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Elektroteknik, 180 hp, åk 2, läsperiod 2, läsåret 2017/2018

TELEKOMMUNIKATION (RRY 010)
SVAR TILL DE FLESTA ÖVNINGSUPPGIFTERNA.

VÅGLÄRA.

V1. Se föreläsningsanteckningar och kursmaterialet.

V2.
a) A = 1, 0 m, T = 2, 5 s, f = 0, 4 Hz, λ = 10 m, vfas = 4 m s−1, utbredning sker
i positiv x-led.
b) h(x, 0) = −1, 0 sin(2π 0, 1x) m, under tidsintervallet ∆t = 0, 625 s flyttar sig
vågen 2,5 m i positiv x-led, osv...
c) h(0, t) = 1, 0 sin(2π 0, 4 t) m, ett rumsintervall på ∆x = 5 m innebär en fas-
förskjutning med π rad, dvs en förskjutning i tid med 1,25 s, ett rumsintervall på
∆x = 10 m innebär en fasförskjutning med 2π rad, dvs en förskjutning i tid med
2,5 s,
d) A = 1, 5 m, T = 5 s, f = 0, 2 Hz, λ = 5 m, vfas = 1 m s−1, utbredning sker i
negativ x-led.
h(x, 0) = 1, 5 sin(2π 0, 2x) m, under tidsintervallet ∆t = 0, 625 s flyttar sig vå-
gen 0,625 m i negativ x-led, osv...
h(0, t) = 1, 5 sin(2π 0, 2 t) m, ett rumsintervall på ∆x = 5 m innebär en förskjut-
ning i tid med 5,0 s, osv...

V3.
a) p(z, t) = 10 sin(340π t− π z) Pa, vfas = 340 m s−1

b) p(z, 0) = −10 sin(π z) Pa
c) p(0, t) = 10 sin(340π t) Pa

V4. Beteckna amplituden med A(z) = 10 exp(−α z).
a) f = 2 GHz, λ = 10 cm, vfas = 2 · 108 m s−1

b) A(0) = 10 volt
c) A(z) = 10 exp(−1) ≈ 3, 68 volt
d) α = ln 5

20
≈ 0, 0805 Np m−1

V5.
a) v = 340 m s−1

b) Beteckna avståndet mellan de pulskanter som står närmast varandra med d(t):
totala vågen har formen av två separata pulser (amplitud 0,1 m) för tider t < 0, 2 s
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och t > 0, 3 s, med d(0) och d(0, 5) = 136 m, d(0, 1) = 68 m, d(0, 2) och
d(0, 3)=0. I intervallet 0, 2 ≤ t ≤ 0, 3 överlappar vågorna delvis helt varand-
ra: Vid t = 0, 2 och 0,3 s har totala vågen höjden 0,1 m och längden 68 m; vid
t = 0, 225 och 0,275 har totala vågen längden 51 m med ett 17 m brett mittenparti
med höjden 0,2 m och 17 m breda 0,1 m höga flanker, vid t = 0, 25 s är totala
vågen en 0,2 m hög puls med längden 34 m.

c) Totala vågen har formen av två separata pulser (amplitud 0,1 m resp. -0,05 m)
för tider t < 0, 2 s och t > 0, 3 s, med d(0) och d(0, 5) = 136 m, d(0, 1) = 68 m,
d(0, 2) och d(0, 4)=0. I intervallet 0, 2 ≤ t ≤ 0, 3 överlappar vågorna delvis helt
varandra: Vid t = 0, 2 är vågen 68 m varav hälften positiv med höjden 0,1 m och
hälften negativ med höjden -0,1 m. Samma gäller vid t = 0, 3 med pulshöjderna
omkastade. Vid t = 0, 225 är vågen ett trappsteg med tre 17 m långa delar, med
höjderna 0,1 m, 0,0 m resp. -0,1 m. Samma gäller vid t = 0, 275 men med höjder-
na hos stegen omkastade. Vid t = 0, 25 s är totala vågen noll (d.v.s. fullständigt
destruktiv interferens).

d) Vågen utbreder sig med 340 m s−1 i form av två separata pulser med det kon-
stanta avståndet 136+34=170 m mellan framkanterna.

e) Totala vågen har formen av två separata pulser (amplitud 0,1 m resp. 0,05 m)
för tider t < 0, 2 s och t > 0, 3 s, med d(0) och d(0, 5) = 136 m, d(0, 1) = 68 m,
d(0, 2) och d(0, 4)=0. I intervallet 0, 2 ≤ t ≤ 0, 3 överlappar vågorna delvis helt
varandra: Vid t = 0, 2 är vågen 68 m varav hälften med höjden 0,1 m och hälften
med höjden 0,05 m. Samma gäller vid t = 0, 3 med pulshöjderna omkastade. Vid
t = 0, 225 är vågen ett trappsteg med tre 17 m långa delar, med höjderna 0,1 m,
0,15 m resp. 0,05 m. Samma gäller vid t = 0, 275 men med höjderna hos stegen
omkastade. Vid t = 0, 25 s är totala vågen en 0,15 m hög puls med längden 34 m.

f) Totala vågen har formen av två separata pulser (amplitud 0,1 m resp. -0,05 m)
för tider t < 0, 2 s och t > 0, 3 s, med d(0) och d(0, 5) = 136 m, d(0, 1) = 68 m,
d(0, 2) och d(0, 4)=0. I intervallet 0, 2 ≤ t ≤ 0, 3 överlappar vågorna delvis helt
varandra: Vid t = 0, 2 är vågen 68 m varav hälften positiv med höjden 0,1 m och
hälften negativ med höjden -0,05 m. Samma gäller vid t = 0, 3 med pulshöjderna
omkastade. Vid t = 0, 225 är vågen ett trappsteg med tre 17 m långa delar, med
höjderna 0,1 m, 0,05 m resp. -0,05 m. Samma gäller vid t = 0, 275 men med höj-
derna hos stegen omkastade. Vid t = 0, 25 s är totala vågen en 0,05 m hög puls
med längden 34 m.

V6.
a) A = 2 cm, f = 5

π
Hz, λ = π

10
m, vfas = 0, 5 m s−1, våg 1 utbreder sig i positiv

x-led och våg 2 i negativ x-led.
b) h(x, t) = h1(x, t) + h2(x, t) = 4 sin(10 t) cos(20x)
c) h(x, t) har maxima (positiva/negativa) vid x = 0,±2π

40
,±4π

40
, o.s.v., och mini-
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ma (noder med värdet noll) vid x = ± π
40
,±3π

40
, o.s.v. Vid t = 0 är h = 0 överallt.

Maxvärdet för |h(x, π
60

)| är 2, max. för |h(x, π
60

)| är 2
√

2 ≈ 2, 8 och max. för
|h(x, π

20
)| är 4.

Avståndet mellan två efter varandra liggande positiva maxima är λ, samma gäller
mellan två närliggande negativa maxima. Avståndet mellan två efter varandra lig-
gande nollställen (noder") är λ/2.
d) |h(x, t)| har maxvärdet 4 | sin(10 t)| cm och minvärdet noll. Max inträffar i sam-
ma rumspositioner som positiva/negativa max deluppg. c. Min. inträffar vid no-
derna i deluppg. c. h(x, t) och |h(x, t)| uppvisar ett ’ståendevågmönster’, dvs ett
pulserande mönster, strängen ’vibrerar’.
e) h(x, t) = h1(x, t) + h2(x, t) = −4 cos(10 t) sin(20x). |h(x, t)| har maxvärdet
4 | sin(10 t)| och minvärdet noll. Maxima inträffar vid x = ± π

40
,±3π

40
, o.s.v., och

minima vid x = 0,±2π
40
,±4π

40
, o.s.v., Avståndet mellan två efter varandra liggande

maxima är λ/2, samma gäller avståndet mellan två efter varandra liggande mini-
ma.
f) h(x, t) = h1(x, t)+h2(x, t) = 2, 5 sin(10 t) cos(20x)−1, 5 cos(10 t) sin(20x).
Max.toppvärde=2,5 cm; min.toppvärde=1,5 cm.
g) h(x, t) = h1(x, t)+h2(x, t) = 1, 5 sin(10 t) cos(20 x)−2, 5 cos(10 t) sin(20x).
Max.toppvärde=2,5 cm; min.toppvärde=1,5 cm.
h) Extremvärden |A1 + A2| respektive |A1 − A2|.

V7. a) h(x, t) = 2A1 sin(ω1 t− k1 x)
b) h(x, t) = 0
c) h(x, t) = 1, 5A1 sin(ω1 t− k1 x)
d) h(x, t) = 2A1 sin(ω1 t− k1 x)[1 + 2 cos(ω1 t− k1 x)]
= 2A1 sin(1, 5ω1 t− 1, 5k1 x) cos(0, 5ω1 t− 0, 5k1 x)
e) h(x, t) = A1[sin(ω1 t− k1 x) + cos(ω1 t− k1 x)] =

√
2A1 sin(ω1 t− k1 x+ π

4
)

f) h(x, t) = 0
g) -
h) -

V8. Beteckna totala vågfunktionen med g(x, t).
a) g(x, t) = −0, 2 cos(20 π t) sin(10 π x). Stående våg med minima (med topp-
värdet noll) vid x = 0 m; x = −0, 1 m; x = −0, 3 m osv. Maxima (med toppvär-
det 0,2 m) inträffar vid x = −0, 05 m; x = −0, 15 m; x = −0, 25 m osv.

b) g(x, t) = 0, 2 sin(20 π t) cos(10 π x). Max och minpositionerna omkastade
jämfört med deluppgift a.

