x) (“top-hat functions”). This gives

N—1
H(x) = Z Hi+%ci+%(x)a (6.35)
i=0
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Fig. 6.13 Basis functions for the electric and magnetic fields together with their derivatives

where CH_%(X) = lif x; < x < x;+1, and otherwise, CH_%(X) = 0. Fig. 6.13 shows
the tent and top-hat functions together with their derivatives.

To solve the set of first-order equations (6.32)—(6.33), we try a form of Galerkin’s
method. Since (6.32) contains H and dE/dx, which are both piecewise constant,
we multiply (6.32) by piecewise constant weighting functions ¢; 1 (x) and integrate

over x. After division by the step length / this gives

Ei1—E;

T —opH, =0, (6.36)

which is exactly the simplest finite difference approximation for (6.32) on a
staggered grid.

Equation (6.33), on the other hand, contains E. Therefore, we multiply it by a
piecewise linear weighting function and integrate over x:

Xi41 dH
/ (— + a)eE) li(x)dx = 0. (6.37)
Xi dx
We substitute the representations (6.34) and (6.35) into (6.37) and obtain
Xi+1 Xj
/ (HH_% — H,._%)8(x —x)li(x)dx + we [/ Ei_1li_1(x);(x)dx
Xi—1 Xi—1

Xi41 Xi41
+/ E,llz(x)dx +/ Ei+lli(x)li+1(x)dx:| =0. (6.38)

i—1 Xi
Evaluation of the integrals and division by & gives

Hiyy—Hiy 2 1
% + we |:§E, + E(E,'_l + Ei+1)i| =0. (6.39)

Thus, the FEM equations corresponding to the coupled system (6.32)—(6.33) of
first-order equations are

, (6.40)

2 1
= —Wwe€ |:§E, + E(Ei_l + E,’+1)i| . (6.41)
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This FEM-discretized system looks almost the same as the finite difference
approximation of (6.32)—(6.33) with staggered meshes. It differs only in the form
for E on the right-hand side of (6.41). The similarity comes from the choice of basis
and test functions. E was expanded in piecewise linear functions that are centered
on the nodes: the integer mesh. H was expanded in piecewise constant functions
that are centered on the midpoints or the half-mesh. Furthermore, (6.40) is centered
on the half-grid. We constructed it this way by multiplying (6.32) by the piecewise
constants ¢; , 1 (x) before integration. Similarly, (6.41) is centered on the integer
grid, because we multiplied (6.33) by the piecewise linear functions /; (x).

This is a simple example of mixed elements. We can make the following analogy
with staggered meshes for finite differences:

e A variable expanded in piecewise linear functions (FEM) is placed on the integer
mesh (FD).

e A variable expanded in piecewise constant functions (FEM) is placed on the half
mesh (FD).

e An equation multiplied by piecewise linear functions (FEM) is evaluated on the
integer mesh (FD).

e An equation multiplied by piecewise constant functions (FEM) is evaluated on
the half mesh (FD).

To emphasize the similarity between finite element and finite difference methods,
we mention that if the integration in (6.38) is made by the trapezoidal rule,
f;’*‘ f(x)dx =~ (h/2)[f(x;) + f(xi+1)], the weE term becomes “lumped”,
(4E; + Ei_1 + Ei+1)/6 — E;, and the FEM scheme becomes identical to the
finite difference scheme.

One can see that the discretization (6.40)—(6.41) is in fact a Galerkin method,
because the equation for w E has been tested with the basis functions for E and the
equation for w H has been tested with the basis functions for H . It may also be noted
that Faraday’s law is identically satisfied by the FEM representation for £ and H,
while Ampere’s law (6.33) is satisfied only in the weak sense, that is, as a weighted
average.

6.5.2 The Curl-Curl Equation and Edge Elements

So far, we have discussed basis functions only for scalar equations, and used
piecewise linear (nodal) and piecewise constant basis functions. To deal with vector
quantities, such as the electric field, a first attempt might be to expand each vector
component separately in nodal basis functions. It turns out that such an approach
leads to nonphysical solutions, referred to as spurious modes.

This can be avoided by using edge elements [51], which are very well suited
for approximating electromagnetic fields. The (basis functions for) edge elements
are constructed such that their tangential components are continuous across element
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borders, whereas their normal components are allowed to be discontinuous. Edge
elements are also called curl-conforming because the continuous tangential com-
ponents imply that the curl of an edge element does not contain delta functions at
the element boundaries. Thus, an electric field that is expanded in terms of edge
elements has a curl that is square integrable.

In this section, we will show how edge elements can be applied to solve the
curl-curl equation for E:

Vx(u'VxE)— (v’ — joo) E = —jwd’in S, (6.42)
nxE = PonlL, (6.43)
Aix (W 'VxE)+yhixixE = QonlL,. (6.44)

Again, we have both Dirichlet and Robin boundary conditions, and J* is an
imposed source current.
We proceed along similar lines as in the scalar problem (6.11)—(6.13). Thus, we
take the scalar product of (6.42) and the test function W; and integrate over the
computational domain S using the vector identity (4.4):

VA Wix(W'VXE)]=p ' (VxW;)-(VxE)
~W; - Vx(u'VxE). (6.45)

The divergence term in (6.45) is integrated using Gauss’s law in two dimensions

JsV-FdS =¢, ., F-idl, which gives the weak form of the vector Helmholtz
1 2

equation

/ (W (VW) (VX E)— (o’¢ — joo) W, - E]dS
S

+| W, (0-yaixaxE) dl:—jw/W,--J“'dS. (6.46)
S

Ly

The major difference from the scalar problem lies in the choice of basis functions,
where we use the edge element basis functions N;(r) instead of nodal basis
functions ¢; in this case.

Edge elements associate the degrees of freedom to the edges of the mesh rather
than the nodes (this is why they are usually referred to as edge elements in the first
place). Therefore, we have to number all the edges in the mesh and also give them
reference directions. We will discuss the basis functions in more detail later. The
edges are labeled by integers 1,2, ..., N,. We expand the solution E (r ) in terms
of the basis functions:

N,
E(r)=) E;N;(r). (6.47)

J=1
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where E; is the tangential electric field along the jth edge, in the direction of its
reference direction.

We follow Galerkin’s method, choose the test functions W;(r) = N;(r ), and
substitute (6.47) and the test functions into the weak form (6.46). This gives a linear
system of equations Az = b with

Ay =fs[u—1 (VX Ny (VxN;) = (o~ joo) N;-N;]dS

+/ y(@xN;)-(AxN;)dl, (6.48)

Ly

zj = E;, (6.49)

b,:—ja)/N,Jst— N,le (650)
s L,

The index j labels all edges and i all edges where E is unknown, i.e., all edges
excluding those on the boundary L.

6.5.3 Edge Elements on Cartesian Grids

Here, we give explicit expressions for the edge basis functions N ;. For simplicity,
we first study those on a rectangular element that occupies the region defined by
x; < x =< xj and y{ <y < y;. The local numbering of the nodes and the edges is
shown in Fig. 6.14 together with the local reference directions of the edges.
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Fig. 6.15 Local basis functions N{, N§, N§, and N§ on a rectangular element, shown in this
order from left to right

The local basis functions N¢ for a rectangular finite element are shown in
Fig. 6.15 and can be expressed explicitly as

PV . . X —=x5 .
No=—4 2"l e Ng— gy TRy
Yo = Va Xp — Xa
e y_y:; A e xz_'x A
=-——"°x, Ni=——"""—y. 6.51

The global basis functions must be chosen such that the tangential components
of E are continuous across element boundaries. However, the normal component is
allowed to be discontinuous [since V - E does not appear in the FEM matrix (6.48)].
Therefore, it is natural to associate the basis functions with the value of the electric
field along the edges. The required representation is simply

Ex(x,y) = ) Exlij €31 (0L (),
i

Ey(x,y) = ) Eyliy lix)e; 1 (). (6.52)

ij
Two such global basis functions are shown in Fig. 6.16.

Note that the edge elements have a mixed order of representation. Within each
cell, E, is constant in x and linear in y, and vice versa for E\. The edge elements
are not complete to first order, but represent a subset that is suitable for the curl-curl
equation.

6.5.3.1 Edge Elements on Bricks and Hexahedra

We extend edge elements on rectangles to brick elements (hexahedra) in three
dimensions. The electric field is represented as

Ex(x,3,2) = ) Exlijik €01 (0L (),
ijk
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Fig. 6.16 Two global basis
functions for rectangular edge
elements on a grid

Fe>——s——t—
Fe>——s——t—

Ey(x,y.9) = ) Eyliju li(0)e; ot (),
ijk

E(x,y,2) = ) Eclijk i) ()¢ 41 2). (6.53)
ijk

These edge elements are the FEM equivalent of the Yee cell. For instance, E, in
the Yee cell is located at the midpoint of the element in the x-direction, and the FEM
basis function is the piecewise constant ¢; | 1 (x), also associated with the midpoint
in x. In the y and z directions, the Yee cell puts E on the integer grid, and the FEM
representation is in terms of piecewise linears, which are also associated with the
integer grid.

For the magnetic field, we choose a representation that corresponds to the curl of
the electric field. For instance, from the x-component of Faraday’s law, jouH, =
0E,/0z—0E./dy, and the edge element representation (6.53) for E, we see that the
equation can be satisfied exactly if H, is expanded with piecewise linears in x, and
piecewise constants in y and z. Thus, for H, we choose the representation

Hi(x,,2) = ) Heliju i(¥)e; 41 (0112,

ijk
Hy(x,y.2) = Y Hyliji ¢ 1 0 (0)¢ 412,
ijk
Ho(x.y,2) = ) Hlijk €1 (0¢; 1 0. (6.54)

ijk
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This representation of H also conforms to the Yee arrangement. Each component
of H is associated with the midpoint of a face that has the same normal direction
as the H component. For instance, H, is associated with the midpoints of the cell
boundaries with x constant. The basis functions we have chosen for H are referred
to as face elements. These basis functions are divergence-conforming, because the
normal components are continuous at all cell boundaries.

It should be pointed out that this representation of E and H gives exactly
the FDTD algorithm if matrices such as the one in (6.48) are assembled using
trapezoidal integration.

6.5.4 [Eigenfrequencies of a Rectangular Cavity

Here, we use the edge elements to compute the eigenfrequencies and the eigen-
modes for a 2D rectangular cavity. First, we consider a 2 x 2-element resonator to
demonstrate the features of edge elements. Then, we increase the resolution and
study a more realistic case.

6.5.4.1 2 x 2-Element Resonator

We choose a square domain with width a, =2 m and height @, = 2 m. The cavity
resonator is discretized by 2 x 2 square elements, which is the smallest possible
system that gives meaningful results. The mesh with numbering of nodes, edges,
and elements is shown in Fig. 6.17. The positive reference directions (in this case
chosen arbitrarily) for the edges are indicated by the arrows.

The numbering is systematically organized in Table 6.3 for the nodes, Table 6.4
for the edges, and Table 6.5 for the elements.

The boundary of the computational domain is metal and the interior S is air, i.e.,
o =0, u = po and € = €. Thus, the eigenvalue problem is stated as

VxVxE =w’ukEin S, (6.55)
AxE =0onL. (6.56)

We use (6.45) to arrive at the weak form
/(VXW,»)-(VxE)dS:kZ/W,»-EdS, (6.57)
s s

where k2 = w?eppo. We expand the electric field in terms of the basis functions,
i.e., approximate the electric field by (6.47), and test with W; = N;. Then, we
get a generalized eigenvalue problem Sz = k’Mz, from which we solve for the
eigenvalues k? and the eigenvectors z = [z, 24, 211, Z12), Where 22, z4, z11, and z;»
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Fig. 6.17 Grid for
2 X 2-element resonator. The 1} .7
nodes (with numbers) are
shown by black dots, and the
edges (with numbers and

positive directions) are 05} Zk
indicated by the arrows U
centered on the edges of the
grid. The element numbers
are shown in the circles,
centered in the corresponding
elements
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Table 6.3 Given a node number we get the coordinates of that node

Node 1 2 3 4 5 6 7 8 9
X —1.0 0.0 10 -—-10 00 10 —-1.0 00 1.0
y —-1.0 —-10 -—1.0 0.0 00 0.0 1.0 1.0 1.0

correspond to edges in the interior of the cavity. The remaining coefficients in (6.47)
are zero because of the PEC boundary. The elements in S and M are given by

Sy = [[(VxN)-(VxN))ds, (6.58)
S

My = / N,-N, ds, (6.59)
S

where the indices i and j run over all edges except those on the metal boundary, i.e.,
i =2,4,11,12and j = 2,4,11, 12. By terminology borrowed from mechanical
engineering, S is called the stiffness matrix and M is called the mass matrix.

For realistic cases, however, we do not evaluate S;; and M;; by (6.58) and (6.59).
It is more convenient to use the assembling procedure described in Sect. 6.3.1.
Consequently, we evaluate the element matrices Si‘} and M;; by

. Yo % . .
S5 :/y / (Vx N¢) - (V% N¢) dxdy, (6.60)

e e
a a

Yo %
My :/ / N¢-N¢ dx dy. 6.61)
Ya YXg
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Table 6.4 Given an edge number we get the node numbers of that edge
Edge 1 2 3 4 5 6 7 8 9 10 11 12

Node 1 1 5 9 5 8 7 4 1 6 2 4 5
Node 2 2 2 6 8 9 8 7 4 3 3 5 6

Table 6.5 Given an element

Element 1 2 3 4
number we get the node
numbers of that element. Node 1 6 1 7 6
Node 2 5 2 4 9
Node 3 2 5 5 8
Node 4 3 4 8 5

Thus, we exploit the expressions for V¢ and the corresponding /ocal numbering
and reference directions of the edges given in Sect. 6.5.3 for an arbitrary element e;
see Fig. 6.14. We evaluate (6.60) for the element e that gives the element stiffness
matrix

/11 1e/1e 1
R W I
/e 1o 1|
Y R W

§¢ = (6.62)

where the edges of the rectangle have lengths [} = xj — xg and I} = y; — yg
along the x- and y-axes, respectively. Evaluation of (6.61) for the element e gives
the corresponding element mass matrix

_LGfo 2 01

M 6 |-10 2 0 |’

(6.63)

The assembling procedure gives the global matrices S and M shown below,
where the subindices in brackets show the index of the element that contributed
to the matrix element. For edge elements, the reference direction of the edges must
be compared for the local and global elements. If one of the two edges is reversed
between the local and global ordering, the sign of the corresponding row and column
in the element matrix must be changed before it is added to the global matrix:

+100 —1 +10+10
S — 0000 0000
0000 +10+10
—-100+1 00O00O0

Element 1 Element 2
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00 00 0000
0+1+10 0410 —1
loti+10l o000
00 00 0-10+1
Element 3 Element 4
+lp + 1y 0 +1p —Ip
_ 0 g+ 1+l —ly
+1p +lz +lpg+ I 0
—Ipy — Iy 0 +lp+ 1y

Global matrix

+200 O +20 0 0
1 0 00O 1 0000
M= - -
61 000 O +6 0 0420
0 0042 0000
Element 1 Element 2
00 0O 0000
110+2 0 0 110+20 0
T T
6100 420 610000
00 0O 00 042
Element 3 Element 4
+20) + 21 0 0 0
:l 0 +2p3) + 24 0 0
6 0 0 +2p) + 23] 0
0 0 0 +2017 + 24

Global matrix

To summarize, we solve the eigenvalue problem

2 01-1 22 2/30 0 O 22

0 2 1-1 24 — 12 02/30 0 24

1 120 an | 0 02/30 211

—-1-10 2 212 0 0 0 2/3 212
——— ——— S——

=S =1z =M =1z

Table 6.6 shows the eigenvalues and eigenvectors for this particular setting.
Analytical treatment of this particular problem shows that there is an infinitely
degenerate eigenvalue k> = 0 that corresponds to electrostatic modes E = —V¢.
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Table 6.6 Numerical eigenvalues and eigenvectors for the four-element cavity

Mode k? 2 24 211 212

1 0 +1/2 +1/2 —1/2 +1/2

2 3 —1//2 +1/4/2 0 0

3 3 0 0 +1/4/2 +1/4/2

4 6 +1/2 +1/2 +1/2 —1/2
Fig. 6.18 Electric field for
mode 1 with k2 = 0. This is a 11 @ ) ®
static field that can be oo For .
expressed in terms of a scalar
potential, i.e., E = —V¢ 05 v VA A foroa -

’ < ~ N\ S

y [m]

- sy NN

-0.5
-y VNN S
cy R
4 05 0 05 1
x [m]
The electromagnetic modes have k> = (7/2)*(n? + ni) for n, = 0,1,...
and n, = 0,1,..., where the combination n, = n, = 0 is excluded. The

lowest nonzero eigenvalues are associated with the two (degenerate) modes with
k? = (7/2)? ~ 2.5 and one mode with k> = 2(r/2)* ~ 5.0.

The figures below show the four numerical eigenmodes computed on the 2 x 2-
element discretization. Fig. 6.18 shows the electrostatic mode on this mesh. It can be
expressed in terms of a scalar potential, i.e., E = —V ¢, where the electric potential
¢ is expanded in piecewise bilinear nodal based finite elements, with ¢ = 0 on the
metal boundary and ¢ # 0 on the central node. This static mode has the eigenvalue
k? =0.

The next two modes are shown in Fig. 6.19, and they correspond to the physical
modes with the lowest resonance frequency. The two modes of the discretized
system have the same eigenvalue k> = 3 and are therefore said to be degenerate.
The corresponding analytical eigenvalue is k? = (7/2)% ~ 2.5.

Fig. 6.20 shows the third resonance of the cavity. It has the eigenvalue k> = 6,
and the corresponding analytical eigenvalue is k> = 2(/2)? ~ 5.0.

Observe that a linear combination of the four numerical eigenmodes can
represent any solution on the 2 x 2-element discretization that satisfies the boundary
condition.
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Fig. 6.19 Electric field for
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6.5.4.2 Better-Resolved Resonator

Next, we study a rectangular domain with width @, = 1.3 m and height a, =
0.9 m. We choose square cells of side 0.1 m, which gives a grid with 13 x 9
elements. We follow the approach outlined above, and the fundamental eigenmode,
which corresponds to the lowest resonance frequency, is shown in Fig. 6.21. The
corresponding analytic eigenmode is E = Esin(wx/ay)y.

The numerical eigenvalues k2 are shown in Fig. 6.22 by circles and the analytical

eigenvalues k?

(wny/ay)* + (wny/ay)* by crosses. Again, we have n, =

0,1,2,...andn, = 0,1,2,..., where the combination n, = n, = 0 is excluded.
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Fig. 6.20 Electric field for
mode 4 with the eigenvalue 1t
k? = 6. This mode

corresponds to the third
resonance of the cavity
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Fig. 6.21 The fundamental eigenmode on a rectangle with width a, = 1.3 m and height
ay, =0.9m

An important and very good property of the edge elements is that there is
a one-to-one correspondence between the lowest nonzero numerical eigenmodes
and the lowest nonzero analytical eigenmodes. This can be seen in Fig. 6.22 for
our particular problem. The nodal elements, which we do not use for vector-
valued electromagnetic fields, do not share this property, and the drawbacks of
nodal elements can be clearly seen by examining the spectrum of the curl-curl
operator. Instead of exact zero eigenvalues for the V x V x-operator corresponding
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Fig. 6.22 Spectrum of eigenvalues for a rectangle with width @, = 1.3 m and height a,, = 0.9m.
The numerically computed eigenvalues are shown by circles and their analytical counterparts by
crosses

to electrostatic modes E = —V¢, the nodal elements produce many eigenvalues
between 0 and the smallest physical one. This is called spectral pollution, because it
adds nonphysical eigenvalues in between the correct eigenvalues shown in Fig. 6.22.
The eigenfunctions of the spurious solutions have rapid space variation associated
with nonzero divergence. The nodal elements also cause much dispersion at short
wavelengths (similar to the 1D result for first-order derivatives on nonstaggered
meshes, discussed in Sect. 3.2), and this phenomenon also contributes to the spectral

pollution.
By contrast, the edge elements produce exactly one zero eigenvalue for each
interior node. Each such eigenvalue corresponds to a mode E = —V¢, which has

a zero eigenvalue, since V x V x (=V¢) = 0 = k*(—V¢) gives k> = 0. With
edge elements, this important property is preserved by the discrete representation,
because the modes E = —V¢, where ¢ is piecewise bilinear, belong to the set
of edge elements. In our problem with the rectangular cavity, there are 12 x § =
96 interior nodes and therefore 96 zero eigenvalues, and these are given the mode
number zero in Fig. 6.22.

It is in particular with respect to the electrostatic modes that the node-based
elements fail for electromagnetic problems. Node-based elements do not contain
the proper null-space for the curl-operator. The reason for this is that the potential
modes E = —V ¢ for continuous, piecewise linear ¢ do not have continuous normal
components and therefore do not belong to the node-based elements for E, which
are divergence conforming. The edge elements are not divergence conforming but
allow jumps in the normal component at cell boundaries.
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Fig. 6.23 Local numbering 0.3

for the element e. The local 3
reference directions for the

edges are chosen to be from 0.2

lower to higher (local) node
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local edge numbers are shown E
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Fig. 6.24 N (r) is shown to the left, N5(r ) in the middle, and N§(r ) to the right

6.5.5 Edge Elements on Triangles

Edge elements can also be formulated on triangles, tetrahedra, pyramids, and
prisms. Fig. 6.23 shows the local numbering of the nodes and the edges of a triangle.

The edge element basis functions on a triangle can be expressed in the nodal
basis functions ¢ :

1 =901Ve; — 93V,
2 =91V — o3V,
=9 Vos —3Ves. (6.64)

Fig. 6.24 shows the local basis functions. These basis functions are proportional
to the vector field rqs, where r and ¢ are local polar coordinates around the
node opposite to the edge on which the basis function has a nonzero tangential
component. The magnitudes of the basis functions are made such that the tangent
line integral of the basis function along the edge it is associated with is 1.
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Fig. 6.25 Global edge basis
function in 2D, spanning two
triangles

Some important properties of the edge elements on triangles are worth pointing
out. Just as for the rectangular edge elements, one constructs global basis functions
such that the tangential component of E is continuous over element interfaces.

A global edge basis function is shown in Fig.6.25. Note that the normal
component is discontinuous at the edges. Similar to the edge elements on rectangles,
the tangential component is constant along one edge and zero along all the other
edges of the rectangle.

Also similar to their rectangular counterparts, the edge elements on triangles have
mixed order. One can add three more functions, constructed in a similar way as those
in (6.64), but with the minus signs replaced by plus, to make the basis complete to
first order. The “missing” first-order edge elements are gradients of scalar functions.
Whether or not it is useful to include these gradients depends on the problem. Since
the gradients do not contribute to V x E, it is often more efficient not to leave them
out. The edge elements we have discussed here are often referred to as order (0, 1),
where 1 refers to those components that contribute to the curl, and O to the gradient
part. There are also higher-order edge elements available [39, 89], which often can
be more economical to use. However, these are not considered in this book.

In practice, the administration of edge elements requires certain special tech-
niques, which are nonstandard in the context of the conventional FEM with
node-based elements. These issues can to some extent be avoided on structured
meshes of squares or cubes. For unstructured meshes, however, it is necessary to
have efficient and reliable techniques, to for example, number the edges in the mesh
and associate a reference direction with each edge. It is useful to remember the field
representation E (r ) = Zy"zl E ;N ;(r) when such techniques are designed.

The reference direction is usually based on the global node numbers at the
endpoints of the edge under consideration; for example, the vector field of an edge
element basis function N; is directed from the lower to the higher global node
number when the coefficient for the basis function is positive. One or several of the
basis functions on the local elements that share an edge may be defined in the reverse
direction. One way to deal with this problem is to multiply all local basis functions
with reverse direction by —1; i.e., the local basis function N relates to the global
basis function as IV; = —N7{. Another way to deal with this problem is to sort the
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nodes of all individual element in ascending order. Since the basis functions defined
in (6.64) are directed from lower to higher local node number; this implies that they
are also directed from lower to higher global node number. This is the approach we
will take in the next section, where a MATLAB program based on triangular edge
elements is presented.

Each unknown (or coefficient £; and its basis function) must also be associated
with an edge in the unstructured mesh. We assume that all edges in the mesh are
defined by its start and end nodes and that they also have been assigned a global
edge number. To simplify the assembly procedure, we want to create a table el2ed
that contains the global edge numbers for the three edges of each element. This can
be done rather efficiently based on sorting techniques; see [41] for a more details.
In MATLAB, this can be done by the function unique.

6.5.6 MATLAB: FEM with Triangular Edge Elements

We will here present a MATLAB function that given a triangular mesh on the form
presented in Sect. 6.3.2, computes the mass and stiffness matrices M and S. A
routine for plotting a field, given the vector with coefficients E; that corresponds to
the field, is also provided.

We begin by sorting the nodes of the individual elements in ascending order.
Together with the definition of the basis functions in (6.64), this ensures that the
edges—and therefore the tangential components of the basis functions—always are
directed from lower to higher global and local node numbers.

Next we rewrite the basis functions in (6.64) using ¢; = 1 — @2 — 3. The basis
function can then be expressed as V¢ = N;2(¢2, 93) Vg2 + Niz(¢2, 93) Vs. Noting
that Vg;, i = 1,2, 3, are constant within each element, we can write the local mass
matrix of element e as

3

//Ne N¢dxdy ‘ZZV% Vo, /fN,kN,,dxdy (6.65)

k=21=2

The integrals ff Nlek ¢, dx dy are scalar and can be computed through a mapping
to a reference element W1th nodes (0, 0), (1,0), and (0, 1). The determinant of this
mapping is

det(J¢) = (1§ x I5) -z, (6.66)

where [¢ refers to edge i of element e. Depending on the order of the nodes, det(J¢)
is equal to plus or minus 2A4°, where A° is the area of element e. We then get the
following expression for M

—|det(Je)|(V<p2 VM2 + Vo - Vs M2 + Vs - V(ng”), (6.67)
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where Mi];[ are independent of the shape of the triangles and therefore can be
precomputed:

1 I—¢2

MlF = / / NikNjk dp> des. (6.68)
92=0 J ¢3=0
1— ¢2

ME = / / [Nk Nji + NNl dos dgs,  k #1. (6.69)
02=0 J ¢3=0

Here §;; denotes the Kronecker delta. With the basis functions in (6.64) we get the
following matrices M*’:

+3 +1 -1 | [+34+3+1 +1 41 +1
M22=E +1+1 -1 ,M”zﬁ +3 43 1 [ .M = — | +1 +3 +1
—1 -1 +1 +1 -1 -1 +1 41 +1

(6.70)

The stiffness matrix is also computed using a mapping to the same reference
element. First we use the chain rule:

VX N{=Vx(NiaVes + NizVes) = VNip» X 02 + VN3 X @3

8N,2 8N 2 BN,Q 8N,-3)
= 22V x Vo, + —2 Vg, x V - .
93 pax e dga prx V= det(J°) ( dp3 I

Then we obtain

= //(V x Ni)-(Vx N%)dxdy
1 ON;» 3N,'3) (asz 8Nj3)
= — - dxd
| det(J*)P? /f ( ops  0p2 ) \dps e Y
_ 1 : /l /I—W (aNiZ _ aN,g) (3Nj2 _ 3Nj3) gy dos
| det(J®)| Jp,—=0 Jps=0 \ d@3  0¢» 093 0>
SOO

~ [det@)[’

where S® is independent of the shape of the element and can be precomputed:

+2 =2 42
SW—1_242-2]1. (6.71)
+2 =2 42
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% Compute the stiffness and mass matrix for edge elements on
% a triangular grid

function [M, S, el2ed] = edgeFEM2D (no2xy, el2no)

% Arguments:

% no2xy = x- and y-coordinates of the nodes

% el2no = node indices of the triangles

% Returns:

% M = Mass matrix

% S = Stiffness matrix

% el2ed = a table that contain the three edge numbers related
% to each element

% Sort the nodes of each element
el2no = sort(el2no) ;

% Assign a number to each edge in the grid and create el2ed
nl = el2no([1 1 21,:);
n2 = el2no([2 3 31,:);
[ed2no, trash,el2ed] = unique([nl(:) n2(:)],’rows’);
el2ed = reshape(el2ed,3,size(el2no,2));

% Compute det(J"e), grad phi 2 and grad phi 3

el = no2xy(:,el2no(2,:)) - no2xy(:,el2no(l,:)); % 1lst edge in
% all elements
e2 = no2xy(:,el2no(3,:)) - no2xy(:,el2no(l,:)); % 2nd edge in
% all elements
detd = el(1,:).%e2(2,:) - el(2,:).xe2(1,:); % det (J"e) for
% all elements
g2 = [+e2(2,:)./detd; -e2(1,:)./detd]; % grad phi 2
g3 = [-el(2,:)./detd; +el(1,:)./detd]; % grad phi 3

°

% Define element shape independent matrices
m22 = [+3 +1 -1; +1 +1 -1; -1 -1 +1]1 / 12;
m23 [+3 +3 +1; +3 43 -1; +1 -1 -11 / 12;
m33 [+1 +1 +1; +1 43 +1; +1 +1 +11 / 12;
s00 = [+2 -2 +2; -2 +2 -2; +2 -2 +2];

% Compute local matrices and indices for all elements

mloc = m22(:) = (abs(detd).*sum(g2.%g2)) +
m23 (:) % (abs(detd) .*sum(g2.xg93)) +
m33(:) *= (abs(detd).*sum(g3.%g3));

:)

sloc = s00( * abs (1./detJ) ;
rows = el2ed([1 2 3 1 2 3 1 2 3]1,:);
cols = el2ed([1 1 1 2 2 2 3 3 31,:);

% Assemble.
S = sparse(rows,cols,sloc) ;
M = sparse(rows,cols,mloc) ;

The presented MATLAB function assumes that the material parameters are
constant in the entire mesh. It also assumes homogeneous Neumann boundary
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conditions, i.e., i Xx V x E = 0, which corresponds to a perfectly magnetic
conducting (PMC) boundary. If we instead solved for the magnetic field H, we
would have i x V x H = 0, which corresponds to a PEC boundary. The
function edgeFEM2D can easily be extended to treat problems where the material
parameters vary between elements, but are constant within each element, and
problems with homogeneous Dirichlet boundary conditions. However, this is left
as a computer exercise.

A function for plotting a solution, expressed as a (real) vector with coefficients,
is given below. The field is plotted on a finer mesh than the mesh that was used to
compute the solution. The reason for this is to see how the field varies within, and
on the interface between, elements. Arrows and color are used to visualize the field
itself and its curl respectively.

function plotfield(no2xy, el2no, el2ed, sol)

% Arguments:

% no2xy = x- and y-coordinates of the nodes

% el2no = node indices for all triangles

% el2ed = edge indices for all elements

% sol = Coefficient vector (each entry in the vector
% corresponds to one edge in the mesh)

% Returns:

oe

% Sort the nodes of each element
el2no = sort(el2no) ;

o

% Local coordinates for subgrid plotting

phi 1 = [432103210210100]"/ 4;
phi 2 = [012340123012010]"/ 4;
phi 3 = [000001111222334]"/4;

oe

Gradients of the simplex functions
% (constant within each element)

edgel = no2xy(:,el2no(2,:)) - no2xy(:,el2no(l,:));
edge2 = no2xy(:,el2no(3,:)) - no2xy(:,el2no(l,:));

detJ = edgel(l,:). *edge2(2,.) - edgel(2,:). *edge2(1,:);
grad phi 2x = edge2(2,:)./ detJd;

grad phi 2y = -edge2(1,:)./ detd;

grad phi 3x = -edgel (2 ) / detd;

grad phi 3y = edgel(l ./ detd;

grad phi 1x = 0 - grad_ph1_2x - grad_phi_ 3x;
grad phi 1y = 0 - grad phi 2y - grad phi 3y;

% Solution values associated to the 1st, 2nd, and
% 3rd edges in each element

soll = sol(el2ed(1,:)).";

sol2 sol (el2ed(2,:)).";

sol3 = sol(el2ed(3,:)).";
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% Field values

Ex = phi 1 % ( grad phi 2x.%soll + grad phi 3x.*sol2)
phi 2 % (-grad phi 1x.xsoll + grad phi 3x.%sol3)
phi 3 % (-grad phi_ 1x.+sol2 - grad phi 2x.*sol3);

+ o+

Ey = phi 1 % ( grad phi 2y.*soll + grad phi 3y.*sol2) +
phi 2 % (-grad phi 1ly.xsoll + grad phi 3y.*sol3) +
phi 3 % (-grad phi_ 1ly.+sol2 - grad phi 2y.*sol3);

Hz = (soll - sol2 + sol3)./detJ;

% Create subgrid

pl = no2xy(:,el2no (1, :)
p2 = no2xy(:,el2no(2, :)
p3 = no2xy(:,el2no(3,:)
psub = kron(pl,phi 1')

7

)
)i
)i

+ kron(p2,phi 2’) + kron(p3,phi_3');
% Initiate plotting

ih = ishold;

ax = newplot;

% Plot the curl of the field (constant within each element)

patch(’faces’,el2no’,'vertices’ ,no2xy’,’'facevertexcdata’ ,Hz(:),
'facecolor’ ,get (ax, 'defaultsurfacefacecolor’),
"edgecolor’ ,get (ax, 'defaultsurfaceedgecolor’)) ;

axis equal, hold on

% Plot the field itself as arrows

quiver (psub (1, :),psub(2,:) ,Ex(:)’ ,Ey(:)’,'k");

% Plot the mesh

xyl = no2xy(:,el2no(1,:));
xy2 = no2xy(:,el2no(2,:));
xy3 = no2xy(:,el2no(3,:));
xy = [xyl; xy2; xy3; xyl; NaN*xyl];
plot (xy(l:2:end) ,xy(2:2:end), k")

°

% Create a new colormap

mrz = max(abs(Hz(:)));
caxis([-mrz, mrzl);
c = (0:64)'/64; d = [c c ones(size(c))];

colormap([d ;1 1 1; d(end:-1:1,end:-1:1)]);
if “ih, hold off, end

We exploit this implementation to compute the eigenmodes H and eigenvalues
k? for a cavity resonator with a circular metal boundary of radius @ = 1 m. The
solution satisfies the eigenvalue problem V x V x H = k?H with boundary
conditionaxVx H = 0,where H = X H,(x, y)+y H,(x, y). A relatively coarse
grid is used to compute the fundamental mode shown in Fig. 6.26. The numerical
mode has ka = 2.4412, and this computed value compares well with the analytical
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Fig. 6.26 The fundamental
mode with ka = 2.4412, and
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Fig. 6.27 Two degenerate modes associated with the second-smallest ka = 3.8831 and ka =
3.8846, which compares well with the analytical counterpart ka = 3.8318

counterpart, i.e., the first zero ka = 2.4049 of the Bessel function Jo(ka). The
next mode is degenerated, and analytically it has ka = 3.8318, which corresponds
to the first zero of J;(ka). The two numerically computed eigenmodes are shown
in Fig. 6.27, and they have ka = 3.8831 and ka = 3.8846. The ten lowest
eigenvalues are shown in Fig. 6.28, where the crosses indicate the analytical solution
and the circles the numerical result. We note that there are no spurious modes, the
multiplicity of the lowest modes is correct, and the error for the higher-order modes
is surprisingly small. There are 48 zero eigenvalues and N, = 49 nodes in the mesh,
which includes all the nodes on the boundary. The zero eigenvalues correspond to
modes H = V1, where the potentials ¢ are different linear combinations of nodal
basis functions ¢;. However, while there are 49 linearly independent potentials i,
there are only 48 linearly independent modes H = V4, since a constant (but
nonzero) ¥ corresponds to zero magnetic field.
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ka [-]
N
©
©

2 4 6 8 10
mode [-]

Fig. 6.28 Nomalized eigenvalues ka for the lowest 10 eigenmodes: circles, numerical result; and
crosses, analytical values

Review Questions

6.5-1 Derive the Helmholtz equation from the system of first-order equations, i.e.,
dE/dx —wuH =0and dH/dx + weE = 0.

