clear all

close all

% Physical constants
eps0 = 8.8541878e-12;
mu0 = 4e-7 * pi;

cO0 = 299792458;

% Cell size
h = 0.0025;

% Waveguide dimensions

Lx = 0.040;
Ly = 0.0225;
Lz = 0.160;

% Number of cells in each direction
Nx = round(Lx / h);
Ny = round(Ly / h);
round (Lz / h);

=
N
Il

% Length of time steps
Dt = h / (cO * sqgrt(3)); % Courant condition?

% Insignal data

t max = 16e-9;

Nt = ceil (t max / Dt);
t (1:Nt) "' * Dt;

f min = 4e9;

f max = 7e9;

f mid = (f max + £ min) / 2;

BWr = (f max - £ mid) / £ mid;

f = ((0:Nt-1)'-floor(Nt/2)) / Nt / Dt;

s = gauspuls (t-0.2e-8, f mid, BWr, -12);

% Allocate field matrices

Ex = zeros (Nx, Ny + 1, Nz + 1);
Ey = zeros(Nx + 1, Ny, Nz + 1);
Ez = zeros(Nx + 1, Ny + 1, Nz),
Hx = zeros(Nx + 1, Ny, Nz) ;
Hy = zeros (Nx , Ny + 1, Nz) ;
Hz = zeros (Nx , Ny, Nz + 1);

disp(sprintf('Initiate boundary conditions...'))
NumModesTE = 7; % 01 10 11 20 21 30 31
NumModesTM = 3; % 11 21 31

NumModes NumModesTE + NumModesTM;

disp(sprintf (' Compute TE modes'))
[ExTE, EyTE, K2TE] = ComputeTEModes (NumModesTE, Nx, Ny, h, h);
disp(sprintf (' Compute TM modes'))
[ExTM, EyTM, K2TM] = ComputeTMModes (NumModesTM, Nx, Ny, h, h);

ModalEx [ExXTE ExXTM];
ModalEy = [EyTE EyTM];
ModalK2 [K2TE K2TM];
ModalNm sum (ModalEx.”2) + sum(ModalEy.”2); % Normalizing constants

clear ExTE EyTE ExTM EyTM

% Compute Impulse response for the propagating mode

IR = zeros (Nt, NumModes); % Impulse response

slR = zeros (Nt, NumModes):; % Reflected signal at z = Dz

sl = zeros (Nt, NumModes); % Total signal at z = 0

s2T = zeros (Nt, NumModes):; % Transmitted signal at z = Lz - Dz
s2 = zeros (Nt, NumModes); % Total signal at z = Lz

for k = 1:NumModes

disp (sprintf (' Computing Impulse response for Mode %d', k))
IR(:,k) = ComputeIR(Dt, h, Nt, ModalK2(k));
end

disp(sprintf ('Start time stepping...'))
% Set initial source boundary conditions
sEy = Ey(2:Nx, :, 2);

sEx = Ex(:, 2:Ny, 2);

sEy(:) = s(1) * ModalEy(:,1);
sEx(:) = s(l) * ModalEx(:,1);
Ey(2:Nx, :, 1) = sEy;

Ex(:, 2:Ny, 1) = sEx;

sl(1l,1) = s(1);

CH = Dt / (h * mu0);
CE =Dt / (h * eps0);

Define where dielectric block is in space.

It has er and sigma

Define material properties for all points where E-components exis.
sigma const = 0.07;

er const = 5;

o o° oe

eps x = epsO0 * ones (Nx, Ny + 1, Nz + 1);

eps y = epsO0 * ones(Nx + 1, Ny, Nz + 1);

eps z = epsO0 * ones(Nx + 1, Ny + 1, Nz)
sigma x = zeros (Nx, Ny + 1, Nz + 1);
sigma y = zeros(Nx + 1, Ny, Nz + 1);
sigma z = zeros(Nx + 1, Ny + 1, Nz) ;

% Assign material by spatial coordinate
x grid = linspace (0, Lx, Nx+1);
y_grid = linspace (0, Ly, Ny+l);
linspace (0, Lz, Nz+l);

N
Q
=

-

Q.
Il

assert (x_grid(2)-x grid(l) == h)
assert(y grid(2)-y grid(1l) == h)
assert(z grid(2)-z grid(l) == h)

Spatial coordinates for each component
Map cell index to component coordinate

o o° oe

We need three maps for three E components per cell.
_comp _coord = @(i,J,k) [x grid(i)+0.5*h, y grid(j), z grid(k)];
y_comp coord @(i,3j, k) [x grid(i), y grid(j)+0.5*h, z grid(k)];
z comp coord = @(i,3j,k) [x grid(i), y grid(j), z grid(k)+0.5*h];

b

for 1 = 1:Nx
for j = 2:Ny
for k = 2:Nz

res = x _comp coord(i,j,k);
x = res(l);
y = res(2);
z = res(3);
matches = 0;
if x >= 1le-2 && x <= 3e-2
1if x == le-2 || x == 3e-2
matches = matches + 1;
end
if y <= le-2
if y == le-2
matches = matches + 1;
end
if z >= T7e-2 && z <= 9e-2
if z == T7e-2 || z == 9e-2
matches = matches + 1;
end