V9. -

V10.
a) utot(x, t) = 2 cos(ω1+ω2

2
t− k1+k2

2
x) cos(ω1−ω2

2
t− k1−k2

2
x)

b) -
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c)-
d) vgrupp < vfas
e) -
f) -

ELEKTROMAGNETISKA FÄLT, TEM-VÅGOR.

F1. Se anteckningar & övningar i Elteknik (LEU 460).

F2. Se föreläsningsanteckningar.

F3.
a) λ ≈ 94, 25 m
b) Beteckna kapacitansen per längdenhet med C. Då blir i(t) = C l du(t)

dt
≈

1, 77 · 10−3 cos(107 t) ampere
c) Tidsvarierande E-fält mellan plattorna ger s.k. ’förskjutningsströmmen’.
d) Toppvärden: E = umax

b
= 5 kV, D = εr ε0E = 1, 77 · 10−7 coulomb m−2.

e) Antag att övre plattan positivt laddad vid aktuell tidpunkt, och att ledningen är
ritad på pappret så att vi tittar in i den. Då är E-fältet & D-fältet riktade från övre
till nedre platten, strömmen går in i pappret i övre plattan och upp ur pappret i
nedre plattan.
f) Kapacitans: Vad är uttrycket för kapacitansen hos en plattkondensator ut? Al-
ternativ: använd Q = C l u, u = E l och Gauss lag (för ett samband mellan E och
Q).
Induktans: Använd Φ = L l i, Φ = BA och Amperes lag (för ett samband mellan
B och i).
För fler detaljer hänvisas till kursen i Elteknik (LEU 460)!

F4.
a) Beteckna induktansen per längdenhet med L. Då blir u(t) = L l di(t)

dt
≈ 2, 51 ·

10−2 cos(107 t) volt
b) Tidsvarierande magnetfält inducerar en spänning.
c) Toppvärden: H = imax

a
= 10, 0 A m−1, B = µr µ0H = 1, 26 · 10−5 V s m−2,

Φ = B l b = 2, 51 · 10−9 V s
d) Antag att övre plattan positivt laddad vid aktuell tidpunkt, och att ledningen
är ritad på pappret så att vi tittar in i den. Då är B-fältet & H-fältet riktade från
höger till vänster, strömmen går in i pappret i övre plattan och upp ur pappret i
nedre plattan.

F5.
a) Induktion: |u(t)inducerad| = |dΦ

dt
|.

b) Ueff = a b 2
√

2
r

c) Ueff = a 2
√

2 ln(2)
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F6. Se föreläsningsanteckningar/kursmaterialet.

F7. Hmax = 1, 33 · 10−3 A m−1, Smedel = 3, 32 · 10−4 W m−2

F8.E(z) = E0 exp(−γ z) och S = |E0|2 exp(−2α z) cos(θ)
2 |ZTEM|

där γ =
√
j ω µ (σ + j ω ε),

α = Re(γ), ZTEM =
√

j ω µ
σ+j ω ε

= |ZTEM| exp(j θ).

a) Eeff = 4, 46 · 10−4 V m−1, Heff = 3, 17 · 10−2 A m−1 vid f = 100 Hz,
Eeff = 1, 41 · 10−3 V m−1, Heff = 1, 00 · 10−2 A m−1 vid f = 10 kHz,
Eeff = 1, 38 · 10−2 V m−1, Heff = 9, 81 · 10−4 A m−1 vid f = 100 MHz.
b) S ∝ exp(−2α z), vilket ger att effektflödet (Poyntingvektorns belopp) är 5%
av värdet vid ytan på djupet z = ln 0,05

−2α
. z ≈ 37, 7 m vid f = 100 Hz, z ≈ 3, 77 m

vid f = 10 kHz och z ≈ 3, 96 · 10−2 m vid f = 100 MHz.
c) vfas = ω

β
där β = Imγ.

I luft är vfas = 3, 0 · 108 m s−1. I vatten är vfas = 1, 6 · 104 m s−1 vid f = 100 Hz,
vfas = 1, 6 · 105 m s−1 vid f = 10 kHz, vfas = 1, 5 · 107 m s−1 vid f = 100 MHz.

F9.
a) Sinf = 1, 33 · 10−5 W m−2

b) Sabs = 6, 32 · 10−6 W m−2

F10. E och H betecknar här toppvärden, U och I effektivvärden, r är avståndet
från koaxialkabelns axel.
a) S = EH

2
= E2

2RTEM
= H2RTEM

2
, P = S a b

b)E(r) =
√

2U
r ln(D/d)

,H(r) =
√

2 I
2π r

, S(r) = U I
2π (r)2 ln(D/d)

, P = E2(vid r=d/2)π d2 ln(D/d)
4RTEM

c) S som i deluppg. a, P ej meningsfull att ange, ty oändlig utsträckningen hos
vågfronten.

F11. Pmax = 11, 56 kW

F12. Pmax = 796 W

F13. D > 16 mm

F14.D > 2, 5 mm

F15. Se kursen i Elteknik (LEU 460) och svaret till uppg. F3f.

F16. Se föreläsningsanteckningar.

F17. Se föreläsningsanteckningar.

F18.
a) vf vg = c2
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b) k → 0: vf → ∞, vg → 0; k → ∞: vf → c, vg → c.
c) ω > ωp ger ett reellt vågtal (k) och därmed en cosinusformad våg med konstant
amplitud. ω < ωp ger ett imaginärt vågtal och därmed en cosinusformad våg med
en amplitud som dämpas exponentiellt (vågen kommer alltså inte att utbreda sig
särskilt långt in i plasmat, utan visar sig reflekteras.) Även en exponentiellt ökande
lösning finns, men den är inte fysikaliskt rimlig just i detta exempel.

F19. Utbredning sker i z-led och farten är 1√
ε0 µ0

.

LEDNINGSTEORI.

L1. Se föreläsningsanteckningar.

L2. Beteckna löptiden (tiden det tar för vågfronten att utbreda sig från generator
till last) med τ .
a) Ingen reflexion.
Uing. = 0 för t < 0, Uing. = 6, 0 volt för t > 0
Umit. = 0 för t < 0, 5 τ , Umit. = 6, 0 volt för t > 0, 5 τ .
Ulast = 0 för t < τ , Ulast = 6, 0 volt för t > τ .
b) Positiv reflexion vid last med resulterande amplitud=1,5 volt hos refl.våg. In-
fallande våg har amplituden 6 volt.
Uing. = 0 för t < 0, Uing. = 6 volt för t mellan 0 och 2 τ , Uing. = 7, 5 volt för
t > 2 τ .
Umit. = 0 för t < 0, 5 τ , Umit. = 6 volt för t mellan 0, 5 τ och 1, 5 τ , Umit. =
7, 5 volt för t > 1, 5 τ .
Ulast = 0 för t < τ , Ulast = 7, 5 volt för t > τ .
c) Negativ reflexion vid last med resulterande amplitud=-1,5 volt hos refl. våg. In-
fallande våg har amplituden 6 volt.
Uing. = 0 för t < 0, Uing. = 6 volt för t mellan 0 och 2 τ , Uing. = 4, 5 volt för
t > 2 τ .
Umit. = 0 för t < 0, 5 τ , Umit. = 6 volt för t mellan 0, 5 τ och 1, 5 τ , Umit. =
4, 5 volt för t > 1, 5 τ .
Ulast = 0 för t < τ , Ulast = 4, 5 volt för t > τ .
d) Positiv reflexion vid last med resulterande amplitud=6 volt hos refl.våg. Infal-
lande våg har amplituden 6 volt.
Uing. = 0 för t < 0, Uing. = 6 volt för t mellan 0 och 2 τ , Uing. = 12 volt för
t > 2 τ .
Umit. = 0 för t < 0, 5 τ ,Umit. = 6 volt för tmellan 0, 5 τ och 1, 5 τ ,Umit. = 12 volt
för t > 1, 5 τ .
Ulast = 0 för t < τ , Ulast = 12 volt för t > τ .
e) Negativ reflexion vid last med resulterande amplitud= -6 volt hos refl. våg. In-
fallande våg har amplituden 6 volt.
Uing. = 0 för t < 0, Uing. = 6 volt för tmellan 0 och 2 τ , Uing. = 0 volt för t > 2 τ .
Umit. = 0 för t < 0, 5 τ , Umit. = 6 volt för t mellan 0, 5 τ och 1, 5 τ , Umit. = 0 volt
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för t > 1, 5 τ .
Ulast = 0 hela tiden.
f) Z0, 5Z0

3
, 3Z0

5
,∞ (öppen ledningsände), 0 (kortsluten ledningsände)

g) Ustat. = Vinf. + Vref. = UG ZL

ZL+ZG
med ZG = Z0: 6 volt, 7,5 volt, 4,5 volt, 12,0

volt, 0 volt. Samma resultat fås med vanlig kretsteori, spänningsdela mellan last
och generatorimpedans.
h) Induktor=kortslutning när stationär tillstånd inträtt, U = 0 volt.
i) Kondensator=avbrott när stationär tillstånd inträtt, U = 12 volt.