6.5-2 Why is the electric field expanded in tent functions and the magnetic field in
top-hat functions for the mixed 1D problem in Sect. 6.5.1?

6.5-3 Relate the FEM expressions for the system of first-order equations (d E /dx —
opH = 0and dH/dx + weE = 0) to the corresponding finite-difference
approximations. Do you need to apply special techniques for a one-to-one
correspondence?

6.5-4 How do tent and top-hat functions relate to the integer and half-mesh used
for finite difference approximations?

6.5-5 Describe the differences and similarities between the FEM for scalar and
vector equations.

6.5-6 Why are edge elements needed? Why are they called edge elements? Why
are they referred to as curl-conforming elements? List some of the characteristic
properties of edge elements.

6.5-7 What is the physical meaning of the degrees of freedom for a vector field
expanded in terms of edge elements? How does this translate to an electric field
that can be represented as the gradient of a scalar potential?

6.5-8 Derive the weak form of the vector Helmholtz equation, V x (1 ™!V x E) —
(w*e — joo)E = — jwJ*, with some suitable boundary conditions.

6.5-9 Write down the explicit expressions for the edge elements on a rectangle.
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6.5-10 Describe the functions (with respect to x, y, and z) that are used for the
x-components of the electric and magnetic fields, respectively, on a grid of brick
elements.

6.5-11 Derive explicit expressions for the matrix elements in (6.60) and (6.61) by
evaluating the integrals by hand. Use the expressions in (6.51) for the basis and
test functions.

6.5-12 How many static modes are supported by the mesh in Fig. 6.21 and why?
How many static modes are supported by the mesh in Fig. 6.26?

6.5-13 Write down explicit expressions for edge elements on triangles in terms of
(a) polar coordinates and (b) nodal basis functions.

6.5-14 Show that for triangles, the tangential component of a given basis function
is constant along one edge and zero along the other edges of the element. Does
this also hold for rectangular edge elements?

6.6 Practical Implementations of the FEM

Up to this point, we have exploited analytical evaluation of the integrals in the weak
formulations. For cases with inhomogeneous material parameters, analytical evalu-
ation is typically not feasible and, then, numerical integration is exploited instead
of analytical integration. There are also other situations where it is complicated or
undesirable to use analytical evaluation of the integrals in the weak formulation.
Here, we introduce numerical integration in combination with a technique that
involves a so-called reference element, which is used in most FEM codes.

Consider a finite element in physical space that is described in terms of its
Cartesian coordinates (x, y, z). Rather than integrating directly with respect to the
physical coordinates (x, y, z), it is common to perform the numerical integration
on a so-called reference element, which is described in terms of another coordinate
system with the Cartesian coordinates (u, v, w). The physical element in (x, y, z)-
space is related to the reference element in (i, v, w)-space by a transformation,
which is referred to as the mapping from the reference element to the physical
element. The basis functions are defined on the reference element and, then,
transformed to the physical element by means of the mapping. Thus, an integral
that is originally formulated in (x, y, z)-space can be reformulated and evaluated in
(u, v, w)-space, i.e. on the reference element, regardless of the shape of the physical
element as long as the physical element is not degenerated or incorrectly shaped in
some other way.

For parts of the discussion that follows, we use triangular elements in order to
provide an explicit demonstration of the techniques presented and, hopefully, this
makes it simpler to understand the concept of the reference element. However,
this recipe is general and can be applied to other types of finite elements used for
both two- and three-dimensional problems. Appendix B contains information about
the reference elements and their basis functions for the triangle and other typical
finite element shapes: quadrilaterals; tetrahedrons; prisms and hexahedrons. It is
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Fig. 6.29 Reference triangle 1.2 —
defined in the (u, v)-space 3
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possible to implement all the examples demonstrated in this chapter by means of
numerical integration on the reference element. (The analytical treatment presented
in the previous sections in this chapter is mainly useful for special cases that
feature piecewise constant material parameters. Also, it can be easier to get a basic
understanding of the FEM based on such formulations.)

6.6.1 The Reference Element

The reference element for the triangle is shown in Fig. 6.29. It is defined in the
(u,v)-space on the domain 0 < u < 1 —vand 0 < v < 1. It is useful to notice
that the reference element does not change its shape or size as the elements in the
physical finite element mesh. We provide a relation between the reference element
and the physical elements in Sect. 6.6.2.

On this reference triangle, we have the nodal basis functions

o (u,v)y=1—u—v
(. v) = u
@3(u.v) =v
and the linear edge element basis functions
Ni(u,v) = o1Vgr — Vo = (1 —v) + bu
No(u,v) = ¢2Vp3 — 03V = —ty + bu
N3(u.v) = 3V — 1 Vs = —av + H(u— 1),

where V = 1d/du + vd/dv + wa/ow differentiates with respect to the reference
element coordinate system.
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6.6.2 Mapping From the Reference Element to the Physical
Element

Consider a triangle with straight edges in the physical two-dimensional space (x, ).
An example is given in Fig.6.6 that shows a physical triangle with index e, where
the nodes are located at r§ = —0.5% + 0.5, r§ = —0.2y and r§ = 0.6X + 0.45.

In order to have a relation between the reference element and the physical
element, we define the vector r¢ = r°(u, v) to be given by

ré(u,v) = x x°(u,v) + y y°(u,v)

N
= rigiuv),

i=1

where N = 3 for the triangle. (We use the same type of expression for quadri-
laterals, where N = 4 since the quadrilateral has four nodes and four nodal basis
functions.)

Thus, we have

ré(u,v) =1 —u—v)r{ +urf+vr§

for an arbitrary point (&, v) in the domain0 <u <1—vand0 <v < 1.

In order to investigate the mapping, we introduce the parameter £ that is zero at
the start point of an edge of the triangle and one at the end point of that same edge.
As we move along the edge, the parameter £ increases from zero to one and the
entire length of the edge is spanned by 0 < ¢ < 1. Now, we consider the first edge
of the triangle with u = £ and v = 0, where we have

ri(6.0) =0 —=§ri+érs.
The second edge with u = 1 — £ and v = £ yields
rf(1=§.86) =0-§r;+&r;
and the third edge with u = 0 and v = 1 — £ gives
re(0.1-8) = (1 =§r; +&ry.

Consequently, the edges of the reference element are mapped to the edges of the
physical element. Similarly, the vertices of the reference element are mapped to the
vertices of the physical element. The same procedure can be applied to all points
interior to the reference element, which are mapped to the corresponding points
interior to the physical element.
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For three dimensional finite elements, we have in an analogous manner

ré(u,viw) = X x(u,v,w) + 9 y(u,v,w) +22°(u, v, w)

N
= Zr,‘-’fp,-(u,v, w),

i=1

where N is the number of nodes of the element.

These mappings are referred to as linear mappings since they exploit the linear
nodal basis functions ¢;. As a consequence, the edges of the elements are straight
lines. It is also feasible to use higher-order basis functions such as quadratic basis
functions in the mapping, which gives curved edges and faces in the general case.
A higher-order mapping improves the geometric approximation of smoothly curved
boundaries.

6.6.2.1 Integration on the Reference Element

Next, we introduce the Jacobian

dx¢/du dy°/du 9z°/u
Je = ox¢/av ay¢/av 9z¢/dv |, (6.72)
ax¢/dw dy°/ow 0z°/ow

which is evaluated given the mapping r¢ = r¢(u, v, w) for the physical element with
index e. We notice that the mapping and its Jacobian depend not only on the type of
element but also on the shape of this element.

In the 2D case, we have that x¢ = x¢(u, v) and y° = y°(u, v) as described above.
In addition, we remove the influence of the third space coordinate on the mapping
by setting z° = w, such that a 2D reference element in the plane w = 0 is located in
the plane z° = 0. This construction yields the Jacobian

0x¢/0u dy°®/ou 0
Je =1 ax¢/ov dy¢/ov 0 |, (6.73)
0 0o 1

which can be used in a convenient manner in the following.

For an infinitesimal volume element, we have the relation dxdydz =
det(J¢) dudvdw. Similarly, we have the relation dxdy = det(J¢)dudv for
the corresponding 2D situation.
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Thus, we have the following relation for integration in 3D
/ f(x,y,2)dxdydz = /~ f(u,v,w)det(J°) dudvdw,
ve 4

where V¢ is volume occupied by the physical element e and V is the corresponding
domain for the reference element. Similarly, integration in 2D yields the relation

/ f(x,y)dxdy:[f(u,v)det(,]e)dudv
se 5

where S¢ is surface occupied by the physical element e and S is the corresponding
domain for the reference element.

The integrand f(x, y,z) in 3D and f(x,y) in 2D must also be related to the
reference element and expressed in terms of its coordinate system. For example, the
integrand would involve expressions of the type f(x,y) = Vi (x,y) Voi(x,y)
for an electrostatic problem in 2D, where ¢ (x, y) is the linear nodal basis functions
on element e expressed in terms of the physical coordinates (x, y).

6.6.2.2 Nodal Elements

First, we consider the nodal elements ¢f (x, y) that can be expressed as

@ (x,y) = ¢f (x(u,v), y(u,v)) = @i (u,v).

This relation is supposed to be interpreted and used in the following manner, where
we for simplicity consider a triangular element as an example. Given a point (u, v) in
the reference triangle, we can evaluate the nodal basis function ¢; («, v), which is one
atnode i and zero at the two other nodes with a linear variation inside the reference
element. In physical space, ¢f (x, ) is also a linear function with the value one at
node i and zero at the two other nodes. Given the linear mapping r¢ = r¢(u, v), we
get a point (x¢(u, v), y°(u, v)) in physical space that corresponds to the point (i, v)
on the reference element. Thus, the nodal basis function ¢ (x, y) evaluated at the
point (x,y) = (x°(u,v), y°(u,v)) in physical space yields the same value as the
nodal basis function ¢; (1, v) evaluated at the point (u, v) on the reference element.
The same type of result holds for all nodal basis functions listed in Appendix B.

Further, we have the gradient V¢{(x,y) of the nodal elements that can be
expressed as

Vot (x.y) = Vof (x (. v). y(,v) = [J]7" Voi (u. v). (6.74)

where we distinguish the operator V that differentiates with respect to the physical
space coordinates from the corresponding operator V that differentiates with respect
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to the coordinates used for the reference element. The relation (6.74) is a result of
the chain rule Vg; (u, v, w) = J¢ Vof(x, y, z) that is expressed in detail as

dg; /ou 0x¢/0u dy°®/du 0z°/du dof /0x
dp; /v | = [ 9x°¢/dv dy°/dv 0z°/dv dpf /oy |, (6.75)
dg; [ ow ax°¢/ow dy°/dw 0z°/ow dof [0z

where this result holds for all nodal basis functions listed in Appendix B.
Thus, we can now evaluate integrals of the following type

/ea(x, V! - V¢>§ dxdy =
= [a(xe(u, v), ¥ (u,v)) ([Je]_1 @d),-) . ([J"]_1 @qﬁj) det(J°) dudv
s
Sdﬁ(x,y)¢f¢§ dxdy =
= /gﬂ(xe(u,v),yf(u,v)w,-c;s,- det(J*)dudv

This type of treatment is applicable for all the nodal elements listed in Appendix B,
which also includes elements for three-dimensional problems.

6.6.2.3 Edge Elements

The edge element basis functions on the triangle are given in (6.64) and they can be
expressed as

N{ = ¢/ Vi — ¢/ Vo

for the edge i that starts at node i; and ends at node i,. Consequently, we can express
these basis functions as

Ni =9 Vi, — 9,V
= [Je]_l (@il v901‘2 — ®i, 6901‘1)
=[N
where N¢ = N¢(x,y) is the basis function on the physical triangle and N; =
N (u,v) is the basis function on the reference triangle.
Similarly, we would like to relate the curl of the edge element basis functions on

the physical element to the corresponding quantity on the reference element. Thus,
we consider
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Vx N¢=Vx (wﬁng—gonVgofl) =2Vy x Vi,

=2 (T Vg ) > (077! Vi)

DY (e, D" ¢
det(J°) ( @i, X (011) det(J) X N
where we have exploited the identity
1 1 !
A~ A7y) =
(A7) x (A7) der(a) Y

that holds for a general (and invertible) 3 x 3-matrix A and arbitrary vectors x and
y of dimension 3. In this context, we have used A = J* together with x = Vg;, and
y = Vgi.

Thus, we can now evaluate integrals of the following type

1
/ VXN{-VxNSdxdy =
s

¢ H(-xs y)

B 1 [J417 V x N; D" VxN; .

- f i ( et (1) ) | ( et (1) ) detdydudy
— 1 1 e1T o x . e1T % .

N /g w(xeé(u,v), y¢(u,v)) det(J¢) ([J I'v N') ([J v N’) dudy

/ e(x,y)N;-NSdxdy =
se
= [e(xe(u, v), y¢(u,v)) ([Je]_1 Ni) . ([Je]_1 Nj) det(J®) dudv
§
This type of treatment is applicable for all the edge elements listed in Appendix B,
which also includes elements for three-dimensional problems.
6.6.3 Numerical Integration

Finally, we wish to evaluate the integrals formulated on the reference element. This
is accomplished by numerical integration according to a so-called quadrature rule
on the form

N
/gf(u,v)dudvz quf(uq,vq)

q=1
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where (uy, v,) is the g-th quadrature point with the weight £, and N is the number
of quadrature points. The corresponding relation for 3D integrals is

N
/Vf(u,v,w)dudvdw = quf(uq,vq,wq)
q=1

Appendix B contains quadrature rules, i.e. quadrature points and weights, for the
reference triangle, quadrilateral, tetrahedron, prism and hexahedron.

6.6.4 MATLAB: FEM for the First-Order System in 3D

We consider a metal cavity with the boundary S that encloses the volume V. Inside
the cavity, we have the permittivity ¢ = €(r) and the conductivity 0 = o (r),
whereas the permeability is constant according to @ = po. Furthermore, we
approximate the metal walls by a PEC, which yields

VXE=—jwB inV, (6.76)
B . .
Vx — =(0+ jwe)E inV, (6.77)
Ho
AxE =0 on S. (6.78)

We are interested in computing the eigenfrequencies @ in combination with the
eigenmodes represented by the electric field E and magnetic flux density B. For
cavities with losses represented by o, the eigenfrequencies are complex, where
the imaginary part corresponds to the damping of the eigenmode. If (6.76)-
(6.78) are formulated in terms of only the electric field, we get a non-linear
eigenvalue-problem in terms of the eigenfrequency w. However, the first-order
system (6.76)-(6.78) with both the electric field and the magnetic flux density avoids
this complication and, thus, we get a linear eigenvalue-problem.

6.6.4.1 Weak Form
Here, we use the dot product to weigh the residual of Faraday’s law (6.76) with the

weighting function W and Ampere’s law (6.77) by the weighting function WAL,
where integration over the entire computational domain yields

/W}:L-(VxE)dV=—jw/W,FL-BdV, (6.79)
|4 |4
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[ Wi mrav =g [ oW B av o [ W Eav
|4 |4 |4
(6.80)

Next, we proceed in a similar fashion as described in Sect. 6.5.1, where we
exploited piecewise linear basis functions for the electric field and piecewise
constant basis functions for the magnetic field to construct a mixed-order FEM
for the system of first-order equations. Here, we expand the electric field in edge
elements N ; as demonstrated previously, which yields E = ) ; EjN ;. Similarly,
the magnetic flux density is expanded in so-called face elements M ; and, thus,
we have B = ), B;M ;. (The unknowns B; are associated with the faces in
the mesh, which is analogous with the location of the magnetic field in the Yee
cell as described in Chapter 5.) As mentioned before, the edge elements are curl-
conforming and they feature a continuous tangential component on the interfaces
between elements. Similarly, the face elements are divergence-conforming and
they feature a continuous normal component on the interfaces between elements,
which is appropriate for the approximation of the magnetic flux density and its
boundary condition (1.2.1). Detailed expressions for the divergence-conforming
elements can be found in Appendix B. It can be useful to compare this approach
to Sect. 6.5.3.1, where the magnetic field is chosen to be linear along the field
component and constant in the directions perpendicular to the field component.
In fact, the divergence-conforming basis functions for brick-shaped elements yield
exactly the approximation shown in Sect. 6.5.3.1. Here, we will use tetrahedrons
instead of brick shaped elements but, although the detailed expressions for the basis
functions change, the features of the approximation are identical.

As shown in Sect. 6.5.1, we choose the weighting functions for Ampere’s law
from the set of basis functions that are used to expand the electric field, i.e. WIAL =
N;. Similarly, the weighting functions for Faraday’s law are chosen from the set
of basis functions that are used to expand the magnetic flux density, i.e. Wt =
M ;. Given the boundary condition (6.78), the tangential electric field is known on
the external boundary of the computational domain and, therefore, the tangential
component of the weighting function WA is identically zero on S, which should
be compared with the corresponding situation described in Sect. 6.5.4.

We apply integration by parts to the left-hand side of (6.80) by means of the vector
identity V- (W2l x B) = (V. x WAL . B — WAL . (V x B) and Gauss’ law, i.e.

/W;‘L-(VXB)dvzf [(VxWAY.B -V - (Wi xB)|dV
|4 |4
:/(VXW;*L).BdV—/(W;*LxB)-ﬁdS
|4 S
:/(VXW;.*L).BdV—/(ﬁxWIAL)-BdS
Vv S

=/(Vfo‘L)-BdV,
|4
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where we have exploited the boundary condition (6.78)that implies that i x W AL = 0
on the boundary S.
Thus, we have the system

/W,FL-(VxE)dvz —jw/WFL-BdV, (6.81)

|4

/(VX WAk . BdV :MO/ UWZAL-EdV—}—ja),uo/ eWAL.E dV. (6.82)
Vv |4 Vv

which can be expressed as an eigenvalue problem on the form Az = ABz

according to
0 —C C()b ]Cl) M(l) 0 C()b
=— . 6.83
(CT —ZOM("))[ e } o ( 0 M) e (6.83)

Here, the unknown coefficients E; for the electric field are collected in the vector
e and, similarly, the coefficients B; for the magnetic flux density are collected in
the vector b. We have scaled the magnetic flux density and both Faraday’s law and
Ampere’s law in order to achieve a more well-balanced system of equations. Thus,
the eigenvalue is jw/co and the eigenvector z is the combination of the column
vector cob and the electric field coefficients e.

6.6.4.2 Evaluation of Integrals on the Reference Element

The assembling procedure yields the global matrices C, M), M) and M) and,
here, the corresponding element matrices for element e are given by

Cij = M;-(VxNS)dxdydz
Ve

MO = M -M¢dxdydz
Ve

M = / &Nt N dxdydz
M,(,"):/ oN{-NSdxdydz.

Given the derivations in Sect. 6.6.2, the relation between the curl-conforming
basis function N¢ on the physical tetrahedron and the curl-conforming basis
function N; on the reference tetrahedron is given by

N¢=[J1'N;
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and, similarly, the corresponding relation for its curl is given by

e T
VxN¢ = ] V x N;.
" det(Je)

The divergence-conforming elements on the tetrahedron are given by
M; =2(¢; Vo, x Voi + ¢ Voi x Vi + ¢ Vo x Vi)

where i1, i, and i3 are the node indices of the three nodes on face i of the tetrahedron.
(Further details on the divergence-conforming basis functions for the tetrahedron
can be found in Sect. B.2.1.) In Sect. 6.6.2, we exploited the relation Vo{ (x, y,2) =
[J¢1" Vi (u, v, w) and that

T

AT <A = s

X XY,

for a general (and invertible) 3 x 3-matrix A and arbitrary vectors x and y of dimen-
sion 3. Thus, we have the following relation between the divergence-conforming
basis function M{ on the physical element and the divergence-conforming basis
function M ; on the reference element

M7 = 2(p; Vi, x Voi + ¢/ Vi x Vi + ¢ Voi x Vei)
T
~ det(J¢)

e1T
Ey M,;.
det(J¢)

2((;01'36@& X vqpil + @izvqpil X 6(pizy + (pilﬁ(pizy 2 6(»01'2)

This gives the following element matrices evaluated on the reference element

_ [ (BT e’ .
7 /17 (det(,]e) Mi) ' (det(Je) (Vx Nj)) det(J°) dudv dw,

W _ LS by )
M) = /V (det(Je) Ml).<mM,) det(J¢) du dv dw,

M = /VG’ ([Je]—l Ni).([y]—l Nj) det(J¢) du dv dw,

D

MO = / o (07 V) - (07 N ) det@) dudv .
|4

1

Here, the permittivity €, and the conductivity o are functions of the coordinate r*¢
that spans the physical element, where r¢ is a function of the reference element
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coordinates u, v and w according to the mapping r¢ = r°(u,v,w) as described
in Sect. 6.6.2. Given the quadrature points on the reference element, the mapping
yields the corresponding points in the physical element. The points in the physical
element can then be used directly to evaluate the permittivity €, = €,(x, y,z) and
the conductivity 0 = o (x, y, 7).

6.6.4.3 Overview of the MATLAB Implementation

The MATLAB implementation uses the main script mixedFEM3D.m for the
computation of the eigenvalues and eigenvectors. Also, this script visualizes the
results of the computation. Before details of the script mixedFEM3D.m and other
parts of the implementation are given, we describe the main aspects of the program.
The script mixedFEM3D.m reads a mesh that is stored in the file
mesh_cylinder RO.mat. (More well-resolved meshes are also available in
the files mesh_cylinder R1.mat and mesh _cylinder R2.mat.) The mesh
contains a discretization of a circular cylinder of radius 0.125 m and height 0.4 m,
where the volume is discretized by an unstructured mesh of tetrahedrons. The
file that stores the mesh also contains other variables with information about the
discretization and here is a list of these variables with some descriptions:

* no2xyz stores the coordinates of the nodes,

¢ el2no stores the nodes of the tetrahedrons,

¢ el2ma stores the material indices of the tetrahedrons,

e ed2no_pec stores the nodes of the edges that are located on the surface S and
should be treated as PEC,

e ed2no_all stores the nodes of all edges in the mesh, and

e fa2no_all stores the nodes of all faces (i.e. triangles) in the mesh.

In the MATLAB implementation, the mesh is also stored in a database that
provides some useful functionality. In particular, the user of the database can get
information about the mesh that can not be easily extracted from the variables
above. Here, we summarize the functions that provide an interface to this database
without giving further information on the specific implementation of the database.
(The interested reader can examine the MATLAB code for further details.)

e ElementDatabase_Init.m initializes the database for a specific type of
element. The user must provide a name for the element and, below, we use
"edges’ and ' faces’. In addition, the user provides the size of the database.
For example, the edges are indexed by two nodes for each edge and the node
numbers can take all values from one to the total number of nodes in the
mesh. Thus, the global number of any edge in the mesh could be stored in
a matrix at the row and column indexed by the two nodes of the edge. In
this manner, it would be easy to look-up the global edge number given its
two global nodes. Thus, all the global edge numbers could be stored in a
square matrix (i.e. a two-dimensional array) with the size equal to the number
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of nodes. (The actual implementation of the database is quite different for
efficiency purposes but it behaves in this manner.) Similarly, faces could be
stored in a three-dimensional array with the size equal to the number of
nodes, where a particular face is indexed by its three nodes. The function
callElementDatabase Init ('edges’, noNumx [1 1]) initializes the
edges and ElementDatabase Init (‘' faces’, noNum[1 1 1]) ini-
tializes the faces, where noNum is the number of nodes.

e ElementDatabase_Set.m stores elements in the database. For example,
we would store all the edges of the mesh in the database by the function
call ElementDatabase_Set (’edges’, ed2no.all). Similarly, all
the faces of the mesh are stored by ElementDatabase_Set (‘' faces’,
fa2no.all).

e ElementDatabase_Get .m gets the global number of an edge or a face given
its global nodes. Thus, the function call ElementDatabase Get (' edges’,
[n1 n2]) returns the global edge number of the edge that connects the nodes
with indices n1 and n2. (The database is not sensitive to the ordering of the
two nodes, i.e. [n1 n2] and [n2 nl] give the same global edge number.) An
empty matrix is returned if there is no edge that connects the nodes nl and n2.
This functionality is convenient since it can be used in the assembling procedure
to relate local edges to global edges and, similarly, local faces to global faces.
Also, it is useful for imposing the boundary conditions.

* ElementDatabase_Cardinal.m returns the number of elements in the
database. For example, ElementDatabase_Cardinal (' faces’) gives
the total number of faces that are stored in the database.

The vector el2ma stores the material index of the tetrahedrons in the same
mannar as el2no stores the nodes of the tetrahedrons. Similarly, ma2er stores
the permittivity €, associated with the different material indices and ma2si stores
the conductivity o associated with the different material indices. In fact, ma2er
and ma2si are so-called cell arrays in MATLAB and each entry is a so-called
function handle. A function handle can be used as a regular function in MATLAB
and, here, such a function returns the value of the material parameter given a
coordinate (x, y,z) in physical space. In the present example, the mesh stored in
the file mesh_cylinder_RO.mat contains only one material and, consequently,
we have that e12ma only contains the material index one. Also, ma2er andma2si
only contain one function each. However, it is possible to add more materials
such that different space dependent functions are used for different regions of the
computational domain. In the script mixedFEM3D . m presented below, the relative
permittivity €, and the conductivity o are given by the expressions

—0.125)% + y2 + (z — 0.3)?
& (x,y.2) = 1 + dexp [—(x ) 01yz (z=0.3) } (6.84)
(x +0.125)% + y2 + (z — 0.3)?
o(x,y,z) =0pexp|— 012 . (6.85)
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The function Fem_Assemble .m assembles the global matrices C (referred to
as cMtx in the program), M) (referred to as uMtx), M) (referred to as eMtx)
and M@ (referred to as sMtx). After imposing the boundary conditions, these
matrices are used to form the matrices A (referred to as aMtx in the program)
and B (referred to as bMtx). The eigenvalue problem (6.83) can be solved in two
different ways: (i) a direct solver implemented by eig and this solver is chosen
by setting solver = ’direct’ in the beginning of the program; or (ii) an
iterative solver implemented by eigs and this solver is chosen by setting solver
= ’‘sparse’ in the beginning of the program. The iterative solver is suitable for
large problems since it reduces the memory requirements dramatically. However,
the iterative solver only solves for a few eigenvalues in the vicinity of a so-called
shift point and, therefore, it is important to provide a reasonably good value for
the shift. (The reader is encouraged to consult the help for eigs in MATLAB in
order to get further information on the arguments required for eigs.) Here, we
proceed as follows in order to determine a suitable shift. First, we solve a small
eigenvalue problem (i.e. we use a relatively coarse mesh) and, for this, we exploit
the direct solver that gives all the eigenvalues. Then, we identify the interesting
part of the spectrum with, say, some 30 eigenvalues. Then, we compute the average
of these eigenvalues and use that as a shift when we continue with more accurate
computations for the same problem on more well-resolved meshes.

Once the solution is computed, we visualize the eigenvalues and the corre-
sponding eigenvectors. Here, the vector mvVtr in the beginning of the program
contains the indices for the modes that the user wishes to visualize. The eigenvectors
are visualized by the MATLAB-command quiver3. This command requires the
vector field at a set of specific points and, here, we choose the nodes of the mesh.
We exploit the following projection technique to provide that information. For the
(global) electric field, we have E = 3, E; N ; and the u-component of this vector
fieldis E“ = @& -E = Y, E;it- N ;, where u is one of the Cartesian axes. For
visualization purposes, we wish to express the u-component of the electric field in
terms of nodal basis functions, i.e. E® = )" ; EJ(.") @; and this can be achieved by
the following FEM procedure. We multiply both sides with the weighting function
¢; and integrate over the computational domain, which gives

ZE}“)/VwiwjdV=/V<pi(ﬁ'E)dVZZEj/V</’i('2'NJ‘)dV
- j

This is a system of linear equations Pv? = QWe with P;; = [, ¢ip;dV
and Qf;‘) = [, @ (@ - N;)dV, where the solution vector v(*) contains the

coefficients E ;.”) that can be used directly for plotting the u-component of the electric
field at node j. The matrix P can be diagonalized by so-called mass lumping,
where we use a quadrature scheme with quadrature points at the vertices of the
tetrahedron. Such a procedure makes the solution v = P~!Q®e of the system
of linear equations cheap to compute. It should be noted that the same procedure
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is used to project the magnetic flux density onto the nodal elements. The reader is
encouraged to examine the implementation of ProjSol2Nodes Assemble.m
and ProjSol2Nodes_CmpEl1Mtx . m for further details.

6.6.4.4 Important Parts of the MATLAB Implementation

The main script mixedFEM3d . mis listed below. In the beginning of the script, the
user can choose the modes to visualize and the solver that is used for the eigenvalue
problem. Also, the user can specify the permittivity and conductivity. Then, the
mesh is read from disk and the database is initialized. After the administration of
the mesh is completed, the eigenvalue problem is assembled and solved. Finally, the
eigenvalues are plotted and the eigenmodes are visualized.

clear all
% Select the modes that will be visualized
mvtr = 1151 + (1:20);

% Direct or sparse eigenvalue solver for small and large
% problems, respectively [solver = ’‘direct’ or ’'sparse’]
solver = ’'direct’;

°

% Materials

mazer = {@(x,y,z) 1 + 4xexp(-((x-0.125).72+y. 2+(2z-0.3).72)/
(0.17°2)) };

ma2si = {@(x,y,z) 0.lxexp(-((x+0.125).%2+y."2+(2z-0.3).72)/
(0.17°2)) };

°

% Constants

c0 = 299792458;
m0 = 4xpixle-7;
e0 = 1/(m0*c072);
z0 = sqgrt(m0/e0)

oe

speed of light in wvacuum
permeability in vacuum
permittivity in vacuum
wave impedance in vacuum

o o°

o°

°

% Read mesh
load mesh cylinder RO

% Initialize the FEM
Fem Init (no2xyz, ed2no_all, fa2no all)

% Find PEC edges in the database

edIdx pec = ElementDatabase Get (’edges’, ed2no_pec) ;
noldx pec = unique(ed2no_pec(:))’;

% Find all edges in the database

edNum_all = ElementDatabase Cardinal (’edges’) ;
faNum _all = ElementDatabase Cardinal (' faces’);
edIdx all = 1l:edNum all;

noldx all = 1l:size(no2xyz,2);
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o

% Compute the interior edges
edIdx_int = setdiff (edIdx all, edIdx pec);
noldx int = setdiff (noIdx all, noldx pec);

% Assemble global matrices
[eMtx, sMtx, cMtx, uMtx] =
Fem Assemble (no2xyz, el2no, el2ma, ma2er, ma2si);

eMtx_int = eMtx(edIdx int,edIdx int); % mass matrix with
permittivity

sMtx_int = sMtx(edIdx_ int,edIdx_int) ; % mass matrix with
conductivity

curl matrix
mass matrix with unity

o°

cMtx_int = cMtx(:,edIdx_int);
uMtx int = uMtx;

o°

coefficient
edNum_dof = length(edIdx int) ;
faNum dof = faNum all;
solIdx_bFld = 1:faNum dof;
solIldx eFld = faNum dof + (1l:edNum dof) ;
aMtx =
[sparse (faNum_dof, faNum dof) -cMtx int;
cMtx_int.’ -z0+sMtx int];
bMtx =
[uMtx int sparse (faNum dof, edNum dof) ;
sparse (edNum_dof, faNum dof) eMtx int];
% Solve the eigenvalue problem
if strcmp(solver, ’direct’)
aMtx = full (aMtx) ;
bMtx = full (bMtx) ;
[eigVtr int, eigVall = eig(aMtx, bMtx);
elseif strcmp (solver, ’‘sparse’)
[eigVtr _int, eigVall = eigs(aMtx, 0.5x (bMtx+bMtx’), 30,
1i%(19.5+11)) ;
else
error ('unknown eigenvalue solver’)
end
eigVal = diag(eigVal); % j*w/cO
[eigTmp, eigIdx sort] = sort(real(-lixeigVal)) ;
eigval = -lixeigVal (eigIdx sort); % w/cO

eigVtr_int = eigVtr_int(:,eigIdx_sort) ;

fr = cOxeigVal/ (2+pi) ;

% Visualize the eigenfrequencies

figure (1), clf

plot (real (fr (mVtr)) /1e9, imag(fr (mVtr))/1e9, ’'ks’)
xlabel (‘Real part of eigenfrequency [GHz]')
ylabel (' Imaginary part of eigenfrequency [GHz]'’)
grid on
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o

% Visualize the eigenmodes
bFld all = eigVtr_ int (solIdx bFld,:);

eFld all = zeros(edNum all,size(eigVtr_int,2));
eFld all(edIdx int,:) = eigVtr int (solldx eFld,:);

[pMtx_ed2no, pMtx fa2no] = ProjSol2Nodes Assemble (no2xyz, el2no);

bxFld_all = (pMtx fa2no.xc*bFld all) / cO;
byFld all = (pMtx fa2no.yc*bFld all) / cO;
bzFld _all = (pMtx fa2no.zc*bFld all) / cO;
exFld all = pMtx ed2no.xc*eFld all;
eyFld all = pMtx ed2no.ycxeFld all;

ezFld all = pMtx ed2no.zc*eFld all;

for mIdx = mVtr
figure(2), clf
dval = 0.4;
for dIdx = 0:1
for edIdx = 1l:size(ed2no_pec,2)
noTmp = ed2no_pec(:,edIdx) ;
xyzTmp = no2xyz(:,noTmp) ;

plot3 (dIdx*dval + xyzTmp(l,:), xyzTmp(2,:),
xyzTmp (3, :),
"Color’, 0.5%x[1 1 1]), hold on
end
if dIdx == 0
exViz = real(exFld all(:,mIdx).’);

eyViz = real(eyFld all(:,mIdx).’);
ezViz = real(ezFld all(:,mIdx).’);

quiver3 (dIdx*dval + no2xyz(l,:), no2xyz(2,:),
no2xyz(3,:),
exViz, eyViz, ezViz, 2, ’'k’)

elseif dIdx ==
bxViz = imag(bxFld all(:,mIdx).");
byViz = imag(byFld all(:,mIdx).’);
bzViz = imag(bzFld all(:,mIdx).’);

quiver3 (dIdx*dval + no2xyz(1l,:), no2xyz(2,:),
no2xyz(3,:),
bxvViz, byViz, bzviz, 2, 'k’)
end
end
axis equal
axis off
view(-24,14)
pause

end

The script mixedFEM3d.m starts with an initialization performed by the
function Fem_Init .m. This function enumerates the local edges and faces. The
local numbering in the function should be compared with the numbering of the
reference tetrahedron as described in Sec. B.2.1. In addition, this function initializes
the database that stores the enumeration of all the global edges and faces.
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o°

Initialize the FE-solver by numbering of local and global
edges and faces.