[

% Inside the volume. Are we on any of the 5 faces?
if matches ==

eps x(i,3,k) = (epsO*er const + eps0)/2;
sigma x(i,J,k) = sigma const/2;

elseif matches ==
eps x(i,3j,k) = eps0*(er const + 3)/4;
sigma x(i,J,k) = sigma const/4;

elseif matches ==
eps x(i,j,k) = eps0*(er const + 7)/8;
sigma x(i,J,k) = sigma const/8;

else
% inside block, not on surface
eps _x(i,J,k) = epsO*er const;
sigma x(i,j, k) = sigma const;

end
end
end
end
end
end
end
for i = 2:Nx
for j = 1:Ny
for k = 2:Nz
res = y comp coord(i,j,k);
x = res(l);
y = res(2);
z = res(3);
matches = 0;
if x >= le-2 && x <= 3e-2
1if x == le-2 || x == 3e-2
matches = matches + 1;
end
if y <= le-2
if y == le-2
matches = matches + 1;
end
if z >= Te-2 && z <= 9e-2
if z == T7e-2 || z == 9e-2
matches = matches + 1;
end
% Inside the volume. Are we on any of the 5 faces?
if matches ==
eps y(i,j,k) = (epsO*er const + eps0)/2;
sigma y(i,J,k) = sigma const/2;
elseif matches ==
eps y(i,j,k) = eps0*(er const + 3)/4;
sigma y(i,J,k) = sigma const/4;
elseif matches ==
eps y(i,j,k) = epsO0*(er const + 7)/8;
sigma y(i,J,k) = sigma const/8;
else
% inside block, not on surface
eps_y(i,J,k) = epsO*er const;
sigma y(i,j, k) = sigma const;
end
end
end
end
end
end
end

for i = 2:Nx
for j = 2:Ny
for k = 1:Nz
res = z_comp coord(i,j,k);
x = res(l);
y = res(2);
(3);

z = res(3);
matches 0;
if x >= le-2 && x <= 3e-2
1f x == le-2 || x == 3e-2
matches = matches + 1;
end
if y <= le-2
if y == le-2
matches = matches + 1;
end
if z >= Te-2 && z <= 9e-2
if z == T7e-2 || z == 9e-2
matches = matches + 1;
end
% Inside the volume. Are we on any of the 5 faces?
if matches ==
eps z(i,j,k) = (epsO*er const + eps0)/2;
sigma z(i,J,k) = sigma const/2;
elseif matches ==
eps z(i,3j, k) = epsO0*(er const + 3)/4;
sigma z(i,J,k) = sigma const/4;
elseif matches ==
eps z(i,j,k) = epsO0*(er const + 7)/8;
sigma z(i,J,k) = sigma const/8;
else
% inside block, not on surface
eps_z(i,j,k) = epsO*er const;
sigma z(i,j, k) = sigma const;
end
end
end
end
end
end
end
ks = 400;
for k = 2:Nt
% if k > 250 & k < 600
% figure (99)
% mesh (0:Nz, 0:Nx, squeeze(0.5*Ey(:,6,:))), axis equal, axis ([0 Nz 0 Nx
-6 6])
% caxis([-6 6]), view(145,30)
% title (num2str (k))
% drawnow

oe

end

FDTD update loops

o o° oe
o o° oe

oe

o° oo

o° o° o° oe

Add block of dielectric, and modify Ampere's law to account for eddy
currents.
J,n+»% = sigma(r)*(E,n+l + E,n)/2

o o° oe

mu*dH/dt = -curl (E)
Faraday's law gives
Hx = Hx + CH * (diff(Ey,1,3) - diff(Ez,1,2));
= Hy + CH * (diff(Ez,1,1) - diff(Ex,1,3));
Hz + CH * (diff(Ex,1,2) - diff(Ey,1,1));

jasigas
N
I

eps*dE/dt = curl (H)
Ampere's law gives

Ex(: ,2:Ny, 2:Nz) = ((eps_x(: ,2:Ny, 2:Nz) /Dt - sigma x(:,
2:Ny, 2:Nz)/2) .* Ex(: ,2:Ny, 2:Nz) + 1/h*(diff(Hz(:,:,2:Nz),1,2) -
diff(Hy(:,2:Ny,:),1,3))) ./ (eps _x(: ,2:Ny, 2:Nz)/Dt + sigma x(: ,2:Ny,
2:Nz) /2);

Ey(2:Nx ,: ,2:Nz) = ((eps_y(2:Nx ,: ,2:Nz) /Dt - sigma y(2:Nx, :,
2:Nz)/2) .* By(2:Nx ,: ,2:Nz) + 1/h*(diff (Hx(2:Nx,:,:),1,3) -
diff(Hz(:,:,2:Nz),1,1))) ./ (eps_y(2:Nx ,: ,2:Nz)/Dt + sigma y(2:Nx ,:
,2:Nz) /2);

