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TELEKOMMUNIKATION (RRY 010)
ÖVNINGSUPPGIFTER.

Föreliggande exempelsamling innehåller övningsuppgifter grupperade efter ämnesområde.
Uppgifterna har konstruerats av ett flertal lärare under en dryg femtonårsperiod .

Som förberedelse till problemlösandet är det synnerligen lämpligt att repetera räkning med
komplexa tal, de kommer att användas flitigt! Även hantering av trigonometriska funktioner
och elementa om transformteori bör du vara förtrogen med.

Antalet uppgifter i häftet är stort. Det är inte meningen att du hinna med att arbeta med alla!
Det är bättre att göra färre uppgifter, men i gengäld arbeta igenom dem ordentligt, istället för
att, utan eftertanke, hasta igenom ett stort antal problem. Ett rekommenderat urval av uppgif-
ter finns listat i kurs-PM.

Undvik i möjligaste mån att lösa uppgifter genom att i stor hast leta i boken (eller någon
annanstans) efter en formel som innehåller de variabler som är angivna i uppgiften, sätta in
siffror och erhålla ett svar, för att sedan hoppa fram till nästa uppgift!!! Ta god tid på dig,
koncentrera dig på fysiken/tekniken i problemet och försök göra dig en bild av vad som efter-
frågas samt vad du behöver veta för att lösa problemet. Siffror sätter man först in i slutet när
själva fysikaliska problemet är löst och man vill få fram ett kvantitativt svar! Ingenjörsstudier
handlar om att försöka förstå och tillämpa de principer, begrepp och metoder som används för
att beskriva naturfenomen och tekniska system, ej om att blott sätta in siffror i formler!!! Skriv
ner ordentliga lösningar och läs genom dem efteråt, fundera över vad du har skrivit ner och
omarbeta vid behov, så att du verkligen känner att du har förstått uppgiften och dess lösning!
Det är mycket nyttigt att formulera sina tankar genom att skriva ner dem, samt sedan läsa och
reflektera över texten. Skriv engna sammandrag. Formulera egna övningsuppgifter, lös dem
och diskutera med studiekamrater.

Tänk! Reflektera! Diskutera! Fråga! Eget arbete ger resultat!

Arto Heikkilä, oktober 2017
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VÅGLÄRA.

V1. Ge exempel på olika typer av i naturen förekommande vågor. Redogör för vad som avses
med en våg i ett system, som i frånvaro av vågen är i stabil jämvikt. Vad krävs av systemet för
att vågor skall kunna utbreda sig där? Vad bär en våg med sig? Vilka faktorer avgör vågens
utbredningsfart? Vad har det faktum att utbredningsfarten är ändligt stor för konsekvenser?
Ge några exempel på praktisk tillämpning av vågor!

V2. Höjden (över medelnivån) hos en vattenvåg ute på öppet hav beskrivs av vågfunktionen
h(x, t) = 1, 0 sin[2π (0, 4t− 0, 1x)] meter.
a) Bestäm vågens amplitud, periodtid, frekvens, våglängd, utbredningsriktning och fashastig-
het.
b) Skissera vågens utseende vid tidpunkterna t = 0 s, t = 0, 625 s, t = 1, 25 s, t = 2, 5 s.
c) Skissera vågens tidsberoende vid x = 0 m, x = 5 m och x = 10 m.
d) Studera nu en våg som beskrivs av h(x, t) = 1, 5 sin[2π (0, 2t + 0, 2x)] och gör om del-
uppgifterna a-c.

V3. En sinusformad tryckvåg p(z, t) utbreder sig i positiv z-led och har amplituden 10 Pa,
våglängden 2 m och frekvensen 170 Hz.
a) Skriv vågens vågfunktion och bestäm sedan fashastigheten.
b) Rita en graf av p(z, t) för t = 0.
c) Rita en graf av p(z, t) för z = 0.

V4. En spänningsvåg utbreder sig i en transmissionsledning. Spänningen beskrivs av vågfunk-
tionen v(z, t) = 10 exp(−α z) sin(4 π 109 t−20 π z) volt. Parametern α beskriver dämpning-
en (p.g.a. resistans hos ledningarna samt resistans i materialet mellan ledningarna) hos vågen
och har enheten Np m−1 (neper per meter; neper i sig är dimensionslös så man kan även skriva
m−1).
a) Bestäm frekvens, våglängd och fashastighet. Rita grafer av v(0, t) och v(z, 0).
b) Bestäm amplituden vid z = 0.
c) Om α = 0, 001 neper per meter [Np m−1], vad blir amplituden vid z = 1 km?
d) Antag nu att α är okänd och skall bestämmas genom mätning. Hur stor är α om man vid
z = 20 m mäter amplituden till 2 volt?