L3. Z0 = 100 Ω, vfas = 108 m s−1, λ = 0, 5 m,
v(x, t) = 2 cos(4π 108 t± 4π x) volt

L4. L = 5 · 10−7 H m−1, L = 2 · 10−10 F m−1

L5. α = 2, 63 · 10−3 Np m−1 = 2, 29 · 10−2 dB m−1

L6.
a) α = 1, 55 · 10−2 Np km−1 = 0,135 dB km−1

b) β = 2, 56 · 10−2 rad km−1 = 1, 465◦ km−1

c) Z0 = 790, 3 exp(−0, 465) Ω
d) vfas = 2, 45 · 108 m s−1

e) v(x, t) = 5 exp(−0, 0155x) cos(2π 103 t± 2, 56 · 10−2 x) volt

L7.R = 137, 5 Ω km−1,G = 12µS km−1,L = 0, 21 mH km−1 ochC = 2, 8 nF km−1.

L8.
a)Z0 = 316, 3 exp(−j0, 0159) Ω, vfas = 3 162 m s−1, α = 0, 0316 Np m−1=0,274 dB m−1

b)Z0 = 447, 3 exp(−j0, 0159) Ω, vfas = 4 472 m s−1, α = 0, 0224 Np m−1=0,194 dB m−1

L9. Använd P = 1
2

Re(V I∗) = |V |2 cos(− arg(Z∗))
2 |Z| för aktuell spänning och im-

pedans vid ledningsingång resp. last, vilket ger förlusteffekten Ping. − Plast =
1, 26 W

L10.
a) R = 0, 058 Ω m−1, L = 2, 5 · 10−7 H m−1 och G = 23µS m−1

b) vfas = 2 · 108 m s−1

c) 99,7%
d) vfas = ω

β
och β =Im(γ). Bestäm Im(γ) och använd där att R

L
= G

C
. M.h.a. detta

kan man sedan se att vfas inte beror av ω och därmed ej heller av λ.

L11.
a) Z0 = 186, 6 exp(−j0, 0197) Ω
b) γ = 5, 4 · 10−3 + j0, 27 m−1

7



L12.
a) ΓL = 0, ΓL ≈ 0, 33, ΓL ≈ −0, 33, ΓL = j, ΓL = 0, 46 · exp(j64◦),
ΓL = 0, 46 · exp(−j64◦)
b) 9Z0 och 0, 11Y0, 0, 67Z0 och 1, 5Y0, (1, 6 + j1, 3)Z0 och (0, 38 − j0, 32)Y0,
(1, 05−j1, 95)Z0 och (0, 22+j0, 39)Y0, (0, 47−j0, 58)Z0 och (0, 85+j1, 05)Y0,
c) Två lösningar: ZL = 600 Ω resp. ZL = 66, 7 Ω

L13.
Fallet ZL = 0:
a) Γ(0) = −1, Z(0) = 0
b) Γ(−λ

8
) = +j, Z(−λ

8
) = 200j Ω

c) Γ(−λ
6
) = 1+

√
3 j

2
, Z(−λ

6
) =
√

3 · 200j Ω
d,f) Γ(−λ

4
) = +1, Z(−λ

4
)→∞

e,g) Γ(−λ
2
) = −1, Z(−λ

2
) = 0

i) Fallet ZL →∞:
a) Γ(0) = +1, Z(0)→∞
b) Γ(−λ

8
) = −j, Z(− λ

8
) = −200j Ω

c) Γ(−λ
6
) = − 1+

√
3 j

2
, Z(− λ

6
) = − 200j√

3
Ω

d,f) Γ(−λ
4
) = −1, Z(−λ

4
) = 0

e,g) Γ(−λ
2
) = +1, Z(−λ

2
) =→∞

j) Fallet ZL = Z0:
a)-g) Γ = 0 och Z = Z0 i samtliga positioner.

k) Fallet ZL = 0, 5Z0:
a) Γ(0) = − 1

3
, Z(0) = 100 Ω

b) Γ(−λ
8
) = j

3
, Z(− λ

8
) = (0, 8 + j0, 6) 200 Ω

c) Γ(−λ
6
) = 1+

√
3 j

6
, Z(− λ

6
) ≈ (1, 14 + j0, 74) 200 Ω

d,f) Γ(−λ
4
) = 1

3
, Z(−λ

4
) = 400 Ω

e,g) Γ(−λ
2
) = − 1

3
, Z(−λ

4
) = 100 Ω

l) Fallet ZL = (1 + j)Z0:
a) Γ(0) = 0, 2 + 0, 4j, Z(0) = (1 + j) 200 Ω
b) Γ(−λ

8
) = 0, 4− 0, 2j, Z(− λ

8
≈ (1, 95− 1, 05j) 200 Ω

c) Γ(−λ
6
) = 0, 24− 0, 38j, Z(− λ

6
) ≈ (1, 1− 1, 05j) 200 Ω

d,f) Γ(−λ
4
) = −0, 2− 0, 4j, Z(−λ

4
) = (1− j) 100 Ω

e,g) Γ(−λ
2
) = 0, 2 + 0, 4j, Z(−λ

2
) = (1 + j) 200 Ω

m) -
n) Kortsluten och öppen fjärrände ger SV F → ∞, ZL = Z0 ger SV F = 1,
ZL = 0, 5Z0 ger SV F = 2, ZL = (1 + j)Z0 ger SV F ≈ 2, 62
o) |Z|min = Z0

SV F
, |Z|max = Z0 SV F
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L14. Se föreläsningsanteckningar.

L15.
a) kortsluten fjärrände (Zin(−l) = j Z0 tan(β l)):
Zin = 0 då l = 0, 0.5λ, λ
Zin →∞ då l = 0.25λ, 0.75λ
Zin induktiv för l ∈ (0, 0.25λ) och l ∈ (0.5λ, 0.75λ)
Zin kapacitiv för l ∈ (0.25λ, 0.5λ) och l ∈ (0.75λ, λ)

b) öppen fjärrände (Zin(−l) = Z0

j tan(β l)
):

Zin = 0 då l = 0.25λ, 0.75λ
Zin →∞ då l = 0, 0.5λ, λ
Zin induktiv för l ∈ (0.25λ, 0.5λ) och l ∈ (0.75λ, λ)
Zin kapacitiv för l ∈ (0, 0.25λ) och l ∈ (0.5λ, 0.75λ)

c) som i b)
d) som i a)
e) Zin = Z0 för alla l

f) Zin = 0 då l = 0.375λ, 0.875λ
Zin →∞ då l = 0.125λ, 0.625λ
Zin induktiv för l ∈ (0, 0.125λ) och l ∈ (0.375λ, 0.625λ) och l ∈ (0.875λ, 1.0λ)
Zin kapacitiv för l ∈ (0.125λ, 0.375λ) och l ∈ (0.625λ, 0.875λ)

g) - h) -
i) Zin = 0 då l = 0.162λ, 0.662λ
Zin →∞ då l = 0.412λ, 0.912λ
Zin induktiv för l ∈ (0.162λ, 0.412λ) och l ∈ (0.662λ, 0.912λ)
Zin kapacitiv för l ∈ (0, 0.162λ) och l ∈ (0.412λ, 0.662λ) och l ∈ (0.912λ, 1.0λ)

L16. Y = 0, 01− 0, 02j

L17.
a) ZL = 83, 3− j51, 4 Ω
b) Zin = 28, 5(1 + j) Ω
c) Yin = 0, 018(1− j)S

L18.
a) ΓL = 0, 42 exp(j0, 947)
b) SV F = 2, 5
c) Z(−λ

8
) = 83− j51 Ω

d) YL = 0, 01− j0, 008) S
e) Y (−λ

8
) = 0, 0088− j0, 0054 S

f) |V |last = 2, 23 volt. |V |max = SV F |V |max = 2, 45 volt. 1:a max. 0,075λ från
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lasten, 1:a min. 0,325λ från lasten. Avstånd mellan två efter varandra följande
max. är 0,5λ, samma avstånd mellan två efter varandra följande min.

L19.
a) Zin = ZL

b) Zin =
Z2
0

ZL

L20.
a,b,d) Zin = 44, 4 Ω
c,e) Zin = 100 Ω
f) Zin = 56, 25 Ω
g) Zin = 25 Ω
h) Zin = 144, 4 Ω fall abd, Zin = 20 Ω fall ce, Zin = 17, 3 Ω fall f, Zin = 125 Ω
fall g

L21.
a) SV F =

√
5+1√
5−1
≈ 2, 62

b) Z reell på avstånden 0, 088 + mλ
4

från lasten (m=0, 1, 2, 3, ...)
c) Re(Z)=Z0 på avstånden mλ

2
och 0, 176 + mλ

2
från lasten (m=0, 1, 2, 3, ...)

d) Re(Y )=Y0 på avstånden λ
4
+mλ

2
och λ

4
+0, 176+mλ

2
från lasten (m=0, 1, 2, 3, ...)

L22. Parallellresonans: Z maximal (dvs Y minimal). Serieresonans: Z minimal
(dvs Y maximal).
Kretsarna kan konstrueras på flera olika sätt. Vi exempelifierar med två fall. I förs-
ta fallet ansluter vi kondensatorn som last till en ledning (dvs parallellkopplar en
kondensator med en öppen ledningsände) och studerar Zin. En ledningslängd på
0, 38λ ger parallellresonans och 0, 13λ ger serieresonans.
I andra fallet kopplar vi kondensatorn parallellt med en kortsluten ledning och
mäter impedansen direkt över kondensatorn (d.v.s. kondensatorn kan anses vara
ansluten till ledningens ingång där vi mäter Zin), vilket ger längden 0, 13λ vid
parallellresonans och 0, 38λ vid serieresonans.