o o°

o°

function Fem Init (no2xyz, ed2no _all, fa2no all)

% Arguments:

% no2xyz = coordinates of the nodes
% ed2no_all = nodes of all edges

% fa2no all = nodes of all faces

% Returns:

global ed2noLoc fa2noLoc

% Setting up the edge information.
ed2noLoc =

[1 2; 2 3; 3 1; 1 4; 2 4; 3 41";
fa2noLoc =

[321; 12 4; 23 4; 31 4]1";
% Number the edges
ElementDatabase Init (’edges’, size(no2xyz,2)=[1 1])
ElementDatabase Set(’edges’, ed2no_all)

% Number the faces
ElementDatabase Init (’faces’, size(no2xyz,2)*[1 1 1])
ElementDatabase Set(’'faces’, fa2no_all)

The function Fem_Assemble . m assembles the global matrices C (referred to
as cMtx in the program), M (referred to as uMtx), M) (referred to as eMtx)
and M@ (referred to as sMtx). The assembling procedure does not impose any
boundary conditions. Notice that the positive direction of the edges is based on the
global node numbers. Similarly, the orientation of the normal of the faces is based
on the global node numbers of the face.

function [eMtx, sMtx, cMtx, uMtx] =
Fem Assemble (no2xyz, el2no, el2ma, ma2er, ma2si)

o°

Arguments:
no2xyz = coordinates of the nodes
el2no = nodes of the tetrahedrons
el2ma = material of the tetrahedrons
ma2er = relative permittivity of the materials
ma2si = conductivity of the materials

Returns:
eMtx = mass matrix with permittivity coefficient
sMtx = mass matrix with conductivity coefficient
cMtx = curl matrix
uMtx = mass matrix with unity coefficient

o° o o° o o° o o° o° o

o°

global ed2noLoc fa2noLoc
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% Global number of entities

elNumGlo = size(el2no,2);

edNumGlo = ElementDatabase Cardinal (‘edges’) ;
faNumGlo = ElementDatabase Cardinal (' faces’);
% Incremental steps for each element
incRes_EE = 6%6;

incRes FE = 4%6;

incRes FF = 4%4;

% Initializing.
idxRes EE = 1;
idxRes FE = 1;
idxRes FF = 1;

irRes_EE = zeros (incRes_EExelNumGlo,1) ;
icRes EE = zeros(incRes_EExelNumGlo,1) ;

irRes_FE = zeros (incRes_FExelNumGlo,1) ;
icRes_FE = zeros (incRes_FExelNumGlo, 1) ;

irRes FF = zeros(incRes_FFxelNumGlo,1) ;
icRes FF = zeros(incRes_FFxelNumGlo,1) ;

i

meRes_EE = zeros (incRes_EExelNumGlo, 1)
msRes_EE = zeros (incRes_EExelNumGlo, 1) ;
mcRes FE = zeros(incRes_FE+elNumGlo, 1) ;
mmRes FF = zeros(incRes_FF+elNumGlo, 1)

i

% Computing the contributions to the mass and
% stiffness matrices.

for elIdx = 1l:elNumGlo

no = el2no(:,elIdx);
Xyz = no2xyz(:,no);

[eEIMtx EE, sEI1Mtx EE, cElMtx FE, uElMtx FF] =
Fem CmpElMtx (xyz, ma2er{el2ma(elIdx)}, ma2si{el2ma(elIdx)});

noTmp = zeros (size(ed2nolLoc)) ;

noTmp (:) = el2no(ed2noLoc(:),elldx);

esVtr = sign(noTmp (2, :)-noTmp(1,:));

eiVtr = ElementDatabase_Get (’edges’, noTmp) ;

noTmp = zeros (size(fa2noLoc)) ;

noTmp (:) = el2no(fa2noLoc(:),elldx);

fsVtr = 2% (...
((noTmp (1, :) < noTmp(2,:)) & (noTmp(2,:) < noTmp(3,:))) |
((noTmp (2, :) < noTmp(3,:)) & (noTmp(3,:) < noTmp(1l,:))) |
((noTmp (3,:) < noTmp(1,:)) & (noTmp(l,:) < noTmp(2,:)))
) - 1;

fivtr = ElementDatabase Get (' faces’, noTmp) ;

irTmp EE = eiVtr’sones(size(eiVtr));
icTmp EE = ones(size(eiVtr’))+eiVtr;
isTmp EE = esVtr'’sxesVtr;

irTmp FE = fiVtr’sones(size(eiVtr));
icTmp FE = ones(size(fivtr’))xeiVtr;
isTmp FE = fsVtr’sxesVtr;

irTmp FF = fiVtr’sones(size(fivVtr));
icTmp_ FF = ones(size(fivtr’))xfivtr;
isTmp_ FF = fsVtr’xfsVtr;

irRes EE(idxRes EE + (l:incRes_EE) - 1) = irTmp EE(:);
icRes_EE(idxRes_EE + (1l:incRes_EE) - 1) = icTmp EE(:);
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meRes_EE (idxRes_EE +
msRes_EE (idxRes_EE +

irRes FE(idxRes FE +
icRes_FE (idxRes_FE +
mcRes_FE (idxRes_FE +

irRes FF(idxRes FF +
icRes FF(idxRes_ FF +
muRes_FF (idxRes_FF +

idxRes EE = idxRes_E
idxRes FE = idxRes FE + incRes FE;
idxRes FF = idxRes FF + incRes FF;

end

eMtx = sparse(irRes_ EE,

cMtx = sparse (irRes_FE,

(

sMtx = sparse (irRes_EE,
(
(

uMtx = sparse (irRes_FF,

(l:incRes_EE) - 1)
(l:incRes_EE) - 1)
(1:incRes_FE) - 1)
(l:incRes_FE) - 1)
(l:incRes_FE) - 1)
(1:incRes_FF) - 1)
(1:incRes_FF) - 1)
(l:incRes_FF) - 1)

E + incRes_EE;

icRes_EE, meRes_EE,
icRes_EE, msRes_EE,
icRes_FE, mcRes_FE,
icRes_FF, muRes_FF,
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= isTmp EE(:).xeEIMtx_EE(:);
= isTmp_ EE(:).xsEIMtx_EE(:);
= irTmp FE(:);

= icTmp FE(:);

= isTmp FE(:).xcEIMtx_FE(:);
= irTmp FF(:);

= icTmp FF(:);

= isTmp_ FF(:).*uEIMtx_FF(:);
edNumGlo, edNumGlo) ;
edNumGlo, edNumGlo) ;
faNumGlo, edNumGlo) ;
faNumGlo, faNumGlo) ;

The element matrices are computed by the function Fem_CmpE1Mtx.m. It is
probably instructive for the reader to compare this implementation in detail with
the basis functions and quadrature rule given in Sect. B.2.1. Also, the reader is
encouraged to compare the implementation with the discussion in Sect. 6.6.1. It
should be rather straightforward to directly associated the different statements in
the MATLAB function with the corresponding mathematical formulas.

o° o o

o°

Compute element matrices for the tetrahedron by means of
numerical integration on the reference element

function [eElMtx EE, sElMtx EE, cElMtx FE, uElMtx FF] =
Fem CmpElMtx (xyz, ma2er, ma2si)
Argument :
xyz = the coordinates of the nodes of the element

Returns:
eElMtx_EE =
sEIMtx EE =
CcElMtx_FE =
uElMtx FF =

o° o° o o° o o o° o° o

o

ma2er = material
ma2si = material

mass
mass
curl
mass

% Quadrature rule

to permittivity
to conductivity

matrix with permittivity coefficient
matrix with conductivity coefficient

matrix

matrix with unity coefficient

g2u = [[5.854101966249685e-01,
1.381966011250105e-01, ...
1.381966011250105e-01];
[1.381966011250105e-01,
5.854101966249685e-01, ...
1.381966011250105e-01];
[1.381966011250105e-01,
1.381966011250105e-01, ...
5.854101966249685e-01] ;
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[1.381966011250105e-01,
1.381966011250105e-01,
1.381966011250105e-01]11";

g2w = [4.166666666666666e-02;
4.166666666666666e-02;
4.166666666666666e-02;
4.166666666666666e-02]";

% H(grad) basis functions

up{1} = 1 - q2u(1,:) - q2u(2,:) - q2u(3,:
up{2} = q2u(1,:);

up{3} = q2u(2,:);

up{4} = q2u(3,:);

% Gradient of H(grad) basis functions

ug{1} = [-1 -1 -1]1";

ug{2} = [+1 0 0]';

ug{3} = [0 +1 0]';

ug{4} = [0 0 +11";

% H(div) basis functions

uim{1} = 2% ( cross(ug{2},ug{1})*u

) +up {3}
+ cross(ug{1},ug{3})»up{2}
+ cross (ug{3},ug{2}) »up{1}
uim{2} = 2« ( cross(ug{2},ug{4})~up{1}
+ cross(ug{4},ug{1})»up{2}
+ cross(ug{1},ug{2}) *up{4}
uim{3} = 2% ( cross(ug{3},ug{4})*up{2}
+ cross(ug{4},ug{2}) *up{3}
+ cross (ug{2},ug{3}) »up{4}
uim{4} = 2« ( cross(ug{1},ug{4})~up{3}
+ cross(ug{4},ug{3})»up{1}
+ cross(ug{3},ug{1}) *up{4}

% H(curl) basis function

uin{1} = ug{2}»up{1} - ug{1}sup{2};
uin{2} = ug{3}sup{2} - ug{2}+up{3};
uin{3} = ug{1}»up{3} - ug{3}»up{1};
uin{4} = ug{4}sup{1} - ug{1}+up{4};
uin{s} = ug{4}+up{2} - ug{2}up{4};
uin{6} = ug{4}sup{3} - ug{3}+up{4};

% Curl of H(curl) basis functions

ouTmp = ones(size(q2w)) ;

ucn{1l} = 2«cross(ug{1l},ug{2})«ouTmp;
{2} = 2xcross(ug{2},ug{3})*ouTmp;
{3} = 2xcross(ug{3},ug{1}) *ouTmp;

ucn{4} = 2xcross(ug{1l},ug{4}) *ouTmp;
{5} = 2xcross(ug{2},ug{4}) xouTmp;
{6} = 2xcross(ug{3},ug{4})+ouTmp;

% Physical coordinates
2x = zeros (3,length(g2w)) ;
for iIdx = 1:4

Q
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a2x = g2x + xyz(:,1Idx)~up{ildx};
end

% Jacobian
jac = zeros(3);
for iIdx = 1:4

jac = jac ...

+ [xyz(1,iIdx)xug{iIdx},
xyz(2,1iIdx) +ug{iIdx},
xyz (3,1iIdx) +ug{ildx}];

end
% Mappings
det _jac = det(jac);

map_ccs = inv(jac); % mapping for curl-conforming space
map _dcs = jac’/det jac; % mapping for div-conforming space
for iIdx = 1:6

gin{iIldx} = map ccsxuin{iIdx};

gen{iIdx} = map dcsxucn{iIdx};

end
for iIdx = 1:4

gim{iIdx} = map dcsxuim{iIdx};
end
% Evaluation of element matrix: epsilon Ni Nj
for iIdx = 1:6

for jIdx = 1:6

maTmp = ma2er (g2x(1,:),gq2x(2,:),92x(3,:));
ipTmp = maTmp.s+sum(gin{ildx}.+gin{jIdx});
eE1Mtx EE (iIdx,jIdx) = ipTmp * g2w’ = det jac;

end
end
% Evaluation of element matrix: sigma Ni Nj
for iIdx = 1:6

for jIdx = 1:6

maTmp = ma2si(g2x(1,:),qg2x(2,:),92x(3,:));
ipTmp = maTmp.+sum(gin{iIdx}.+gin{jIdx});
sE1Mtx EE(iIdx,jIdx) = ipTmp * g2w’ x det jac;

end
end
% Evaluation of element matrix: Mi curl Nj
for iIdx = 1:4
for jIdx = 1:6
maTmp = ones (size(qg2w)) ;
ipTmp = maTmp.+sum(gim{iIdx}.+gcn{jIdx}) ;
cEIMtx FE(iIdx,jIdx) = ipTmp * g2w’ = det jac;
end
end
% Evaluation of element matrix: Mi Mj
for iIdx = 1:4
for jIdx = 1:4



6.6 Practical Implementations of the FEM 159

maTmp = ones (size(qg2w)) ;
ipTmp = maTmp.s+sum(gim{iIdx}.+gim{jIdx}) ;
uElMtx FF(iIdx,jIdx) = ipTmp * g2w’ =* det jac;
end
end

These are the most important functions in the MATLAB implementation of the
eigenvalue solver. However, the reader may find it useful and interesting to also read
the rest of the MATLAB functions that are available for download as described in
the Preface of this book.

6.6.4.5 Numerical Results

First, we test the eigenvalue solver on a cavity with the material parameters € = ¢,
= po and o = 0. This problem can be solved analytically [5] and the solutions
are categorized into so-called transverse electric (TE) and transverse magnetic
(TM) modes. Each mode is indexed by three integers m, n and p (i.e. TE,,,, and
TM,,.,) that describe the variation of the mode along the azimuthal, radial and axial
coordinate in the cylindrical coordinate system where the z-axis coincides the the
cylinder axis. A convergence study shows that the error in the resonance frequencies
is proportional to /2.

Fig. 6.30 shows the electric field (to the left) and the magnetic flux density
(to the right) for the TE;;;-mode, which has the lowest non-zero eigenfrequency
in the spectrum. The electric field and the magnetic flux density are one quarter
of a period out-of-phase with respect to each other and, here, the vector fields
are shown when their amplitudes reach the maximum. The magnetic flux density
circulates around the electric field in accordance with Maxwell’s equations. The
TE;;1-mode is a degenerated mode and the eigenvalue solver correctly computes
also the other TE;;-mode, which is rotated 90° around the cylinder axis. Similarly,
Fig. 6.31 and 6.32 show the modes TMy;o and TMy;;, which are axisymmetric and
non-degenerated. Finally, Fig. 6.33 shows one of the degenerated TE;;, modes and
Fig. 6.34 shows the axisymmetric and non-degenerated mode TMj;».

Finally, Fig. 6.35 shows the complex eigenfrequencies for a cavity with the
inhomogeneous permittivity (6.84) and conductivity (6.85), where 0 < oy < 0.1.
For the lossless case oy = 0, the eigenfrequencies are located on the real axis. As
the losses are introduced by increasing oy, the eigenfrequencies move into the upper
half-plane, i.e. the eigenfrequencies get a positive imaginary part. This corresponds
to damping with respect to time and the damping increases as the losses increase. It
is interesting to notice that the eigenmodes are damped differently and, in addition,
the resonance frequencies are slightly perturbed by the increased losses.
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Fig. 6.30 The TE;;; mode of a circular cylinder cavity of radius 0.125 m and height 0.4 m: left
— electric field; and right — magnetic flux density. The material parameters inside the cavity are
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Fig. 6.31 The TE(;() mode of a circular cylinder cavity of radius 0.125 m and height 0.4 m: left
— electric field; and right — magnetic flux density. The material parameters inside the cavity are
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Fig. 6.32 The TEy;; mode of a circular cylinder cavity of radius 0.125 m and height 0.4 m: left
— electric field; and right — magnetic flux density. The material parameters inside the cavity are
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Fig. 6.33 The TE;;; mode of a circular cylinder cavity of radius 0.125 m and height 0.4 m: left
— electric field; and right — magnetic flux density. The material parameters inside the cavity are
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Fig. 6.34 The TMy,;, mode of a circular cylinder cavity of radius 0.125 m and height 0.4 m: left
— electric field; and right — magnetic flux density. The material parameters inside the cavity are
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Fig. 6.35 The 20 lowest eigenfrequencies shown in the complex plane for the conductivity given
by (6.85) with 0 < oy < 0.1. Here, the permittivity is given by (6.84) and the permeability is
= Mo

Review Questions

6.6-1 Describe what a reference element is.

6.6-2 Why is the mapping introduced? How is it formulated?

6.6-3 Define the Jacobian. Why is it useful?

6.6-4 Derive the relation between the reference element and the physical element
for the nodal basis functions and their gradient.

6.6-5 Derive the relation between the reference element and the physical element
for the edge element basis functions and their curl.

6.6-6 Describe what a quadrature rule is and how it is used.
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6.7 Time-Dependent Problems

Now we consider a time evolution problem for the vector wave equation. Let us
choose a simple example with a lossless region (i.e., 0 = 0) and metal boundary
conditions. There are no driving currents, and instead we excite the problem with a
nonzero initial field. The problem can be stated as

1 *E .
Vx| —-VXE)|+e—=0 in S, (6.86)
I or?
anxE=0 on L, (6.87)
E(r,t =0)=E(r) inS, (6.88)
0E (r,t
JEw.n) ins. (6.89)
Jt =0

Besides the boundary condition (6.87) we need two initial conditions (6.88) and
(6.89), because the equation is of second order in time. The electric field is expanded
in edge elements, and the coefficients E; are now time dependent:

Ne
E(r.t)=)Y E;()N;(r). (6.90)
j=1

Equation (6.86) is tested by taking the scalar product with the weighting function
W, = N,(r) and integrated (the V x ;1 ~! V x-term by parts) over the computational
domain.

So far, we have discretized in space but not in time. The result is a system of
coupled ordinary differential equations (ODE) for the expansion coefficients

Pa(t)
az 0.

Sz(t) + cO_ZM

where S and M are given by (6.58)—(6.59). To solve this system of ODEs, we can use
either finite differences or finite elements in time. A first attempt for time-stepping
might be the centered finite difference scheme

M (2"t = 22" + 2"7') = — (cpAr)* 7", (6.91)
where we need to specify z' and z? as initial conditions. This scheme is subject to
the time-step limitation discussed in Sect. 4.4.1, At < 2/wma. Yet it is implicit,

because the mass matrix M must be inverted at every time step.

2T =27" — 2" — (coAt)’M ISz
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Thus, straightforward time-stepping for FEM has two drawbacks: it is slow,
because of the inversion, and the time-step is limited. There are two ways to improve
on this. One can be used if the mass matrix is sufficiently close to diagonal that
it can be approximated by a diagonal matrix. This is known as “mass lumping”
in mechanics and leads to explicit time-stepping. Mass lumping works well for
the edge elements on quadrilaterals. In fact, with some additional lumping of the
stiffness matrix, time-stepped edge elements on rectangles are equivalent to the
FDTD scheme. This solution gives a low number of operations per time-step, but
still the time-step is limited by the CFL condition.

Mass lumping does not work for edge elements on triangles or tetrahedra, and for
these elements, one must invert a system of equations on each time step. A much
better method in this case is to apply a scheme that is even more implicit, so that it
is stable for arbitrarily large time steps. This is achieved by averaging the stiffness
term in time:

M (2"t —22" +2'7") = — (coAt)’ S [02" T + (1 —20)z" + 02" '], (6.92)

This scheme is stable for any time-step if & > 1/4. However, the scheme becomes
inaccurate if the time-step is long compared with the characteristic time on which
the solution evolves.

The time-stepping scheme in (6.92) was introduced in 1959 by Newmark [52],
and it is often referred to as the Newmark scheme. One interesting feature of the
Newmark scheme is that it reduces to the finite difference scheme (6.91) when the
implicitness parameter 6 is zero. In fact, the Newmark scheme can be viewed as a
strict FEM scheme based on Galerkin’s method and a piecewise linear expansion
of the electric field in time [64]. The implicitness parameter enters through a
linear combination of exact and trapezoidal integration applied to the weak form
of the problem. Equation (6.92) is recovered if we use the weights 1 — 66 and
66 for the exact and trapezoidal integration, respectively. This makes it possible
to combine [63] finite difference schemes (with explicit time-stepping) with FEM
(with implicit time-stepping), and moreover, it is feasible to construct relatively
simple proofs of stability based on von Neumann analysis. Since the lowest term
in the error expansion is of second order in At for the FEM with Galerkin’s method,
this also applies to both (6.91) and (6.92).

Review Questions

6.7-1 How and under what conditions can the implicit Newmark scheme give an
explicit time-stepping schemes? What’s the name of the explicit time-stepping
scheme?

6.7-2 Are there any advantages of the implicit Newmark scheme compared to
explicit time-stepping schemes?
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6.8 Magnetostatics and Eddy Current Problems

Two-dimensional scalar calculations can be applied to problems involving magnetic
materials and eddy currents. Eddy current calculations are generally made by apply-
ing the low-frequency approximation, which consists in ignoring the displacement
current and setting €9 = 0. Roughly speaking, the low-frequency approximation
works when the geometrical dimensions of the computational domain are much
smaller than a wavelength A = ¢/ f.

The low-frequency equations are usually solved by introducing the magnetic
vector potential 4, such that B = V x A. The advantage of this is that the condition
of solenoidal magnetic field V - B = 0 is automatically satisfied. Note, however,
that although the magnetic field is uniquely determined, the vector potential is not;
any gradient of a scalar potential can be added to A without changing the magnetic
field B. The electric field is given by E = —dA /dt — V¢. With this representation
for B and E, Faraday’s law is automatically satisfied. Ampere’s law gives

1 0A
Vx—VxA—i—U(——}—Vd)):JS, (6.93)
" ot

where J* is an imposed source current, usually representing currents in coils, and
o0E = —g(0A /3t + V¢) is the conduction current. As a consequence of the low-
frequency approximation €y = 0, both sides of Poisson’s equation, V - (eV¢) =
—p, vanish, and therefore, the electrostatic potential is undetermined in the low-
frequency approximation.

6.8.1 2D Formulation

For 2D problems with currents flowing in the z-direction and variations only in the
x- and y-directions, the potentials can be chosen in a simple way:

A=A,(x,y)5 ¢=0. (6.94)

Then the magnetic field is B = V A, x Z and the current density is
1 . |
Vx|—VA,xz)=-2zV.-—VA,. (6.95)
M H

If the time-dependence is harmonic & exp(jwt), the z-component of Ampere’s law
gives

1
—V-—VA. + jwod, = J!, (6.96)
I
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Fig. 6.36 Magnetic flux 0.015
density lines in the static case
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the geometry is shown by 0.01}
thick lines

0.005}

y [m]

-0.005}

-0.01F

-0.015 : : ' ' '
-0.015 -0.01 -0.005 0  0.005 0.01 0.015

x [m]

which is a complex, scalar Helmholtz equation. The boundary condition of the
continuous normal component for B is fulfilled if A, is continuous. The boundary
condition of continuous A x H = i x u~'(VA, x %) = —2u"'0A./dn requires
continuity of u~19A,/0n.

In microwave terminology, the 2D formulation in (6.94) and (6.96) corresponds
to TM polarization. This 2D problem is readily solved using nodal elements for the
vector potential A, and we have discussed the techniques for this in Sect. 6.3.

6.8.2 A 2D Application Problem

As a practical application, we consider the 2D electromagnet shown in Fig. 6.36.
The magnetic circuit consists of an iron core (1, = 4000) shaped like the letter C
and two rectangular copper conductors. The left and right copper conductors carry
source currents +J and —J, respectively.

First we solve the static problem —V - (u; 'V A;) = poJ . We have discussed all
the techniques necessary for this in Sect. 6.3, and they have been implemented in a
user-friendly way in the MATLAB toolbox pdetool. The computed magnetic flux
lines (equipotential lines for A;) are shown in Fig. 6.36. Note the almost uniform
distribution of magnetic flux lines in the core. There is also some leakage of flux,
especially in the vicinity of the air gap where significant fringing occurs.

For finite frequencies, we solve (6.96). The resulting magnetic flux lines for the
frequencies f = 1.0 Hz and f = 10 Hz are shown in Fig. 6.37. We have used the
conductivities o = 107 S/m for the iron core and o, = 5.8-107 S/m for the copper
conductors. The electrical conductivity reduces the penetration of the magnetic field
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Fig. 6.37 Magnetic flux density lines at / = 1.0 Hz and f = 10 Hz are shown to the left and
the right, respectively

into the iron (and to a lesser extent, into the copper) as the frequency increases. This
is called the skin effect. The skin depth, over which the magnetic field decays by
1/e, can be found from (6.96) as 6 = 1//wfuc. At f = 1.0 Hz the skin depths
are 2.5 mm and 66 mm for iron and copper, respectively. For f = 10 Hz the skin
depths are 0.8 mm (rather thin!) in iron and 21 mm in copper.

Time variation, i.e., nonzero frequency, introduces eddy currents in the con-
ducting regions. One can see in Fig. 6.37 that the eddy currents in the iron core
squeeze the magnetic flux to the inner surface of the iron core. This is where the
circumference traversed by the field lines is the smallest. Note that despite the
localization of the flux to one side of the iron, the field lines spread out evenly
in the air gap. Here, the flux density (density of contours) is almost uniform. The
reason for this is that the air gap gives the dominant contribution to the magnetic
reluctance.

Contour lines for the total power dissipation density P; = o|J! [>at f = 1.0
Hz and f = 10 Hz are shown in Fig. 6.38. The total current J! is the sum of the
source current J7 and the eddy current J?. The source current is prescribed as a
constant value in the copper region. In practice, the copper region would most likely
consist of a single thin wire wound many turns around the core. This can be modeled
as a uniform current distribution. The eddy currents are computed from the vector
potential, Jf = 0E; = — jwoA;.

At power frequencies, eddy currents reduce the regions where the magnetic field
penetrates the iron to very thin layers. To avoid this one can use laminations that
prevent eddy currents from flowing in certain directions. For the 2D electromagnet
shown here, laminations in the xy-plane will inhibit the eddy currents completely.
We reiterate that the 2D eddy current problem is well handled by nodal elements.
This technique is extensively described in the textbook of Silvester and Ferrari [75].
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Fig. 6.38 Contour lines for the power dissipation density at f = 1.0 Hz (left) and f = 10.0 Hz
(right)

6.8.3 3D Eddy Current Calculations

Here, we will give a brief introduction to eddy current calculations in three
dimensions. This is a complex subject, so the discussion will be kept general, and
leave out many details. Several different formulations are used for solving the low-
frequency equation (6.93). Before proceeding to discuss two of these formulations,
we note that the divergence of Ampere’s law with €y = 0 shows that the current
density has zero divergence. This must hold, both for the coil current J* and the
conduction currents —o (jw A + V¢). Therefore, the low-frequency problem can be
stated as

1 A
Vx—VxA—i—a(——}—Vd)):JS,

n ot
04
. —_— V =
V.o ( o + ¢>) 0,
V.-J¥P=0, (6.97)

We outline how this set of equations can be solved using nodal and edge
elements.

6.8.3.1 Solution by Nodal Elements for the Components of A

The method based on nodal elements for the components of the vector potential is
still used in commercial codes, despite some known difficulties. The first difficulty
comes from the fact that the null-space solutions for the curl-curl operator cannot
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be represented by divergence-conforming elements. This problem can be cured by
removing the null-space (which does not contribute to the magnetic field anyway)
by adding a so-called penalty term —Vu~!'V - A to Ampere’s law, so that the set of
equations becomes

invXA—vlv.A+o(a—A+v¢)=JS, (6.98)
% 2 ot
V.o (aa—‘? + V¢>) =0. (6.99)

This procedure makes the differential operator in (6.98) similar to a Laplacian and
removes highly oscillatory, spurious solutions. The system (6.98)—(6.99) can be
solved using Galerkin’s method, where (6.98) is tested with the basis functions for A
(vectorial nodal elements) and (6.99) is tested with the basis functions for ¢ (scalar
nodal elements).

Taking the divergence of (6.98) and using (6.99), we get

1
VZEV-A = 0. (6.100)

Thus, u~'V - A satisfies the Laplace equation, and if V - A vanishes on the
boundaries, this implies V- A = 0 everywhere. Therefore, the penalty term in (6.98)
is numerically zero, so that it does not change Ampere’s law. (Actually, it is nonzero
for the spurious solutions, which are removed by adding the penalty term.) One of
the advantages of the penalty term is that it changes the conditioning of the matrix
by removing small eigenvalues, and therefore makes the system easier to solve by
an iterative solver. Note that for this formulation, the condition of zero divergence
for the conduction currents (6.99) is essential and cannot be left out. This condition
is not a gauge condition, but it indirectly enforces V - A = 0, which is called the
Coulomb gauge.

It turns out that this method works well, except at edges and corners where the
magnetic permeability i changes. At such edges, the magnetic field is unbounded,
and the penalty formulation is not accurate. Recent work suggests that this problem
can be overcome by removing the penalty term locally around such singularities.

6.8.3.2 Solution by Edge Elements for A

Edge elements work better for low-frequency problems, but the procedures for an
efficient implementation are not simple [46]. As a first attempt, one can set the
scalar potential to zero and expand the solution of (6.97) in edge elements. If the
frequency is zero, one must note that the curl-curl operator has a large null-space.
For the lowest-order edge elements, this null-space consists of A = VU, where
U is a piecewise linear scalar variable. Therefore, (6.97) can be solved only if J*
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has no projection on this null-space. One can ensure this, either by representing J*
as the curl of a current potential, or by subtracting the gradient of a scalar U from
J* and imposing the condition (VU , J* — VU) = 0 for all piecewise linear test
functions U .. This procedure works excellently for static problems. It does not suffer
from the accuracy problems that occur for the nodal representation at edges where
M has jumps.

If one straightforwardly extends this procedure to finite frequency, the matrix
becomes ill-conditioned, and iterative solvers converge very slowly. The cure for
this is a somewhat surprising procedure, which consists in introducing a scalar
potential ¢ and not prescribing a gauge condition. Instead of a gauge condition,
one requires the divergence of the conduction current to be zero, so that the system
of equations is

1
Vx—VxA+o(jwd+Ve)=J°, (6.101)

I
V.o (jwA + V) = 0. (6.102)

Note that this system of equations is degenerate, because the second equation is
the divergence of the first (assuming V - J* = 0). Moreover, ¢ occurs only in
the combination jwA + V¢ = —E, so that any change of A and ¢ that leaves
this combination unchanged is permitted. This is precisely a gauge transformation,
which does not change the physical fields. Thus, the system (6.101)—(6.102) permits
any gauge, and the method is referred to as the ungauged formulation. Of course,
the indeterminacy of the solutions implied by gauge transformations means that
the matrix is singular. However, iterative methods work also for singular matrices,
provided that the right-hand side is consistent, that is, has no projection on the null-
space.

The ungauged formulation greatly reduces the number of iterations for Krylov
solvers (to which an introduction is given in Appendices C and D). The ungauged
formulation can be viewed as a form of preconditioner for the curl-curl equation,
and it improves the complex eigenvalue spectrum of the operator. The advantage of
the edge elements over the nodal element formulation with a penalty term is that the
edge elements give good approximations also at corners of magnetic materials.

Eddy current calculations are more frequently carried out on hexahedral meshes
than on tetrahedral ones. One reason for this is that eddy current problems often
involve currents in thin layers, within the skin depth § = (2/wuo)'/? of conductor
surfaces. The skin depth is typically in the millimeter to centimeter range, which
is small compared to the global dimensions of a motor, generator, or transformer.
Therefore, high resolution is required in the direction normal to the surface of a
conductor, whereas the resolution requirements in the perpendicular direction can
be much less demanding. This anisotropy is easier to achieve on a hexahedral mesh
than a tetrahedral one. Another anisotropy can be introduced by laminations, and
these are much easier to treat on a hexahedral mesh, which can be aligned with the
laminations.
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Review Questions

6.8-1 What is the low-frequency approximation and when is it applicable?

6.8-2 Consider a 2D low-frequency problem in the xy-plane. Use Maxwell’s
equations to derive a partial differential equation for the z-component of the
vector potential. How can boundary conditions for the fields be formulated in
terms of the vector potential?

6.8-3 Is the vector potential uniquely defined? If not, what conditions do you need
to uniquely determine the vector potential?

6.8-4 Why is the electrostatic potential undetermined in the low-frequency approx-
imation?

6.8-5 What is the difference between the magnetostatic problem and the low-
frequency eddy current problem? Give examples of how the characteristic
features of the solution change. Does this influence the choice of numerical
algorithms and discretizations?

6.8-6 What is a penalty term and why is it used?

6.8-7 Mention some drawbacks associated with representing the components of the
vector potential in a 3D eddy current problem by nodal elements.

6.8-8 Explain what a gauge transformation is.

6.8-9 Under what conditions is it possible to solve a system of linear equations
where the system matrix is singular?

6.9 Variational Methods

The FEM can also be introduced as a variational method. Variational methods are
intimately related with essential conservation laws of the system, and can give
valuable insights into the application problem.

As an illustration, we study an example of electrostatics in a source free region.
Here D = €E and E = —V¢, where ¢ is the electric potential. The natural choice
of a variational quantity is the electrostatic field energy:

Wg] = %/VE-DdV = %/1/6|V¢|2dV. (6.103)

The potential for which (6.103) gives the energy does not have to be the true
solution, but it must fulfill the boundary conditions. The remarkable thing is that
the true potential distribution, satisfying the boundary conditions and Poisson’s
equation —V - (eV¢) = 0, is exactly the function that minimizes (6.103); i.e., it
gives the smallest electrostatic energy of all allowed ¢.

To show this, let ¢ be the potential that minimizes (6.103). Then, change the
potential slightly by adding a perturbation §¢, and compute the electrostatic energy
for the perturbed potential ¢ = ¢y + ¢b:
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Wpo + 8¢] = Wpo] + /V eV - VodV + O ((8¢)7). (6.104)

When 8¢ is small, the higher-order terms O((§¢)?) can be dropped. When the
electrostatic energy W has a minimum, the first variation W = W {po+5p]—W [¢ho]
must be zero. After an integration by parts, (6.104) gives the following condition for
the energy to be stationary:

SW = / §¢[=V - (Vo) dV = 0. (6.105)
|4

If this is to hold for all perturbations 6¢, the potential ¢ must satisty —V-(e V) =
0 everywhere in V; i.e., the differential equation of electrostatics in a source-free
region is satisfied.

6.9.1 Relation Between Linear Differential Equations and
Quadratic Forms

In more general terms, the solution f of a self-adjoint linear differential equation
L[f] = s in a domain §2 corresponds to a stationary point for the quadratic form

171 = 3 (AL D~ (), (6.106)

We use the scalar product (£, g) = |, o Jg& dS2, where f and g are real functions.
An operator L is self-adjoint if (g, L[f]) = (f, L[g]) for all f and g. The factor
% in the first term of (6.106) is needed in order to produce the correct differential
equation, because the first term in / is quadratic, while the second is linear.

Now let f be a small variation of f. We will consider variations only up to linear
order in §f. We let 81 denote the first-order variation of /[ f] when f — f + §f

and say that /[ f] is stationary if
s8I =0, Véf. (6.107)

Since f represents a minimum, the rate of change of / at f must be zero. Let us
expand /[ f + §f] in powers of 6/

If +8f]

N = N =

(f +8£. LIS +6f1) = (f +df.s)

(fLLLf]) = (fs)
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1

FS UL LU + 5 U LIS = (65

45 {6, LIS
= I[f]+ 81 + O((81)). (6.108)

The first variation is the part that is linear in § f, that is,

51 = S LU + 5 U LISA) — (6£.5).