V5. Två vågor i form av rektangulära pulser med amplituden 10 cm, pulslängden (i tid) 0,1 s
och pulsutsträckningen (i rummet) 34 m utbreder sig i motsatta riktningar längs en mycket
lång sträng.
a) Bestäm vågornas utbredningsfart.
b) Antag att avståndet mellan pulsernas framkanter (vid tiden t = 0 ) är 136 m. Skissa hur den
totala vågen ser ut vid tidpunkterna t = 0, 1 s, 0,2 s, 0,225 s, 0,25 s, 0,275 s, 0,3 s, 0,4 s.
c) Antag istället att pulserna har amplituderna 10 cm resp. -10 cm, och gör om deluppg. b.
d) Antag att pulserna utbreder sig i samma riktning och gör om deluppgift b.
e) Sätt amplituderna hos puls 1 och puls 2 till 10 cm resp. 5 cm och gör om deluppgift b.
f) Sätt amplituderna hos puls 1 och puls 2 till 10 cm resp. -5 cm och gör om deluppgift b.
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V6. Två vågor utbreder sig i en mycket lång sträng. Vågfunktionerna ges av
h1(x, t) = 2 sin(10t− 20x) cm och h2(x, t) = 2 sin(10t+ 20x) cm.
a) Bestäm amplitud, frekvens, våglängd, utbredningsriktning och fashastighet för våg 1 och
våg 2.
b) Beräkna den totala vågens vågfunktion h(x, t) = h1(x, t) + h2(x, t).
c) Skissera (för hand eller använd t.ex. MATLAB eller annat datorhjälpmedel) den totala våg-
funktionen samt dess absolutbelopp vid tidpunkterna t = 0, t = π

60
, t = π

40
och t = π

20
. Ange i

vilka punkter vågorna 1 och 2 interfererar konstruktivt (|h| har maxima) respektive destruktivt
(|h| har minima). Bestäm avståndet (uttryckt i våglängder) mellan två efter varandra liggande
maxima. Bestäm avståndet mellan två efter varandra liggande minima. Kommentera och för-
klara resultatet.
d) Hur stor är |h(x, t)| max resp. min? Bestäm största och minsta toppvärdet för |h(x, t)|. I
vilka rumspositioner ligger dessa minima och maxima? Jämför med resultatet i deluppgift c.
Lös uppgiften analytiskt, men rita gärna grafer av |h(x, t)| som funktion av x vid olika tid-
punkter mha datorhkälpmedel (MATLAB, Mathematica, Maxima, Excel, ...).
e) Sätt amplituden hos h2(x, t) till -2 och gör om deluppgifterna b, c (med t = 0) och d.
f) Sätt amplituden hos h2(x, t) till 0,5 och gör om deluppgifterna b och d.
g) Sätt amplituden hos h2(x, t) till -0,5 och gör om deluppgifterna b och d.
h) Bestäm max och min toppvärde för det allmänna fallet där amplituderna för h1(x, t) och
h2(x, t) är A1 respektive A2.

V7. Betrakta två vågor beskrivna av vågfunktionerna h1(x, t) = A1 sin(ω1t−k1x) respektive
h2(x, t) = A2 sin(ω2t − k2x + φ) som utbreder sig i samma medium. Antag att mediet är
dispersionsfritt, vilket innebär att båda vågorna har samma fashastighet. Bestäm (och skissa)
den totala vågen i följande fall:
a) A1 = A2, ω1 = ω2 och φ = 0.
b) A1 = −A2, ω1 = ω2 och φ = 0.
c) A1 = 0, 5A2, ω1 = ω2 och φ = 0.
d) A1 = A2, ω1 = 0, 5ω2 och φ = 0.
e) A1 = A2, ω1 = ω2 och φ = π

2
rad.

f) A1 = A2, ω1 = ω2, och φ = π rad.
g) A1 = A2, ω1 = ω2, k1 = −k2 och φ = 0.
h) A1 = −A2, ω1 = ω2, k1 = −k2 och φ = 0.