L23. ZL = 50 + j30 Ω

L24. C = 88 pF

L25. ZL = 23− j19 Ω

L26.
a) Γing. = exp(−j53◦) (öppen), resp. exp(+j127◦) (kortsluten)
b) Z0 =

√
Zin,k · Zin,o = 80 Ω, v = 1√

LC
och Z0 =

√
L
C

ger L = 0, 27µH m−1,
C = 42 pF m−1

c) tan(β d) = −
√

Zin,k

Zin,o
= 0, 5 ger d ≈30 cm (dvs. 0,074λ). Alt. lösning: pricka
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in zin,k in i Smithdiagrammet och mät avståndet till kortslutningen, eller pricka in
zin,o och mät avståndet till öppna änden.
d) Z0, L och C som i b). Γing. = exp(+j53◦) (kortsluten), resp. exp(−j127◦)
(öppen). d ≈1,7 m (dvs. 0,426λ).

L27.
a) ΓL = 0, 2
b) ZL = 150 Ω
c) Z(−1) = 66, 7 Ω
d) IL = 0, 008 A
e) I(−1) = 0, 012 A
f) f = 75 MHz
g) PL = 0, 048 W

L28.
a) Z0 = 100 Ω,
b) V +(−0, 5) = j volt, V −(−0, 5) = −0, 4j volt och V (−0, 5) = 0, 6j volt
c) V +(0) = 1 volt, V −(0) = 0, 4 volt och V (0) = 1, 4 volt
d) I+(−0, 5) = 0, 01j A, I−(−0, 5) = 0, 004j A och I(−0, 5) = 0, 014j A
e) I+(0) = 0, 01 A, I−(0) = −0, 004 A och I(0) = 0, 006 A
f) Z(−0, 5) = 42, 9 Ω
g) ZL = 233, 3 Ω
h) PL = 4, 2 mW
i) |V (x)| har maxima vid x = 0,−1,−2,−3,−4,−5 meter,
och minima vid x = −0.5,−1.5,−2.5,−3.5,−4.5 meter.
j) Första minimat inträffar först vid x = −100 m, vilket innebär att V ≈ 1, 4 volt
och I ≈ 0, 006 A inom intervallet [-5 m, 0 m].

L29. Se föreläsningsanteckningar/lärobok.

L30. Se föreläsningsanteckningar/lärobok.

L31.
a) Reell Z vid spänn.max och spänn.min. Första max. i position 0, 205λ från last,
första min. 0, 458λ från last
b) YL = 0, 017 − j0, 0065 siemens, Två första positionerna med realdelen av
yL = 1 är 0, 055λ och 0, 361λ från last.

L32.
a) En stubbe med längden 0, 352λ skall placeras 0, 016λ från lasten.
b) En kvartsvågstransformator med Z0 = 71, 6 Ω placeras 0, 169λ från lasten.

L33. En kvartsvågstransformator med Z0 = 100 Ω och längden 0,5 m, som ansluts
direkt (ty reell lastimpedans) till lasten.
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L34.
a) En kvartsvågstransformator med Z0 = 61 Ω och placering 0, 116λ från lasten.
b,c,d,e,f) -

L35.
a) SV F = 2, 44 innan anpassning.
b) Placering 0, 125λ från last. Stubbens längd 0, 37λ.
c) SV F = 1 efter anpassning.
d) En kvartsvågstransformator med Z0 = 130 Ω och placering 0, 032λ från lasten.

L36.
a) Placering 0, 184λ från lasten, Z0 = 109, 2 Ω.
b) Frekvensdubbling medför att kvartsvågstransformatorn har blivit en ledning
med längden λ

2
. Dessutom har lastimpedansens imaginärdel halverats, ty reaktan-

ser är frekvensberoende (jX = −j
2π f C

). Då är impedansen 70 Ω vid transf. utgång-
en. Alltså ser den ursprungliga ledningen denna impedans även vid ingången till
transformatorn, vilket ger SV F = 1, 42.
c) Placering 0, 084λ från lasten, stubblängd 0, 161λ. d) -

L37.
a) Den minsta möjliga skikttjockleken, som ger 100% transmission, är d = λskikt

2
=

c0
2 f
√
εr,skikt

.
b,c,d) Vid frekvensdubbling får skiktet längden d = λ. Alltså uppfattar vågen ing-
en skilland jämfört med deluppg. a. Vid frekvenshalvering skulle däremot skiktet
bli en kvartsvågstransformator, med resultatet att inimpedansen som vågen ser vid
skiktingången är skild från vågimpedansen i luft (som i sin tur är ≈ 377 Ω) och
transmissionen skulle inte längre vara 100%. För att återföra skiktet till längden λ

2
,

så kan man fördubbla skiktets tjocklek eller byta skiktmaterialet till ett med fyra
gånger så hög εr,skikt.

L38. ΓL = −1
3
, ΓG = 1

3
.

a) Ving. blir 9,0 volt vid tiden noll, 5 volt vid tiden 4µs, 5,44 volt vid tiden 8µs.
b) Vmitt är noll vid tiden noll, blir 9,0 volt vid tiden 1µs, 6 volt vid tiden 3µs, 5
volt vid tiden 5µs, 5,33 volt vid tiden 7µs.
c) Vlast är noll fram till tiden 2µs, varvid den stiger till 6 volt. Nästa förändring
sker vid 6µs när Vlast blir 5,33 volt och vid 10µs blir Vlast = 5, 41 volt, o.s.v.
d) Spänningens slutvärde blir 5,4 V.

L39.
a) Ving. blir 8,0 volt vid tiden noll, 11,2 volt vid 2µs, 9,28 volt vid 4µs, 10,43 volt
vid 6µs, 9,74 volt vid 8µs, 10,16 volt vid 10µs.
b) Vmitt blir 8,0 volt vid tiden 0,5µs, 16,0 volt vid 1,5µs, 11,2 volt vid 2,5µs, 6,4
volt vid 3,5µs, 9,28 volt vid 4,5µs, 12,16 volt vid 5,5µs, 10,43 volt vid 6,5µs,

12



8,70 volt vid 7,5µs, 9,74 volt vid 8,5µs, 10,78 volt vid 9,5µs.
c) Vlast blir 16,0 volt vid tiden 1µs, 6,4 volt vid 3µs, 12,16 volt vid 5µs, 8,70 volt
vid 7µs, 10,78 volt vid 9µs.
d) Spänningens slutvärde blir 10,0 V.

L40.
a) Ving. blir 24,0 volt vid tiden noll, 8,0 volt vid 6,67µs.
b) Vmitt är noll fram till 1,67µs då den stiger till 24 V. Vid 5,0µs blir spänningen
åter noll. Vid 8,33µs stiger spänningen till 8 V och vid 11,67µs blir spänningen
åter noll, osv.
c) Spänningen över lasten är noll hela tiden.
d) Spänningens slutvärde blir noll volt

L41. Efter att stationär tillstånd har inträtt så gäller följande för λ
2

ledningen:
a) Impedansanpassning både i generatorände och lastände, vilket ger |V (x)|=konstant.
b) Anpassad generator, men positiv reflexion (med reellt ΓL) vid last, totalt två
vågor på ledningen |V (x)| får minima (noder) och maxima (bukar). Max. vid last
och generator, min. mitt på ledningen.
c) Anpassad generator, men negativ reflexion vid last (med reellt ΓL), totalt två
vågor på ledningen |V (x)| får minima (noder) och maxima (bukar). Min. vid last
och generator, max. mitt på ledningen.
d) Positiv reflexion både vid generator och last (med reella ΓL och ΓG). Oändligt
många infallande och reflekterade vågor. |V (x)| får minima (noder) och maxima
(bukar). Max. vid last och generator, min. mitt på ledningen.
e) Negativ reflexion både vid generator och last (med reella ΓL och ΓG). Oändligt
många infallande och reflekterade vågor. |V (x)| får minima (noder) och maxima
(bukar). Min. vid last och generator, max. mitt på ledningen.
f) -

L42.
a) λ � l, räkna som i vanlig (lågfrekvens) växelströmsteori. P = 1, 6 W då
f = 1 MHz
b) l = λ

4
P = 0, 137 W vid f = 1 GHz.

c) l = λ
2
: P = 1, 6 W vid f = 1 GHz.

d) Interferens mellan vågor. Relativa faslägena (vid last) mellan delvågorna blir
olika i de olika fallen. λ/2 ledningen är dock som bekant sådan att inimpedansen
är lika med lastimpedansen, vilket innebär att generatorn belastas med lastim-
pedansen, precis som i lågfrekvensfallet.
e) Fall a: |V | ≈ 4, 0 volt överallt på ledningen, ty λ � l. Fall b: min (1,17 volt)
vid last max (11,7 volt) vid generator. Fall c: Min (4,0 volt) vid last och generator,
max (40 volt) mitt på ledningen.
f) Postiv reflexion vid last ...
g) För f = 2 GHz blir ledningslängderna λ

2
resp. λ, vilket resulterar i att effektut-

vecklingen i en given last är densamma för dessa båda ledningslängder. Stående-
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vågmönstret vid 5 Ω last ansluten: Min. vid last och generator och max. i mitten
för kortare ledn. Min. vid last, gen. och i mitten, max mellan minima för den läng-
re ledningen.