In order for /[ f] to be stationary, the first variation must vanish:

81 = %((515 LIf]) + (£ LIBfT) — (8f.5) = 0. Vif. (6.109)

Now L is self-adjoint, i.e., (f,L[5f]) = (L[f],8f), so the condition for /
stationary becomes (§f, L[f]) — (8f,s) = (8f, L[f] —s) = 0. Thus, for every
admissible variation § f we have

(Sf,L[f]—s)=/Q8f(L[f]—s)d.Q=O. (6.110)

Since §f is an arbitrary function, this requires that the residual r = L[ f] —s vanish
everywhere in £2; that is, that the differential equation L[ f] = s be satisfied.

The discussion above shows that we can solve the differential equation L[ f] = s
by finding the function f that makes /[ f] stationary. Often, I represents the energy,
and the solution of the differential equation is the one that minimizes the energy. The
electrostatics problem we just discussed is an example of this.

6.9.1.1 A 1D Example

To illustrate some features of the variational method, we study a simple example in
one dimension. Let L[ f] = — f” and s = x? with the boundary conditions f(0) =
f(1) = 0. We make a guess for the solution f containing only two parameters
a and b. The function f(x) = ax(1 — x)*> + bx*(1 — x) satisfies the boundary
conditions for arbitrary a and b. We seek the combination of @ and b such that the
differential equation is satisfied as well as possible. If it is not possible to find an
exact solution, we want the “best” combination of @ and b.

This can be done by computing the quadratic form / and finding its stationary
point. Since the operator L[f] is self-adjoint, it corresponds to a quadratic form

givenby I[f] = 3{/ L[f]) = (f.s), thatis,
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Fig. 6.39 Level contours for the quadratic form /. The stationary point is shown by the dot labeled

A, and this combination of @ and b solves — f” = x2. B and C are not stationary points, and they
do not solve the differential equation

a b 1 (3a> 2b?
=555+ 3 (35 + 55 ) ©Hh

I is a quadratic function in the parameters ¢ and b, and Fig. 6.39 shows level
contours for the quadratic form I with respect to these parameters.

There is a global minimum for 7 indicated by the dot labeled A in Fig. 6.39. To
find the values of @ and b for this minimum we set the gradient of / equal to zero:

or_ 1 de_ 6.112)

da 140 35 '

al 1 2b

=422 =0 6.113

b~ 30 15 (©113)
which gives the solution ¢ = 1/12 and b = 1/4. The corresponding solution

f(x) = x(1 — x*)/12 indeed solves — /" = x2, and it is shown in Fig. 6.40 by the
solid curve labeled A. If the basis functions had been chosen in a less clever way, so
that the true solution could not be constructed, the variational approach would have
given the “best” approximation of f(x).

Let us see what happens if we change the values of a and b away from the
minimum A in Fig. 6.39, e.g., to the points B and C. The new combinations of a and
b and their values of / are shown in Table 6.7 together with the correct solution.
The functions f corresponding to B and C are also shown in Fig. 6.40.
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Fig. 6.40 The function solving — f”/ = x? is shown by the solid curve labeled A. The two other
functions labeled B and C do not satisfy the differential equation

Table 6.7 Three different Label

b I
combinations of the a [f]
parameters. The true solution A /12 1/4 —446
is labeled A. B 1/7 1/5 —4.15
C —1/7 3/8 —1.23

6.9.2 Rayleigh—Ritz Method

The variational formulation gives a procedure, the Rayleigh—Ritz method, for finding
approximate solutions of self-adjoint linear equations. It consists of the following
steps:

e Approximate f by an expansion in a finite set of basis (or trial) functions ¢;, i =
1,2,...,N:

N
o)=Y figi(r). (6.114)

i=1
e Evaluate the quadratic variational form [/ as a function of the expansion
coefficients

I(fi, fasooos SN)

1171 = U4 LD~ ()

SY Y A Leh - X flens)
1 J i
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:%ZZLijfifj_Zsifis (6.115)
i i

where L;; = (¢;, L[p;]) ands; = (¢;, s). Note that the “matrix” L is symmetric,
L;; = Lj;, because the operator L is self-adjoint.

e Determine the expansion coefficients f; by demanding that / be stationary with
respect to all the coefficients:

a1 1
0=37= 5ELk,-f,» +§ZL,-kf,-—sk =Xi:Lkifi—sk. (6.116)

J

Equation (6.116) is a linear symmetric N x N system Lf = s for the expansion
coefficients.

6.9.3 Galerkin’s Method

Galerkin’s method is intimately connected to the variational formulation. In fact,
the Rayleigh—Ritz formulation (6.116) leads to Galerkin’s method for self-adjoint
systems. Using the definitions of the matrix elements Ly; and sx, we have from
(6.116)

1

ZLkifi — sk = Y _{pr, LUGoil) — (ox.8)
= m,L[Z fioil =) = (gr. LIf] —s)

— / o (LLf]—5) dS2 = 0. 6.117)
2

This is Galerkin’s method for solving L[ f] = s, since the weighting functions are
equal to the basis functions. It is also the same as the variational condition (6.110),
but the previously arbitrary weighting function §f for the residual r = L[ f] — s is
now restricted to lie in the space of the basis functions. This shows that Galerkin’s
method can be derived from variational calculus.

We stress some important facts:

» For self-adjoint differential equations, the Rayleigh—Ritz and Galerkin methods
are equivalent.

e The Galerkin method can be used also for non-self-adjoint problems where no
variational principle can be found.

e In the more general Petrov—Galerkin method, the weighting functions w; are
different from the basis functions ;.



6.9 Variational Methods 177
6.9.4 A Variational Method for Maxwell’s Equations

Maxwell’s equations can be put in variational form in a few different ways. One
way is to apply the general prescription (6.106) to the lossless self-adjoint curl-curl
equation

Vxu 'VxE+elE/d>=—-0J/0t, (6.118)

integrate both in space and time, and ignore the boundary terms. This gives the
quadratic form

(s

For a small variation of the electric field E — E + §E, the first-order change of
L is

aE
ot

+E- aa_{ dvdt. (6.119)

SL = //( VxE. VxSE—eaa—f-ag—f B_J 8E)dth,

and an integration by parts (ignoring boundary terms) gives

2
SLz//(VX—VXE-l-Gaa—Ij-F%—J)‘SE dvdt.

Thus, if E is a solution of Maxwell’s equations, then §L = 0 for any § E, which
means that L[E] is stationary. Conversely, to make L stationary, i.e., L = 0 for an
arbitrary § E, the curl-curl equation (6.118) must be satisfied.

A slight reformulation of the variational principle that is more directly related to
physical quantities uses the vector and scalar potentials as independent variables.
The fields are represented as

B=VxA, E=-V¢-— 88—1;1 (6.120)

The quadratic form is the magnetic minus the electric energy, plus terms involving
the sources, integrated in space and time:

2
// (——A J—%—f-pd)) dVvdt. (6.121)

We get Maxwell’s equations by setting the first variation of L with respect to ¢ and
A to zero. For ¢ — ¢ + 8¢, integration by parts gives the first variation
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§L = // (eV8¢ - E + pS¢p) dVdt
=/ (p—V-€E)8¢ dVdi = 0. (6.122)

Therefore, L = 0 for all ¢ if and only if Poisson’s equation V-e E = p is satisfied.
For A — A + §A the same procedure gives

5L://(1VX5A.B+8(;—IA-6E—8A-J) dvdt
7

=/f (VXE—ieE—J)-é’A dvdt = 0. (6.123)
u ot

Therefore, L = 0 for all §4 if and only if Ampere’s law V x (B/u) =
d(eE)/dt + J holds everywhere. Faraday’s law and V - B = 0 are automatically
satisfied because of the potential representation (6.120).

Review Questions

6.9-1 Motivate why variational methods are useful.

6.9-2 What are a quadratic form, functional, variation, and stationary point?

6.9-3 List and describe the steps involved in the Rayleigh—Ritz method.

6.9-4 What conditions must be fulfilled for the Rayleigh—Ritz formulation and
Galerkin’s method to be equivalent? Given such conditions, show that they are
equivalent.

6.9-5 For Maxwell’s equations, write down the quadratic form in terms of the
electric field and show that a solution that makes the quadratic form stationary
satisfies Maxwell’s equations.

6.9-6 Repeat the previous problem when the quadratic form is expressed in terms
of the potentials. Provide a physical interpretation of the constituents of the
quadratic form.

Summary

e The FEM is in short:

— To solve L[ f] = s, divide the solution region into elements and expand the
sought solution f in local basis functions f(r ) = Zf\;l figi(r).

— Make the residual r = L[f] — s orthogonal to N weighting functions w;,
i =1,2,..., N (the method of weighted residuals).
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Galerkin’s method w; = ¢; is a popular choice for the weighting functions. Other
choices, i.e., w; # ¢;, are referred to as Petrov—Galerkin, and some possibilities
are collocation w; = §(r — r;), least squares w; = L[¢;], and least square
stabilized Galerkin w; = ¢; + cL[¢;], where the parameter ¢ is optimized.

e In one dimension with uniform meshes and f in piecewise linear elements,
Galerkin’s method gives

d>f Jivr1 =2fi + fim

x> h? ’
f o fir1+4fi + fiaa
6 bl

where lumping (which in this case is obtained by trapezoidal integration) gives
f — fi;ie., the finite difference approximation is recovered for the Helmholtz
equation in one dimension.

e For the Helmholtz scalar equation in 2D, we can use a continuous linear
approximation of the solution f on a mesh of triangles. The expansion f(r) &
>; fiwi(r) is then used to represent the solution, where ¢; is a piecewise linear
basis function with ¢@;(r;) = 1 and ¢;(r;) = 0 when i # j. The FEM
formulation typically involves matrix entries of the type

V2 > S =/V§0i Vo, dS,
s

1 — M,'j = /S(p,'gl)j ds.

By terminology borrowed from mechanics, S is referred to as the stiffness matrix
and M as the mass matrix.

» Adaptivity can often restore nominal convergence for singular problems.

e Mixed elements for a system of coupled first-order differential equations

oF oH
= — wuH, il
ox e ox

= —weFE,

are treated with E expanded in piecewise linear functions (connected with integer
mesh) and H expanded in piecewise constants (connected with half mesh). This
gives

Eiri—E: H, 1 —H _ . 2 1
% = opH; 1, — 2 = e |:§Ez + E(Ei—l + Ei+1):| ;

where the term weE can be lumped by the trapezoidal rule fxf’ o f(x)dx ~
(h/2)[f(x,) + f(xH_l)]; i.e., we have (4El + Ei—l + E,’+1)/6 — E,’.
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e Edge elements /V; have continuous tangential components, which makes the curl
of the solution square integrable. They are often referred to as curl-conforming
elements, and some distinguishing features are:

— the basis functions N; have unit tangential components along one edge and
zero along all the other edges,

— spurious solutions and spectral contamination are avoided,

— the null-space of the curl operator is correctly represented.

The formulation for the vector Helmholtz equation involves terms of the type
V x Vx — §;; :/(VXNZ‘)'(VXNj)dS,
s
1—>M,]:/N,deS
s

* Time-dependent problems use time-dependent coefficients for the spatial ex-
pansion of the field. The wave equation Sz(t) + ¢, 2M 9°z(¢) /31> = 0 can be
time-stepped with the finite difference scheme

M (2"t = 22" +2"7") = — (coAt)* SZ",

which requires a sufficiently small time-step At for stability. An even more im-
plicit scheme, derived by averaging the stiffness term in time, gives unconditional
stability (provided that the implicitness parameter 0 is greater than or equal to

1/4):
M (2"t = 22" +2'7") = — (coAt)* S [0z T + (1 — 20)z" + 02" '].

e The solution f of a self-adjoint linear differential equation L[f] = s is a
stationary point of the quadratic form

1071 = S LLFD — (£:9)

A self-adjoint operator L satisfies ( f, L[g]) = (g, L[f]) forall f and g.

e The Rayleigh-Ritz method solves L[f] = s by expanding f in global
basis functions f(r) =~ Zf\;l fi¢gi(r) and evaluating the quadratic form
I(f1, f2,--., fn). Coefficients are determined by d//df; = O for all i =
1,2,...,N. For self-adjoint problems, the equivalent Galerkin formulation is

to make the residual r = L[f] — s orthogonal to all the basis functions, i.e.,
JLLf]=9$)@idS2 = 0foralli.
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Problems

P.6-1 Derive the finite element approximation of the 1D Helmholtz equation
—(d?/dx* + k?) f = 0 for piecewise linear elements on a nonequidistant mesh
and show for the system matrix

Aij = S,’j —kzM,‘j

that the elements are

1 Xi — Xi—1
Siji-1=————, M;j 1= ——,
Xi — Xi—1 6
1 1 Xi41 — Xi—1
Sii = + , M= —,
Xi+1 —Xi  Xj —Xj— 3
1 Xit1 — X
Sijip1 =———, My = ——.
Xi+1 — X 6

Show that for a uniform mesh with cell size & this gives a discretization
that is similar to the finite difference approximation, except that the mass
term is weighted between adjacent nodes. Substitute a complex exponen-
tial f = exp(jkx) and show that the FEM approximation gives kg =
24sin’(kh/2)/[2 + 4cos®(kh/2)] ~ k*(1 4+ k*h%/12), so that the FEM
eigenvalue converges from above. Note that the error has the same magnitude,
but the opposite sign, as the FD approximation (3.18). Based on this, can you
find a three-point discretized operator that gives an error O (k*h*)?

P.6-2 Consider a scattering problem where both the geometry and the sources are
independent of the z-coordinate. Derive the weak formulation for the Helmholtz
equation

1 : ,
-V (—VE;C) — w’€E* =0,
n
where E° is the scattered electric field from a metal cylinder. Impose the
boundary condition E3° = —E" on the surface of the scatterer, where E!™ is the
incident wave. The finite element mesh discretizes the region around the metal
cylinder and extends some distance from the scatterer. At the exterior boundary
of the mesh we apply the absorbing boundary condition 72 - VEY = —jkE* to
mimic an open region problem. What criteria must be fulfilled for this boundary
condition to be accurate? To answer this question, it is useful to consider a plane
wave EZ° = Egexp(—jk - r) that is incident on such an absorbing boundary.

P.6-3 A rectangular finite element occupies the region defined by x, < x < x;, and
Ya < ¥ < y». This element has four nodes and, also, four nodal basis functions:

e Xb—X Yp—) e X—Xa Yb—Y
(,0 1 — ° 5 (,02 - * 5

Xp —=Xa Vb — Va Xp —=Xa Vb — Va
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x_xa.y_Ya @e:%—x'y—ya
Xp—Xa Yb—Ya YT Xp =X Vb —Ya

3

Is it feasible to apply the FEM to a mesh where such a rectangular finite element
is connected to a triangular finite element so that the two share one edge? Suggest
a situation in which it can be useful to discretize the solution domain with both
triangles and rectangles.

P.6-4 In addition to the organization of nodes and elements, it is often necessary to
include various materials and boundary conditions in the discrete representation
of a FEM problem. The data structures discussed in Sect. 6.3.2 can also be
extended to deal with postprocessing steps, e.g., integration along a contour. Dis-
cuss how the representation of the geometrical information relating to materials,
boundary conditions, and postprocessed quantities could be implemented in a
FEM computer program.

P.6-5 Consider the electrostatic problem —V - (¢pV¢) = 0. For a solution computed
by the FEM with linear triangles, the potential is piecewise linear, and the
corresponding electric field is piecewise constant. Given such a FEM solution,
evaluate 0, = gSL[ D -n dl applied to a single triangle, where L, is the boundary
of the triangle. Evaluate also Q, = gSLP D - i dl applied to a single edge shared
by two triangles, where L, is an integration contour enclosing the edge. Interpret
the derived expressions for Q, and Q.. How do these quantities depend on the
variation in the solution as compared to the cell size? Since the charge density is
supposed to be zero, the dissatisfaction of Gauss’s law could be used as a physics
based indication of inaccuracy. Note that O, and Q. do not give a bound on the
actual error in the solution ¢p. Bounds on the error in the solution can be derived
mathematically [28], but such a derivation is beyond the scope of this book.

P.6-6 In Sect. 6.8, we computed the vector potential A = A,(x,y)Z on an
unstructured mesh of triangles. Given this solution, we used a routine that
plots equipotential lines of the vector potential to visualize the flux lines of the
magnetic flux density. Show that a contour where A.(x, y) is constant is also a
flux line for the magnetic flux density B.

P.6-7 Eliminate the magnetic field from (6.40) and (6.41). Compare this result with
the FEM applied to the Helmholtz equation in one dimension,

d (1dEZ

2
— E. =0,
Ix )+a)eZ

uw dx

where the element matrices have been evaluated with either exact or trapezoidal
integration. How do these methods relate to finite differences applied to the 1D
Helmbholtz equation?

P.6-8 Consider a scattering problem where both the geometry and the sources are
independent of the z-coordinate. Here, we solve for the electric field E (x, y) =
X E.(x,y) + y Ey(x, y), and the computational mesh is truncated at a constant
radius R from the origin. The scatterer is located at the origin. Modify the matrix



6.9 Variational Methods 183

entries (6.48) and the vector entries (6.50) to impose the Sommerfeld radiation
condition

FX(VXE)+ jki x(FxE)=Fx(VxE™) 4+ jkf x (F x E™)

combined with an external source that produces the prespecified incident field
E ™. What boundary condition should be imposed on a metal scatterer? Which
criteria must be fulfilled for the Sommerfeld radiation condition to be accurate?
P.6-9 A rectangular finite element occupies the region defined by x; < x < xj and
Yo <y = y;. This element has four nodes and also four nodal basis functions:

e e e
e_ X Iy Y (pe_x—xﬁ Yp =Y
e e ’ 2 7T e T e
X, —Xg Yy, — Vs X, —=Xg Yy — Ve

X—Xg Y~V Xp—X Y~

(pe_ (pe_
3 = ’ 4= :
xXp—x¢ yp—y¢ Xy —X& Yy, — Ve

3

Consider an electric potential ¢ = Zj=1 ¢j¢; on this rectangle. Show that
the gradient of this potential falls into the space of the edge elements; i.e.,
the equality E = —V¢ is satisfied pointwise. In other words, given arbitrary
values for ¢;, show that there exist values for £; such that Zj=1 EjN¢ =

- Zj -1 9 V(pjf for every point inside the rectangle.

P.6-10 Prove that (6.92) is stable for an arbitrary time-step when 6 > 1/4 by
carrying out a von Neumann stability analysis for eigenmodes of Sz = AMz,
where A = w?/c?.

P.6-11 How are solutions of the type E = —V¢ treated by (6.86), (6.91), and
(6.92)?

P.6-12 What is the natural choice of a variational quantity for the steady electric
current problem —V- (6 V¢) = 0 that was treated in Sect. 6.3? How are boundary
conditions treated in this case? Give a physical interpretation of the minimization
of this functional and derive its first variation.

Computer Projects

C.6-1 Write a program that automatically generates a triangulation for a rectangular
domain. You can use a structured mesh of rectangles and divide the rectangular
elements on the diagonal to create the triangles.

C.6-2 Modify the program in Sect. 6.3.3 so that you can compute the capacitance
of a capacitor with an inhomogeneous dielectric. Let the spatial dependence of
the permittivity be a prespecified function of your own choice. Note that if the
triangles are small compared to the variations in the permittivity, you can sample
€ at the center of each element and assume it to be constant inside that element.
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How does the error scale with the cell size given such an assumption? Will this
have any impact on the order of convergence for the final algorithm? Can you
improve the performance of such a method?

C.6-3 Rewrite (6.55)—(6.56) in terms of the z-component of the magnetic field. Use
the program in Sect. 6.3.3 as a starting point for an implementation that solves
this eigenvalue problem on a mesh of triangles. Will the static eigenvalue(s)
o = 0 be reproduced by this formulation? Explain your findings.

C.6-4 Implement a FEM that solves V x V x E = k?E by means of rectangular
finite elements. Apply your program to a 2D cavity with metal boundary and
compute the eigenfrequencies. Find a test case for which the analytical result is
known and perform a convergence study of the lowest eigenvalues. What order
of convergence do you expect? Is this order of convergence reproduced by your
program?

C.6-5 Modify the FEM function edgeFEM2D (in Sect. 6.5.6) so that it can treat
problems where the material parameters are different in different cells. Add
two extra input arguments, which are vectors with relative electric permittivity
and magnetic permeability for all elements. Also modify the function such that
homogeneous Dirichlet boundary conditions can be used. Can the same plot
routine be used after these changes?



Chapter 7
The Method of Moments

The previous chapters of this book are devoted to the solution of Maxwell’s
equations on differential form, where the focus is on finite-difference schemes and
the finite element method. In this chapter, Maxwell’s equations are reformulated as
integral equations, where the field solution is expressed in terms of superpostion
integrals that involve the sources and a so-called Green’s function. In this setting,
we would typically have unknown sources that we wish to compute given that we
have sufficient information that describes the known field. Typically, this type of
formulation is useful for problems where the sources can be described by a relatively
few degrees of freedom, when compared to the number of degrees of freedom that
would be required for a corresponding description in terms of the fields.

In particular, we introduce the integral formulation of both electrostatics and
the complete Maxwell system. The electromagnetics community normally refers
to the integral formulation as the method of moments (MoM), for reasons that
will be explained later. In mathematics, the MoM is often referred to as the
boundary element method (BEM). We will reformulate electrostatics, for which we
have previously used Poisson’s and Laplace’s equations, as an integral equation.
In the following sections on scattering problems, we will rewrite the full Maxwell
equations as an integral equation for currents on the surfaces of conductors, and
apply this formulation to a scattering problem. The scattered electric field can
be expressed in terms of surface currents on conductors. The condition that the
tangential electric field vanishes on conductor surfaces then gives an integral
equation from which we can compute the surface currents. For the interested reader,
more information on the MoM can be found in, e.g., [20, 54, 87].

7.1 Integral Formulation of Electrostatics

In electrostatics, the electric potential ¢ is determined from the sources according
to Poisson’s equation

T. Rylander et al., Computational Electromagnetics, Texts in Applied 185
Mathematics 51, DOI 10.1007/978-1-4614-5351-2_17,
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Vg = L (1.1)
€0

This is the differential equation formulation. The solution of Poisson’s equation in
free space can be constructed by superposing the contributions ¢ (r) = q/4meo|r —

r’| from point charges ¢ = p,d V at locations r’:

A dV/
¢(r) = /V _plr)dv (7.2)

drelr —r'|

If the potential ¢ is known, (7.2) can be seen as an integral equation for the charge
density p. The integral formulation is suited for problems such as the capacitance
calculation in Chap. 3, where the potential is known on conducting boundaries and
charges occur only on these boundaries. Then, the potential ¢ was given on the
boundaries, ¢ = ¢s,ec = 0 on the outer conductor and ¢ = ¢spec = 1 on the inner
one. As an alternative to solving Laplace’s equation for the potential in the vacuum
region, we can calculate the charges p; on the conducting walls S by solving the
integral equation

/S _p) e bepec(r). (1.3)

drep|lr —r'|

In the 2D capacitor problem, the surface integral reduces to a line integral, and we
instead use the potential from a line charge —(p;/2meo) In|r — r’| as weighting,
that is,

1
-5 / pr(r')Inr —r'|dl" = ¢gpec(r). (7.4)
2mey Jg

Here, we “derived” the integral equations by referring to well-known expressions
from electrostatics. However, it is useful to derive them in a more mathematical
fashion, and also introduce the concept of a Green’s function. The same procedures
will be used to derive the electric field integral equation for the complete Maxwell
system.

A characteristic property of the integral formulation is that it deals readily
with open geometries. Consider the parallel plate capacitors illustrated in Fig. 7.1.
In Fig. 7.1(a), the capacitor is enclosed in a conducting box, and in this case,
differential equation solvers such as finite differences or finite elements work well.
However, if there is no surrounding box, these methods have difficulties with
truncating the open computational region, whereas the MoM works very well and
has no difficulties with the open geometry; see Fig. 7.1(b). (In fact, the open
geometry simplifies the MoM calculation, because it reduces the number of surfaces
on which charges can reside.)



7.1 Integral Formulation of Electrostatics 187

+Q1 +Q2

- -Q - -Q

Fig. 7.1 Parallel plate capacitor in (a) closed geometry and (b) open geometry. Differential
equation solvers can easily deal with the closed geometry (a), but the MoM is better adapted to
deal with the open geometry (b)

7.1.1 Green’s Function

Here, we introduce the concept of a Green’s function G(r, r’), which represents
the “field” at r produced by a point source at r’. In electrostatics, the Green’s
function represents the electric potential at r produced by a unit charge at r’. In
three dimensions, this is

1

T S— 7.5
dreglr —r'| (7.5)

G(r,r') =

We will show how the Green’s function for electrostatics can be found by solving
Poisson’s equation. This also serves as a preparation for the more complicated time-
harmonic case, treated in Sect. 7.3.

The potential from a point charge in three dimensions satisfies Poisson’s
equation,

—eV2p(r) =8 —r'). (7.6)

Here, §°(r —r’) is the 3D Dirac delta function, which represents a unit point charge.
It vanishes at all » # r’, and at r = r’ it is infinitely large, in such a way that the
total charge [, §°(r — r’)dV = 1 for all volumes V where r’ is an interior point.
The solution ¢ (r) to (7.6) is the Green’s function G(r, r’). Thus, for electrostatics,

— e VG(r,r') =8 —r'), (7.7)

where the subscript r indicates that the differential operator acts on the r argument,
the field point. By symmetry, the electrostatic potential that solves (7.7) can depend
only on the distance R = |r — r’| between the source and observation point.
Therefore, except at the singularity R = 0, G satisfies
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€0 d 2 dG
———R"— =0, R>0. 7.8
R2dR  dR 78)
This equation has two types of solutions, G; = a; and G, = a;/R, where a; and a,
are constants. The solution G; = a; is not of interest, since it produces no electric
field. Therefore, the relevant solution of (7.7) is
G=G, =2
R
The coefficient a, can be determined by integrating (7.7) over a sphere with (the
arbitrary) radius R, around the source point. In physical terms, this means that we
equate the flux of electric displacement D = €y E through the surface of the sphere
to the enclosed charge. By means of Gauss’s theorem, the integral of the left-hand
side of (7.7) is

—6()/ V-VGdV:—eogg VG -hdS
R<R0 R=R0

= ¢ (—ﬂ) AnR? = dnega (7.9)
RO

This must be equal to the integral of the right-hand side (the enclosed charge), which
is unity by definition. Therefore, a; = 1/4mep, so the Green’s function for 3D
electrostatics is

1
Grr,r'y= ———. 7.10
(r.r) dreg|lr —r’| ( )

To be precise, we add that the Green’s function derived here is the one valid for
free space, with no boundaries. The Green’s function can also be defined for cases
with conductors and dielectrics, but then one needs more elaborate methods to
calculate it.

Assuming that all the charges reside on the surfaces of conductors, the potential
can be written as

o(r) = / G(r,r)ps(r')dS’. (7.11)
Conductors

The two formulations, Poisson (7.1) and Coulomb (7.2) or (7.11), are equivalent.
To see that, we apply the Laplace operator to (7.11), and use V2G(r,r’) = —8*(r —
r’) /€ to verify that the potential satisfies Poisson’s equation (7.1)

VE/G(r,r’)p(r’)dV’ = /[V,ZG(r,r’)]p(r’)dV’
:——/ﬁ(r—rmu)mﬂ— p(r)

Therefore, the integral formulation (7.11) is equivalent to Poisson’s equation.
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7.1.2 General Formulation

After having formulated the electrostatic potential problem as an integral equation,
we can formalize the idea to a more general problem.
Consider a differential equation

Df =, (7.12)
where D is a differential operator, f is a field, and s is the source distribution. Let
G(r,r’) be the field at r produced by a point source at r’, that is, G satisfies

D, G(r.r) =8 —r). (7.13)

By the principle of superposition, which holds for linear systems, the differential
equation (7.12) can be rewritten as the integral equation

f(r) = /G(r,r’)s(r’)dV’. (7.14)

Direct substitution shows that (7.14) is a solution to (7.12).

The integral formulation is efficient when the sources reside on small surfaces,
and it deals very easily with problems in “open” geometry, where differential
equation solvers have difficulties.

7.1.3 FEM Solution

Usually some parts of finite element methodology are used for solving the integral
equation. The procedures will be outlined in this section.

7.1.3.1 Basis Functions

The charge distribution is expanded in, say, N basis functions s (r):

N
po(r) = ) asi(r). (7.15)
k=1

In early applications of the MoM, the basis functions were often chosen as global
functions, and one tried to use as much knowledge of the solution as possible to
find expansions that gave accurate results with a small number of basis functions
(sometimes only 1!). Nowadays, it is more common to divide the surfaces with
sources into small elements and use local basis functions. This requires less
knowledge and works for much more general problems.
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Fig. 7.2 Suitable 2D grid for
MoM solution of an
electrostatics problem. The
charge density can be
expanded in piecewise
constants, and the matching o o ) o
points (o) can be placed at the
center of each element

For convenience of notation, we introduce the potential generated by a basis
function:

or(r) = /G(r,r’)sk(r’)dS’. (7.16)
Then, the approximate potential becomes
. N
$(r) =Y ardi(r). (7.17)
k=1

7.1.3.2 Testing Procedures

We want to enforce the condition ¢_> = ¢spec ON the conducting surfaces where the
potential is known; that is, minimize the residual r = >, ar¢p — @Pspec ON the
conductors. Two methods are commonly used for minimizing the residual.

e Point matching, also known as collocation and the Nystrom method. Choose
testing points r;, j = 1,2,..., N (as many as the basis functions), and
impose

O(rj) =dpec(rj), j=12,....N. (7.18)

To get a well-behaved scheme, the testing points should be chosen so that
each feels mainly the effects of one particular basis function. If this criterion
is not fulfilled, the computed charge distribution may show a spurious oscillatory
behavior, simply because the oscillating components of the charge distribution
are not detected at the observation points. A good recipe for electrostatics is to
choose piecewise constant basis functions and place the collocation points in the
middle of each element, as shown in Fig. 7.2.

» Weighted residuals. Choose weighting functions w;, j = 1,2,..., N (as many
as the basis functions), and impose
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/C e (M) (r) — pepec(r)]dS = 0. (7.19)

Here Galerkin’s method uses w; (r) = s; (r). If we use global basis functions, as
was common practice in the early applications of the boundary element method,
Galerkin’s weighting procedure (7.19) can be seen as a way of taking moments
of the mismatch in the potential. This is why the electromagnetics community
usually refers to the boundary element method as the MoM. Point matching
corresponds to taking the test functions as delta functions w; (r) = §(r —r ).

The integrations required for (7.18) and (7.19) are generally done numerically,
and the singularity of the Green’s function at r = r’ needs particular attention.

Both collocation and the method of weighted residuals lead to an N x N system
of equations

N

> Ajar =b;. j=12.....N,
k=1

Ajx = /wj(r)qbk(r)dS = /dS wj(r)/dS’ G(@r.,r)se(r'),
bj = /wj(r)d)spec(r)dS. (7.20)

For the self-adjoint Poisson’s equation, the Green’s function is symmetric,
G(r,r') = G(r’,r), which is referred to as reciprocity. If one uses Galerkin’s
method to construct the MoM equations in (7.20), the matrix also becomes
symmetric, i.e., A = Ay;.

Review Questions

7.1-1 Compare integral formulations with differential equation formulations.
Mention some pros and cons of integral formulations.

7.1-2  Give an example of suitable weighting and basis functions for (7.3).

7.1-3  What is a Green’s function?

7.1-4  Derive the Green’s function for Poisson’s equation in 3D free space.

7.1-5 Why does the electromagnetics community refer to boundary element
methods as method of moments?

7.1-6  Generalize the technique for square elements, demonstrated in Sect. 7.1.3,
to a discretization that consists of triangles. Is it possible to combine squares and
triangles? Could such a combination be useful?

7.1-7  What is the difference between point matching and weighted residuals?
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7.2 Capacitance Problem in an Unbounded 2D Region

We will illustrate the MoM by solving a simple problem: calculate the capacitance
per unit length of two equal and parallel conducting strips in free space, as illustrated
in Fig. 7.3. The MoM is particularly useful for this open geometry.

To set up the equations for a 2D geometry, we note that the potential from a line
charge at ¥’ = (x/, y’), with line charge density density p; (Coulomb/meter), is

P1 1
2mey o

lr—r|
n—

¢:_

’

where ry is an arbitrary constant. For the parallel plate capacitor, this gives

gt =iz [ 5)mfi—r (r-5) o

_ /W/Z 0s (x/, —%) In \/(x —x')? + (y + %)2 dx'(7.21)

2mwen J w2

This particular problem has two symmetries, both left-right symmetry,

IOS(_‘X/’ a/2) = IOS(‘X/’ a/2),
and up—down antisymmetry

ps(x',—a/2) = —ps(x",a/2).

y
A
w
U CHV2, 40
a
>
Ve V2, -0
W

Fig. 7.3 Cross section of the capacitor
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7.2.1 Integration

We divide each capacitor plate into elements x’ € [x;,x;+1] and use piecewise
constant basis functions to represent the charge density. The testing will be done as
point matching at the midpoints of each element Xiest; = X, 1= %(x,- +X;+1). This
gives a good coupling between each basis function, which is constant on an element,
and the corresponding testing point. If we chose the testing points as the nodes,
they would not be able to detect the potential resulting from a charge distribution
where neighboring elements have opposite charges, because contributions from two
adjacent elements cancel at a node on the element boundary.

To get the potential from a piecewise constant charge distribution, we need to
integrate. The singular kernel complicates the integration over the element on which
the observation point is located, but the piecewise constant elements in 2D allow an
exact analytical integration

1o
g, xend) = — / Inv/x? 5 d2 dx

2meg Xs

|:%xln(x2 +d*>)—x+d arctan(x/d)]e . (7.22)

Xs

1

2mey

This simplification is helpful, and we will use it. If we take into account the left—
right symmetry and up—down antisymmetry, it is enough to discretize only the
right half of the upper plate. We divide this into N elements with endpoints x;,
i =0,1,2,..., N. Then the potential at the point (x, y) from the assumed charge
distribution can be written as

N—1
$(x.y) =Y py (i —x.xis1—x,y —a/2)
i=0

+I(—Xi41—x,—x; —x,y —a/2)

—I(x; —x,Xj41—x,y +a/2)

—1(—x,‘_1 — X, =X —x,y+a/2)]. (7.23)
By choosing the testing points as Xitl fori =0,1,..., N — 1, on the upper plate
we get the system of equations

Ar =v,

where
A = I(Xj —xi+%,xj+1—xi+%,0)+l (—Xj+1 X4l X —XH_%,O)

—I(Xj —xi+%,xj+1—xi+%,a)—l (—xj+1—xl-+%,—x]~ —XH_%,G),
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observation point

charge
element 13

Fig. 7.4 Coordinates aligned with an element

and v is a column vector where all the elements are set to the potential on the upper
plate V/2, where V is the voltage across the capacitor. Solution of this system will
give the charge density on each element in the vector r.