V8. En transversell våg exciteras i en lång sträng. Våggeneratorn driver strängens ena än-
de med amplituden 0,1 m och frekvensen 10 Hz. Fashastigheten är 2 m s−1. När vågen når
strängens andra ände (vid x = 0) sker en reflexion. Antag att strängen är så lång att vi endast
behöver beakta en reflexion (d.v.s. vi behöver inte bekymra oss om eventuella reflexioner i
strängens generatorände). Bestäm den totala vågen i följande två fall:
a) Strängänden vid x = 0 är fixerad (d.v.s. fastspänd).
b) Strängänden vid x = 0 är fri.

V9. Visa att en två gånger deriverbar funktion g = g(x ± v t) uppfyller den homogena vå-

3



gekvationen: ∂2 g
∂t2
− v2 ∂2 g

∂x2
= 0. v är en konstant (vågens fashastighet). Ange också utbred-

ninsgriktningen hos g = g(x+ v t) resp. g = g(x− v t).
Ledning: substituera u = x± v t och studera funktionen g = g(u).

V10. Betrakta två vågor beskrivna av vågfunktionerna u1(x, t) = cos(ω1t − k1x) respektive
u2(x, t) = cos(ω2t−k2x) som utbreder sig i samma medium. Antag att mediet är dispersions-
fritt, vilket innebär att båda vågorna har samma fashastighet: vf = vf1 = vf2 där vf1 = ω1

k1
och vf2 = ω2

k2
a) Bestäm den totala vågfunktionen utot(x, t) = u1(x, t) + u2(x, t), som visar sig vara pro-
dukten av två cosinustermer.
b) Visa att den i tid snabbast varierande termen hos utot utbreder sig med farten vfas = ω1+ω2

k1+k2
,

medan den i tid långsammast varierande termen (enveloppen) utbreder sig med farten vgrupp =
ω1−ω2

k1−k2 .
c) Visa vgrupp = vfas = vf d.v.s. att utot utbreder sig utan att ändra form och med samma fart
som de enskilda vågorna u1 och u2.
d) Antag nu att ω1 < ω2. Låt vf1 > vf2, d.v.s. mediet är dispersivt. Är vgrupp större än, mindre
än eller lika med vfas?
e) Gör om deluppgift d) för fallet vf1 < vf2.
f) Använd MATLAB eller annat datorhjälpmedel till att rita u1(x, t), u2(x, t) och utot(x, t) i
olika fall. Välj själv parametervärden.
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ELEKTROMAGNETISKA FÄLT, TEM-VÅGOR.

F1.
a) Studera Poyntingvektorn (dvs effektflödet) i ett system bestående av två parallella ledare.
Ledarna (som antages vara mycket tunna, långa och resistansfria) är kopplade till en likspän-
ningskälla (ett batteri) i ena änden samt har en rent resistiv last i andra änden. Rita en figur
som visar hur elektriska fältstyrkan, magnetiska flödestätheten, samt Poyntingvektorn är ori-
enterade i olika delar av systemet.
b) Hur förändras Poyntingvektorn om batteriets poler kastas om? Kommentera!
c) Beskriv i ord samt skissa i en figur hur resultaten deluppgift a förändras om ledarnas resis-
tivitet beaktas.
d) Studera avslutningsvis effektflödet vid uppladdning respektive urladdning av en konden-
sator. Antag att under uppladdning är kondensatorn kopplad till ett likströmsbatteri via en
resistor. Under urladdning består kretsen endast av kondensatorn och resistorn.
e) Antag istället att ledningen är en plattledning och gör om deluppgift a.
f) Antag istället att ledningen är en koaxialkabel och gör om deluppgift a.

F2. Argumentera för att vågfenomen (så när som på transienten i samband med att signalkäl-
lan inkopplas) inte behöver beaktas i en krets om kretsens utsträckning i alla tre rumsdimen-
sionerna är mycket mindre än våglängden.