Ez (2:Nx, 2:Ny, :) = ((eps_z(2:Nx, 2:Ny, :) /Dt - sigma z (2:Nx,
2:Ny, :)/2) .* Ez(2:Nx, 2:Ny, :) + 1/h*(diff(Hy(:,2:Ny,:),1,1)
diff (Hx(2:Nx,:,:),1,2))) ./ (eps_z(2:Nx, 2:Ny, :)/Dt + sigma z(2:Nx,
2:Ny, :)/2);

o
°
o
°

o° o od° o° o°
~
~

oe

oe

Metal Boudary Conditions

o o° oe
o o° oe

% | ADD METAL OBJECTS FOR FILTERING \

G e \

o \ \

o \ /

o A

o \/

o /\

o /N

o / \

o \ \

G e \

% \

% Boundary Conditions at Z = 0 %

% Extract transverse fields at z = dz %

sEy = Ey(2:Nx, :, 2);

sEx = Ex(:, 2:Ny, 2);

% Compute modal voltages %

slR(k,:) = (sEy(:)' * ModalEy + sEx(:)' * ModalEx) ./ ModalNm;

% The reflected modal amplitude at z = Dz is the difference between the
% total modal amplitude and that of the incoming wave. The amplitude of
% the incoming wave at z = Dz is a convolution of the insignal at z = 0
% and the impulse response of the wave guide.

slR(k,1) = slR(k,1) - s(l:k-1)"' * IR(k-1:-1:1,1);

Port Amplitude: sum of insignal and convolution of the reflected

signal at z = Dz with the impulse response
for 1 = 1:NumModes

sl(k,1l) = slR(1l:k-1, 1)' * IR(k-1:-1:1, 1);
end
sl(k,1) = sl(k,1) + s(k);

[[

% Set port 1 Dboundary conditions %

sEy(:) = ModalEy * sl(k,:)"';
sEx (:) = ModalEx * sl (k,:)"';
Ey(2:Nx,:,1) = sEy;
Ex(:,2:Ny,1) = sEx;

Boundary Conditions at Z = Lz

o° oo

% Extract transverse fields at z = Lz - Dz %

sEy = Ey(2:Nx, :, Nz);

sEx = Ex(:, 2:Ny, Nz);

% Compute modal voltage at z = Dz

s2T(k,:) = (sEy(:)' * ModalEy + sEx(:)' * ModalEx) ./ ModalNm;

% Port Amplitude
for 1 = 1:NumModes

s2(k,1l) = s2T(1:k-1, 1)' * IR(k-1:-1:1, 1);
end

[[

% Set port 2 Dboundary conditions %

sEy(:) = ModalEy * s2(k,:)"';
sEx (:) = ModalEx * s2(k,:)"';
Ey(2:Nx, :,Nz+1) = sEy;
Ex(:,2:Ny,Nz+1) = sEx;
if (mod(k,100) == 0)
disp(sprintf (' step %5d of %5d', k, Nt))
end
end;

% remove the incoming sigland from the total signal at port 1.
sl(:,1) = sl(:,1) - s;

oe

d° o° od° d° o o° oe
~
~

[,

_of interest = find(f>3e8 & £<7e9);

S11 = (S81./8);
521 = (82./8);
S21 phase = (S2 phase - S phase);

S11 phase = S1 phase - S phase;

o° o od° o° o°
~

oe

oe

% timevec = 1:Nt

function [f, mag, phase] = myfft(Dt, signal, timevec)
Fs = 1/Dt;
L = length(signal); % same as for s2

ts = timevec; $ time vector
Y = fft(signal);

P2 = abs(Y/L);

Pl = P2(1l:L/2+1);
Pl(2:end-1) = 2*P1l(2:end-1);
f = Fs/L*(0:L/2);

mag = P1;
phase = angle (Y);

end

Initiate boundary conditions...
Compute TE modes
Compute TM modes
Computing Impulse response for Mode 1
Computing Impulse response for Mode 2
Computing Impulse response for Mode 3
Computing Impulse response for Mode 4
Computing Impulse response for Mode 5
Computing Impulse response for Mode 6
Computing Impulse response for Mode 7
Computing Impulse response for Mode 8
Computing Impulse response for Mode 9
Computing Impulse response for Mode 10

Start time stepping...
step 100 of 3324
step 200 of 3324
step 300 of 3324
step 400 of 3324
step 500 of 3324
step 600 of 3324
step 700 of 3324
step 800 of 3324
step 900 of 3324
step 1000 of 3324
step 1100 of 3324
step 1200 of 3324
step 1300 of 3324

step 1400
step 1500
step 1600
step 1700
step 1800
step 1900
step 2000
step 2100
step 2200
step 2300
step 2400
step 2500
step 2600
step 2700
step 2800
step 2900
step 3000
step 3100
step 3200
step 3300
Unrecognized

Error in opt2
(81./9)

S11 =

Published with MATLAB® R2025b

AA

of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of

function or variable

(line 416)

’

3324
3324
3324
3324
3324
3324
3324
3324
3324
3324
3324
3324
3324
3324
3324
3324
3324
3324
3324
3324

's1'.

10