7.2.2 MATLAB: MoM for General, 2D Geometries

In the introductory example, we treated a very simple geometry, with a high degree
of symmetry and plane plates. However, it is easy to generalize this to a completely
general 2D geometry with no symmetry and curved conductors. Fig. 7.4 shows one
element and the observation point, which is assumed to lie at the normal distance d
from a straight-line extension of the element. The contribution from this element to
the potential at the observation point is

e
_bs / InvVx2+d?2dx =— Ps |:

2.7t60 £ 2.7t60

1 €
Exln(x2 +d*)—x+d arctan(x/d)} .
&

(7.24)

In the following routine, we use the exact integration to generate the system
matrix for point matching and general 2D geometry. Each charge-carrying element
is specified by the arrays xs and ys for the starting coordinates, xe and ye for
the endpoints, and phi for the potential. No assumption about the geometry of the
plates is used.

function [charge, sigma] = MoM2D(xs, ys, xe, ye, phi)
% Arguments:

% P} = x-coordinate for starting points

% vs = y-coordinate for starting points

% xe = x-coordinate for ending points
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% ye = y-coordinate for ending points

% phi = the potential

% Returns:

% sigma = charge density for each element

% charge = total charge on each element

xobs = 0.5x%x(xs + xe); % Observation points
yobs = 0.5x(ys + ye);

h = sgrt((xe-xs).”2 + (ye-ys)."2); % Length of elements

% Loop over elements
for k = 1l:length(xs)

s = ( (xobs-xs(k))x*(xe(k)-xs ( ))
+ (yobs-ys(k)) * (ye (k) -ys /h 2;

d = sgrt( (xobs-xs(k))."2

+ (yobs-ys(k))."2

- s.72xh(k) "2 + le-24);
xis = -sxh(k);
xie = (1-s)xh(k);
temp = O0.5%xxie.xlog(xie.”2+d."2

)

- xie + d.xatan(xie./d)

-(0.5%xis.*log(xis. 2+d."2)
- xXis + d.xatan(xis./d));

A(:,k) = - temp(:)/(2+pi*8.854187) ;
end
sigma = (A\phi’)’; % Charge density
charge = h.xsigma; % Charge per element

[The theory behind the geometrical transformations is that a point on the straight
line through ry = (x5, ys) and r, = (Xe, ye)iSr = rs + s(re —ry), —00 <5 <
00. The minimum distance d on this line to the observation point at r, occurs for
s =(ro—rg)-(re—ry)/|r.—rg|>anditis givenby d> = |r, —rs|> —[(ro—ry)-
(re —ry)l /Ire_rSIz-

The routine gives the charge on the elements, and this can be summed to compute
the capacitance per meter. For this example, we initiate the potential to 0.5 V on the
top plate and —0.5 V on the bottom one. Then the capacitance is the sum of the
charges on the top plate. The computation can be called as follows (where n must
be an even integer):

a =1; % Separation distance between capacitor plates
w = 1; % Width of capacitor plates

n = 10; % Number of unknowns

nh = round(n/2) % Number of elements on each plate

h = a/nh; % Length of the elements

% X-coordinates for starting and ending points

xs = zeros(l,n);
xe = zeros(l,n);
s (1:nh) = linspace(0,a-h,nh);

s (nh+1:2*nh) = linspace(0,a-h,nh);
xe Xs + h;



196 7 The Method of Moments

Table 7.1 Cap'acitance.for n [ h [m] C [pF/m]
a = w = 1, uniform grid and

analytic integration 10 0.20000 18.03138 50
20 0.10000 18.37294 02
30 0.06666 18.49101 21
50 0.04000 18.58699 26
70 0.02857 18.62854 17
100 0.02000 18.65986 68
140 0.01428 18.68082 79
200 0.01000 18.69658 95
18.8 . . .
18.7 |
18.6 |
__ 185}
£
'-'é 18.4
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182 |
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Fig. 7.5 Capacitance for a¢ = w = 1, uniform grid and analytic integration, plotted versus &

% Y-coordinates for starting and ending points

ys = zeros(l,n);

ye = zeros(l,n);

ys (1:nh) = 0.5%w;
ys (nh+1:2+xnh) = -0.5%w;
ye = vs;

Potential for the elements
v = zeros(1l,n);
V(1:nh) = 0.5;
V (nh+1:2xnh) = -0.5;

o°

% Solve the electrostatic problem
[charge, sigma] = MoM2D(xs, ys, xe, ye, V);
C = sum(charge(l:nh))

The results from runs with varying numbers of points are shown in Table 7.1.
Fig. 7.5 shows that the convergence is linear in /.
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Fig. 7.6 Charge distribution 50
on the top plate, resolved by
15 elements in a uniform
grid. The relative error of the 40F ] R
computed capacitance is 1.3%
& 30r
£
S}
& 201
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Accurate values can be obtained from extrapolation using polynomial fits. A
linear fit gives C = 18.72858 78 (pF/m), quadratic 18.73349 99, cubic 18.73350 34,
quartic 18.7335027, and quintic 18.7335027. The answer to nine digits is
18.73350 27 pF/m. For a single computation to get to within 1% of the correct
answer, about 50 elements are needed.

7.2.3 Charge Distribution

The charge distribution on the top plate, resolved with 15 elements, is shown in
Fig. 7.6.

The charge distribution for the parallel plate capacitor is singular. In this respect it
is similar to the capacitance problem in Chap. 3. The nature of such singularities can
be determined analytically. As an analytically solvable illustration, we consider the
behavior of the electrostatic potential in the vicinity of a conductor edge in vacuum,
that is, a 2D corner.

Suppose the conductor subtends an angle 8 < 180°, and the vacuum region,
where the potential satisfies Laplace’s equation, subtends the angle « = 360°— >
180°; see Fig. 7.7. In cylindrical coordinates, with the edge oriented along the z-axis,
the potential ¢ satisfies

10 9 1 92
¢ — ¢:O, 0<0<a, (7.25)

rBrrar 2 962

and ¢ = 0 for & = 0,«. Relevant solutions can be found by the method of
separation of variables ¢ (r,0) = f(r)g(6). Substituting this ansatz into Laplace’s
equation (7.25) and multiplying by r2/( f(r)g(6)), we obtain
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Fig. 7.7 Conducting edge

o
Fig. 7.8 Charge distribution 100 : : : :
on the top plate, resolved by L i
15 elements in an adaptive
grid (equal charge). The 80
relative error of the computed
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Since the left-hand side depends only on r and the right-hand side only on 6, both
must be constant, say p?. This gives g(6) = asin pf + bcos pf and f(r) =
cr? +dr~?.If p > 0 we must choose d = 0 to keep the potential bounded. Thus,
the acceptable solutions of separable form are

¢ = (asin p6 + bcos po)r’.

Next, we want to determine the power p. The boundary condition ¢ = 0 atf = 0
gives h = 0,and ¢ = 0 at & = « then gives pa = nm, n = integer. Thus, the
lowest-order solution is ¢ = r? sin pf with p = w/«. For a general opening angle
o, the power p is noninteger and the smallest p is less than one if « > m. For
this solution, both E, and Eg vary as r~!+7/®)_Thus, the field components tend to
infinity at the corner if @ > . For the edge of the capacitor plate we have o = 2,
so that Ey o r~1/2. This implies that the charge density on the plate varies as r~!/2
near the edge.
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Table 7.2 Capacitance for

a = w = 1 and adaptive nl h [m] C [pF/m]

mesh 10 0.20000 18.32465 80
20 0.10000 18.61846 85
30 0.06666 18.68061 49
50 0.04000 18.71396 25
70 0.02857 18.72342 35
100 0.02000 18.72852 34
140 0.01428 18.73094 84
200 0.01000 18.73224 60

7.2.4 Adaptivity

We will use the parallel plate capacitor to illustrate the benefits of adaptive grid
refinement. The elements in the middle of the strips, where the charge density is
small, give small contributions to the total charge and capacitance. Some of these
elements would be more efficiently used near the edges, where the charge density
is high. A simple rule of thumb, which works well for adjusting the length of an
element in an adaptive grid, is that the total charge on each element should be the
same.

We initialize the computation with a grid where the elements have equal length
to compute a first approximation. Then, the computed charge distribution can be
used to generate a new grid where one seeks to distribute the charge uniformly on
the elements. Such a routine is easy to implement, however, the procedure needs
to be iterated several times to equalize the charge on the elements enough for a
careful convergence study. The adaptively computed capacitance values are given
in Table 7.2.

A plot versus h? shows that the adaptivity has restored the O (h?) [i.e., O(N )]
convergence that one expects for a smooth charge distribution. Now we get 1%
accuracy with fewer than 20 elements, compared to about 50 for a uniform grid.
On the other hand, the calculation for each cell size had to be repeated several
times to adapt the grid, so we have not really won in terms of computing time. The
main use of adaptivity is in large 3D problems, where sufficient accuracy cannot be
obtained without adaptivity. Another approach, which may minimize the computing
time, is handmade adaptivity, where one uses knowledge about the geometry and the
singularities to construct meshes that resolve the solution as well as possible with
the available number of elements.

Even though the lowest order error for the adaptive grid is proportional to s,
the extrapolations based on fitting the computed results to polynomials in /4 are not
very accurate. The reason for this is that the power series for the adaptive results also
contains odd powers of /, such as 4> and /°. If we fit the results versus polynomials
in h, quadratic extrapolation gives 18.73732 85, quartic 18.73351 51, and sixth-
order 18.7335026. The adaptive grid strongly improves the accuracy for a given
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number of elements, but in fact, the extrapolated results are somewhat less accurate
than for a uniform grid.

7.2.5 Numerical Integration

As an alternative to exact analytical integration, one can use numerical integration.

Then, the logarithmic singularity causes difficulties, and there are several possibil-

ities to deal with this. Letting x represent points at the middle of an element, we

could choose:

* Midpoint integration: | ;_7722 f(x")dx" ~ hf(x). This diverges for the “self
contribution” where the observation point is the midpoint of the element x,ps =
X

+ Trapezoidal rule: f;jfy; f(Ndx" ~ Lh[f(x —h/2) + f(x + h/2)] (relative
error O(h?) for regular functions). However, this gives a large error for f(x) =
Inx.

+ Gaussian integration: f;jfy; f(xdx" ~ $h[f(x1) + f(x2)], where x;, =

x = (h/2)/~/3, error O(h*) for regular functions. This, too, gives a large error if
f(x) =Inx.

* Special integration for a logarithmic singularity

x+h/2 1
/ FOOAX ~ SLFG) + fOo)], xia = x & (/) e

—h/2

The error is O(h?) for regular functions, and the formula is exact for f(x) =
In x.

To test these integration schemes, we compare results for the approximations

x+h/2 h
[, Fodx =S S 02

with different values of the parameter 7. Tests show that n &~ 1/e gives the most
accurate results. Results for numerical integration and the two-strip capacitor, with
n = 1/e with and without adaptivity, are shown in Table 7.3.

For n = 1/e, the convergence on a uniform grid is close to linear in A.
Polynomial fits to the results for a uniform grid in Table 7.3 gives the following
extrapolations: for a linear fit 18.781, a quadratic fit 18.757, and a cubic fit 18.747.
This is less accurate than for the exact integration because the integration scheme
does not properly account for the contributions from neighboring cells, which are
also affected by the singularity of the Green’s function.

Fig. 7.9 shows the results for the analytic and numerical integration with adaptive
grid refinement. Evidently, errors can come from the integration as well as from the
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Table 7.3 Capacitance for

h . n[-] h [m] C [pF/m] C [pF/m]
a = w = 1 with numerical uniform adaptive
integration (7.26), n = 1/e, P
and with uniform and 10 0.20000 18.14722 18.48546 67
adaptive mesh 20 0.10000 18.44493 18.71508 74
30 0.06666 18.54435 18.74847 85
50 0.04000 18.62297 18.75628 29
70 0.02857 18.65609 18.75413 22
100 0.02000 18.68052 18.75026 85
140 0.01428 18.69650 18.74659 82
200 0.01000 18.70824 18.74326 22
18.8 T T T T T T T
numerical integration n = 1/e
18.7 | /
— 186
£
[
=
© 185 |
analytic integration
18.4
18.3 . . . . . . :
0 0.01 0.02 0.03 0.04

h2[m]2

Fig. 7.9 Results for numerical and analytic integration and adaptive mesh versus /2

expansion in finite elements, but the difference between the exact and numerical
integration is rather small, about 1% on the coarsest grid.

Review Questions

7.2-1 Why is point-matching attractive for a charge distribution that is expanded
in piecewise constant basis functions?

7.2-2  Derive, in two dimensions, the asymptotic behavior for the electrostatic
potential and field in the vicinity of a metal corner with an opening angle «.

7.2-3  Adaptivity typically involves solving the same problem several times, which
implies some additional work. Still, adaptivity is often very useful. Why?

7.2-4  Describe a simple adaptive scheme for a parallel plate capacitor problem.

7.2-5 List some integration rules that can be used for (7.21).

7.2-6  Mention an example in which numerical integration can be useful.
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7.3 Electromagnetic Scattering

The MoM is frequently applied to scattering problems in the frequency domain.
Electromagnetic scattering can be used for many detection applications, such as
detecting aircraft by radar. A more demanding goal is to determine the properties
of the scattering object from the scattered field. This is called inverse scattering,
which is an important method for nondestructive testing. The MoM is also used
for magnetostatics [75] and eddy current problems, for example to handle currents
induced on thin conducting shells. The book of Peterson [54] gives a good account
of how the MoM can be applied to electromagnetic scattering problems.

Consider a plane wave E' incident on a perfectly conducting object. The incident
wave produces surface currents J; on the conductor, which generate a scattered
electric field E°. The scattered field is determined by the boundary condition

ax(E'+ E%) =0, r e o, (7.27)

which states that the total tangential electric field vanishes on the conductor surface
082.. This is used for the electric field integral equation.

7.3.1 Representation by Potentials and a Lorentz Gauge

To determine the surface currents, we express the scattered field E* in terms of
J s, which means that we must find the appropriate Green’s function. (Note that
the incident wave has sources far away from the scatterer, “at infinity.”) For this
purpose, it is convenient to introduce scalar and vector potentials such that

04
E:—Vq&—?, B=VxA. (7.28)
With this representation, Faraday’s law d B /0t = —V x E is automatically satisfied.
We substitute the potential representation (7.28) into Ampere’s law

oE
VXxB=uyd + GOMOW. (7.29)
UsingVx B =VxVxA =V(V-A4)— V?A (and assuming exp(jwt) time
dependence), this gives

V(V-A)=V?A = pod — joeopo(Ve + joA). (7.30)

As pointed out previously for eddy current problems, the potentials A and ¢ are
not uniquely determined; one can always make a “gauge transformation” A’ =
A + VU and ¢' = ¢ — dU/dt without changing the physical fields E and B.
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To solve for the potentials uniquely, we have to specify a condition that determines
the gauging potential U. This is called the gauge condition. One choice that makes
(7.30) particularly easy to solve is the Lorentz gauge, which makes the two gradient
terms in (7.30) cancel:

VA =—jwemod. (7.31)

Equation (7.30) with the Lorentz gauge condition (7.31) reduces to the vector
Helmbholtz equation

2
—(v2+w—2)A = jod.
c

7.3.2 Green’s Function for the Vector Potential

The Cartesian components of A satisfy scalar Helmholtz equations
— (V2 4+ kA = podi, k=w/c, (7.32)

which can be solved component by component. Here, the subindex i is x, y,
or z. The Helmholtz equation (7.32) is similar to Poisson’s equation, for which we
derived the integral representation in Sect. 7.1. We proceed in similar ways here.

We define the Green’s function for the vector potential G(r,r’) as the ith
component of the vector potential produced by a “point current” in the i th direction
J = %;8%(r —r’). Then, G satisfies

1

p (VZ+K*)G(r.r') =8 —r). (7.33)
0

The vector potential constructed by superposition
Ai(r) = / G(r,r"YJ;(rdV' (7.34)

then satisfies the Helmholtz equation (7.32).

The derivation of the Green’s function closely parallels that in electrostatics. We
start by noting that G(r, r’) can depend only on the distance between the source and
observation points R = |r — r’|. Therefore, in three dimensions, (7.33) gives

1 (1 d ,dG
(=L R L 26) =0, R>o0.
uO(RZdR ar * ) -

It is easy to verify that two independent solutions of this equation are G; =
exp(jkR)/R and G, = exp(—jkR)/R. When these are combined with the
assumed exp(jwt) time dependence, G| produces constant phase surfaces such that
kR+ wt is constant, or dR/dt = —w/k = —c. That s, the constant phase surfaces
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move towards the source with the speed of light. Thus G, represents incoming
waves, which are absorbed by the “source” currents, and these waves are called
advanced solutions. Although they are indeed solutions of Maxwell’s equations,
they do not respect the principle of causality, and are not of physical interest.
For G, o exp(—jkR)/R, on the other hand, the constant phase surfaces satisfy
dR/dt = w/k = c, so G, represents waves radiated away from the source. These
solutions respect causality and are called retarded. They are the relevant solutions to
(7.33). Thus, we pick G(r, r’) = aexp(—jkR)/R. To determine the normalization
constant a, we proceed as in Sect. 7.1.1. Integrate (7.33) over a sphere of radius R,
and to simplify the evaluation, we let Ry tend to zero. The integral of the left-hand
side becomes

1 1
-— (VZ+K*)GdV =—— U v, V.G dV+0(k2R§)]
Mo JR<R, Mo LJR<Ry

Only the first term remains nonzero in the limit Ry — 0. By Gauss’s theorem, this
piece can be rewritten as a surface integral

1 1 dG
—— VG- -idS = ——— 47R};
Mo Jr=rq Mo dR{ .
a 1
= —— (== — 2= ) exp(—jkRo)4nR?
MO( R(z) R ) p( J 0) 0
4
— ﬂ, as Ry— 0.
Mo

This must be equal to the integral over the right-hand side in (7.33), which is 1 by
definition. Therefore, the normalizing coefficient is @ = po/4m, and the Green’s
function for the vector potential is

G — &exp(—ij)

R=|r—rl. 7.
ypo R lr—r'] (7.35)

Using superposition and the fact that all currents occur on the surfaces of
conductors, we can write the solution of (7.32) for each component of the vector
potential as

A;i(r) = /a:z G@r,r'y%; - J,(r)dS’

with the Green’s function (7.35), where X; - J ; is component i of the surface current
J 5. Therefore, the full vector potential is

A(r)=ﬂ/ MJS(r’)dS’. (7.36)
4 02, R
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We can find an equation for the scalar potential ¢ by taking the divergence of
Ampere’s law (7.29), substituting the potential representation for E, and using the
Lorentz gauge condition

— (V24 kg = wLéov J = e’io. (1.37)

Here, we used the equation of continuity for charge
jop+V-J =0.

Equation (7.37) is again a scalar Helmholtz equation with the solution

o(r) = 41 / eXp(_ij)p(r’)dS’. (7.38)
€Y Jos2, R

7.3.3 The Electric Field Integral Equation

We now have expressions for the potentials in terms of the surface currents. The
scattered electric field is given by

ES

—jwA — V¢
_joug / exp(—jkR)
392,

I !
- e Js(r)ds
o exp(—jkR)

992,

V' Js(r')dS’. 7.
pr— R J(r')dS (7.39)

The condition the surface currents have to satisfy is that the tangential component of
the total field, which is the sum of the incident field and the scattered field generated
by the surface currents, vanish on the surface of the conductor:

E’ + E!

tan tan

=0. (7.40)

Combining this with (7.39), we obtain the electric field integral equation (EFIE)

‘ i —JjkR
Eian — J(I)I,LO/ exp( .] )Js(r/)dS/
471' 092, R .

.1 V/ exp(_./kR) V/' Js(r/)dS/
dregw  Jyo R

(7.41)

tan
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Unfortunately, integral equations such as the EFIE are somewhat difficult to
solve numerically. First of all, as will be discussed in Sect. 7.4, it is necessary to
take proper account of the singularity in the Green’s function to get a scheme that
converges to the correct answer when the resolution is increased. The presence of
this singularity causes difficulties for the integration. Numerical integration schemes
that work well for smooth integrands can give very inaccurate results, and in
practice, the singularity needs special treatment. One successful approach is to pull
out some simplified part of the Green’s function that contains the singularity and use
an analytic integration for this part. The remaining, nonsingular, part of the Green’s
function can then be integrated by a standard numerical integration formula.

A more physics-related difficulty with the EFIE is the presence of “internal
resonances.” Consider a scattering problem in which the scatterer consists of a
closed PEC surface, e.g., a conducting sphere. If we solve this problem using the
EFIE, the integral equation has no information to tell it that the interior of the
sphere is conducting. Therefore, the EFIE allows cavity eigenmodes that are internal
to the sphere. At the resonance frequencies for these modes, they can be part of
the solution without excitation by external sources, and the system matrix becomes
singular. There is a cure for the problem of internal resonances, which consists in
adding the magnetic field integral equation (MFIE) to the EFIE. The MFIE has
different internal resonances than the EFIE, and with a suitable weighting of the
two integral equations, all internal resonances are eliminated [54]. The summed
equation is called the combined field integral equation (CFIE).

7.3.3.1 FEM Solution

To solve the EFIE (7.41) for a 3D problem using finite elements and Galerkin’s
method, we first need a suitable base for expanding J ;:

N
To(r) = asi(r). (7.42)

i=1

To see what kind of elements are required, we work out the form of the matrix
elements, which are obtained by multiplying the EFIE by a test (= basis) function
s5; (r) and integrating over the PEC surfaces. We integrate the second term in (7.41)
by parts and assume that no current can leave or enter the conductor, so that the edge
term vanishes:

/ S,V¢dS:/ [V(S,¢)—¢)VS,]dS
902 902

:¢ fl'si(ﬁdl—/ ¢>V-sidS:—/ d)VS,dS
0082, 082. 082¢

This then gives the system of equations
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Fig. 7.10
Rao—Wilton—-Glisson basis
function extending over two
triangular elements

- /m si-El_dS = ZA,,a,, (7.43)

j=1

where the matrix elements are given by

Jopo eXp( JkR) .,
Ay = —
J o /39, si(r)- / R ——-dS'dS
J / V.si(r) / Vs, ) EPETRR) yoras (.44
dregw R

7.3.3.2 Choice of Elements

Equation (7.44) indicates that we need basis functions for which V -s is nonsingular.
This requirement is different from that for the differential form of Maxwell’s
equations, where V x E has to be square integrable. For the differential for-
mulation of Maxwell’s equations, the successful choice is curl-conforming edge
elements, whose tangential component is continuous at cell interfaces. The integral
formulation requires divergence-conforming elements, whose normal component
is continuous across cell boundaries. For a 2D problem with a 1D boundary, say
J = J.(z)z, this can be achieved using piecewise linear elements. In 3D domains,
with 2D boundaries, divergence-conforming elements can be constructed as the
cross product of the edge elements on a surface and the surface normal #:

SRWG(I‘) =nx N(I‘) (745)

These are called Rao—Wilton—Glisson (RWG) elements after their inventors [58].
In polar coordinates with respect to the corner opposing the edge with which each
basis function is associated, sgwg(r) & rF. A complete basis function extending
over two triangles is shown in Fig. 7.10.

Appendix B contains information on divergence-conforming elements for trian-
gles (see Sect. B.1.1) and quadrilaterals (see Sect. B.1.2), where both these elements
can be used for the MoM formulated on surfaces.
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7.3.3.3 Integration

To carry out the integration in (7.44) we must decide how to deal with the singularity
of the integrand. The most successful approach [31] exploits the fact that the 3D
singularity 1/R can be integrated exactly on triangles. Therefore, this piece can be
pulled out and done exactly, while the remaining, bounded terms can be integrated
by standard numerical integration schemes. We will use these considerations to
derive and solve a 1D problem for a thin conducting wire in Sect. 7.4.

7.3.4 The Magnetic Field Integral Equation

The technical details of the derivation of the MFIE are somewhat subtle and lengthy
as compared to the EFIE. For a complete derivation of the MFIE, the reader is
referred to the literature [56, 87]. Here, we settle for stating the result for smooth
PEC scatterers (that do not have sharp corners or edges)

exp(—jkR)

; 1 1
= ix s+ v (S ) xenas| e

tan

Here, the integral (with the bar) is evaluated in the principal-value sense [56],
and it is interpreted in the following way. The domain of integration excludes
an infinitesimal area around the observation point, and the contribution from the
excluded area is accounted for by the term %r’i x Js(r). As previously mentioned,
the MFIE also allows cavity eigenmodes that are internal to a conducting body.
However, the MFIE has different internal resonances than the EFIE. It should be
noted that the MFIE is valid only for closed surfaces, while the EFIE can be applied
to both closed and open surfaces.

7.3.4.1 FEM Solution, Choice of Elements, and Integration

A FEM solution that parallels the one for the EFIE would use triangular elements.
It is then useful to consider the current that flows on a single flat triangle K. We
note that for the case when both the observation point r and the source point r’
are located on K, both the gradient of the Green’s function and the surface current
density are in the plane of K, and therefore, their cross product is perpendicular to
K. Since only the tangential component is included in the MFIE, the contribution
from element K to the integral in (7.46) is zero when the observation point r is
located on K. This is the case when the MFIE is tested, and therefore, the singularity
of the integrand in the MFIE does not feature in the same way as for the EFIE. In
fact, it has already been integrated analytically during the derivation of the MFIE,
and it is included in the term 34 x J ;(r).
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To solve the MFIE for a 3D problem using finite elements and Galerkin’s method,
we use the same basis for the current as we employed for the EFIE; i.e., the current
is expanded in the RWG basis functions as shown in (7.42), and we test with 7 X s;.
This gives the system of linear equations

N
- (A xs;)-Hi,dS =Y Bja,. (7.47)
c i=1

where the matrix elements are given by
1 . .
B,’j = — (nxs,-)-(nxsj)dS
2 Jig,

1 —jkR
+—/ (ﬁxsi)-][ V(M) xs;dS'dS. (1.48)
4 Joe, 992, R

7.3.5 The Combined Field Integral Equation

With a suitable linear combination of (7.43) and (7.47), often referred to as the
combined field integral equation (CFIE), the problems associated with internal
resonances can be avoided [54]. This gives the system of linear equations

N
—a/ s;-El_dS + (1 —a)ZO/ (Axs;)-Hi,dS =Y Cyja;. (149
3982, 992: j=1

where the matrix elements are given by C;; = aA4;; — (1 —a)Z¢B;j,and 0 < o < 1
is a weighting parameter.

Review Questions

7.3-1 What boundary conditions are used in the derivation of the EFIE?

7.3-2  What relation between the scalar and vector potential is used to define the
Lorentz gauge? What are the consequences of this particular gauge?

7.3-3  Derive the Green’s function for the scalar and vector potential for the 3D
free-space case combined with the Lorentz gauge.

7.3-4  List some difficulties and useful techniques concerning the evaluation of the
integrals that occur in the EFIE.

7.3-5 Describe, in words, the problems with internal resonance and mention a
remedy.
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7.3-6  Use the FEM to write down a system of linear equations that correspond to
the EFIE. List the steps of the assembling procedure needed for this problem.
7.3-7 What basis function should be used for a PEC body treated with the EFIE
and why? How does this relate to the MFIE and the CFIE?

7.3-8  What boundary conditions are satisfied by (7.36) and (7.38)?

7.3-9  Show that the matrix associated with the EFIE derived by FEM techniques
and Galerkin’s method is symmetric.

7.3-10  Relate the divergence-conforming and curl-conforming basis functions on
triangles.

7.3-11 Why is the CFIE useful?

7.4 Scattering on Thin Wires

Here we consider scattering of electromagnetic waves by thin conducting wires. The
analysis can be extended to study dipole antennas of finite length and thickness. We
consider a plane wave incident on a wire of length L and radius a, aligned with the
z-axis; see Fig. 7.11.

For simplicity we assume normal incidence

E; = Epexp(—jkx), k=w/c.

If the wire is very thin compared with a wavelength, ka < 1, the incident wave
is nearly constant, E! ~ Eo, on the surface of the wire, and the surface current

A

(e
AT
|

A
\J

Fig. 7.11 Electromagnetic
wave incident on thin wire
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must be approximately J; =~ J.(z)z. Then, (7.41) gives for the z-component of the
scattered field

L/2 pom —ikR
Eo=—E = J‘““O / / XDTRR) ) 2ya doraz
L)2 R

adé'd?. (1.50)

L J@Ho 9 / Lz / 2T exp(— JkR) 3J:(2)
47‘[ kz BZ L)2 8 /

In the integration over the wire surface, J, is independent of #’, so the only 6’'-
dependence comes from R. According to the cosine theorem, the distance between
two points on the wire surface satisfies

/

o —
R?=(z—2) 4+a*+a*>—2a%cos(8 — 0') = (z—7)* + 4a’®sin®

Carrying out the 6’-integration in (7.50), we obtain, for |z] < L/2,

47 E, L2 1 d (L2
- = Gz—)I()d7 + —
J@Ho —L/2 ( @) k2 dz

G(z -z )—(z ydz.  (7.51)

Here I = 2malJ, is the total current on the surface of the wire, and the kernel of the
resulting 1D integral equation is

1 (7 —jkR
G(z—z/)ZE/O %d@d (7.52)

7.4.1 Hallén’s Equation

The 1D version of the EFIE in (7.51) can be simplified by means of a reformu-
lation found by Hallén. Integrating the second term in (7.51) by parts and using
I(£L/2) = 0 and (d/d7)G(z —7) = —(d/dz)G(z — 7/), the equation can be

written as
4 Ey 1 d?
=(14+—=—|H 7.
joma ( +k2dz2) ’ (753
L)2
H(z) =/ G(z—2)I(Z)d7. (7.54)
—L)2

Equation (7.53) can be regarded as a differential equation for H, and this equation
is easy to solve. Its general solution is an arbitrary homogeneous solution, for
instance 4w Ey/jwio, added to the general solution of the homogeneous equation
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C coskz + D sinkz. When the incident wave has no z-dependence, the solution
must be symmetric with respect to the midpoint of the wire. Therefore, D = 0, and
the solution is

47 E
=0 )l <L)2.
J@Ho

H(z) + C coskz =

Combining this with (7.54), we obtain

L2 47 E
/ G(z—2)I(Z)d7 + C coskz = il 0 (7.55)
—L/2 Jwlo

which is known as Hallén’s equation. The differential order of the integral equation
(7.51) has been reduced at the expense of introducing an extra constant of
integration.

7.4.2 Valid Approximation for the 1D Kernel

As mentioned earlier, it is important to evaluate the 1/R singularity of the EFIE
correctly, and this should be respected when we seek an expression for the 1D
Green’s function G. We isolate the singularity by writing
exp(—jkR) 1  exp(—jkR)—1
R R R ’

where only the first part is singular. This gives

G = Gy + Gy,
1 [ de 1 [ exp(—jkR) —1

Go= L [T g o L [TRCERRD L 756
2t )y R 27 J R

The advantage of the splitting is that the singular part Gy can be evaluated exactly:

2 4a’® ,
Go(z)zan(§2+4az), (=7

where

7/2 dé
K(m):/o \/l—msin2¢>

is the complete elliptic integral of the first kind. The function G (¢), which contains
the singular part of the 3D Green’s function, is logarithmically singular when { — 0.
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For the nonsingular part G|, we can use less accurate approximations suitable
for thin wires, such as replacing the current on the wire surface with the total
current placed at the center of the wire. This means that we approximate R =~
V(z—7)?+ a? in Gy, which is then straightforward to calculate. Thus, the total
kernel is approximated as

N 2 4a’ exp(—jk+/¢2 +a?) —1 _ ,
G@)”nm’{(zzuaz)* N
(7.57)

7.4.2.1 Nonsingular Kernel Gives Spurious Solutions

If we used the approximation R =~ +/(z — z/)? + a? also in G (that is, approximate
the current on the wire surface by the same total current on its axis), the 1D
kernel would lose its singularity. It can be shown that Hallén’s equation (7.55)
with such a smoothed kernel does not have regular solutions. If one tries to solve
Hallén’s equation with a nonsingular approximation for G(z), the solution does not
converge, but instead develops more and more short-wavelength oscillations when
the resolution is increased. The reason for this is that a smooth Green’s function
G(z) underestimates the fields created by short-wavelength currents. To create the
short-wavelength components of the electric field that occur near the endpoints of
the wire (for |z| > L/2), the smooth approximation of G requires too strong short-
wavelength components in the current. As a consequence, the current density does
not converge as the resolution increases.

Nevertheless, such approximations of the Green’s function have been used in the
past, for instance, in old versions of the NEC code, which is popular for work on
thin wires. It produces acceptable results as long as the resolution in the z-direction
is coarse compared to the radius of the wire, Az > a. However, when the resolution
is increased so that Az < a, the current develops oscillations and the computation
diverges rather than converge as the mesh is refined. This is yet another example of
spurious solutions.

7.4.3 Numerical Solution

To evaluate the integrals in (7.54), we can either do numerical integration adapted
to a logarithmic singularity, as discussed in Sect. 7.2.5, or attempt a more rigorous
treatment, where the logarithmic singularity is separated out and integrated exactly.
To avoid excessive work on a problem that is already an approximation, we settle
for numerical integration. The elliptic integral can be accurately evaluated by using
a series expansion such as given by Abramowitz and Stegun [2].
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We divide the wire into elements, and expand the current in piecewise linear
functions and use point matching. For piecewise linear current, the point matching
of E, should be made at the nodes, since this is where the piecewise linear basis
function has its main influence. The boundary condition /(£L/2) = 0 eliminates
the unknowns for / on the endpoints. To determine the constant C in (7.55) we use
the condition that the equation is satisfied also at the endpoint z = L/2. This gives
us as many conditions as we have unknowns.