F3. En plattledning bestående av två metallband med längden l = 10 cm och bredden a =
1 cm befinner sig på avståndet b = 2 mm från varandra. Isolationsmaterialet mellan plattorna
har den relativa permittiviteten εr = 4, 0 och den relativa permeabiliteten µr = 1, 0.
En signalgenerator med spänningen u(t) = 10 sin(107 t) volt kopplas in mellan plattorna i
ledningens ena ände.
a) Beräkna våglängden λ. Jämför med kretsens utsträckning; slutsats?
b) Beräkna strömmen i(t) som flyter i plattorna.
c) Förklara hur det kommer sig att det flyter ström i plattorna trots att kretsen uppenbarligen
utgör ett avbrott!
d) Beräkna toppvärdet av elektriska flödestätheten D och elektriska fältstyrkan E i området
mellan ledarna.
e) Ange (i ett visst tidsögonblick) polariteten på plattornas laddning samt riktningen hos
strömmen, E-fältet och D-fältet.
f) Visa (då b� a), att hos en plattledning beräknas kapacitansen per längdenhet resp. induk-
tansen per längdenhet m.h.a uttrycken C = ε a

b
resp. L = µ b

a
.

F4. Betrakta samma plattledning som i uppgift F3. En signalgenerator kopplas in i ledning-
ens närände. Fjärränden kortslutes med en metalltråd vars induktiva påverkan kan försummas.
Strömmen genom metalltråden blir i(t) = 0, 1 sin(107 t) ampere.
a) Beräkna spänningen u(t) mellan plattorna.
b) Förklara hur det kommer sig att det finns en spänning mellan plattorna trots att kretsen
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uppenbarligen utgör en kortslutning!
c) Beräkna toppvärdet av magnetiska flödet Φ, magnetiska flödestätheten B samt magnetiska
fältstyrkan H i området mellan ledarna.
d) Ange (i ett visst tidsögonblick) polariteten på plattornas laddning samt riktningen hos
strömmen, H-fältet, B-fältet och Φ.

F5. En kvadratisk metallslinga med längden a och bredden b ligger i papprets plan. Parallellt
med slingans långsidor löper en mycket lång (l � a) växelströmsmatad ledare. Strömmen i
ledaren är i(t) = 2, 0 sin(107 t) ampere. Avståndet mellan den växelströmsmatade ledaren
och slingans närmaste sida är r. En effektivvärdesvisande voltmeter ansluts till ett av slingans
hörn.
a) Hur kommer det sig att det uppstår en spänning i slingan?
b) Vad visar voltmetern om b� r?
c) Vad visar voltmetern om b = r?

F6.
a) Redogör i ord för utbredningsmekanismen för elektromagnetiska vågor i fri rymd. Illustrera
gärna ditt resonemang med en figur!
b) Vad bestämmer vågens utbredningsfart i vakuum respektive ett dielektrikum?
c) Vad beskriver ZTEM (betecknas även RTEM om reell)?

F7. I en plan TEM-våg, som utbreder sig i fri rymd (≈ vakuum), är den elektriska fältstyrkans
toppvärde 1

2
V m−1. Beräkna den magnetiska fältstyrkans toppvärde samt strålningstätheten

(=effekttätheten=tisdmedelvärdet av Poyntingvektorn).

F8. En plan TEM-våg, infaller vinkelrätt från luft mot havsytan. Vid ytan sker dels reflexion,
dels transmission. Strålningstätheten hos den in i vattnet transmitterade vågen är 10µW m−2

vid vattenytan. För vatten gäller att εr = 70, µr = 1, 0 och konduktiviteten σ = 4, 0 S m−1.
Gör beräkningarna vid tre olika frekvenser 100 Hz, 10 kHz resp. 100 MHz.
a) Beräkna den elektriska respektive den magnetiska fältstyrkans effektivvärde hos den trans-
mitterade vågen vid vattenytan.
b) Vid vilket djup har strålningstätheten sjunkit till 5% av värdet vid ytan? Ledning: E-fältets
amplitud dämpas med faktorn exp(−α z) där α =

√
(π f µ0 µr σ) vid utbredning i ett medium

med god ledningsförmåga.
c) Beräkna vågens fashastighet i luft respektive vatten.