L43. nskikt = 1, 225. Skiktets tjocklek 122,47 nm.

L44. Studera formeln för Zin (eller Smithdiagrammet): Vid låga frekvenser, dvs
långa våglängder (λ� l) så är Zin ≈ ZL oberoende av λ och därmed kan Kirch-
hoff tillämpas.

L45.
a) Z0 ≈ 51, 6 ≈ 52 Ω, vfas ≈ 1, 99 · 108 m s−1

b) Vid T-kontakten är Z en parallellkoppling inimpedanserna för ledning 2 och 3.
Då de är ’oändligt långa’ och förlustfria så är inimp.=Z0, vilket ger Z = 0, Z0

vid T-kontakten. Pref. = Pinf. |Γvid T−kon.|2, vilket ger att 1
9

av infallande effekten
reflekteras tillbaka medan 4

9
transmitteras in i vardera av ledn. 2 och 3.

c) Stubbens längd blir 0, 347λ och position 0, 098λ från T-kontakten.

L46.
a) 6,55 volt resp. 1,5 meter.
b) En stubbe med längden 0, 083λ placeras λ

4
från lasten.

L47. Z0 =
√
Zin,k Zin,o = 75 Ω, λ fås mha Smithdiagrammet (pricka tex in

zin,k och bestäm avståndet till kortslutningen; gå max ett varv ty l < λ
2
) eller

mha tan2(β l) = −Zin,k

Zin,o
; använd villkoret l < λ

2
för att hamna i rätt kvadrant.

vfas = λ f ≈ 2, 2 · 107 m s−1.

L48. a) Avståndet till felstället är 4,8 km. Z vid felstället blir 0,6Z0. Vid fel-
stället är Z0 och Rf parallellkopplade (isoleringsfel mellan ledarna), vilket ger
Rf = 75 Ω.
b) Z0 och Rf nu seriekopplade vid felstället, vilket ger Rf = 33 Ω.

L49. 2,04 cm.

L50.
a) Se föreläsningsanteckningar.
b) Uttryck 1 gäller även då ledningen har dämpning, ty beräkningen sker vid las-
ten.

L51. -

L52.
a) Frenzel: Z0 ≈ 40 Ω.
Gonzalez: εff = 1, 89, Z0 ≈ 50 Ω,λ ≈ 109 mm, L ≈ 27, 2 mm.
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b) Frenzel: Z0 ≈ 78 Ω.
Gonzalez: εff = 4, 08, Z0 ≈ 75 Ω,λ ≈ 74, 3 mm, L ≈ 18, 6 mm.
c) Frenzel: Z0 ≈ 72 Ω.
Gonzalez: εff = 3, 26,Z0 ≈ 70 Ω,λ ≈ 83, 1 mm, L ≈ 20, 8 mm.

L53.
a) Frenzel: W ≈ 0, 43 mm. Gonzalez: W ≈ 0, 38 mm. εff = 6, 05, λ ≈ 40, 7 mm.
b) Frenzel: W ≈ 3, 2 mm. Gonzalez: W ≈ 4, 0 mm. εff = 1, 85, λ ≈ 73, 5 mm.
c) Frenzel: W ≈ 0, 72 mm. Gonzalez: W ≈ 0, 68 mm. εff = 3, 10, λ ≈ 56, 8 mm.

L54.
a) Z0 ≈ 24, 1 Ω
b) lstubbe ≈ 0, 39λ
c) Gonzalez: W ≈ 4, 24 mm, l0,25λ ≈ 11, 1 mm, lstubbe ≈ 17, 3 mm.

L55. a) 124 Ω (Frenzel), 122 Ω (Gonzalez), 122 Ω (Ulaby),
b) 45 Ω (Frenzel), 46 Ω (Gonzalez), 46 Ω (Ulaby),
c) -11 Ω (modellen fungerar inte för detta fall, Frenzel),
14 Ω (Gonzalez), 14 Ω (Ulaby),
d) -

L56. -

L57. 10 Ω till 210 Ω

L58.
a) -
b) εeff → 5, plattledning,
c) εeff → 3, tunn rak ledare ovanför jordplanet

L59.
a) 0,54 mm (Frenzel), 0,48 mm (Ulaby),
b) 1,07 mm (Frenzel), 0,95 mm (Ulaby),
c) 2,15 mm (Frenzel), 1,9 mm (Ulaby)
d)-
e)-

L60. -

L61. -

L62. -

L63. -
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L64. -

OPTISK FIBER.

O1. Varje foton har energin h c
λ

där h ≈ 6, 63 · 10−34 Js är Plancks konstant. Detta
ger ≈ 1, 28 · 10−19 J per foton. Emission av N fotoner per sekund ger effekten
N h c

λ
, vilket innebär att N ≈ 8 · 1015.

O2. Se kursbok och föreläsningsanteckningar.

O3. NA ≈ 0, 56, Θa ≈ 0, 59 rad ≈ 33, 8◦

O4. Ca. 7,7% av effekten i fiber 1 reflekteras.
Reflexion sker i båda gränsytorna (fiber 1 till luft och luft till fiber 2), 4% vid resp.
yta. Antag dock att vi kan bortse från interferensfenomen. Då kan vi direkt addera
effekterna (istället för fältstyrkorna) för de individuella vågorna genererade i de
två gränsytorna.

O5. Moddispersionen är τ ≈ 5 · 10−10 s, dvs 5 · 10−11 s per km.

O6.
a) NA ≈ 0, 24, Θa ≈ 0, 24 rad ≈ 13, 7◦

b) |Γ|2 = |n0−nk

n0+nk
|2 ≈ 3, 0%

c) Moddispersionen är τ ≈ 1, 35 · 10−7 s, vilket ger en maximal bithastighet på
fbit,max = 1

2 τ
= 3, 7 · 106 bitar per sekund. Alt. dubbelt så hög om man använder

fbit,max = 1
τ

som mått på maximal bithast.
d) NA och fbit,max oförändrade, Θa ≈ 0, 18 rad ≈ 10, 3◦, |Γ|2 ≈ 0, 11%.

O7. Den area som fiber 1 belyser är proportionell mot (NA1)2 och den area
som fiber 2 kan ta emot ljus från är proportionell mot (NA2)2. Därmed kopp-
las (NA2

NA1
)2 ≈ 0, 444 av effekten från fiber 1 till fiber 2, d.v.s. 55,6% av effekten

förloras. Här försummade vi förluster p.g.a. reflexioner.

O8. 32,3% av effekten förloras.

O9.
a) P ≈ 7, 94µW (Antag, att inga förluster inträffar vid själva inkopplingen av
effekten i fibern.)
b) τ ≈ 0, 51µ s
c) fbit,max = 9, 8 · 105 bitar per sekund.

O10. Tänk fibrerna som transmissionledningar, Z0 =
RTEM,vakuum

n
. Kvartsvågs-

transformatorns brytningsindex blir då n =
√
n1 · n2 ≈ 1, 425, där n1 och n2
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är brytn.indexen för fiber 1 resp. fiber 2. Skiktets tjocklek är λskikt
4
≈ 335, 3 nm

(λskikt = λ1
n1

nskikt
).

SIGNALER OCH SPEKTRA.

S1.
a) -
b) |Z1| =

√
17, |Z2| =

√
13, arg(Z1) = arctan(4) ≈ 1, 326 rad ≈ 75, 96◦,

arg(Z2) = arctan(−2
3
) ≈ −0, 588 rad ≈ −33, 69◦ &. Geometriskt är beloppet

avståndet från origo till punkten och argumentet vinkel från realaxeln till linjen
från origo till punkten.
c) Använd Z = |Z| ej arg(Z).
d) 2 + 8j
e) −1− 4j
f)
√

17 ej105,96◦

g)
√

17 ej45,96◦

h) 17
i) 4 + 2j
j) −2 + 6j
k) 11 + 3j =

√
221 ej42,27◦

l) −5 + 14j =
√

221 ej109,65◦

m)
√

17
13
ej109,92◦

n)
√

1
17
e−j75,96◦

o)
√

1
13
ej33,69◦

p) (17)(1/4) ej37,98◦

q) (13)(1/4) e−j16,84◦

r) (221)(1/4) ej21,14◦

s) (17
13

)(174) ej54,82◦

t) Man utgår från punkten Z och förflyttar sig längs den räta linje som förbinder
origo och Z.
u) Förflyttning längs en cirkel med radien |Z|. Man utgår från punkten Z och vri-
der sig vinkeln θ (moturs om θ>0 och medurs om θ<0).
v) En cirkel med radien 1.

S2. Totala signalens medeleffekt är summan av de individuella i tid sinus- eller co-
sinusformigt varierande signalkomponenternas medeleffekter (Parsevals formel).
a) Amplitudspektrumet består av en enda spektralkomponent med frekvensen 1000

2π
Hz

och amplituden 1 volt. P = 0, 5 watt.
b) Sammma som i a).
c) Spektrat har två spektralkomponenter: 1 volt vid 1000

2π
Hz och 1 volt vid 2000

2π
Hz.