7.44 MATLAB: Hallén’s Equation

In the following routine, we use the techniques described above to solve Hallén’s
equation. Each current-carrying element is specified by the arrays zs for the starting
coordinates, ze for the endpoints, and EO for the electric field.

function [Iz, C, Imi] = EFIE(zs, ze, EO, a, kO0)
% Arguments:
% zs = z-coordinate for starting points
% ze = z-coordinate for ending points
% EO = the incoming Ez and Iz the total current on
% each element
% a = the radius of the wire
% kO = the wavenumber
% Returns:
% Iz = the current density along the wire
% ¢ = the constant for the homogeneous solution ’‘cos(k0xz)’
% Imi = the current density on the midpoint of the wire
xi = 0.5 - sqgrt(0.25-exp(-2)); % an integration parameter
n = length(zs) - 1; % number of unknowns equals
% the number of interior nodes
zobs = ze;
z1l = zs + xi*(ze-zs); % Integration points
z2 = ze + xi*(zs-ze); % Integration points
hh = (zs-ze)/2;
as4 = 4*xa"2; % Precomputation of constant
A = zeros (n+l) ; % System matrix
% Loop over elements
for idx = 1:n+1
z = zobs - zl(idx);
zZsq =z.72;
za = sqgrt(zsg+a”2);
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EIK = eval EIK(as4./(as4 + zsq))

templ = 2+EIK./(pixsgrt(as4 + zsqg)) + (exp(jxkOxza)-1)./za;

z = zobs - z2(idx);

zZsq =z.72;

za = sqgrt(zsg+a”2);

EIK = eval EIK(as4./(as4 + zsq))

temp2 = 2+EIK./(pixsgrt(as4 + zsqg)) + (exp(jxkOxza)-1)./za;

if (idx > 1)
A(:,idx-1) = A(:,idx-1)
+ hh(idx) * ((1-xi) *templ(:) + xisxtemp2(:));
end
if (idx < n+1)
A(:,idx) = A(:,1dx)
+ hh(idx) * (xixtempl (:) + (1l-xi)=*temp2(:));
end
end

lastrow = A(n+l,1:n);

for

i

= 1:n

A(n+l,i) = 0.5%(lastrow(i)+lastrow(n+l-1i)) ;

end

A(n+l,n+1) = cos(kOxzs (1)) ;

for

i

= 1:n

A(i,n+1l) = cos(kOxze(i));

end

Iz
Imi

o° o o o

o°

(A\EO") " ;

I(1:n);
I(round((n+1)/2));
I(n+1);

Evaluate the complete elliptic integral of the first kind
by means of a polynomial approximation [M Abramowitz and
I A Stegun, Handbook of Mathematical Functions, National
Bureau of Standards, 1965]

function EIK = eval EIK(x)

% Arguments:

% X = argument for K(x) in the interval 0 <= x < 1

% Returns:

% EIK = the value of the complete elliptic integral of

o°

the first kind (with an error less than 2e-8)

215
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Fig. 7.12 Induced current on
a wire with kL = 3,

ka = 0.02: solid curve - real
part and dashed curve -

imaginary part

a = [0.01451196212;
0.09666344259;

b = [0.00441787012;
0.12498593597;

ml =1 - X;

EIK = polyval(a,ml)

7 The Method of Moments

1A]

0.03742563713; 0.03590092383;
1.38629436112];
0.03328355346; 0.06880248576;
0.50000000000] ;

- polyval(b,ml) .xlog(ml) ;

The routine computes the current distribution /(z) and the constant C in Hallén’s
equation (7.55). Next, we present some numerical results, where, for example,
Fig. 7.12 can be generated by the following script.

n = 200; % Number of cells
kO = 1; % Wavenumber

a = 0.02; % Radius

L = 3.0; % Length

h = L/n; % Cell size

% Z-coordinate for starting and ending points of the segments

zs = zeros(1l,n);

ze = zeros(1l,n);

zs(1l:n) = linspace(-L/2, L/2-h, n);
ze = zS8 + h;

EO = ones(1l,n);

% Solve Hallen’s equation
[Tz, C, Imi] = EFIE(zs, ze, EO, a, kO);

% Plot the results
figure (1), clf

plot ([zs(1l) zs(l:end-1)+h/2 ze(end)],

[0 real(Iz) O],

'k-"), hold on
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Fig. 7.13 Induced current at
the midpoint of a wire as a
function of L for k = 1, and
a = 0.02: solid curve - real
part and dashed curve -
imaginary part

Imig [Al

0 5 10 15 20
L [m]

plot ([zs (1) zs(l:end-1)+h/2 ze(end)],
[0 imag(Iz) 0], 'k--")
xlabel (‘z [m]’), ylabel('I [A]')

7.4.5 Numerical Results

Fig. 7.12 shows the current distribution on a dipole with kL = 3 and ka = 0.02
when the dipole is resonantly excited. The calculation used the approximation (7.57)
for G, which has the correct singularity. The current has steep gradients near the
endpoints of the dipole, and here the charge density &« d//dz is singular. This is
similar to the singular charge distribution we found for electrostatics near the edge
of the parallel plate capacitor.

Fig. 7.13 shows the induced current at the midpoint of the wire as a function of
L for k = 1 and a = 0.02. Note the resonances around kL = nm, where n is an
odd integer.

One may wonder why there are no resonances when k L /7 is an even integer. Fig.
7.14 shows the current distribution on a dipole with kL = 5.9 and ka = 0.02 when
the dipole is not strongly excited. Nevertheless, the dipole has a natural oscillation
mode near this frequency. However, this mode has a full wavelength oscillation over
the wire and is odd around the center point. Therefore, it does not get excited by the
incident plane wave. The current induced on the wire for kL = 5.9 is even around
the midpoint of the wire, and this is not a resonant mode of the wire at this frequency.

Fig. 7.15 shows the current distribution on a dipole with kL = 9.2 and ka =
0.02 when the dipole is resonant. The natural oscillation mode of the dipole at this
frequency has a 1.5 wavelength, and this mode has a net coupling to the incident
plane wave.
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Fig. 7.14 Induced current on
a wire with kL = 5.9,

ka = 0.02: solid curve - real
part and dashed curve -
imaginary part

IA]
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z[m]
Fig. 7.15 Induced current on 0.6 :
a wire with kL = 9.2, el
ka = 0.02: solid curve - real 04l K \
part and dashed curve - K \\
imaginary part 02l / |
— Or /! \‘\ |
< \ ' \ !
T 02} | ,/
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Review Questions

7.4-1 Derive (7.50) from (7.41). What assumptions did you use?

7.4-2  Perform the derivations required to arrive at Hallén’s equation.

7.4-3  Write the Green’s function for 3D free space as a sum of a singular part and
a regular part. Show that the regular part is bounded as R — 0.

7.4-4  Describe the steps and assumptions required to arrive at (7.57).

7.4-5 What can happen if the Green’s function is too smooth; i.e., its singularity
is neglected?

7.4-6  Give an example of weighting and basis functions that can be used for
Hallén’s equation. Write down the corresponding system of linear equations.
7.4-7 Why does Fig. 7.13 show resonances at k. = nm only for odd integers n

and not even integers?
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Summary

* Consider a problem modeled by the differential equation Df = s, where D
is a differential operator, f is a field and s is the source. The Green’s function
G(r,r’) satisfies D,G(r,r’) = 8(r — r'), where D, takes derivatives with
respect to the unprimed coordinates. Given the Green’s function, the differential
equation can be written as an integral equation

f(r):/G(r,r’)s(r NdVv'.

For Poisson’s equation —eyV?¢ = p, we have

— the 3D Green’s function G(r,r ') = |r —r’|/(47ep) and
— the 2D Green’s function G(r,r ') = —1/Qmeo) In|r —r’|.

e The method of moments (MoM) solves an integral equation by a finite element
expansion; i.e., the sources s(r) ~ ), axsk(r) are expanded in terms of basis
functions si (r). Choose as many weighting functions wy (r) as there are basis
functions. Determine the coefficients o by multiplying the Green’s function
expression for f — fprescribed and integrating in space. Two usual choices for the
weighting functions are

— collocation with wy (r) = 83(r — r;), which evaluates the field at the point
r =ry,and
— Galerkin’s method wy (r) = sk (r).

The integrand of the integrals in a MoM formulation are often decomposed into a
singular part and a regular part. Preferably, the singular part is treated analytically
and the nonsingular part by numerical integration.

* Scattering from conducting bodies is often treated by MoM. In the Lorentz gauge,
the scattered electric field can be expressed as

E* = [V(V-A) +k*A],

Jweojio

where A is expressed in the induced surface current as

—jkR
A= 2‘_0/ LS,
T

where R = |r — r’|. Equivalently, E* = —jwA — V¢ with A as above and

¢ = ; /e_ij (r')dS’
T 4re R Ps ’
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where jwps+V-J; = 0. The equation ix(E*+E"¢) = 0is solved by the MoM
on the surfaces of the conductors. The current J; should be expanded in Rao-
Wilton—Glisson basis functions, since they have continuous normal components
at cell edges.

* The EFIE suffers from “internal resonances”. At these resonance frequencies,
the solution is wrong and the system matrix may become singular. The MFIE
has different internal resonances than the EFIE, and with a suitable linear
combination of the two integral equations, the internal resonances (and the
problems associated with them) can be avoided. The summed equation is called
the CFIE.

e Scattering from thin wires is often treated by the MoM combined with certain
approximations. If the surface current is replaced by a line current /(z) on
axis, the MoM does not converge as the resolution is increased, but increasing
wiggles appear. Short-wavelength oscillations are screened by the distance from
the center to the surface of the wire. Convergence is achieved by using a more
accurate Green’s function that keeps the correct singularity at » = r . Then, the
electric field produced by fine-scale variations in the current is better represented.

Problems

P7-1 Green’s functions are normally constructed so that the boundary conditions
are accounted for. Given the free-space Green’s function in (7.10), derive the
corresponding Green’s function that can be used for a problem with a PEC
ground plane at z = 0. Such a Green’s function allows for an algorithm that
avoids an explicit discretization of the ground plane.

P7-2  Show that the MoM matrix in (7.20) is symmetric and positive definite if
Galerkin’s method is used. How does this relate to the corresponding matrices
derived by the FEM?

P.7-3  In Sect. 7.2, compare the capacitor problem with and without the exploita-
tion of symmetries. How much computational resources, in terms of memory
requirements and floating point operations, can be saved by the use of symmetry?

P7-4  Can the algorithm in Sect. 7.2 be generalized to also include dielectric
materials? Discuss how the formulation would change.

P.7-5 Apart from sharp metal corners, are there other situations in which a reduced
order of convergence can be expected?

P7-6 Does the distance between two similar sharp metal corners influence the
order of convergence? What order of convergence do you expect from a problem
with two different sharp metal corners?

P.7-7 Use (7.36) to derive a Green’s function for the vector potential that includes
a PEC ground plane at z = 0. Perform the same derivation for the scalar potential
in (7.38). Given the fields
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E=-V¢—jwAd, B=VxA,

verify that the boundary conditions are satisfied at the ground plane.

P.7-8 Derive the EFIE directly from Maxwell’s equations.

P.7-9  For a 2D problem where a PEC cylinder is aligned with the z-axis, choose
basis functions for the current J(x, y), and charge distributions ps(x, y). Does
the choice depend on whether the TE or TM case is considered?

P.7-10  Show that (7.39) can also be written as E* = ¢>(VV-A +k>A)/jw with
A given by (7.36).

P7-11 Is the matrix (7.48) associated with the MFIE symmetric?

P.7-12  Write down the RWG basis functions for a rectangle.

P7-13 Try to solve (7.55) with only one basis function. What type of basis
function do you choose?

Computer Projects

C.7-1 Use the algorithm in Sect. 7.2 to compute the capacitance for two parallel
circular cylinders of radius a and a separation distance d, which also can be
solved for analytically. What order of convergence do you expect, and do your
expectations agree with the numerical experiment?

C.7-2  Evaluate (7.56) by brute force and compare the result to the approximation
in (7.57). Conclusions?

C.7-3 Use the approach described in Sect. 7.4 to implement the MoM for
scattering from thin wires. Reproduce some of the results presented in Sect. 7.4
for validation. Can you generalize your formulation and program so that you
can solve problems where three wires or more are connected at the same point?
What type of basis function do you need at such a junction and how do you test
the integral equation?

C.7-4 Use the approach described in Sect. 7.3 to implement the MoM for
scattering from metal surfaces. Discretize a PEC sphere by triangles and solve the
scattering problem. How does the solution compare with analytical results [5]?
Try to reproduce the problem with internal resonances.



Chapter 8
Summary and Overview

The goal of any analysis or optimization is to achieve sufficient accuracy with
minimum effort, where effort usually is interpreted as computational cost in terms
of computational time and memory requirements. However, there may also be a
considerable effort associated with other issues such as the programming of the
numerical algorithm or the construction of geometrical descriptions suitable for the
the computations at hand.

Faced with an electromagnetic problem, say an antenna in the vicinity of a human
body, we need to find a numerical algorithm that can yield sufficiently accurate
results without an excessive effort. Naturally, there are a number of aspects that
will guide the choice of computational method. For example, the electromagnetic
problem at hand may involve boundary conditions that are necessary for a realistic
model but difficult to treat for some computational methods. Complex materials
with nonlinearities, anisotropies, or dispersive characteristics can also eliminate
some numerical algorithms. The typical length scales of the problem is another
important aspect that should be considered. In linear problems, the wavelengths
present are determined by the frequency contents of the excitation and the materials.
Other length scales that should be considered are the skin-depth and the size of the
geometrical features present. Each of these length scales typically covers a certain
range, and the combination of them can yield a significant interval (which can
require certain approximations if a direct analysis is not feasible). In a typical low-
frequency application, for example, the wavelength is on the order of thousands
of kilometers, and the geometrical size on the order of meters (possibly down to
millimeters for laminations and thin wires) while the skin-depth is typically in the
range from millimeters to centimeters.

In some situations, one method is competitive for a part of the problem while
another algorithm is better suited for the remaining parts. It is then attractive to
combine the different algorithms to form a so-called hybrid method. Such methods
can be challenging to construct, and many attempts have failed to preserve important
properties of Maxwell’s equations. However, successful hybrid methods offer
possibilities to treat significantly larger classes of problems.

T. Rylander et al., Computational Electromagnetics, Texts in Applied 223
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Table 8.1 Scalings for the
number of operations with 3 >
frequency f and the number 2D / Niof Nii f log f

of iterations N;, 3D ft Nii f* Ni, f?log f

FEM/FDTD MoM-matrix MoM-MLFMA

One of the major challenges in CEM is to model systems that are electrically
large, that is, for which the spatial extent D is many wavelengths A in three
dimensions. In this setting, it is useful to compare how the number of floating-
point operations and the memory requirements for the different methods scale with
the wave frequency f for a system of fixed spatial extent (where we will consider
objects with geometrical features that are on the order of the wavelength or larger).
Table 8.1 summarizes the scalings with frequency for the methods treated in this
book and the MLFMA extension of the MoM.

It should be pointed out that there are multipliers in front of the scalings in
Table 8.1, and that these coefficients can be quite significant. For instance, the
multiplier is large for the MLFMA (which is a version of the MoM), so that the
application problems need to be quite large before this method is competitive.
However, the MLFMA is the most competitive full-wave method for very large scale
scattering problems, e.g., to compute the radar cross section for an entire aircraft.
In this chapter, we present a more detailed discussion of these scalings. Also, we
briefly discuss a selection of other methods. There is a large number of numerical
algorithms in CEM, and it is beyond the scope of this book to give a complete
account.

8.1 Differential Equation Solvers

Differential equation solvers are used for both frequency- and time-domain compu-
tations. They can be applied to both driven problems and eigenvalue problems.

For differential equation solvers in frequency domain, one often uses iterative
solvers (especially in three dimensions), and brief introductions to this subject
are given in Appendices C and D. Generally, the number of iterations needed for
convergence scales as the square root of the condition number « of the matrix, where
the condition number is the ratio of largest to smallest eigenvalues of the matrix.
The smallest eigenvalues of the curl-curl or Laplace operator are independent of
the resolution. The largest eigenvalues of these second-order operators scale as
1/ h?; see, e.g., (3.17). Given that the frequency f dictates the cell size h o 1/f,
the largest eigenvalue of a second-order operator scales as f2. Therefore, the
condition number K = Apax/Amin & f2, and generally, the number of iterations
scales as v/k = f. The matrix generated by a differential equation formulation
is sparse, so the number of operations per iteration is proportional to the number
of unknowns, i.e., o< f 2 and « f 3 for 2D and 3D problems, respectively.
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Therefore, for frequency-domain FEM (or finite difference methods) the total
number of operations scales as 3 in 2D and f* in 3D (for a single frequency).

For the differential equation solvers in time domain, the time-step varies as i
1/f, and for a fixed time interval the number of time-steps scales as 1/At o« f.
Therefore, the number of operations for time-domain methods (such as the FDTD)
and the frequency-domain methods (e.g., FEM) scales as f x f2 = f2in 2D and
f x f3 = f%in 3D. But the time-domain method gives a complete frequency
spectrum, as compared to a standard frequency-domain method that requires one
computation for a single frequency.

In the following, unless stated otherwise, we focus on the scalings for 3D
methods.

8.1.1 Finite-Difference Time-Domain

To keep a certain relative phase error, the FDTD needs a certain number of points per
wavelength A/ h; 1% phase error requires about 18 cells per wavelength. To keep
this accuracy, the number of cells in any direction, D/ h, scales as f, while the
maximum time-step scales as Af o« h o« f~'. Consequently, the total number
of operations scales as f*. If one asks for a fixed absolute phase error across the
whole system, the number space steps scales as /2, and the number of operations
becomes O( f©). In this case, higher-order methods are more advantageous. So far,
higher-order methods are not used very much for electromagnetic problems, but
work in this area is underway.

Time-domain methods generate time sequences that can be Fourier transformed
to give a full frequency spectrum in O( f*) operations. This, plus the simplicity
of the FDTD, are the main reasons for its popularity. The major drawback of the
FDTD is that it is tied to structured grids, which force oblique boundaries to appear
as “staircases.”

8.1.2 Finite-Volume Time-Domain

Finite volume time-domain (FVTD) methods generate discrete equations by inte-
grating the Ampere and Faraday laws over each grid cell [60,94]:

En+l —_ E"
/ - — = qv = ¢ Ax H'2dS — | Jmt24v,
e At e VP

I{n+l _ }In—l
/ u;dV = —¢ nx E"dS,
Vi At 4
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where superscripts indicate time. Two grids are used: the “primary” and “dual”
grids. The electric field is defined on the vertices of the primary grid (cells V},),
and the magnetic field is defined on those of the dual grid (cells V,), the vertices of
which are the centers of the primary cells. Unlike the FDTD, the FVTD does not
conserve electric and magnetic charges. Madsen and Ziolkowski [47,60] constructed
an “FDTD correction” to accomplish this.

The FVTD is explicit and therefore efficient, as long as the cells are of reasonably
uniform size; otherwise, very small time-steps are required, and they degrade the
performance of the method. The primary grid can be made of tetrahedra, which gives
the method good ability to model complex geometry. A drawback of the FVTD is
the appearance of a weak “late time” instability [47, 60, 95]. This can be prevented
by adding dissipation, which, however, may decrease the accuracy of the algorithm.
The operation count scales the same way as for the FDTD.

8.1.3 Finite Element Method

The finite element method easily handles complex geometry, and FEM is used both
in frequency- and time-domain analyses. Together with standard iterative solvers, a
frequency-domain calculation requires O( f*) operations per frequency. The scaling
in time-domain calculations is the same as for the FDTD, but time-domain FEM
typically involves at least a factor of 10 more operations.

A valuable property of the finite element method, in comparison to the FVTD,
is that both the mass matrix and the stiffness matrix are symmetric and real,
which guarantees that the eigenvalues w?> of V x u~!'V x E = w?¢cE are real.
Combined with a suitable time-stepping scheme, this leads to a stable algorithm.
The symmetric, or reciprocal, property of the FEM appears not to hold for finite
volume discretizations. In fact, lack of symmetry is a likely explanation of the late-
time instability observed for many schemes.

8.1.4 Transmission Line Method

Transmission line methods (TLM) work with combinations of electric and magnetic
fields, represented as pulses propagating on a 3D grid of transmission lines. At the
intersections, the nodes, the pulses are scattered according to scattering matrices S.
By imposing the condition that S be unitary, energy conservation can be enforced,
and hence stability achieved.

TLM based on so-called expanded nodes was described by Hoefer [37].
An improved, symmetrical condensed node was introduced by Johns [43].
Celuch-Marcysiak and Gwarek [17] proved the equivalence of a transmission
line network with a circuit model for a nonuniform grid in 2D. An equivalence with
an FDTD formulation was established on a uniform 3D grid by Chen et al. [18].



8.2 Integral Equation Solvers 227
8.1.5 Finite Integration Technique

The finite integration technique [90] (FIT) is based on the integral representation of
Maxwell’s equations. The FIT reduces to the FDTD scheme on grids consisting of
cubes, and for that case, the derivation of the FIT is very similar to the integral
representation in Sect. 5.2.4. The fields are represented in terms of electric and
magnetic voltages (organized in the vectors & and h, respectively). These are related

to the electric and magnetic fluxes (organized in the vectors d and l_),_ respectively)

by the constitutive relations (expressed as d = M.e and h = MM—IB). Maxwell’s
equations (in source-free space) can then be written in the form

d =
Ce = ——b,
¢ dt
—_  d =
Ch = —d.

dt

For wave problems, the time derivatives are discretized in the leap-frog sense. Here,
C and C are the curl operators (matrices with elements 0 or 1) on the primary

and dual meshes, respectively. Similarly, Gauss’s law can be stated Dd = q, and

the condition of solenoidal magnetic flux density as Db = 0, where D and D
represent the divergence on the primary and dual meshes, respectively. The matrix
corresponding to the gradient operator is then the transpose of the divergence matrix.
The matrix operators correctly reproduce well-known properties; for example, the
zero divergence of the curl is DC = 0 and the zero curl of the gradientis CDT = 0.
This allows for various manipulations; for example, the vector wave equation can
be written as CM,,—1 Ce + M. d%¢/dr* = 0.

Weiland and coworkers [71, 83] have investigated stable local Leﬁnement and
nonorthogonal meshes for the FDTD scheme. The property C = CT is important
for stability, and the (typically) diagonal matrices M and M,,—1 allow for explicit
time-stepping. Thus, the FIT has the same scalings as the FDTD, but it allows for
curved meshes and local refinement combined with stable time-stepping.

8.2 Integral Equation Solvers

For integral equations, the number of unknowns is much smaller than for volume
discretizations such as FDTD or FEM, but the matrix is dense. The integral
formulation is nevertheless superior for large problems because of a rather recent
development called the fast multipole method (FMM). The hierarchical version
of this method is called the MLFMA, multilevel fast multipole algorithm [20].
The operation count then becomes & N;; f log f in 2D and N;; f?log f in 3D.
This is superior to the differential equation solvers if N;; < O(f?), which is
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generally the case. The drawback of the MLFMA is that it is quite complicated
to program, and in particular, to parallelize. Integral equation methods, or the
method of moments, solve either the EFIE, MFIE, or the CFIE [54] on surfaces
of conductors and dielectrics.

8.2.1 Frequency-Domain Integral Equations

In frequency-domain formulations, both the EFIE and the MFIE may suffer from
internal resonance; this can be avoided by using a suitable linear combination of the
two equations: the CFIE.

A main advantage of the MoM is the low number of unknowns, which scale
with frequency as O(f?). The drawback is that the matrix is dense. Therefore,
if one attempts direct solution by LU decomposition, the operation count has a
very unfavorable O( f°) scaling. In geometries that are only partly 3D, this can be
improved on by Fourier transformation in the main direction of symmetry [45] or
by using the Toepliz property of the MoM matrix to apply CG-FFT techniques [54].
However, for truly 3D problems other methods for solving the linear system are
needed.

Iterative solvers, such as the conjugate gradient (CG) method or Krylov methods,
improve the scaling. The iterative algorithms are based on matrix—vector multi-
plications, and with a dense matrix a conventional multiplication takes O(f*)
operations. The total operation count then becomes O(N;, f*), where the number
of iterations N;; can be hard to predict. Song and Chew [77] report N;; o f /2
for problems with only closed surfaces. Thus, the scaling becomes f** for each
frequency, which is not competitive with differential equation solvers. However,
recently several methods have been developed to reduce the number of operations
for a matrix—vector multiplication, that is, in computing the field from given sources.

8.2.1.1 Fast Multipole Methods

A very successful scheme to replace the matrix multiplication is the fast multipole
method (FMM) introduced by Rokhlin [61, 62] and developed into the multilevel
fast multipole algorithm (MLFMA) by a group at the University of Illinois [78].
The FMM is described in an accessible way in [21]. The first step is to divide
the simulation region into boxes, each containing a moderate number of grid cells.
Fields from grid cells in the same, or an adjacent, box are computed in the standard
way. The fields produced by sources farther away are computed by first generating
a multipole expansion for the sources, then projecting this onto a set of plane waves
in the observation box, from which one obtains the fields at each observation point.
The savings come from the fact that only a moderate number L of terms are needed
in the multipole expansion. A semi-empirical formula for the number of terms
needed to achieve double precision accuracy is L = kD + 101In(x + kD), and
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the required number of plane waves scales as L?. Minimizing the total number of
operations, one finds that the optimum number of elements per box scales as the
square root of the total number of elements N and that the total operation count
scales as N3/2. The MLFMA repeats this algorithm in a hierarchical way on all
scales and achieves a scaling O (N log N). This algorithm has been implemented in
the FISC code [79].

A nice analogy of the FMM is a telephone network. If every one of N customers
is connected by a direct line to every other customer, the number of connections
scales as N2. However, by introducing “hubs,” the number of connections can be
reduced. To make a telephone call, a customer (the source point) calls the local hub
(the multipole expansion), which calls another hub (the plane waves), which finally
calls the recipient of the call (the observation point).

We can conclude that for 3D problems the FMM gives an O(f?3) and the
MLFMA an O(f?log f) scaling for the operation count per iteration. These
represent significant reductions from the O( f*) scaling for straightforward matrix—
vector multiplication. If the number of iterations scales as f'/2, the frequency-
domain MoM is clearly competitive with time-domain differential equation solvers
for large problems. However, it takes a problem of significant size for the FMM or
MLEFMA to be competitive, with at least several thousand unknowns. The FMM and
MLEMA also imply large savings in storage because the full matrix is never stored.

8.2.1.2 Other Fast Methods

The impedance matrix localization technique (IML) [15, 16] is a matrix algebra
routine that transforms to a basis for the source distribution that radiates into narrow
beams. This makes the MoM matrix sparse. The method can be incorporated in
existing MoM programs to sparsify an already computed matrix.

Also, wavelet transforms have been used in MoM calculations [30, 86]. Wavelet
transforms work excellently in static problems where the integral kernel is nonoscil-
latory, and reduce the operation count to O(N log N). For electrically large systems
(D > A) with oscillatory kernels, Wagner and Chew [86] found that the standard
wavelet transform reduces the number of operations only to N2, with 8 ~ 0.1.
More recently, Golik [30] tested discrete wavelet packet similarity transformations
together with thresholding of the matrix elements. As the system size was increased,
with a fixed number of cells per wavelength, the number of nonzero matrix elements
scaled more slowly than N?; the numerical results suggested an O(N*/3) scaling.

8.2.2 Time-Domain Integral Equations

Time-domain integral equations (TDIE) is a relatively new area of research. The first
approaches straightforwardly discretized the time-domain form of the EFIE [57,66]
and the MFIE [76] in space and time. The time-domain MFIE can be written as
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S’ (8.1)

RAJ(r'.0)\ R
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2ad (r, 1) = 27rﬁxH,-(r,t)+ﬁx/ (J(r’,r)
s

where T = t — R/c is the retarded time and R = |r — r’|. In the discretized
version, the solution has to be saved over the time that it takes a light wave to
traverse the entire simulation region, so the storage requirement for the solution
scales as f3 (as for a volume discretization). The matrix storage scales as f*, so
that for very large problems the matrix may have to be recomputed, or some fast
scheme is needed for the field calculation. The operation count scales as f°, which
is worse than for differential equation solvers.

The early TDIE algorithms were unstable and required dissipation for stabil-
ity [76, 85]. This problem appears to have been overcome recently for the EFIE
by a variational formulation together with strict FEM techniques both in space and
time [1].

Another TDIE solver has been developed by Walker and coworkers [11, 25]
for the MFIE. Applying finite element techniques to (8.1), Bluck and Walker [11]
derived an algorithm that is somewhat implicit. The algorithm needs to be implicit,
because on every new time-level, “new,” or unknown, currents enter into the surface
integral in (8.1) within regions of radius cAf¢ around each observation point.
The resulting implicit algorithm was found to be stable if the time-step exceeds
the time it takes a light wave to traverse the largest spatial element. (The degree
of implicitness increases with the time-step.) This code has been used to compute
scattering data when the scatterer is illuminated by a short pulse of duration oc f~';
see [25]. In this mode of operation, the operation count scales very favorably
with frequency. This is because the number of elements, both in the region where
one needs to integrate (illuminated source points) and in the region where the
resulting field is significant (illuminated observation points), scales only as f. It is
superfluous to calculate near-vanishing fields in the nonilluminated regions, and
this strongly reduces the operation count if the incoming pulse is short (and the
scattering surface is convex so that there are no multiple reflections).

8.3 Hybrid Methods

The different basic techniques used in CEM all have their strengths and limitations.
One way to achieve performance that is better than two individual methods is to
combine them into a so-called hybrid method. This can be difficult but very useful
once a good and reliable formulation is found. There is a vast number of hybrid
methods, and here we mention only a few of them in order to introduce the concept
of hybridization.

The FDTD is efficient, but has difficulties with complex geometry. Therefore,
hybrid methods have been formulated to combine efficiency with the ability to
treat complex geometry. The hybrid schemes combine the FDTD with either
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an FVTD [60, 94, 95] or time-domain FEM [50, 92]. These methods typically
experience late-time instabilities [50, 95]. Rylander and Bondeson formulated a
stable hybrid scheme [63] that combines the FDTD with FEM on unstructured
meshes. Where the structured and unstructured grids join, the mass and stiffness
matrices are constructed in a special way to preserve symmetry. This makes it
straightforward to achieve stability without dissipation. The scheme uses an implicit
solver on the unstructured grid. It has been verified that the algorithm is stable for
time-steps up to the stability limit of the FDTD. The advanced TLM, FIT, and hybrid
FEM-FDTD are efficient and stable solvers that can handle complex geometry.
The FEM-FDTD combination may have an advantage in being more easily coupled
to standard grid generators and is more adequate for adaptive mesh refinement.

When differential equation solvers are applied to problems in unbounded
geometries, the computational region must be truncated. Several methods for
radiative boundary conditions have been formulated for differential equations
solvers, where the perfectly matched layers [9, 55] is the preferred choice in most
cases. For electrically very large problems, the volume discretizing solvers find
competition from recently developed integral equation methods, which are well
suited to analyze objects in free-space. For open-region problems that involve
objects with complicated materials, it can be useful to use a FEM for the object
and its immediate surrounding, combined with a MoM for the remaining free-space
environment. It is feasible to construct frequency-domain formulations that combine
the MoM and FEM. These are often referred to as finite element—boundary integral
formulations, or FE-BI for short. The FE-BI formulation by Botha and Jin [13] is
based on variational principles for the continuous quantities, and it yields symmetric
matrices that preserve reciprocity explicitly, which reflects important properties of
Maxwell’s equations.



Appendix A
Projects

This appendix features five computer projects that cover the most important aspects
of the theoretical material in this book: (1) convergence and extrapolation, (2) finite
differences in the frequency domain for a 1D electromagnetic problem, (3) finite-
difference time-domain for a 3D electrodynamic problem, (4) finite elements for a
2D eigenvalue problem, and (5) method of moments for a 2D electrostatic problem.
Each computer project is presented in terms of a continuum formulation of the
physical situation, and for some of the problems a part of its numerical treatment
is also included. Next, a number of assignments are listed such as the derivation
of the complete numerical scheme, the computer implementation, and a sequence
of numerical tests. The assignments can be assessed by, for example, (1) a written
report that is reviewed, (2) oral examination with or without access to a computer,
or (3) a presentation in front of a larger group of students and teachers. Access
to a computer allows for an exploratory and interactive testing of the computer
implementation that may be difficult to achieve otherwise.

In the written or oral assessment, it is important that students attempt to
provide mathematical and logical arguments to support the choices, derivations,
implementations, results, and conclusions that constitute the computer project work.
Such a presentation could consist of the following parts:

e Description of the continuum problem.

* Description of the numerical algorithm by means of suitable derivations together
with their computer implementation. Note that it is essential that the computer
implementation be well documented: (1) input variables for each function, (2)
output variables for each function, (3) purpose and usage for each function, and
(4) some sort of overall description of the program and its functions and scripts.

e Presentation of the numerical tests together with interpretations of the results
that relate to the theoretical foundation in terms of, for example, the order of
convergence, extrapolation, and estimation of the numerical error.

* Conclusion of the computer project work, which may include (1) brief summary
of the work, (2) the main results, and (3) important implications of these results.

T. Rylander et al., Computational Electromagnetics, Texts in Applied 233
Mathematics 51, DOI 10.1007/978-1-4614-5351-2,
© Springer Science+Business Media New York 2013
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A.1 Convergence and Extrapolation

A.1.1 Problem Description

In electrostatic problems, the surface charge density is singular close to sharp metal
edges or corners. For a computation of the capacitance, this is problematic when
the total charge on such a conducting body must be computed to determine the
capacitance. Consider a situation with a given surface charge density that can be
described without errors by means of an analytical formula. For example, the surface
charge density close to the edge of a parallel plate capacitor varies as x ~(*=#)/27=F)
where x is the distance to the edge and f is the angle subtended by the metal edge
as described in Sect. 7.2.3. This leads to integrals of the type

b
/ xédx, (A.1)

where 0 < a < b. Here, the case a > 0 yields a regular integrand and, from
a mathematical viewpoint, this type of integrand features the general behavior of
the surface charge distribution on a smooth metal surface. Furthermore, a = 0,
in combination with £ < 0, yields a singular integrand, which corresponds to the
surface charge distribution in the vicinity of a sharp metal edge. (Note that according
to the derviations in Sect. 7.2.3, an infinitely thin metal plate with B = 0 yields
& = —1/2, which is the smallest possible value for & for such an electrostatic
situation. However, we also investigate other cases, such as £ = —3/2, subsequently
since it provides additional understanding of some mathematical difficulties that are
associated with singularities.)

A.l1.2 Assignments

Implementation

Write a program that evaluates the integral (A.1) by means of midpoint integration.
The program should allow for midpoint integration with n subintervals of length
h = (b — a)/n. In what follows, the value of the numerically evaluated integral
is denoted by Imiap(%). The analytically calculated value of the integral (A.1) is
denoted /.

Numerical Test #1

Execute your program witha = land b = 2 for§ = -3/2,—-1/2,1/2,3/2.

* Evaluate the absolute error e(h) = [Imiap(7) — Io| as a function of the resolution
controlled by A, where you should use the expression for /; that you get
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from analytical integration. Does the computed result converge to the analytical
answer? What is the order of convergence? Does the order of convergence agree
with what you expect from an analysis of the problem?

Extrapolate the numerically computed result to zero cell size: fit the function
Inodel(h) = c¢o + cuh® to the computed data under the assumption that the
constants ¢y, ¢y, and « are unknown. How well does the model Iiodel(F)
compare with the computed data Iniqp(2)? Compare the extrapolated value
co and the estimated order of convergence o with the analytical results. Test
your extrapolation method on different sets of computed data. How do the data
influence the possibilities for accurate extrapolation?

Numerical Test #2

Execute your program witha = Oand b = 2 for & = -3/2,-1/2,1/2,3/2.

Evaluate the absolute error e (%) = |Imiap(h) — Io| as a function of the resolution
controlled by h, where you should use the expression for I, that you get
from analytical integration. Does the computed result converge to the analytical
answer? What is the order of convergence? Does the order of convergence agree
with what you expect from an analysis of the problem?

Extrapolate the numerically computed result to zero cell size: fit the function
Inmogel(h) = c¢o + cuh® to the computed data under the assumption that the
constants ¢y, ¢y, and « are unknown. How well does the model Iyode(/)
compare with the computed data Inig,(7)? Compare the extrapolated value
co and the estimated order of convergence o with the analytical results. Test
your extrapolation method on different sets of computed data. How do the data
influence the possibilities for accurate extrapolation?

A.2 Finite Differences in the Frequency Domain

A.2.1 Problem Description

Consider an electromagnetic plane wave that propagates toward a large flat window
of glass, as shown in Fig. A.1. We wish to compute the reflected and transmitted
wave. The glass window has a thickness of 2a.

The material parameters are €(x), pu(x) = o, and o(x) in the glass, where

—a < x < a. The medium outside the window is air with €(x) = €y, u(x) = o,
and o(x) = 0 for |x| > a. The total electric field satisfies the differential equation

_dPE(x)

Ix2 + Ko [ja)(f(x) - a)ze(x)] E.(x) =0. (A.2)
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Fig. A.1 Glass window of ]
thickness 2a with an incident
field Ei, reflected field £,
and transmitted field E!