F9. En plan TEM-våg (E-fältet har toppvärdet 100 mV m−1) infaller vinkelrätt mot ett plant
materialskikt som befinner sig i luft. Vid gränsytan mellan luft och skikt sker reflexion och
transmission. Den reflekterade vågens E-fält har toppvärdet 40 mV m−1. Skiktet är förlustbe-
häftat, med följden att en del av effekten hos den i skiktet utbredande vågen absorberas. Efter
passage genom skiktet har den transmitterade vågens H-fält toppvärdet 160µA m−1. Beräk-
na:
a) effektflödet (strålningstätheten) hos den infallande vågen,
b) materialskiktets effektabsorption uttryckt i W m−2.
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F10. Härled uttryck för tidsmedelvärdet av strålningstätheten och tidsmedelvärdet av effekten
hos en TEM-våg (antag sinusformat tidsberoende hos fälten), som utbreder sig i en (antag
också att endast en våg befinner sig i ledningen, dvs att inga interferensfenomen uppträder):
a) plattledning (plattornas bredd är a och avståndet mellan plattorna är b),
b) koaxialkabel (innerledaren har diametern d och ytterledarens innerdiameter är D).
c) i ett homogent (ε och µ konstanta) laddnings- och strömfritt dielektriskt medium.

d) Ange i ett givet tidsögonblick t hur E(t), H(t) och S(t) = E(t) ×H(t) är riktade i ut-
bredningsfallen enligt deluppg. a-c.

F11. En koaxialkabel med luft som isoleringsmaterial mellan inner- och ytterledaren har måt-
ten D = 40 mm och d = 10 mm. D är ytterledarens innerdiameter och d är innerledarens
diameter. Hur stor är den maximala effekten som en TEM-våg kan transportera om den elekt-
riska fältstyrkan i området mellan ledarna inte får överskrida 200 kV m−1?

F12. En plattledning med bredden 15 mm och avståndet 1 mm mellan plattorna har luft som
isoleringsmaterial. Hur stor är den maximala effekten som en TEM-våg kan transportera om
den elektriska fältstyrkan i området mellan ledarna inte får överskrida 200 kV m−1?

F13. En koaxialkabel skall kunna överföra effekten 2 kW. Innerledarens diameter är d =
10 mm och isoleringsmaterialet mellan inner- och ytterledaren har εr = 4, 0 och µr = 1, 0.
Den maximalt tillåtna elektriska fältstyrkan i isoleringsmaterialet är 100 kV m−1. Beräkna
den minsta tillåtna innerdiametern för ytterledaren.

F14. En plattledning skall kunna överföra effekten 1 kW. Plattornas bredd är 30 mm. Isole-
ringsmaterialet mellan plattorna har εr = 4, 0 och µr = 1, 0. Den maximalt tillåtna elektriska
fältstyrkan i isoleringsmaterialet är 100 kV m−1. Beräkna det minsta tillåtna avståndet mellan
plattorna.

F15. Betrakta en koaxialkabel och visa, att kapacitansen per längdenhet resp. induktansen per
längdenhet ges av uttrycken C = 2π ε

ln D
d

resp. L = µ
2π

ln D
d

.

F16.
Redogör för de villkor på rumsutsträckningen hos ett elektriskt system, som anger när man
vid beskrivning av systemets elektriska karaktär (vid tidsberoende problem) kan använda sig
av :
a) kretsteori (spänningar och strömmar, inga vågfenomen),
b) ledningsteori (spänningar och strömmar som uppför sig som vågor),
c) fältteori (elektriska och magnetiska fält som uppför sig som vågor).

F17.
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a) Förklara (utan detaljerade beräkningar) m.h.a. en bild (av strukturen hos den elektriska
fältstyrkan) hur en elektriskt laddad partikel, som acceleras alstrar elektromagnetisk strålning.
Ange riktningen (relativt riktning för partikelns acceleration) hos den del av totala E-fältet som
utgör strålningen. Rita gärna en figur som illustration! b) Låt den laddade partikeln utföra en i
tid sinusformad rörelse (oscillation) och skissa E-fältet hos den resulterande strålningen. Jäm-
för partikelns acceleration och det resulterande E-fältets storlek och riktning direkt efter att
det har genererats. När fås maximal styrka hos fältet? När är fältstyrkan noll?

F18. I ett plasma (t.ex. jordens jonosfär) kan sambandet mellan vinkelfrekvens och vågtal
skrivas: ω2 = ω2

p + c2k2 där ωp är den så kallade plasmafrekvensen (beror bl.a. av elektrontät-
heten i mediet) och kan i den här uppgiften ses som en konstant. c är ljusets fart i vakuum.
a) Bestäm produkten vf vg. Kommentera resultatet!
b) Bestäm vf och vg i två gränser: k → 0 resp. k → ∞.
c) Bestäm ett uttryck för k som funktion av ω. Skriv upp vågfunktionen och diskutera vågens
karaktär då ω > ωp respektive ω < ωp.