P = 1 watt.
d) Samma som i c).
e) Spektrat har två spektralkomponenter: 2 volt vid 500

2π
Hz och 0,5 volt vid 1000

2π
Hz.
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P = 2, 125 watt.
f) Spektrat har tre spektralkomponenter: 3 volt vid 100

2π
Hz, 2 volt vid 500

2π
Hz och

0,2 volt vid 2000
2π

Hz. P = 6, 52 watt.
g) Spektrat har tre spektralkomponenter: 0,25 volt vid 9 · 104 Hz, 2 volt vid 1 ·
105 Hz och 0,25 volt vid 1, 1 · 105 Hz. P = 2, 0625 watt.
h) Samma som deluppgift f.
i) Spektrat har två spektralkomponenter: 0,5 volt vid 0 Hz och 0,5 volt vid 2000

2π
Hz.

P = 0, 25 watt.
j)Spektrat har två spektralkomponenter: 0,5 volt vid 2000

2π
Hz och 0,5 volt vid

4000
2π

Hz. P = 0, 25 watt.
k) Samma som deluppgift i.
l) Samma som deluppgift i.
m) Samma som deluppgift j.

MODULATIONSTEORI: ANALOG BÄRVÅGSMODULATION.

M1. Se kursbok, föreläsningsanteckningar och laboration 3.

M2.
a) m = 0, 25
b) vc(t) = 100 · (1 + 0, 25 · cos(2π 103 t)) · cos(π · 105 t) volt
d) tre spektralkomponenter: 100 volt vid f = 50 kHz, 12,5 volt vid f = 49 kHz
och f = 51 kHz
e) B = 2 · fm = 2 kHz

f) P = 1
2R

(
V 2

c +
(
Vm
2

)2
+
(
Vm
2

)2
)
≈ 51, 6 W

M3.
a) Vc = 150 volt
b) vc(t) = 150 · (1 + 0, 333 · cos(2π 105 t)) · cos(2π · 106 t) volt
c) Am-signalens största och minsta toppvärde är 200 volt respektive 100 volt.
Toppvärdesvariationen och meddelandet har samma periodtid.
d) Tre spektralkomponenter: 150 volt vid f = 1 MHz, 25 volt vid f = 0, 9 MHz
och f = 1, 1 MHz
e) B = 200 kHz
f) P = 118, 75 W

M4.
a) ωc = 8 · 104 rad s−1, fc = 4·104

π
≈ 12, 73 kHz,

b) ωLSB = 7, 6 · 104 rad s−1, fLSB ≈ 12, 10 kHz, ωUSB = 8, 4 · 104 rad s−1,
fUSB ≈ 13, 37 kHz
c) m ≈ 0, 535

M5.
a) Dubbla sidband och bärvågskomponenten helt odämpad, d.v.s. DSB-FC (be-
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tecknas även med DSB-AM)
b) m = 0, 5
c) fc = 10 kHz, Vc = 50 volt, Vc,eff = 50√

2
≈ 35, 4 volt

d) fm = 1 kHz, Vm = 25 volt, Vm,eff = 25√
2
≈ 17, 7 volt

e) VAM,max = Vc (1 +m) = 75 volt, VAM,eff =

√
V 2
c +2·(Vm

2
)2

2
= 37, 5 volt

f) Meddelandesignal: vm = 25 · cos(2π 1 000 t) volt,
Omodulerad bärvåg: vc,omod. = 50 · sin(2 π · 104 t) volt,
Modulerad bärvåg (d.v.s. radiosignalen): vAM = vc,mod. = 50 ·(1+0, 5·cos(2π 1 000 t))·
sin(2π · 104 t) volt
g) Tre spektralkomponenter: 50 volt vid f = 10 kHz, 12,5 volt vid f = 9 kHz och
f = 11 kHz. Bandbredden är B = 2 kHz
h) P ≈ 28, 1 W
i) Umax = 75 volt, Ueff = 37, 5 volt, Imax = 1, 5 ampere, Ieff = 0, 75 ampere

M6.
a) m = 0, 75
b) Vm = 0, 75 volt, fm = 9 kHz
c) Vc = 1, 0 volt, fc = 180 kHz
d) B = 18 kHz
e) P = 0, 013 W

M7.
a) 0,5 V vid 175 kHz och 225 kHz, 4,0 V vid 200 kHz
b) vLSB = 0, 5 · cos(2π 1, 75 · 105 t) volt,
vUSB = 0, 5 · cos(2π 2, 25 · 105 t) volt,
vc = 4 · cos(2π 2 · 105 t) volt,
c) Den sammansatta signalen är en AM-signal: vAM = 4 · (1 + 0, 25 · cos(2π 2, 5 ·
104 t)) · sin(2π 2 ·105 t) volt, vilket ger spektrum med spektralkomponenter enligt
deluppg. a.
d) P = 0, 825 W
e) P = 0, 0125 W

M8.
a) VAM,topp−topp = 6 volt
b) m = 0, 5
c) Vc = 2, 0 volt, fc går ej att uppskatta med någon acceptabel noggrannhet
d) Vm = 1, 0 volt, fm = 500 Hz
e) Bandpassfilter med centerfrekvensen vid fc och bandbredd 1 kHz symmetriskt
kring centerfrekvensen.

M9.
a) m = 0, 8
b) R = 94 Ω

19



c) P = 381 W

M10.
a) A1 = Vc, A2 = A3 = m·Vc

2
, f1 = fc, f2 = fc − fm, f3 = fc + fm

b) A1 = 8 volt, A2 = A3 = 1 volt, f1 = 250 kHz, f2 = 225 kHz, f3 = 275 kHz

M11.
a) P = Pc · (1 + m2

2
) ≈ 1, 51 kW

b) PEP=Pc · (1 +m)2 ≈ 3, 40 kW

M12.
a) m = 0, 5
b) Innan slutsteget P = 5, 88 W, efter slutsteget P = 11, 25 W
c) Vc,efter slutsteg

Vc,innan slutsteg
≈ 38,73

28
≈ 1, 38, ty enl. uppg. ger en meddelandeamplitud på 28

volt m = 1 d.v.s. bärvågsamplituden måste vara 28 volt. Vc,efter slutsteg fås m.h.a
effektangivelsen.

M13.
a) Veff = 45 volt, B = 20 kHz
b) Veff ≈ 43, 7 volt, B = 10 kHz

M14. m = 0.63

M15. P ≈ 4, 83 kW

M16. Psidband = 0,5m2 V 2
c

2R
, Ptotal = V 2

c (1+0,5m2)
2R

. η = Psidband

Ptotal
= m2

2+m2 , vilket är 1
3

för m = 1.

M17.
a) vAM = 100 ·(1+0, 4·cos(2π·103 t)+0, 1·cos(2π·5·103 t))·cos(2π ·5·104 t) volt
b) Omodulerad bärvåg: vc,omod. = 100 · cos(2π · 5 · 104 t) volt,
meddelande: vm = 40 · cos(2π · 103 t) + 10 · cos(2π · 5 · 103 t) volt
c) 100 volt vid 50 kHz, 20 volt vid 49 och 51 kHz, 5 volt vid 45 och 55 kHz
d) B = 10 kHz
e) P = 217 W

M18. Vc = 49, 2 volt, Vm = 39, 4 volt, fm = 17, 5 kHz.

M19. Se kursbok, föreläsningsanteckningar och laboration 3.

M20.
a) vc(t) = 25 cos(π 107 t+ 0, 75 sin(2 π 105 t)) volt .
b) β = 0, 75
c) Ögonblicksvärden: fmin = fc−∆fc = 4, 925 MHz, fmax = fmin = fc +∆fc =
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5, 075 MHz
d) och e) Amplitudspektrat har oändligt många komponenter, symmetriskt förde-
lade kring frekvensen fc = 5 MHz. Frekvensskillnaden mellan två på varandra
följande komponenter är lika med fm = 100 kHz. Amplituden för spektralkompo-
nent med frekvensen fn = fc + n · fm (där n är ett heltal) ges av Vn = Vc Jn(β),
där Vc (betecknas även ibland med A) är den omodulerade bärvågens amplitud
och Jn(β) Besselfunktion av ordning n med argumentet β = ∆fc

fm
, som är FM-

signalens modulationsindex.
I uppgiftens signal är Vc = 25 volt och β = 0, 75 rad, vilket ger att J0(0, 75) ≈
0, 86, J1(0, 75) ≈ 0, 35, J2(0, 75) ≈ 0, 067, J3(0, 75) ≈ 0, 008.
Resultatet är att spektralkomponenten med bärvågsfrekvensen (n = 0, f0 = fc =
5 MHz) får amplituden V0 ≈ 21, 5 volt.
Det första sidbandsparet (n = 1 och n = −1) med frekv. f1 = fc+fm = 5, 1 MHz
resp. f−1 = fc − fm = 4, 9 MHz får båda amplituden V1 = V−1 ≈ 8, 8 volt.
Det andra sidbandsparet (n = 2 och n = −2) med frekv. f2 = fc + 2 fm =
5, 2 MHz resp. f−2 = fc − 2 fm = 4, 8 MHz får båda amplituden V2 = V−2 ≈
1, 7 volt.
Det tredje sidbandsparet (n = 3 och n = −3) med frekv. f3 = fc + 3 fm =
5, 3 MHz resp. f−3 = fc − 3 fm = 4, 7 MHz får båda amplituden V3 = V−3 ≈
0, 2 volt.
f) Carsons regel ger B ≈ 2 fm (1 + β) = 350 kHz.