E

N> E}

A.2.2 Assignments

Here we introduce some of the techniques used in electromagnetic scattering
problems. One such technique is to impose the incoming wave by matching
an expression for the incoming wave to the numerical solution in the vacuum
region. The matching is done in a vacuum (outside the scatterer) where we know
analytically how the incoming field behaves. In a similar manner, the reflected and
transmitted waves can be described in the vacuum region. Following this procedure
for our 1D problem we can do the matching of the discretized interior region to the
fields outside at two points x = +b. We need to have b > a, so that the matching
points are in the vacuum.

Formulate Boundary Condition

The first task is to derive the appropriate boundary conditionsat x = —b and x = b
analytically. Here is some guidance.

Let the incident field be Ezi(x) = E(i) exp(—jkox). Introduce the reflected field
as El(x) = E{exp(+jkox) and the transmitted field as E!(x) = Eexp(—jkox).
According to these expressions, the total field is (1) the superposition of the incident
and reflected field for the region x < —a and (2) equal to the transmitted field for
the region x > a. Equation (A.2) yields the dispersion relation kg = w/c¢ for the
vacuum region, where ¢ = 1/.,/€lo.

What is a priori known and unknown in the expressions above? How can this
information be used to formulate the appropriate boundary conditions at x = —b
and x = b, respectively? The boundary conditions should only involve already
known information (such as the incident wave) and the desired solution E, and
its first derivative, where E, is the total electric field. (Consequently, we wish to
find boundary conditions that do not explicitly involve the scattered electric field
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since this is unknown before the scattering problem is solved.) Note that b is quite
arbitrary as long as it is larger than a.

Generate Grid and System Matrix

We use two different grids:

G1 The first grid is chosen such that the material interfaces x = +a fall in between
grid points. We use the grid points x, = (n+ %)Ax with Ax = a/N, aninteger
N >3,andn = —2N,-2N +1,...,2N — 1.

G2 The second grid is chosen such that the material interfaces x = %a fall on grid
points. We use the grid points x, = nAx with Ax = a/N, an integer N > 3,
andn = —2N,-2N +1,...,2N.

These grids discretize a region of (roughly) length 4a with at least three grid points
in each vacuum region outside the window.

Denote the unknowns at the grid points by ¢, i.e., E;(x,) = {,. Discretize the
differential equation (A.2) and your boundary conditions using finite differences,
both with an error that is proportional to 4%. The boundary condition involving
no higher than first derivatives is best centered on the half-grid. Alternatively, a
numerical boundary condition can be formulated on the integer grid if more than
two grid points are used.

Using the boundary conditions and the differential equation, we have a system
of linear equations Az = b to solve, where z = [{}, (5, ..., Cng]T and Ny, is the
number of grid points. Write down the matrix A and the right-hand-side vector b for
the special case where N = 3 for the discretization G1. What are the similarities
and differences when you follow the same procedure for the discretization G2? What
may the implications be and how can you handle this?

Find a way to compute the reflection coefficient R and transmission coefficient
T from the numerical solution, where the following definitions are used:

Ej

R=-2 (A3)
E,
Ey

T =29 (A4)
E,

Implementation

Implement your numerical algorithm for an arbitrary N > 3 and both discretizations
Gl and G2. Given input variables that describe the physical situation and its
discretization, the implementation should yield the reflection and transmission
coefficients as output variables.
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Numerical Test #1

Test your implementation on the case where the glass window has constant relative
permittivity €, and conductivity o. The reflection and transmission coefficients can
be calculated analytically in this case and are given by

_ (kg ;klz)e

R j2ak0(ej4ak1 _ 1)

koki
T = —OAl4eﬂ“<ko+kl>, (A.5)

where A = (ko + k1)%e/** — (ko — k)%, ko = w/co, and k| = ,/e,.ké — jouoo.

Use the thickness @ = 2 cm in combination with the constant material parameters
€ =2.5and o = 0.02 S/m.

For the frequency @ = 3 - 10°rad/s, compute R and 7 numerically on the
discretization G1 for a set of appropriately chosen values of N. Do the numerically
computed values of R and T converge toward the analytical values? Which order of
convergence do you find?

Numerical Test #2

Now repeat the preceding test for the discretization G2. Did this change the conver-
gence properties? If so, why? Incidentally, how do you choose the permittivity at
x = £a?

Numerical Test #3

Also, compute R and T as functions of frequency between 0.1 and 10 GHz. You can

use your favorite discretization (G1 or G2) with a fixed value of N. How does the
error change with respect to the frequency? Explain your findings.

Numerical Test #4

Compute R and 7 as a function of frequency between 0.1 and 10GHz for
an inhomogeneous window in the region |x| < a with the following material
parameters:

o(x) =0.02p(x),
€(x) =€ [1 4+ 5p(x)],
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where 5
po=1-(3)

is a parabolic profile with p(£a) = 0.

A.3 Finite-Difference Time-Domain Scheme

A.3.1 Problem Description

Waveguides and filters are important components of many complex microwave
systems. Here we consider the characteristic features for some relatively simple
structures that provide a filtering functionality in waveguides. The quantities of
interest are the reflection and transmission coefficients as a function of frequency. In
what follows, we will limit the discussion to waveguide structures with rectangular
cross sections and a finite-difference time-domain (FDTD) scheme [80, 93].

The FDTD model deals with the part of the waveguide that contains the filtering
structure. At each of the two ends of the filter, a shorter section of a rectangular
waveguide is attached and truncated by a port for computational modeling purposes.
(The physical waveguide would normally extend beyond the ports, but that part is
not included in the computational model considered here.)

Modal Representation for a Rectangular Waveguide

In an air-filled rectangular waveguide with the transverse dimensions L, and L,
we can decompose the electric and magnetic fields into transverse electric (TE) and
transverse magnetic (TM) modes; see [19] for a detailed discussion. Each mode has
its own propagation constant

@

2
ke=(2) -4, (A.6)
c
where k,2 are the eigenvalues of the transverse problem for H, (TE case) or E, (TM

case), i.e.,
) Ny 2 nym 2
ki=— — . A7
f ( L, ) " ( L, ) A

For TE modes, n, and n, are nonnegative integers that satisfy n, +n, > 0. For TM
modes, both 1, and n,, are positive integers.
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Fig. A.2 Modal field of TE;, mode

Numbering the modes from 1 to co, we can express the electric field in the wave-
guide as a superposition of both TE and TM modes by

E(x.y.z.0) =Y Vu(z.1) en(x.y). (A.8)

m=1

where V,,(z,t) is the modal amplitude, or voltage, of mode m (which can be either
a TE or a TM mode) and e, (x, y) is its modal field. The modal field, e, (x, y), for
the TE o mode is shown in Fig. A.2.

In what follows, we will consider situations where the frequency range of interest
and the dimensions (L, L) of the waveguide are chosen such that k. is real for the
TE ¢ mode and imaginary for all other modes. Thus, the only mode that propagates
is the TE o mode. All the other modes are evanescent and decay exponentially along
the waveguide axis. Consequently, the TE;yp mode is the only mode present at a
sufficiently large distance from any source or irregularity in the waveguide that may
excite higher-order modes.

Computation of Scattering Parameters

A filter can be characterized in terms of its reflection and transmission coefficient,
and in a more general setting, these are often referred to as the scattering parameters,
or simply the S-parameters. Fig. A.3 shows a rectangular waveguide (without
the filtering structure) that is truncated at two ports for computational modeling
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Port 1 Port 2

S1,in

82, out

S1,0ut \

Fig. A.3 Illustration of incoming and outgoing waves

purposes. The S-parameters can be computed given the relation between the
amplitudes of the TE;p mode at the ports: (1) an incident wave is launched at one
port, (2) the reflected wave is recorded at the same port, and (3) the transmitted wave
is recorded at the other port.

Let s1in(f) be the amplitude of the incoming TE;, wave at port 1, and let
S1.0ut(?) and s7 oyt (¢) be the amplitudes of the outgoing TE;( waves at ports 1 and 2,
respectively. The Fourier transform of these signals gives S, (@), Si.ou(®), and
S out(@). The relation between the amplitudes at the two ports is usually described
by the so-called S-parameters:

S out

Sin(@) = 5}1—((;")) (A9)
S out

S (@) = ;l—((ww)) (A.10)

The scattering parameter S; is recognized as the reflection coefficient and S,
as the transmission coefficient. A further extension to an n-port network is rather
straightforward and for such cases it is convenient to represent the .S-parameters in
matrix form, an n X n scattering matrix S with the elements S;;.

Numerical Modeling

The interior of the waveguide is discretized by an FDTD grid [80, 93]. A wave
can be launched at one of the ports and then propagated through the waveguide by
means of Maxwell’s equations represented by the FDTD scheme applied to the grid
in between the ports. Consequently, a filtering structure can be modeled in detail by
the FDTD scheme and its reflection and the transmission coefficient computed from
the fields at the ports.

The special type of boundary condition that is required at the ports is already
implemented in the MATLAB program provided as a starting point for the tasks
below. However, it is useful and interesting to have some understanding of the
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port algorithm. The algorithm is briefly summarized as follows (see [3] for further
details):

e At each time step, n, we extract the transverse electric field one cell away from
the port boundary. Let us denote this by E ,|’1’,’q’ n.—1- Clearly, this field can be
represented as a superposition of waveguide modes that propagate along both
directions of the waveguide. Subsequently, we consider for simplicity a port that
does not have an incident wave.

 With this result we can compute the voltages V;, |}, _; of the different modes m
one cell away from the boundary: *

Voot = D Ax Ay Elly 4 vy - €mlpg- (A.11)
P9

For a waveguide port without an incident field, the decomposed field only
consists of waveguide modes that are propagating away from the interior of the
computational domain. For a port with an incident field, we could easily compute
the incident field at the plane one cell away from the port boundary. Then we
subtract the incident field from the total field to get the field associated with
modes that are propagating away from the computational domain.

e Each mode can be modeled by a 1D wave equation:

92V, 1 9%V,
— = 2 _nv, =0, A.12
072 cg 0t mm ( )
which can be discretized as
Vit Th = AV} + B}y 4 Viull—) = Vil (A.13)

where V| = V,,(rAz, nAt) and

B — (C()Al)z ,
Az

A =2-2B— (coAt hy)*.

The impulse response /,,|" = V,,|] for this 1D wave equation can be computed
from Eq. (A.13). Given this impulse response, we can use a 1D convolution to
compute the voltages on the boundary that coincides with the port:

Viully, = Vil g % Il = Vialy 2y Il (A.14)
j=1

e Now, we know the modal voltages on the port boundary. The total electric field
on the boundary is a linear combination of the modal fields



A.3 Finite-Difference Time-Domain Scheme 243

El, N = ZV I\, €mlpa: (A.15)

and this solution is explicitly written into the FDTD grid before the next update
of the interior grid points that are located inside the computational domain.

Implementation: A Point of Departure

The following supporting MATLAB script and functions are set up such that they
can be used directly as a basis for the solution of the assignments that follow. Here
is a brief description of each MATLAB file:

* Main.m: Setup of the problem with allocation of memory for variables that store
the electromagnetic fields, port information, excitation pulse, etc. Given the setup
of the computational problem, the routine contains a loop that should include
the update expressions of the FDTD scheme in the bulk of the computational
domain. Further, extraction of the scattering parameters and addition of possible
metal objects are included in this routine.

e ComputeTEModes.m : Computes the transverse electric field for the TE
modes and the corresponding cutoff frequencies associated with the FDTD
discretization.

* ComputeTMModes.m : Computes the transverse electric field for the TM
modes and the corresponding cutoff frequencies associated with the FDTD
discretization.

e ComputeIR.m: Computes the impulse response for all the modes included in
the analysis.

If you prefer to use another programming language, these MATLAB files could
also be used as a point of departure. In that case, you will have to implement this
functionality in the language of your choice. It deserves to be emphasized that if
you prefer to work with MATLAB, it would be useful to read and study programs
written by other programmers since that would give you the opportunity to develop
your programming style and find new solutions to programming problems that you
may encounter. In what follows, it is assumed that the functionality provided by
Main.m, ComputeTEModes .m, ComputeTMModes .m,and ComputeIR.mis
in place.

A.3.2 Assignments

Consider an empty waveguide with the dimensions:

L, =40.0mm, L, =22.5mm,and L, = 160.0 mm. (A.16)
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The waveguide ports are located at z = 0 mm and z = 160.0 mm. The waveguide is
excited by a TE|yp mode at z = 0 by a Gaussian-modulated sinusoidal pulse, which
contains energy in the frequency interval from 4 to 7 GHz. The port located atz = 0
is transparent to the reflected field, which essentially corresponds to the rectangular
waveguide’s continuing indefinitely for the region z < 0. Similarly, the port located
at z = L is transparent to the transmitted field, which continues to propagation
in the positive z-direction as if the waveguide continued indefinitely for the region
z> L.. The MATLAB implementation (which may be used as a point of departure)
is set up for these particular dimensions and this excitation.

Implementation

Implement the update loops for Faraday’s and Ampere’s law according to the FDTD
scheme in three dimensions for an empty rectangular waveguide. It is sufficient
to use a cell size of 7 = 2.5mm for the following tests, which makes the
computational domain consist of 16 x 9 x 64 cells. However, it is often useful to
make an implementation such that it is possible to change the cell size to allow for
convergence studies.

Numerical Test #1

What is the expected reflected s o (¢) and transmitted s, oy (¢) solution for an empty
waveguide given the Gaussian excitation pulse? Test your code and see if the result
is what you expected. What is the cutoff frequency of the TE |y mode? Which mode
has the second lowest cutoff frequency, and what frequency is that?

Implementation

Implement a postprocessing step that transforms the time-domain scattering ampli-
tudes §1 out(?) and s2 oue(¢) to their corresponding frequency-domain quantities, and
provide code that evaluates the scattering parameters (A.9) and (A.10).

Numerical Test #2

Verify that your implementation of the postprocessing step works as expected for
the empty waveguide. You can calculate the analytical scattering parameters (A.9)
and (A.10), which makes a careful comparison feasible. Comment on your findings
by an interpretation of the numerical errors.
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I

Fig. A.4 Waveguide with a narrow midsection

Implementation

Change the program so that you can analyze a waveguide that has a somewhat more
narrow midsection, as shown in Fig. A.4. The dimensions are ¢ = 4cm, b = 6¢cm,
and d =3 cm. The geometry is independent of the y-coordinate and symmetric with
respect to the plane x = L, /2. (The extra walls of the waveguide are also perfectly
conducting.) It may be noted that this problem can also be solved by a 2D code,
should such a code be available, for comparative purposes.

Numerical Test #3

Compute |S1(w)| and |Si2(w)| for this modified geometry. Comment on your
findings and provide an explanation of the transmission (and reflection) as a function
of frequency.

Implementation

A bit more challenging problem is a metallic block placed “on the floor” of the
waveguide, as shown in Fig. A.5, which contains a top and side view of the metallic
block indicated by the shaded region. The dimensions in Fig. A.5 are a =2cm, b =
7cm, d =0.5cm, and & = 1.75 cm. The geometry is again symmetric with respect
to the plane x = L, /2, but this geometry yields a full 3D problem.

Numerical Test #4

Compute |S;1(w)| and |S12(w)| for this modified geometry and comment on your
findings. In fact, the added metal block yields a filtering structure with pass band
characteristics. Can you explain the physics that causes this resonance? The field
computation may give some information about the resonance.
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Fig. A.5 Waveguide with metal block placed “on the floor”

Fig. A.6 Cross section of a
ridge waveguide discretized
by triangular finite elements

A.4 Finite Element Method

A.4.1 Problem Description

A ridge waveguide has a cross section designed to allow for a single mode of
propagation over larger bandwidths than a rectangular waveguide. A typical cross
section of a ridge waveguide is shown in Fig. A.6. In what follows, the cross section
of the waveguide is denoted by S and its closed boundary by L.

To compute the cutoff frequencies, we solve the eigenvalue problem

~V?H, = k?H, in S, (A.17)
n-VH, =0 on L (A.18)
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for the TE modes. For the TM modes we solve

—V?E, = k’E, in S, (A.19)
E.=0 on L, (A.20)

where S is the interior of the waveguide’s cross section and L its boundary. The
transverse wave number is denoted by k; and the longitudinal wave number by k,,
ie., k? = (w/co)® = k? + k2. More information on the theory of waveguides can
be found in the literature, cf. [19].

Implementation: A Point of Departure

The following supporting MATLAB script and functions are set up such that they
can be used directly as a basis for the solution of the assignments that follow. Here
is a brief description of each MATLAB file:

e Main.m : Reads the grid, assembles the matrices, and solves the eigenvalue
problem.

* CmpEI1Mtx.m : Empty function where you can implement the computation of
the element matrices.

* ReadGrid.m : Empty function where you can implement the reading of the
meshes.

e VisualizeMode.m: Empty function where you can implement the visualiza-
tion of the eigenmodes. This function should visualize two fields: (1) the field
component parallel to the axis of the waveguide by means of colors and (2) its
curl by vectors.

If you prefer to use another programming language, these MATLAB files could
also be used as a point of departure. In that case, you will have to implement this
functionality in the language of your choice. It deserves to be emphasized that if
you prefer to work with MATLAB, it would be useful to read and study programs
written by other programmers as that would give you the opportunity to develop
your programming style and find new solutions to programming problems that you
may encounter. In what follows, it is assumed that the functionality provided by
Main.m, CmpEIMtx.m, ReadGrid.m,and Visualize.mis in place.

Meshes

The MATLAB files come with meshes, which are stored in plain text files. The
meshes discretize both a rectangular waveguide and a ridge waveguide. For each
geometry, there are three discretizations that can be used for convergence studies.

* Meshes for rectangular waveguides of width L, = 2 cm and height L, =
Icm.
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— grid._rectangular_resl.txt—coarse mesh
— grid.rectangular_res2.txt—once hierarchically refined mesh
— grid.rectangular_res3.txt—twice hierarchically refined mesh

e Mesh for a ridge waveguide of outer dimensions 2 and 1 cm. The spacing between
the teeth is 0.1 cm, and their width is 1 cm. The mesh is shown in Fig. A.6.

— grid.ridge_resl.txt — coarse mesh
— grid.ridge_res2.txt — once hierarchically refined mesh
— grid.ridge_res3.txt —twice hierarchically refined mesh

If you prefer to create your own meshes, there is a number of choices: (1) use a
commercial tool, (2) use a freely available tool such as Triangle [73, 74], or (3)
write your own mesh generator.

A.4.2 Assignments

Weak Form

Use the two eigenvalue problems as a point of departure to show that the corre-
sponding weak forms can be written as

/ Vw; -VH, dS = kf/ wiH, dS,
S S

/ Vw; -VE, dS = kf/ wiE. dS.
S N

Here, the z-component of the electric and magnetic fields are expanded in and
tested by nodal basis functions ¢;. The testing must be done in accordance with the
boundary conditions. Observe that for the TE modes we have a Neumann boundary
condition, while for the TM modes we have a Dirichlet boundary condition. What
are the implications of this? How do the two problems differ from each other?

Element Matrices
The two eigenvalue problems can be expressed in the form Ax = k?Bx. Here, A and
B are square matrices having different dimensions for the two different eigenvalue

problems. To assemble the matrices A and B, we sum contributions from each
triangle, i.e., we need to compute the following integrals:

A =/ Vo - Vo, dS,
S(.’
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B = / did; dS.
Se
To evaluate these integrals, you may find the following formula useful:

alBly!

(@+B+y+2) (A21)

/S 6(¢T)“(¢§)" (42" dS = 25¢

where S¢ is the area of element e. Here, the constants «, 8, and y are nonnegative
integers.

Implementation

Implement the functionality of ReadGrid.m. This function takes the name of the
file that stores the mesh as the argument. Then it reads the data in this file and returns
the mesh in a format that is ready to use for the remaining program.

Numerical Test #1

Compute the 20 lowest k, and their corresponding cutoff frequencies for the
rectangular waveguide and compare to the analytical expression

2 2
w mn mn
kh=—=,/|=— — A22
' Co \/(Lx)-’_(Ly)’ ( )

wheren, =0,1,...andn, =0,1,..., excludingn, = n, = 0.

* Perform a convergence test for the lowest eigenmode. Does this cutoff frequency
converge to the analytical value? What is the order of convergence?

* Visualize the five lowest eigenmodes. Do the eigenmodes compare well with
their analytical counterparts?

Numerical Test #2

Compute the 20 lowest k, and their corresponding frequencies for the ridge
waveguide. How do the two lowest cutoff frequencies change as compared to
the rectangular waveguide? Compare the ratio f,/f; between the two lowest
frequencies ( f, > f;) for the ridge and rectangular waveguides. Can you explain
the reason for this difference? How could you influence the ratio f>/ f; by changing
the geometry?
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Numerical Test #3

Perform a convergence test for the lowest eigenmode of the ridge waveguide. What
is the extrapolated cutoff frequency? What is the order of convergence? Do you
achieve an optimal order of convergence? If not, why is the order of convergence
reduced?

Numerical Test #4

For the ridge waveguide, visualize both the longitudinal field component E, together
with V x (ZE,) for the five lowest eigenmodes. Also, visualize both the longitudinal
field component H, together with V x (ZH,) for the five lowest eigenmodes.
Comment on how your visualizations relate to the cutoff frequencies. How do the
eigenmodes compare with the rectangular waveguide modes?

A.5 Method of Moments

A.5.1 Problem Description

We seek the capacitance per unit length of a circular conducting wire placed over
the middle of a conducting strip. The wire radius is a, and the center of the wire is
located at a height & over the strip. The strip has width w and thickness b. The
geometry is assumed to be two-dimensional and the structure is located in free
space. For the computation of the capacitance per unit, it is therefore appropriate
to use the method of moments.

For a capacitor where the two plates have different shape, the two plates must
have opposite total charges. However, they will not in general have opposite
potentials. Since Poisson’s equation is linear, the charges and potentials must satisfy
the linear relation

q1=CnVi + Cha,
g = Co Vi + CuVa,

where ¢; are the charges on the plates and V; their potentials. The matrix elements
C;; are referred to as capacitance coefficients. Note that the capacitance coefficients
in themselves are not physically very relevant and that they depend on how the
normalizing distance is chosen in the expression for the potential from a line charge.
The coefficients can be computed by considering two cases where V| and V), take
linearly independent values, e.g.,

1. Vi = 1 and V, = 0 yield the values for C;; and Cy;.
2. V1 = 0and V, = 1 yield the values for C}, and Cy,.
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To define the capacitance in cylindrical geometry, we consider cases where the net
charge is zero. This implies that g; = —g» = ¢. Then the capacitance is defined as

q

C = .
Vi—-"1,

(A.23)

A.5.2 Assignments

First express the net capacitance C analytically in terms of the capacitance
coefficients Cy, Ci2, Ca1, and Cp,.

Implementation

Write a program to evaluate the capacitance of a general 2D, two-conductor
capacitor and geometry part to generate the geometry described previously. For the
2D method of moments, you can use the MATLAB function 2DMoM . m described
in Sect. 7.2.2.

Numerical Test #1

Test the program by running the case ¢ = 1mm, » = 0.5mm, d = 2mm, and
w = 20 mm. Determine the order of convergence and make an extrapolation to zero
grid size within 1 % accuracy.

Numerical Test #2

Verify that your result for C is reasonably close to the analytical result for an infinite
plate, i.e., w = oo. (The analytical result can be derived by means of image theory
for a circular cylinder next to an infinitely large ground plane, where details can be
found in [19].) For this part, give the extrapolated coefficients C;; as intermediate
results.

Numerical Test #3

Keeping all the other parameters the same, set w = 0.5 mm. Check the order of
convergence and extrapolate to zero grid size, with at most 1 % error.

Numerical Test #4

Now you have some idea of what resolution is required. Based on this experience,
compute and plot the capacitance as a function of width for the interval 0.2 mm
<w <5mm.



Appendix B
A Collection of the Lowest-Order Finite
Elements

This book describes a number of different types of approximations that exploit
representations in terms of finite elements. Useful information concerning these
approximations is collected in this appendix for a range of typical element shapes:
(1) the triangle, (2) the quadrilateral, (3) the tetrahedron, (4) the prism, and (5) the
hexahedron. The following types of information are provided:

* Domain for the reference element.

» Expressions for the nodes (vertices) of the element.

* Definition of the edges of the element.

» Definition of the faces of the element should the element be a volume element.

* The lowest-order gradient-conforming basis functions that belong to the function
space H(grad).

* The lowest-order curl-conforming basis functions that belong to the function
space H (curl).

* The lowest-order divergence-conforming basis functions that belong to the
function space H (div).

* The quadrature rule that can integrate quadratic polynomials on the reference
element sufficiently well to yield an FEM with an error that is proportional to /2.

Here, the function space H (grad) consists of all functions ¢ that satisfy

/ IVo|* + ¢?d 2 < oo, (B.1)
2

where the computational domain 2 is one, two, or three dimensional. Similarly, the
function space H (curl) consists of all functions F that satisfy

/ IVx F|>?+ |F*d$2 < oo, (B.2)
2

T. Rylander et al., Computational Electromagnetics, Texts in Applied 253
Mathematics 51, DOI 10.1007/978-1-4614-5351-2,
© Springer Science+Business Media New York 2013



254 B A Collection of the Lowest-Order Finite Elements

and the function space H (div) consists of all functions F that satisfy
/ [V-F|> +|F|*d < oo. (B.3)
2

Each gradient-conforming basis function ¢; (also referred to as nodal basis
functions) is equal to unity at one node in the element and zero at all the other
nodes. The node where the basis function evaluates to unity has the same index as
the basis function itself. Consequently, there is exactly one nodal basis function for
each node in the element. This can be expressed compactly as

@i(rj) =8, (B.4)

where §;; is the Kronecker delta that gives §;; = 1 fori = j and §;; = Ofori # j.

Each curl-conforming basis function N; (also referred to as edge basis functions
or edge elements) has a nonzero tangential component along one edge of the
element and a zero tangential component along all the other edges of the element.
Consequently, there is exactly one edge basis function associated with each edge
in the element. This property of the curl-conforming basis functions listed in this
appendix can be expressed compactly as

A 1
tj-N,-(rj)erij Vrjeedgej, (B.5)
i

where 7 ; 18 a unit vector tangential to the edge such that it points from the start node
of the edge to the end node of edge i. Further, L; is the length of edge i. Thus,
it is easy to construct a basis function with a unit tangential component along its
associated edge by the scaling L; N;.

Each divergence-conforming basis function M,; (also referred to as a face
basis function for volume elements) has a nonzero normal component on each
edge (for surface elements) or face (for volume elements) and has a zero normal
component on all the other edges/faces of the element. Consequently, there is
exactly one divergence-conforming basis function for each edge/face of an element.
This property of the divergence-conforming basis functions listed in this appendix
can be expressed compactly as

. 1 .
n]wM,-(rj):?Sij Vrjeedgej (B.6)

for divergence-conforming basis functions on surface elements, i.e., the triangle and
the quadrilateral. Here, 71; is the outward unit normal to edge j. Similarly, this
property of the divergence-conforming basis functions listed in this appendix can
be expressed compactly as

1
ﬁj~M,-(rj):Z8,-j Vrjefacej (B.7)
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for divergence-conforming basis functions on the volume elements tetrahedron,
prism, and hexahedron. Here, n ; 18 the outward unit normal to face j. Furthermore,
A; is the area of face i. Thus, it is easy to construct a basis function with unit normal
component by the scaling L; M ; for the surface elements and A; M ; for the volume
elements.

The collection of MATLAB programs associated with this book also contains a
program that exploits Symbolic Math Toolbox in MATLAB to calculate the basis
functions listed in the following discussion, where this program can also visualize
the basis functions on the reference elements.

B.1 2D Elements

B.1.1 Triangle

The linear reference triangle occupies the surface bounded by 0 < u < 1 — v and
0 < v < 1. It has three vertices and three edges.
The nodes for the reference element are given by

ri1 =1[0,0,0],
ro = [+1,0,0],
r3 =1[0,+1,0].

The edges for the reference element are listed in Table B.1.

Linear Basis Functions for H(grad)

The node basis functions for the reference element are given by

or=1—u—v,
@2:“3
@3 = V.

Table B.1 Definition of

edges for triangular reference
element: node 1—start node 1 1 2
of edge; and node 2—end 2 2 3
node of edge 3 3 1

Edge Node#l Node #2
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Table B.2 Quadrature points for reference triangle

Point u-coordinate v-coordinate

1 6.666666666666667 x 10! 1.666666666666667 X 10!
2 1.666666666666667 x 10! 6.666666666666667 x 10!
3 1.666666666666667 x 10! 1.666666666666667 X 10!

Table B.3 Quadrature

N . Point ~ Weight
weights for reference triangle

1 1.666666666666667 x 107!
2 1.666666666666667 x 107!
3 1.666666666666667 x 107!

Linear Basis Functions for H(curl)
The edge basis functions for the reference element are given by

Ni =@V, — Vo = (1 — V)it + ub,
N, = 902@903 - <P3@<pz = —vil + up,

N3 = g3V — o1 Vos = —vit + (u— 1)p.

Linear Basis Functions for H(div)
The face basis functions for the reference element are given by

M| =N xw=uu+ (v—1),
Myr= N, XWw=utt +vv,

M;=N;xw=(u— D+,

where w = u x .

Quadrature Rule

The quadrature points in Table B.2 and the corresponding weights in Table B.3 yield
a quadrature rule that integrates quadratic polynomials exactly on the reference
triangle.
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Table B.4 Definition of

. Edge Nodel Node?2
edges for the quadrilateral

reference element: Node 1 1 2
#1—start node of the edge; 2 2 3
and Node #2—end node of 3 3 4
the edge 4 4 1

B.1.2 Quadrilateral

The linear reference quadrilateral occupies the surface boundedby —1 < u < 1 and
—1 < v < 1. It has four vertices and four edges.
The nodes for the reference element are given by

ry =[-1,-1,0],
ro=[+1,-1,0],
r3 =[+1,+1,0],
ry=[—1,+1,0].

The edges for the reference element are given in Table B.4.

Linear Basis Functions for H(grad)

The node basis functions for the reference element are given by
_ _ 1
o= YWY = Z(1—u)(1 - ),
_ 1
g =y Wy v = 7w =),
1
g =y YT = 7 H0d ),
_ 1
=Y Wy = -0 +w).
Here, we use the basis functions

_ 1
V@) =509

Ve = 50+,
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Linear Basis Functions for H(curl)

The edge basis functions for the reference element are given by
NS+ 1 N
Ni=y" VYT = (1 -va,
- 1 R
No=y T Vy* ) = L+ wp,
- 1 R
Ny =y )V~ ) = — (1 + i,

~ 1
Ni=y Vy~ () = - (1~ uv.

Linear Basis Functions for H(div)

The face basis functions for the reference element are given by
A 1 .
M1 =N1 XWZ—Z(l—V)V,
.1 .
Mr=Nrxw= Z(l +M)ll,
.1 .
M;=N3xw= Z(l—i—v)v,

1
M4=N4XW=—Z(1—M)IZ.

Quadrature Rule

The quadrature points in Table B.5 and the corresponding weights in Table B.6
yield trapezoidal integration for the reference quadrilateral, by means of the product
of two 1D trapezoidal integration rules. This quadrature rule provides mass lumping
for rectangular elements and, despite the fact that it cannot integrate quadratic

Table B.5 Quadrature points
for reference quadrilateral

Point  u-coordinate v-coordinate

1 —1.000000000000000  —1.000000000000000
2 1.000000000000000  —1.000000000000000
3 1.000000000000000 1.000000000000000
4 —1.000000000000000 1.000000000000000
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Table B.6 Quadrature
weights for reference
quadrilateral

Point ~ Weight

1 1.000000000000000
1.000000000000000
1.000000000000000
1.000000000000000

A~ W

polynomials exactly, yields a, FEM with second order of convergence for a
piecewise linear approximation of the field.

B.2 3D Elements

B.2.1 Tetrahedron

The linear reference tetrahedron occupies the volume boundedby 0 < u < 1—v—w,
0<v<1-w,and 0 <w < 1. It has four vertices, six edges, and four triangular
faces.

The nodes for the reference element are given by

r1 =1[0,0,0],

ro=[+1,0,0],
r3 =[0,+1,0],
ra = 10,0, 41].

The edges for the reference element are given in Table B.7.
The faces for the reference element are given in Table B.8.

Linear Basis Functions for H(grad)

The node basis functions for the reference element are given by

opr=1—u—v—w,
@2 = U,
Y3 =V,

Q4 = W.
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Table B.7 Definition of
edges for tetrahedral
reference element:

node 1—start node of edge;
node 2—end node of edge

Table B.8 Definition of
faces for tetrahedral reference
element: node 1—first node
of face; node 2—second node
of face; and node 3—third
node of face

B A Collection of the Lowest-Order Finite Elements

Linear Basis Functions for H (curl)

Edge Nodel Node?2
1 1 2
2 2 3
3 3 1
4 1 4
5 2 4
6 3 4
Face Nodel Node2 Node3
1 3 2 1
2 1 2 4
3 2 3 4
4 3 1 4

The edge basis functions for the reference element are given by

Ni=¢ Ve, — Vo, =

N> =@ Ve3 — 93V =

N3 = @3V — ¢ Vo =

Ny = ¢V — Vg =

Ns=gVo, — Vg =

No = @3Voy — Vo3 =

Linear Basis Functions for H (div)

(1 —w—v)i + uv + uw,

—vit + uv,

—va+ (u+w— 1y —vw,
wit +wv + (1 —v —u)w,

—wi + uw,

—Wb + vw.

The face basis functions for the reference element are given by

M, = 2(g3Vgr x Vor + 0V x Vs + 01 Vs x V)
= 2[uit +vo + (w — D)w],

M; = 2(01 Vg x Vou + 0Vey x Vo + 04V e1 x Vo)
=2[uit + (v — 1)y + ww],

M3 = 2(02Vp3 x Vou + @3V s x Vo + 04 Vr x V3)

= 2utt + vv + ww],
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Table B.9 Quadrature points for reference tetrahedron

Point u-coordinate v-coordinate w-coordinate

1 5.854101966249685 x 10! 1.381966011250105 x 10~! 1.381966011250105 x 10~!
2 1.381966011250105 x 10~! 5.854101966249685 x 10! 1.381966011250105 x 10~!
3 1.381966011250105 x 10! 1.381966011250105 x 10! 5.854101966249685 x 10!
4 1.381966011250105 x 10~! 1.381966011250105 x 10~! 1.381966011250105 x 10~!

Table B.10 Quadrature

. Point  Weight
weights for reference

—2
tetrahedron 1 4.166666666666666 X 10
2 4.166666666666666 X 102
3 4.166666666666666 X 1072
4 4.166666666666666 X 10~

My =2(p3V1 x Vou + 01 Vs x Vs + 04V e3 x Vo)
=2[(u— Da + v + ww].

Quadrature Rule

The quadrature points in Table B.9 and the corresponding weights in Table B.10
yield a quadrature rule that integrates quadratic polynomials exactly on the reference
tetrahedron.

B.2.2 Prism

The linear reference prism occupies the volume boundedby 0 <u < 1—v,0 <v <
I, and —1 < w < 1. It has six vertices, nine edges, two triangular faces, and three
quadrilateral faces.
The nodes for the reference element are given by

rl - [0705 _l]s

rp, = [+1, 0, —1],

r3=[0,+1,—1],

rqy=1[0,0,41],

r; = [+1, 0, +1],

re =[0,+1, +1].