F19. Studera ett tidsberoende elektromagnetiskt fält där E-fältet och H-fältet ligger i xy-
planet. E-fältet är riktat i x-led och H-fältet i y-led. Fältstyrkorna är (vid en given tidpunkt)konstanta
i xy-planet men kan variera i z-led. Tillämpa Maxwells cirkulationslagar och visa att E-fältet
och H-fältet uppfyller var sin vågekvation. I vilken riktning och med vilken fart utbreder sig
vågen?
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LEDNINGSTEORI.

L1. Betrakta en förlustfri transmissionsledning. Modellera ledningen m.h.a. distribuerade ka-
pacitanser och induktanser.
a) Redogör för vågutbredningsmekanismen m.h.a. en kretsteoretisk betraktelse: Studera hur
ledningen succesivt laddas upp och magnetiseras när ett likspänningssteg kopplas in på led-
ningsingången. Finn ett uttryck för spänningsvågens utbredningsfart! vilka konsekvenser har
det faktum av farten inte är oändligt hög?
b) Vad beskriver karakteristiska impedansen (Z0) respektive utbredningskonstanten (γ)? Hur
bestäms dessa storheter av ledningens elektriska egenskaper? Finn ett uttryck för Z0!
c) Förklara med en kretsteoretisk betraktelse hur den reflekterade vågen alstras då ledningen
närände spänningsmatas med en signalgenerator (med ZG = Z0) och ledningens fjärrände är
öppen.
d) Gör om deluppg. c, med den skillnaden att fjärränden är kortsluten.
e) Förklara orsaken till att den reflekterade vågen uteblir, om lastimpedansen är lika med Z0.

L2. En likspänninsgskälla (med en ems på 12 V) är kopplad via strömbrytare till en förlustfri
transmissionsledning. Spänningskällans inre resistans är lika med ledningens karakteristiska
impedans. Rita spänningen som funktion av tiden vid tre positioner längs ledningen: över led-
ningsingången, mitt på ledningen samt över lasten i följande fall (lös gärna uppgiften både
analytiskt och m.h.a. t.ex. kretssimuleringsprogrammet LTspice där man kan ha komponenten
transmissionledning"(tline") i sin krets):
a) anpassad last,
b) resistiv last med ΓL = 0, 25,
c) resistiv last med ΓL = −0, 25.
d) last med ΓL = 1,
e) last med ΓL = −1,
f) Beräkna lastimpedansen storlek för fallen a-e.
g) Beräkna, för fallen a-e, spänningen över en godtycklig position längs ledningen efter det
att stationär tillstånd har inträtt. Jämför det ledningsteoretiska resultatet med en beräkning
baserad på vanlig kretsteori.
h) Låt lasten vara en induktor. Hur stor är spänningen över en godtycklig position vid stationär
tillstånd?
i) Låt lasten vara en kondensator. Hur stor är spänningen över en godtycklig position vid sta-
tionär tillstånd?

L3. En förlustfri koaxialledning har L = 1, 0µH m−1 och C = 100 pF m−1. Beräkna ledning-
ens karakteristiska impedans, samt fashastigheten och våglängden för en signal med frekven-
sen 200 MHz. Bestäm spänningens vågfunktion om amplituden är 2,0 V.
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L4. En förlustfri transmissionsledning har karakteristiska impedansen 50 Ω. Vid frekvensen
100 MHz är våglängden 1,0 m. Beräkna ledningens induktans respektive kapacitans per meter.

L5. Hur stor är dämpningen (uttryckt i Np m−1 respektive dB m−1) för en kabel på vilken
man i två mätpunkter på avståndet 40 m från varandra har uppmätt spänningarna (toppvär-
dena) 3,0 V respektive 2,7 V. Ledningen är impedansanpassad till såväl generator som last.
Insignalen är cosinusformad.

L6. En transmissionsledning har de primära ledningsparametrarna R = 20 Ω km−1, G =
3, 0µS km−1, L = 2, 0 mH km−1 och C = 6 nF km−1. Ledningen matas med en i tid cosinus-
formad signal med frekvensen 1 kHz. Beräkna:
a) dämpningen (α) uttryckt i Np km−1 respektive dB km−1,
b) faskonstanten (β) uttryckt i rad km−1 respektive grader per km,
c) ledningens karakteristiska impedans (Z0) till belopp och fasvinkel,
d) fashastigheten.
e) Bestäm spänningens vågfunktion om amplituden är 5,0 V.