M21.
a) fc = 10 MHz
b) fm = 10 kHz
c) ∆fc = 50 kHz
d) Ögonblicksvärden: fmin = fc−∆fc = 107−5 ·104 = 9, 95 ·106 Hz=9,95 MHz,
fmax = 10, 05 MHz
e) Amplitudspektrat har oändligt många komponenter, symmetriskt fördelade kring
frekvensen fc = 10 MHz. frekvensskillnaden mellan två på varandra följande
komponenter är lika med fm = 10 kHz. Amplituden för spektralkomponent med
frekvensen fn = fc + n · fm (där n är ett heltal) ges av Vn = Vc Jn(β), där Vc (be-
tecknas även ibland med A) är den omodulerade bärvågens amplitud och Jn(β)
Besselfunktion av ordning n med argumentet β = ∆fc

fm
, som är FM-signalens mo-

dulationsindex.
I uppgiftens signal är Vc = 20 volt och β = 5 rad, vilket ger (anv. tabell för Jn(5))
att spektralkomponenten med bärvågsfrekvensen (n = 0, f0 = fc = 10 MHz) får
amplituden V0 ≈ 3, 55 volt.
Det första sidbandsparet (n = 1 och n = −1) med frekv. f1 = fc + fm =
10, 01 MHz resp. f−1 = fc − fm = 99, 99 MHz får båda amplituden V1 = V−1 ≈
6, 55 volt.
Det andra sidbandsparet (n = 2 och n = −2) med frekv. f2 = fc + 2 fm =
10, 02 MHz resp. f−2 = fc − 2 fm = 99, 98 MHz får båda amplituden V2 =
V−2 ≈ 0, 93 volt.
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Det tredje sidbandsparet (n = 3 och n = −3) med frekv. f3 = fc + 3 fm =
10, 03 MHz resp. f−3 = fc − 3 fm = 99, 97 MHz får båda amplituden V3 =
V−3 ≈ 7, 30 volt.
Det fjärde sidbandsparet (n = 4 och n = −4) med frekv. f4 = fc + 4 fm =
10, 04 MHz resp. f−4 = fc − 4 fm = 99, 96 MHz får båda amplituden V4 =
V−4 ≈ 7, 82 volt.
o.s.v. ...
f) P (f = 10, 04 MHz) ≈ 3, 06 W
g) P (f = 10, 00 MHz) ≈ 0, 63 W
h) Vc = 20 volt
i) P = V 2

c

2R
= 20 W

j) Carsons regel ger B ≈ 2 fm (1 + β) ≈ 120 kHz, 1% regeln ger B ≈ 160 kHz (8
spektralkomponenter på resp. sida av fc har en amplitud som är minst 1% av den
omodulerade bärvågens amplitud).

M22.
a) Veff,omod. ≈ 0, 179 volt
b) fc = 89, 4 MHz, fm = 14, 5 kHz
c) modulationsfrekvens=medddelandesignalens frekvens=14,5 kHz
d) β = 5 rad, ∆fc = 72, 4 kHz
e) Tmax = 1

fc−∆fc
≈ 11, 19 ns, Tmin = 1

fc+∆fc
≈ 11, 17 ns

f) BCarson ≈ 173, 8 kHz, B1% ≈ 231, 7 kHz
g) P (f=fc)

Ptotal
≈ 0, 0315, d.v.s. 3,15%.

h) P (inomBCarson)
Ptotal

≈ 0, 993, d.v.s. 99,3%.

M23.
a) Vid f = fc = 101 MHz är amplituden 3,18 volt,
första sidbandsparet har frekvenserna f = (101 · 106 ± 440) Hz och amplitud
V1 = V−1 ≈ 0, 528 volt,
andra sidbandsparet har frekvenserna f = (101 · 106 ± 880) Hz och amplitud
V2 = V−2 ≈ 2, 91 volt,
tredje sidbandsparet har frekvenserna f = (101 · 106 ± 1 320) Hz och amplitud
V3 = V−3 ≈ 3, 44 volt,
b) BCarson ≈ 4 400 Hz, B1% ≈ 6 160 Hz

M24. Ur grafen fås att Vc = 2 volt, och att Tmax ≈ 5, 96µs resp. Tmin ≈ 5, 25µs,
vilket ger fmin ≈ 167, 8 kHz resp. fmax ≈ 190, 4 kHz.
a) fc ≈ 179, 1 kHz
b) ∆fc ≈ 11, 3 kHz
c) β = 1, 13
d) Avläs ur Besselgraf: J0(1, 13) ≈ 0, 7, J1(1, 13) ≈ 0, 47, J2(1, 13) ≈ 0, 14.
Detta ger de fem första spektralkomponenterna i amplitudspektrat:
Vid f = fc är V0 ≈ 1, 4 volt,
första sidbandsparet har frekvenserna f = fc ± fm och amplitud V1 = V−1 ≈
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0, 94 volt,
andra sidbandsparet har frekvenserna f = fc ± 2fm och amplitud V2 = V−2 ≈
0, 28 volt,
o.s.v. ...

M25.
a) VA,in är en AM-signal (DSB-FC), VB,in är en FM-signal.
b) VA,in,topp = 18 volt, VB,in,topp = 10 volt
c) VA,ut,topp = 14 volt, VB,ut,topp = 11, 53 volt
d) VA,in,eff = 8, 12 volt, VB,in,topp = 7, 07 volt
e) VA,ut,eff = 7, 62 volt, VB,ut,topp = 5, 04 volt

M26.
a) fc ≈ 300 kHz, fm ≈ 25 kHz, ∆fc ≈ 100 kHz, β ≈ 4
b) P = 80 mW
c) V0 = Vc J0(4) ≈ 1, 59 volt
d) P ≈ 12, 6 mW
e) centerfrekvens=fc och bandbredd < 2 fm = 50 kHz (ty 1:a sidbandsparets
komponenter har frekvenserna fc + fm resp. fc − fm)

M27.
a) En enda spektralkomponent med frekvensen 100 MHz och amplituden=den
omodulerade bärvågens amplitud= 15 volt.
b) T.ex. m.h.a. Besselgraf fås att β ≈ 1, 45 ger J0(β) = J1(β) ≈ 0, 55.
c) Amplitudspektrum: Vid f = fc = 100 MHz är amplituden V0 ≈ 8, 25 volt,
första sidbandsparet har frekvenserna f1 = 100, 01 MHz och f−1 = 99, 99 MHz,
samt amplituden V1 = V−1 ≈ 8, 25 volt,
andra sidbandsparet har frekvenserna f2 = 100, 02 MHz och f−2 = 99, 98 MHz,
samt amplitud ca. V2 = V−2 ≈ 3, 0 volt (ty J2(1, 45) ≈ 0, 22),
o.s.v. ...
d) ∆fc = β fm = k0 Vm, vilket ger Vm = 0, 48 volt
e) J3(1, 45) ≈ 0, 057, vilket ger V3 ≈ 0, 86 volt.
f) B ≈ 49 kHz (Carson)
g) P ≈ 1 500 W för spektralkomp. med f = fc, P ≈ 3500 W för sidbanden
h) För β ≈ 2, 4 är J0 ≈ 0, vilket ger Vm ≈ 0, 8 volt.

M28.
a) βmax = 5 rad och ∆fc,max = 75 kHz.
b) β = 5 rad
c) Multiplikationsfaktor 25=5/0,2 (fasdeviation och bärvågsfrekvens multiplice-
ras med samma faktor) ger lägre bärvågsfrekvensen 4,036 MHz.

M29.
a) fc = 100 kHz, fm = 1 kHz
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b) β ≈ 1, 45 då J0(β) = J1(β) ≈ 0, 55. V0 = J0(β)Vc, vilket ger Vc = 10 volt.
c) ∆fc = 1, 45 kHz
d) B ≈ 4, 9 kHz (Carson)
e) Vm fördubblas, leder till att β fördubblas vilket ger dels V0 = J0(2, 9) · Vc ≈
0, 224 · 10 ≈ 2, 2 volt, dels B ≈ 7, 8 kHz.

M30.
a) vAM = 10 · (1 + 0, 2 · cos(2π 5 · 106 t)) · cos(2π · 108 t) volt
b) P = 0, 51 W
c) V0 = J0(β)Vc = 10 volt, V1 = J1(β)Vc = 1 volt ger att J0(β)

J1(β)
= 10 vilket

uppfylls av β ≈ 0, 2. Resulterande frekvensdeviation är 1 MHz.

Kommentar: Uppgiften löses enklast genom att betraktasignalens i ett visardia-
gramm.
För den intresserade ges här även det resulterande tidsuttrycket för SSB-signalen:
vSSB(t) = VcA(t) cos(ωc t + Φ(t)) där Vc är den omodulerade bärvågens amp-
litud, A(t) =

√
1 + 0, 25m2 +m cos(ωm t) och Φ(t) = arctan( −m sin(ωm t)

2+m cos(ωm t)
).

Fasdeviationen ges av Φ(t) och frekvensdeviationen fås m.h.a. d Φ(t)
d t

.

M31. -

M32. -

M33. Vmax

Vmin
= 1+0,5m

1−0,5m
+ ≈ 2, 33

M34. Om USB filtreras bort, så fås att:
a) Maximala fasdeviation är Θmax = arcsin(0, 5m) ≈ 0, 305 rad=17, 5◦

b) Frekvensdeviationens extremvärden är ∆fc,pos.max. = 0,5mfm
1−0,5m

≈ 2, 3 kHz
resp. ∆fc,neg.max. = −0,5mfm

1+0,5m
≈ −4, 3 kHz

M35.
a) Omodulerad bärvåg: vc,omod. = 4, 0 · sin(2 π · 108 t) volt,
b) Meddelandesignalen: vm = 2, 0 · cos(2π 104 t) volt,
c) vAM = vc,mod. = 4, 0 · (1 + 0, 5 · cos(2π 104 t)) · sin(2π · 108 t) volt. Vmax =
6, 0 volt, Vmin = 2, 0 volt.