The edges for the reference element are given in Table B.11.
The faces for the reference element are given in Table B.12.
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Table B.11 Definition of
edges for pyramidal reference
element: node 1—start node
of edge; node 2—end node of
edge

B A Collection of the Lowest-Order Finite Elements

Edge Nodel Node?2

1 1 2
2 2

3 3 1
4 1 4
5 2 5
6 3 6
7 4 5
8 5 6
9 6 4

Table B.12 Definition of faces for tetrahedral ref-
erence element: node 1—first node of face; node
2—second node of face; node 3—third node of face;
node 4—fourth node of face (for three quadrilateral
faces only)

Face Node 1 Node 2 Node 3 Node 4

1 3 2 1 -
2 1 2 5 4
3 2 3 6 5
4 3 1 4 6
5 4 5 6 —

Linear Basis Functions for H(grad)

The node basis functions for the reference element are given by

o1 = 1) Y = 2 (1 —u= (1= w),
¢ = $2(u) Y () = Zull —w),
o5 = 93u1) Y0 = 2v(1 —w),
o= 1) Y0 = 5 =1 +w),
05 = $200) Y HO8) = (1l + ),

o5 = 9300 00 = (1 + ).

We have the basis functions

¢1=1—M—V,
$2

Il
=
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¢3=v

that vary in the plane perpendicular to the cylinder axis of the prism and, thus,
depend only on u and v. Further, the two basis functions

=0,
Y= 204w

vary along the cylinder axis with the coordinate w.

Linear Basis Functions for H (curl)

The edge basis functions for the reference element are given by

Ni=niv)y~w) =S [(v—1w=Dit —u(w—1)7],

Ny =no(uv) Y~ (w) = 5 vw— Dit — u(w — 1)7],

N = N =

Ns = ms( ) ¥ (0) = + v — Dt — (u— 1w — D3]

N

N = 91w n) 90 = 50 —v—wh,
Ns = galun) Ty () = sub,
N5=¢xmwﬁw+mo=%mu
No = my(u,v) 7+ ) =

[~ — 1)(w + Dit + u(w + 1],

Ng = na(u,v) Y (w) = = [=v(w + Dit + u(w + 1)7],

N = N = N =

No=n3uv)¥T(w) = = [—vw+ Dt 4+ (u—1)(w+ 1)9],

where

n = ¢Vep — p2Vr,
ny = Vs — 3V,
ny = 3V — ¢ Vps
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are the edge elements on the triangular cross section of the prism perpendicular to
the cylinder axis.

Linear Basis Functions for H(div)
The face basis functions for the reference element are given by
M, =4y~ (W)Vy~(w) = (w— )i,

1 1
M, = Eml(“av) =3 [utt + (v — 1)¥],

1 1
M; = Emz(u,v) =3 [utt + V9],

1 1
M4= §m3(u,v)= 5[

Ms =4y w)Vytw) = (w+ D,

(u— Da + ],

where

m; =n; xXWw,
my; =ny XWw,

ms; =n3 xXw.

Quadrature Rule

The quadrature points in Table B.13 and the corresponding weights in Table B.14
yield a quadrature rule that integrates quadratic polynomials exactly in the plane
perpendicular to the axis of the prism. However, the quadrature rule exploits
trapezoidal integration along the prism axis and, consequently, provides mass
lumping along the cylinder axis for straight prisms. Despite the fact that this
quadrature rule for a prism cannot integrate quadratic polynomials exactly, it yields
an FEM with second order of convergence for a piecewise linear approximation of
the field.

B.2.3 Hexahedron

The linear reference hexahedron occupies the volume bounded by —1 < u < 1,
—1 <v <1,and —1 <w < 1. It has 8 vertices, 12 edges, and 6 quadrilateral faces.
The nodes for the reference element are given by
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Table B.13 Quadrature points for reference prism
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Point u-coordinate v-coordinate w-coordinate

1 6.666666666666667 x 10~! 1.666666666666667 x 10! —1.000000000000000
2 1.666666666666667 x 10! 6.666666666666667 x 10~! —1.000000000000000
3 1.666666666666667 x 10! 1.666666666666667 x 10! —1.000000000000000
4 6.666666666666667 x 10! 1.666666666666667 x 10! 1.000000000000000
5 1.666666666666667 x 10! 6.666666666666667 X 10~! 1.000000000000000
6 1.666666666666667 x 10! 1.666666666666667 x 10! 1.000000000000000

Table B.14 Quadrature
weights for reference prism

Table B.15 Definition of
edges for hexahedral
reference element: node
1—start node of edge; node
2—end node of edge

ry=[-1,-1,-1],
ro,=[+1,—-1,-1],
r3 = [+1,+1,-1],
rqy=[-1,+1,-1],
rs =[-1,-1,+1],
re = [+1,—1,+1],

Point  Weight

1.666666666666667 x 107!
1.666666666666667 x 107!
1.666666666666667 X 107!

1
2
3
4 1.666666666666667 x 107!
5
6

1.666666666666667 x 107!
1.666666666666667 X 10!

Edge Node 1 Node 2
1 1 2
2 2 3
3 3 4
4 4 1
5 1 5
6 2 6
7 3 7
8 4 8
9 5 6
10 6 7
11 7 8
12 8 5

r7=[+1,+1,+1],

rs = [=1,+1,+1].

The edges for the reference element are given in Table B.15.
The faces for the reference element are given in Table B.16.
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Table B.16 Definition of

Face Nodel Node2 Node3 Node4
faces for tetrahedral reference

element: node 1—first node 1 4 3 2 1

of face; node 2—second node 2 1 2 6

of face; node 3—third node 3 2 3 7 6

of face; node 4—fourth node 4 3 4 8 7

of face 5 4 1 5 8
6 5 6 7 8

Linear Basis Functions for H(grad)

The node basis functions for the reference element are given by

o= 9@ YWY = (-0 = (1)
o= V@ YO0 = G+ =01 )
o5 = U@ YT Y0 = S+ (1),
o =YY Y09 = L =1+ —w),
o5 = V@Y MY = 0= (1= + )
o = U@ Y0 YO = S )= )1+ ),
1= V@YW YO = S0+ 0+ w)
o=@ YT O) U 0 = (=01 + 0+ w)

Here, we use the basis functions

RGEE)
AGEEE

Linear Basis Functions for H (curl)

The edge basis functions for the reference element are given by
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N1 =90y T3 @) = S =) - wi,

N2 = 9@y )TU0) = (1 + w1 =W,

~ 1
Ns=y My~ WVy~ W) = —g(I+md —wi,

Ni =47y )Ty 0) = (1= 01 = w),
Ns =9~y 0T ) = S -l -,
No =9 @y 0Tyt = L1+ — i,
N7 =9 @yt 0Ty 00 = 0+l + 0,
Ns =9 @y Ty = L1 - (1 + i,
No =9~y )Ty H = (-0 + Wi,

Nio= 9@y T3 0) = <(1 + (1 +wp,

N =yt ) U T =~ (1 + Wi,

Nip =y @yt )Ty () = (1= (1 +wp.

Linear Basis Functions for H(div)

The face basis functions for the reference element are given by
| 1 N
My = U™ 0)Vy(w) = —< (1= wi.
| 1 A
My =y VY~ () = —o(l =),
L NGt 1 i
Ms = Sy @Iy = +5(1 + wi.

M= 0 W90 = 40+,

267
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Table B.17

Quadrature points for reference hexahedron

B A Collection of the Lowest-Order Finite Elements

Point

u-coordinate

v-coordinate

w-coordinate

0NN R WD

—1.000000000000000
1.000000000000000
1.000000000000000

—1.000000000000000

—1.000000000000000
1.000000000000000
1.000000000000000

—1.000000000000000

—1.000000000000000
—1.000000000000000
1.000000000000000
1.000000000000000
—1.000000000000000
—1.000000000000000
1.000000000000000
1.000000000000000

—1.000000000000000
—1.000000000000000
—1.000000000000000
—1.000000000000000
1.000000000000000
1.000000000000000
1.000000000000000
1.000000000000000

Table B.18

Quadrature

weights for reference

hexahedron

M

S
|

Quadrature Rule

Point

Weight

0 NN AW =

1.000000000000000
1.000000000000000
1.000000000000000
1.000000000000000
1.000000000000000
1.000000000000000
1.000000000000000
1.000000000000000

ST = (1~ Wi

= U ITY ) =+ (1= b,

The quadrature points in Table B.17 and the corresponding weights in Table B.18
yield trapezoidal integration for the reference hexahedron by means of the product
of three 1D trapezoidal integration rules. This quadrature rule provides mass
lumping for brick-shaped elements and, despite the fact that it cannot integrate
quadratic polynomials exactly, yields an FEM with second order of convergence
for a piecewise linear approximation of the field.



Appendix C
Large Linear Systems

C.1 Sparse Matrices

Many CEM problems require the solution of large linear systems of equations. This
is generally the case for the finite element method (FEM), both for frequency- and
time-domain applications. In realistic 3D applications, the number of unknowns can
be in the range of tens of thousands to several millions. For the largest systems,
direct inversion is seldom possible, and iterative methods are needed. Here, we will
introduce some routines for large linear systems.

Below, we give a MATLAB function that assembles the sparse system that we
solved using Gauss—Seidel iterations in the capacitance calculation in Chap. 3. The
study was then limited to a 50 x 50 grid. With the assembled system we can use
more efficient methods and therefore use higher resolutions. For this 2D problem,

the direct solver invoked by “\” in MATLAB performs very well.

We write the discretized problem as Af = s and use the MATLAB function
setAs listed below to set A and s. Note that this script was written so as to
make very few references to the sparse matrix. This is faster than referencing the
individual elements in the sparse matrix, because each reference requires a function
call, which is quite slow.

function [A, s] = setAs(a, b, ¢, d, n, m)

% Arguments:

% a = width of inner conductor

% b = height of inner conductor

% c = width of outer conductor

% d = height of outer conductor

% n = number of points in the x-direction (horizontal)
% m = number of points in the y-direction (vertical)

% Returns:

% A = matrix on sparse storage format

% s = right-hand side on sparse storage format

T. Rylander et al., Computational Electromagnetics, Texts in Applied 269
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Grid size in x-direction

Number of cells for half width of
inner conductor

Grid size in y-direction

Number of cells for half height of
outer conductor

Number of cells for half height of
inner conductor

hx = 0.5xc/n;
na = round(0.5xa/hx) ;

hy = 0.5%xd/m;
m = round(0.5xd/hy) ;

mb = round(0.5xb/hy) ;

o o° o° o° o° o o° o° o

p = 1; Potential on inner conductor
% The upper right corner is discretized
7 i +
% c/2 |
R + | d/2
% a/2 | |
5 | /2|
% (Dimensions)
% The nodes are numbered like this
% Y
% (m-1)hy| (m-1)n+l (m-1)n+2 (m-1)n+3 ... mn
%  2hy | 2n+1 2n+2 2n+3 . 3n
% hy | n+l n+2 n+3 R 2n
% o | 1 2 3 n
T i it > X
% 0 hx 2 hx (n-1) hx
% (Discretization)
N =n % m; % Total number of unknowns.
cx = hx™-2;
cy = hy™-2;
Generate a matrix with N = mx*n rows (-> nodes on the grid),

and five columns, one for each nonzero diagonal of A.

The first column gives contribution from nodes beneath.

The second column gives contribution from nodes to the left.
The third column gives self-contribution.

The fourth column gives contribution from nodes to the right.
The fifth column gives contribution from nodes above.

o° o° o° oP

o oe

o°

The following lines assume some knowledge of MATLAB. If you
feel uncertain, insert the ’'keyboard’ command. This causes
MATLAB to stop. Then execute lines by ’‘dbstep’ and examine
the result.

o o

o o
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C = repmat ([cy cx -2 (cx+cy) cx cyl], N, 1);

% Find indices of nodes that are not surrounded by four interior
% nodes.

1dxOR = n:n:N-n; % Nodes with V = 0 to the right
idxNB = na+2:n; % Nodes with dv/dy = 0 beneath
1dxNL = 1l+nx (mb+1) :n:N; % Nodes with dv/dx = 0 to the left

=

1idx1C = repmat((l:na+l)’, , mb+l) + repmat ((0:n:n*mb),na+l,1);
'x-index + n*(y-index-1)’ for all
nodes on (or inside) the inner
conductor where V =1

and convert to row vector

o°

oe

idx1C = idx1C(:)’;

o°

oe

C(idx1c,[1 2 4 5]) = 0;
Cc(idx1ic, 3) = 1;
C(idxOR, 4) = 0;
C(idxNB, 5) = 2xcy;
C(1idxNL, 4) = 2%cx;
C(idxNL, 2) = 0;

% Find the nonzero elements (si) of each column and the

% corresponding row indices (ii). Do not include elements
% corresponding to nodes outside the grid.
[i1,7,s1] = find(C(n+1l:end, 1)); % The first ’'nc’ nodes have no

o°

neighbors beneath

[i2,7,82] = find(C(1+1l:end, 2)); % The first node has no
% neighbor to the left
[i3,3,83] = find(C( 1:end, 3));
[i4,7,84] = find(C( 1:end-1, 4)); % The last node has no
% neighbor to the right
[15,7,s85] = find(C( 1l:end-n, 5)); % The last ’'nc’ nodes have no
% neighbors above
% Put the elements (si) into a sparse matrix. The first input
% are row indices, the second is column indices and the third
% is the elements.
A = sgparse([il+n; i2+1; i3; i4; is5],

[i1; 12; 4i3; i4+1; i5+n],
[sl; s2; s3; s4; s5], N, N);
s = sparse(idxic’, 1, p, N, 1);

C.2 Solvers for Large Sparse Systems of Equations

As we already mentioned, the 2D discretized Laplace equation can be solved in
MATLAB by direct inversion £ = A\s. For 2D problems, direct methods are
generally very competitive, unless the problems are very large. However, for 3D
problems, iterative solvers are often more efficient. We will here give a brief
overview of solvers for sparse linear systems of equations that are used in CEM.
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C.2.1 Direct Solvers

In direct methods, a complete factorization (e.g., an LU decomposition) of the
matrix A is done. Clever reordering of the rows and the columns of A plays
an important role; a good reordering scheme can reduce the operation count
and the memory requirements for the factorization by more than an order of
magnitude. In MATLAB, one can, for example, use column approximate min-
imum degree permutation, colamd (for nonsymmetric matrices), or symmetric
approximate minimum degree permutation, symamd (for symmetric matrices), to
reorder matrices. However, when the backslash operator ““\” is invoked, this is done
automatically.

A major advantage of direct methods compared to iterative methods is that since
a complete factorization is done, additional right-hand sides can be solved for with
low additional cost. Another advantage is that direct methods generally are less
sensitive to ill conditioning and can be used where many iterative methods fail to
converge.

However, both time and memory requirements scale unfavorably with problem
size; hence direct methods become prohibitively expensive for very large problems.
Often the memory requirements are the limiting factor.

Efficient, freely available algorithms for direct factorization and reordering
of sparse matrices include UMFPACK [23], SuperLU [24], TAUCS [84], and
METIS [44].

C.2.2 Iterative Solvers

The matrices that result from finite element discretizations of Poisson’s equation
(1.3) or the time-domain version of the curl-curl equation (6.86) are symmetric
and positive definite. For such systems, iterative so-called Krylov methods (see
Appendix D) generally work very well.

However, to speed up the convergence of the iterative algorithm, it is very useful
to precondition the matrix. The idea of preconditioning is to find an approximate
inverse of A, say M~!, and multiply Af = s by the approximate inverse from the
left. If M—'A ~ 1, the iterative solver will converge much faster. The choice of
preconditioner generally has a much stronger effect on the speed of convergence
than the choice of Krylov method. A choice that often works well is the so-called
incomplete LU decomposition, in which M = LU ~ A, with L a lower triangular
and U an upper triangular matrix. Then M~! = U~'L™!, which is inexpensive
to apply if L and U are sparse. When A is symmetric, the factorization can be
made such that U = L7, and this is called incomplete Cholesky decomposition.
The degree of incompleteness can be specified by how much fill-in is allowed in
L and U, that is, how many extra nonzero elements L. and U have in comparison
with A. In MATLAB, this is controlled by setting a relative tolerance below which
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elements in L and U are dropped. This tolerance is chosen as a compromise between
good accuracy of the decomposition (favored by a small tolerance) and minimizing
memory and CPU time for a matrix multiplication (which is favored by a high
tolerance).

Also in the case with incomplete factorizations, it is strongly recommended to
reorder the rows and columns of A before the incomplete factorization is computed.

Another, less complicated, preconditioner is symmetric successive overrelax-
ation (SSOR) [7], in which the preconditioning matrix M never is stored explicitly.
Hence the memory requirements are smaller when SSOR is used as a preconditioner
instead of some incomplete factorization of A.

An important note is that for the time-harmonic version of the curl-curl equation,
and for low-frequency eddy current computations (Sect. 6.8.3), the null-space of the
curl operator causes problems for the Krylov methods, and therefore more advanced
preconditioners [26,27,46] are required.

Reliable implementations of Krylov methods and preconditioners are available,
e.g., in the PETSc library [6]. Also MATLAB provides implementations of many
popular Krylov methods.

C.2.3 Multigrid Methods

The multigrid (MG) method [33,91] was introduced about four decades ago, but has
only very recently been applied to Maxwell’s equations [36]. The MG method can
be used either as an iterative solver on its own, or as a very efficient preconditioner
for iterative Krylov methods. It greatly improves the convergence rate of iterative
solvers for large sparse matrices that occur in differential equation formulations. In
fact, the convergence rate can be made independent of the cell size 4, rather than to
scale as some power of /.

The underlying principle is the observation that for the Laplace equation, the
“short-wavelength error” (which varies on the scale of the grid) is reduced quickly
by local operations (known as smoothers) such as Jacobi or Gauss—Seidel iterations;
see Sect. 3.1.1. However, the long-wavelength error is reduced much more slowly by
the smoothers. Since such error has short wavelength with respect to a coarser grid,
one expects that this error can be reduced more rapidly on a coarse grid. Therefore,
the basic idea of MG is to introduce a hierarchy of grids, starting from the finest
one, and try to improve the solution on the finer grid by looking for a correction
from the coarser grid. Optimally, the coarsest grid has only a small number of cells,
and a direct solver can be used at a low computational cost.

So far, MG is used mostly for electrostatic and magnetostatic problems [59, 70]
and transient eddy current problems. Generally, MG is among the most efficient
solvers [33, 59] for Laplace-type equations. However, little research on MG has
been devoted to fully electromagnetic problems, such as time-harmonic problems
for eddy current computations [8, 35]. Certain difficulties (due to the null-space
of the curl-curl operator) are encountered when this method is applied to the full
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Tabl(? C.1 Capacit.ance Vs. N I x 102 C [pF/m]

cell size for finite difference

solution on larger grids 50 2.000 90.78080 583
100 1.000 90.68006 976
200 0.500 90.64044 979
300 0.333 90.62961 567
400 0.250 90.62481 230

Maxwell’s equations. For wave problems, another complicating aspect is that the
coarsest grid must resolve the wavelength A o< 1/ f, which limits the hierarchy of
grids and therefore the recursive MG algorithm.

C.3 Capacitance Calculation on Larger Grids

With the more efficient solvers we can extend the capacitance calculation of
Sect. 3.1 to much larger grids. Results for grids up to 400 by 400 are shown in
Table C.1.

One can estimate the order of convergence from formula (2.4) for 100, 200,
and 400 points, and the order of convergence in & comes out as 1.341. This is
close to the asymptotic result 4/3, which occurs for the 270° corners. If we do
polynomial fits to #*/3, the extrapolated value is 90.6145 pF/m. It should be pointed
out that a higher-order fit to noninteger powers of %, such as #*/3, is not an optimal
representation, because the regular parts of the solution contribute errors that scale
as h?. Nevertheless, the extrapolation has added three figures of accuracy. If we
tried to achieve this accuracy by a single calculation with uniform refinement of
the grid, we would have to decrease 7 by more than a factor of 100, and the
execution time would increase by at least 1003, that is, one million times. Evidently,
extrapolation can be a very efficient way of increasing the accuracy. In the chapter
on finite elements, we show that the accuracy can also be improved by adaptive grid
refinement, which aims at increasing the resolution in regions where the solution
varies rapidly.
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Krylov Methods

Here, we will discuss some iterative methods for solving large linear systems of
equations
Ax = b. (D.1)

For large 3D problems, it is generally too demanding to use a direct solver. Iterative,
so-called Krylov methods are often a much better choice for these problems.
Multigrid methods, which we discussed very briefly in Sect. C.2.3, have proven
even more efficient for many problems but will not be discussed here.

D.1 Projection Methods

In projection methods, one minimizes the residual
r=>b-—Ax (D.2)

by an approach similar to the Galerkin and Petrov—Galerkin methods for finite
elements. The vector x will be constructed as a sum of basis vectors v; x =
X0 + Y i, Viyi, and y is an array of coefficients. This can be written compactly
by introducing the matrix V. = (v,Vs,...,V,) and the column vector y =

D1, Y20 ym) T

x = xo + Vy. (D.3)
The vectors vi,Vs,...,V, span a space K,, of “basis” vectors. Similarly, one
chooses a space L,, of “test” vectors wi, wa, ..., W, and demands that on the mth

step of the iteration the residual r,, be orthogonal to all vectorsin L,,. If K,, = L,,,
this is Galerkin’s method; otherwise, it is a Petrov—Galerkin method.

The most important part of the iteration is the choice of the search directions
Vi,V2,...,Vy. The simplest case is that in which A is real and symmetric. The
old-fashioned “steepest descent” method chooses the increment directions v; in
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the gradient direction of the error functional (x — xexact)TA(x — Xexact), ON every
step of the iteration. It turns out that this is a bad strategy. When the matrix A is
positive definite and symmetric, the number of iterations for the steepest descent
method scales as the condition number of A, that is, the ratio of largest to smallest
eigenvalues, K = Amax/Amin-

D.2 Krylov Methods

A better strategy is to generate the increment directions as ry, Ary, Arg, ...,
A"y, where 1y is the first residual. Then K is called a Krylov space. The Arnoldi
algorithm does exactly this and projects out components of the new v’s to keep them
orthonormal.

1. Choose a vector v of norm 1

2. Forj=1,2,...,m, Do:

3 I’lij Z(AV]',V,')fO}’l‘Zl,Z,...,j
4. Wj = AVj — Z{=l h,’jV,’

5. l’lj+1,j = (W]',Wj)l/2

6 Ifhjy1; = 0 then Stop

7 Vil =W;/hjt;

8. EndDo

GMRES is Arnoldi’s method followed by a minimization of (r, r). This is a reliable
method, and it has the nice property that the error decreases monotonically with
the iteration number. The disadvantage of GMRES is that one needs to store all
the incremental directions vy,...,V, to do the minimizations. Therefore, it can
become very memory-demanding if the number of iterations is large. To circumvent
the memory problem, one can restart GMRES after a certain number of iterations
(typically 5 to 50). However, at the restart, orthogonality is lost.

There are cleverer ways of generating the incremental directions v. The standard
method, which assumes that A is symmetric, is the Lanczos method. Here it suffices
to save three increment directions.

Choose a start vector v| of norm 1.
S€t,31 =0,V0=0
Forj =1,2,...,m, Do:
W) =AV; = Bivj-
aj = (W;,v))
W; =W; —U;V;
,3j+1 = (Wj,Wj)l/z. If,Bj.H = 0 then Stop
Vi+1 = W;i/Bj+1
EndDo

0 0N A L~
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This makes all the vectors v;,i = 1,2,..., orthogonal (in infinite-precision
arithmetic). With finite precision, orthogonality may be lost if the iteration runs
many steps. Consequently, the iteration may have to be restarted.

A method that is related to the Lanczos method is the conjugate gradient (CG)
method, where one keeps going in orthogonal directions. At least with infinite-
precision arithmetic, this method can guarantee convergence when the number of
steps equals the number of unknowns. The CG method for a symmetric A can be
written as follows:

Compute ro = b — Axq, po =Io
For j =0,1,..., until convergence, Do:
aj = (r;.r;)/(Ap;.p;)
Xj+1 =X; +o;p;
rjy) =7r; —O[jApj
Bj =@jr1,rjr1)/(rj,x;)
Pj+1 =Tjt1+ B;p;
EndDo

PONQ NN~

An advantage of the CG method is that one does not store the whole history
of incremental directions. For positive definite symmetric matrices, the required
number of iterations for CG is proportional to the square root of the condition
number of the matrix.

D.3 Nonsymmetric A

Lanczos Biorthogonalization
The symmetric Lanczos algorithm can be extended to nonsymmetric matrices. The
biorthogonal Lanczos algorithm constructs a pair of biorthogonal bases

-1
V1,AV1,...,Am Vi,

wi, ATwi, o (AT wy,

with the orthogonality property (v;,w;) = §;;. The procedure can be written as
follows:

Choose two vectors Vi, Wy such that (vi,w;) = 1.
Set,Bl =6 =0, vg=wo=0
Forj =1,2,...,m, Do:
a; = (AV]‘,WJ')
Vit1 = AV, —o;v; = BV
Wj+1 = ATVj — ;W —Sjo_l
8j+1 = 1Vj+1. W D)|"2 If 841 = 0 Stop
Bi+1=Vj+1.W;+1) /8 +1

ON RN~
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9. Wit =Wir1/Bj+1 Vi1 =Vjr1/8+1
10. EndDo
BICG and QMR

Relatively new methods are the biconjugate gradient (BICG) and quasi-minimal
residual (QMR) algorithms. BICG is a generalization of CG to nonsymmetric
matrices. BICG generates the space of test vectors from powers of A7 rather than
of A, so this is a Petrov—Galerkin method. The BICG method works as follows (x*
denotes the complex conjugate of x):

Setro = b — Ax¢. Choose t; so that (ro,r5) # 0
Set po = ro, p§ =1}

For j =0,1,..., until convergence, Do:

aj = (rj,r7)/(Ap;.p})

Xj4+1 = X; + o;p;

41 =1 —jAp;, ]y, =1 —;Ap]

Bj = (jt1.r74)/(x;.17)

Pj+1 =T+ B8P Py =T +Bip]
EndDo

O 0N A W~

QMR uses the Lanczos procedure to generate the incremental directions but still
manages to avoid saving the v’s. Finally, QMR minimizes a quantity that is related
to (but not quite the same as) the residual. Hence the name “quasi.” QMR does
not require storage of the v vectors. As long as it does not lose orthogonality, it is
probably the most useful of the iterative schemes for nonsymmetric matrices. In case
the method loses orthogonality, QMR can be restarted using the last x as a starting
point.

A disadvantage of both BICG and QMR is that they also use the transpose of
the matrix A. Improvements in which A7 is eliminated are called BICGSTAB and
TFQMR (transpose-free QMR).

D.4 Preconditioning

For good efficiency, the iterative solver must in general be combined with a
preconditioner; i.e., (D.1) is multiplied by some approximate inverse of A from the
left. This can strongly improve the convergence. A preconditioner that often works,
and is commonly used for eddy current calculations, is the incomplete LU decom-
position; see Appendix C.2.2. Iterative methods are described in [4, 6,7,34,67].
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Index

A
A (vector potential), 165
ABC, see absorbing boundary conditions
absorbing boundary conditions, 5, 85
adaptivity, 110
MoM, 199
Ampere’s law, 3, 69
amplification factor, 50
assembling, 101

B
B (magnetic flux), 4
barycentric coordinates, 103
basis functions
for edge elements, 128
nodal, 96
boundary conditions, 4
absorbing, 85
Dirichlet, 98, 116
essential, 98

FDTD, PEC, 75
homogeneous, 98
natural, 98

Neumann, 98

perfectly matched layer, 85
Robin, 98, 116
Sommerfeld, 183

C

¢ (speed of light), 4, 63

capacitance
computing, 23
definition, 23

CFL condition, see Courant—Friedrichs—Levy

condition
CG, see conjugate gradient method
collocation, 190
combined field integral equation, 209
computational electromagnetics, 1,2
conjugate gradient method, 277
convergence, 11
Coulomb gauge, 169
Courant condition, 66
Courant—Friedrichs—Levy condition, 66
curl-curl equation, 7,43, 115

weak form, 116

D
D (electric displacement), 4
Derivative operators

D, and D, 29
differential equations solvers, 224
Dirac delta function, 187

Dirichlet boundary condition, see boundary

conditions
dispersion relation, 7, 41
exact, 8
FDTD, 3D, 81-83
numerical, 65
dissipation, 44, 101
divergence conforming elements, 207

E

E (electric field), 4

eddy current calculations, 165
3D, 168

CEM, see computational electromagnetics
CFIE, see combined field integral equation

edge elements, 115
on bricks and tetrahedra, 118
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edge elements (cont.)
on rectangles, 117
on triangles, 128
EFIE, see electric field integral equation
eigenmode, 44
eigenvalue problems, 43, 74, 120, 130, 144
eigenvalues
frequency-domain calculation of, 46
time-domain calculation of, 49
electric field integral equation, 205
element matrix, 105, 122
energy, 5
density, 5
electrostatic, 5, 108
magnetostatic, 6
€ (electric permittivity), 4
variable, 71
€ (free-space electric permittivity), 4
€, (relative electric permittivity), 4
error estimation, 17
a posteriori, 12, 111
error indicator, 111
explicit time-stepping, see time-stepping,
explicit
extrapolation, 12

F
Faraday’s law, 3, 69
fast Fourier transform, 55
fast multipole method, 228
FDTD, see finite-difference time-domain
FEM, see finite element method
FFT, see fast Fourier transform
finite difference derivatives of complex
exponentials, 27
across two cells, 30
on staggered grids, 30
second-order, 32
finite differences, 19
across two cells, 20
first-order derivative, 20, 34
higher-order approximations, 34
noncentered, 20
on staggered grids, 20
second-order derivative, 20, 37
finite element
definition, 95
finite element method, 93, 226
mixed-order, 113, 144
numerical integration, 143
reference element, 138
relation to FDTD, 115, 119-120
time-dependent problems, 163

Index

finite integration technique, 227
finite volume method, 225
finite-difference time-domain method, 63, 225
3D, 72
integral interpretation, 77
solenoidal magnetic flux density, 79
unit cell, 72
FIT, see finite integration technique
FMM, see fast multipole method
FVTD, see finite volume method

G
Galerkin’s method, 95, 176, 191
gauge condition, 203
gauge transformation, 170, 202
Gauss’s theorem, 4
Gauss—Seidel iteration, 22
Gaussian integration, see numerical
integration

Green’s function, 187

3D electrostatics, 187

for the vector potential, 203
grid

square, 21

staggered, 20, 30, 31, 69, 70

unstructured, see mesh
group velocity, 8, 30

H
H (magnetic field), 4
Halléns equation, 211
Helmholtz equation
1D, 41, 45,96
1D, discretized, 47
2D, 98
2D weak form, 100
hybrid methods, 230

I
initial conditions
discretized wave equation, 65
eigenfrequency calculation, 76
for Ampere’s law, 6
for Faraday’s law, 6
for FDTD, 71
for the vector wave equation, 7
integral equation solvers, 227
integral equations, 9
charge density, 186
integration by parts, 44
internal resonances, 206



Index

J

J (electric current density), 4
j (imaginary unit), 7

J s (surface current), 5
Jacobi iteration, 22

K
k (wavenumber), 7,29

L
A (wavelength), 29
Laplace transform, 55
Laplace’s equation
2D, 20
2D, discretized, 22
iterative solution of, 22
quadratic form, 108
leap-frog, see time-stepping
Lorentz gauge, 202
low-frequency approximation, 8, 165, 168
lumped, see mass lumping

M
magic time step, 65, 67, 83
magnetic field integral equation, 208
magnetostatics, 165
mass lumping, 115, 164
mass matrix, 121
MATLAB
1D FD, Helmholtz equation, 47
1D FD, wave equation, 52
2D FD, capacitance of coaxial cable, 24
2D FEM, edge elements, 130
2D FEM, nodal elements, 107
2D MoM, 194
3D FDTD, 74
3D mixed-order FEM, 144
Padé approximation, 57
Maxwell’s equations, 3
1D, 113
frequency domain, 43
mesh, 94
computer representation, 106
generation of, 107
mesh refinement
adaptive, 111
uniform, 111
method of weighted residuals, 178
method of moments, 185
MEFIE, see magnetic field integral equation
midpoint integration, see numerical integration

285

mixed elements, 115
MLEFMA, see multilevel fast multipole
algorithm
MoM, see method of moments
L (magnetic permeability), 4
variable, 71
Lo (free-space magnetic permeability), 4
multigrid methods, 273
multilevel fast multipole algorithm, 228
/L, (relative magnetic permeability), 4

N
N;, see basis functions for edge elements
near-to-far-field transformation, 87
Neumann boundary condition, see boundary
conditions
Newmark scheme, 164
nodal basis functions, see basis functions, 100
nodal basis funtions, 103
nodal elements, 100
numerical dispersion, 65, 83
numerical integration
for log-singularity, 200
Gaussian integration, 18, 200
midpoint integration, 12, 200
Simpson’s rule, 13
trapezoidal rule, 200
Nystrom method, 190

(0]

o (angular frequency), 7
open region problems, 84
overrelaxation, 23,273

P

Padé approximation, 56

PEC, see perfect electric conductor
penalty term, 169

perfect electric conductor, 5
perfectly matched layer, 5, 85
Petrov—Galerkin method, 176
phase velocity, 8

¢ (electrostatic potential), 9

@; (nodal basis function), 100
PML, see perfectly matched layer
point matching, 190

Poisson’s equation, 3, 185
Prony’s method, 58

Q
quadratic form, 172
for Laplace’s equation, 108
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R

Rao—Wilton—Glisson elements, 207

Rayleigh—-Ritz method, 175

reciprocity, 191

resolution, 11

p (electric charge density), 4

ps (surface charge density), 5

Robin boundary condition, see boundary
conditions

S
self-adjoint, 44, 45
o (electric conductivity), 4
simplex coordinates, 103
Simpson’s rule, see numerical integration
skin effect, 167
solenoidal magnetic flux density, condition of,
3
Sommerfeld boundary condition, 183
spurious modes, 31, 115
SSOR, see symmetric successive
overrelaxation
stability analysis, 50, 65
von Neumann, 50, 51
stability limit
FDTD, 3D, 82
general, 50
wave equation, 1D, 66
staggered grids, see grid
staircase approximation, 3, 63, 225
stationary point, 172
stiffness matrix, 121
Stokes’s theorem, 5
symmetric successive overrelaxation, 273

T
t (time), 4
Taylor expansion, 14, 19
TE modes, see transverse electric modes
tent functions, 96, 113
time-stepping
explicit, 49, 63

Index

leap-frog, 50

Newmark, 164

stability limit, see stability limit
TLM, see transmission line method
TM modes, see transverse magnetic

modes

top-hat functions, 113
transmission line method, 226
transverse electric modes, 61
transverse magnetic modes, 61
trial functions, see basis functions

U
ungauged formulation, 170

\%

variational methods, 171

vector Helmholtz equation, 7

vector wave equation, 7

von Neumann stability analysis, see stability
analysis

W
wave equation
1D, 7,41,52
1D, discretized, 52, 64
analytical solution,1D, 7
wavenumber, 7, 29
analytical, 1D, 45
numerical, 30
weak form
Helmbholtz equation, 1D, 97
Helmholtz equation, 2D, 100
vector Helmholtz equation, 116
weighted residuals, 190

Y
Yee cell, 72
Yee scheme, see finite-difference time-domain
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