M36.
a) Vc = 10 volt, β = 2.
Amplitudspektrum: Vid f = fc = 100 kHz är amplituden V0 ≈ 2, 24 volt,
första sidbandsparet har frekvenserna f1 = 115 kHz och f−1 = 85 kHz, samt
amplituden V1 = V−1 ≈ 5, 77 volt,
andra sidbandsparet har frekvenserna f2 = 130 kHz och f−2 = 70 kHz, samt amp-
lituden V2 = V−2 ≈ 3, 53 volt,
tredje sidbandsparet har frekvenserna f3 = 145 kHz och f−3 = 55 kHz, samt
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amplituden V3 = V−3 ≈ 1, 29 volt
o.s.v. ...
b) B ≈ 90 kHz (Carson)
c) B = 2fm = 30 kHz

KRETSAR FÖR AM OCH FM.

K1. a) Låt blandaren multiplicera ihop bärvåg och meddelande. Utsignalen blir en
DSB-SC signal: A cos(ωc t) · (ωm t) = A

2
· (cos((ωc−ωm) t) + cos((ωc +ωm) t)),

där A är en amplitud bestämd av blandaren.
Amplitudspektrumt innehåller två spektralkomponenter (båda med amplituden A

2
)

på vinkelfrekvenserna ωc − ωm och ωc + ωm.
b) Låt blandaren multiplicera ihop meddelande och cos(ωc t). Antag att blandarens
förstärkning är 1. Addera sedan blandarens utsignal till bärvågen (Vc cos(ωc t))
och DSB-FC resulterar.

K2. Se föreläsningsanteckningar.

K3. Beloppet av enveloppens variationstakt är Vcmωm sin(ωm t). Beloppet av
urladdningstakten vid tiden t är RC Vc (1+m cos(ωm t). Enveloppdetektorn fun-
gerar om kondensatorn hänger med i enveloppens tidsvariation (men är samtidigt
okänslig mot bärvågens variation), vilket leder till villkoretC ≤ 1+m cos(ωm t)

Rωmm
√

1−cos2(ωm t)
.

För att finna maximal tillåten C måste man minimera högerledet, vilket görs ge-
nom att derivera m.a.p. cos(ωm t). Resultatet är att cos(ωm t) = −m ger minimum
och insättning i uttrycket för C ger den eftersökta formeln Cmax =

√
m−2−1

Rωm,max
.

K4. a) m = 0, 75 och fm = 9 kHz ger C ≈ 16 nF.

K5. Se sid. 144-146, 157-158 i Frank: Telekommunikation, eller sid. 86-89 i Wal-
lander: 17 lektioner om telekommunikation.

K6. Se föreläsningsanteckningar.

K7. -

K8.
a) Taylorutveckla och lågpassfiltrera diodströmmen. För Vb = 0 fås att I =
I0 α2 V 2

RF

4
= k · PRF (där k är en konstant), ty PRF är direkt proportionell mot

V 2
RF.

b) och c) Rita graferna med t.ex. MATLAB eller Mathematica.

K9. Se föreläsningsanteckningar.

K10. För blockschema, se föreläsningsanteckningar.
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Antag fLO > fRF.
a) fLO = 1 255 kHz
b) fspegel = 1 710 kHz.
c) fLO = 96, 0 MHz, fspegel = 106, 7 MHz.

Signal på spegelfrekvensen elimineras t.e.x. genom filtrering innan blandaren.

K11. 81 GHz till 120 GHz.

K12. Se föreläsningsanteckningar och sid. 126-127, 132-133 i Wallander: 17 lek-
tioner om telekommunikation.

K13. -

K14. Se föreläsningsanteckningar.

K15. Betrakta ett lågpassfilter och antag att filtrets överföringsfunktion i över-
gången mellan passbandet och spärrbandet ges av vut

vin
= k1 − k2 ω, där k1 och k2

är konstanter.
Det innebär att om insignalen är vin = A cos(ωi) (där ωi) är ögonblicksvärdet av
insignalens vinkelfrekvens), så kommer vut (vin känner av filtret vid ω = ωi) att ha
formen (k1− k2 ωi) ·A cos(ωi), d.v.s utsignalens amplitud är inte längre konstant
utan varierar i takt med ωi. Alltså har vi fått en amplitudmodulerad signal, med en
amplitudvariation som innehåller informationen i FM-signalen.

K16. Se föreläsningsanteckningar.

K17. Se föreläsningsanteckningar.

K18.
a) -
b) Fasdeviation (β = ∆fc

fm
) är max då fm är som minst eftersom i vårt fall är ∆fc

fixerad.
c) ∆fc = k VmN2N3

2π
, där k är en konstant. Frekvensdeviationen är alltså direkt

proportionell mot meddelandesignalens amplitud.
d) fc = N3(N2−N1) fc,0

Exempelvis N3 = 32, N2 = 24, N1 = 9 eller N3 = 48, N2 = 64, N1 = 54.
e) Utsignal: β = ∆fc

fm
, sätt in max resp min för meddelandefrekvensen.

Smalbandiga FM-signalen: Dividera utsignalens mod.index med N2N3.

K19.
a) Om switchningen styrs med frekvensen f0 så kommer kretsen utsignal att ha
formen av något slags pulståg. Pulstågets Fourierserie kommer vara rik på över-
toner (exakt vilka och med vilka amplituder avgörs av tågets exakta form ... se
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exempel i kap. 3 i boken av Young (Electronic communication techniques) eller i
någon bok om transformteori) med frekvenser som är heltalsmultiplar av f0. Ge-
nom att filtrera fram överton med önskad frekvens har man fått en signal som har
en frekvens som är en heltalsmultipel av insignalen. Alltså har man genomfört en
frekvensmultiplikation.
b) Även likriktare har någon sorts pulståg som utsignal, som därmed kommer att
innehålla övertoner till f0. Icke-linjära kretselements utsignal innehåller termer
som exempelvis kvadraten på insignalen (taylorutveckling av en funktion f(x)
ger f(x) = a0 + a1 x + a2 x

2 + a3 x
3 + ...), vilket ger bl.a. en term som svänger

med frekvensen 2 f0, alltså en frekvensfördubbling.

K20. -

K21.
a) Utsignalen är V 2

in

2
(1 + cos(2ω t)) där Vin är insignalens amplitud.

b) Insignalens medeleffekt (räknat per ohm.
c) Frekvensdubblare.

K22. -
K23. -
K24. -
K25. -
K26. -
K27. -
K28. -

DIGITAL MODULATION.
D1.
a) 10110001 eller 01001110
b) 10010110 eller 00010110. [DPSK: fasbyte jämfört med föregående bit=logisk
0:a, samma fas som föregående bit=logisk 1:a.]
c) För DPSK räcker det att få första biten rätt, därefter använder man alltid före-
gående bits fas som referens.

D2. ASK: använd olika amplitudnivåer för 1:a resp. 0:a.
FSK: använd olika bärvågsfrekvenser för 1:a resp. 0:a.
PSK: använd olika faslägen (med 180◦ skillnad om binär PSK) för 1:a resp. 0:a.

D3. Blandaren multiplicerar ihop bärvågen och meddelandet. Eftersom medde-
landet har två olika amplitudnivåer (≥ 0) så blir utsignalen en spänningen med
frekvensen=fc och en amplitud som varierar i takt med meddelandets amplitud-
variation; digitalt meddelande innebär att information ligger i den modulerade
bärvågens amplitudvariation (1:a eller 0:a).
Om 1:an är 1 volt och 0:an noll volt, så blir ASK-signalen ett tåg av cos(ωc t)
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skurar.
I konstellationsdiagrammet svarar 1:an mot värdet 1 och 0:an mot värdet 0 på I-
kanalens axel [cos(ωc t) axeln].

D4. Multiplikation med -1 innebär en fasförskjutning med 180◦. Ett pulståg med
nivåerna +1 volt resp. -1 volt resulterar i en utsignal i form av en cos(ωc t) som
erhåller en fasförskjutning med 180◦ varje gång meddelandet har en negativ nivå.
Vi får alltså en utsignal med konstant amplitud och frekvens, men med två möjliga
faslägen, d.v.s. binär PSK.
I konstellationsdiagrammet svarar 1:an mot värdet 1 och 0:an mot värdet -1 på
I-kanalens axel [cos(ωc t) axeln].

D5. f1 = 1 200 Hz, f0 = 2 200 Hz. Notera likheten mellan uttrycket fut =
−500 vin + 1700 Hz och uttrckcet för ögonblicksvärdet av frekvensen hos en ana-
log FM-signal med ett entonigt meddelande: f = ∆fc + fc = k0 vin + fc. Med
siffervärden enligt FSK exemplet skulle vi få fc = 1 700 Hz, k0 = −500 Hz volt−1

och ∆fc,max = 500 Hz.

D6. Se föreläsningsanteckningar.

D7. Se föreläsningsanteckningar.

D8. 1:a som insignal ger utsignalen cos(ω1 t), 0:a som insignal ger utsignalen
cos(ω2 t). Utsignalen för bitsekvensen blir alltså en cosinus som har varierande
frekvens: FSK.

28