L7. En viss ledning har vid vinkelfrekvensen ω = 80 000 rad s−1 dämpningen 1,04 dB km−1,
faskonstanten 0,128 rad km−1 och den karakteristiska impedansen 790 exp(−j 40◦) Ω. Beräk-
na ledningens primära parametrar.

L8. En konstledning avsedd som signalfördröjningskrets består av ett antal sammankopplade
sektioner av längden 0,1 m (se figur) med Rs = 2 Ω, Rp = ∞Ω, Ls = 10 mH, Cp = 50 nF.
Ledningens ena ände matas med en växelspänning med frekvensen 1 kHz. Beräkna vågens
fashastighet, samt ledningens karakteristiska impedans och dämpning för följande två led-
ningsmodeller:

a)

R Ls s

CpRp CpRp
Modell A
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b)

R Ls s

CpRp
Modell B

L9. En ledning med längden s = 25 km har den karakteristiska impedansen 800 exp(−j 40◦) Ω.
Dämpningen är 0,13 dB per km och faskonstanten β = 0, 016 rad per km. Näränden matas
med en växelspänning med sinusformat tidsberoende och effektivvärdet 50 V. Antag att både
signalgenerator och last är impedansanpassade till ledningen (d.v.s. inga reflexioner uppkom-
mer). Bestäm förlusteffekten i ledningen.

L10. En ledning benämns distorsionsfri om en signal ej ändrar form under utbredningen. Detta
erhålls om fashastigheten är oberoende av våglängden. För en distorsionsfri ledning gäller föl-
jande samband mellan ledningens primära parametrar: R

L
= G

C
. Betrakta nu en sådan ledning

med dämpningen 0,01 dB per meter, Z0 = 50 Ω och C = 0, 1 nF m−1. Antag att ledningen är
impedansanpassad och beräkna:
a) R, L och G,
b) fashastigheten,
c) hur många procent spänningens amplitud sjunker på sträckan 5 km.
d) Visa avslutningsvis att R

L
= G

C
innebär att fashastigheten är oberoende av våglängden.

L11. En transmissionsledning har följande parametrar: R = 2, 0 Ω m−1, G = 0, 5µS m−1,
L = 8, 0 nH m−1 och C = 0, 23 pF m−1. Frekvensen är 1 GHz. Beräkna:
a) den karakteristiska impedansen,
b) utbredningskonstanten (gångkonstanten) γ.

L12. Bestäm med hjälp av Smithdiagrammet:
a) ΓL för lastimpedanserna Z0, 2 · Z0, 0, 5 · Z0, j · Z0, (1 + j) · Z0, respektive (1− j) · Z0,
b) lastimpedans och lastadmittans för lastreflexionskoefficienterna 0,8, -0,2, 0, 5 · exp(j40◦),
0, 7 · exp(−j45◦) respektive −0, 5 · exp(j70◦).
c) lastimpedansen för en förlustfri ledning med karakteristiska impedansen 200 Ω och ståen-
devågförhållandet 3,0. Antag att lastimpedansen är rent resistiv.

L13. En förlustfri ledning med Z0 = 200 Ω är kortsluten i fjärränden. Beräkna reflexionskoef-
ficienten (Γ(x)) och impedansen (Z(x)) vid nedanstående positioner. Gör beräkningarna dels
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analytiskt, dels m.h.a. Smithdiagrammet.
a) vid fjärränden,
b) på avståndet λ

8
från fjärränden,

c) på avståndet λ
6

från fjärränden,
d) på avståndet λ

4
från fjärränden,

e) på avståndet λ
2

från fjärränden,
f) på avståndet 3λ

4
från fjärränden,

g) på avståndet λ från fjärränden.
h) Rita grafer som visar |Γ(x)| resp. |Z(x)| som funktion av x. Sätt x = 0 vid lasten och rita
grafen för intervallet x = [−2λ, 0]. Använd gärna även datorhjälpmedel.
i) Upprepa deluppg. a-h om fjärränden istället är öppen.
j) Upprepa deluppg. a-h om fjärränden istället är kopplad till en rent resistiv last med im-
pedansen ZL = 200 Ω.
k) Upprepa deluppg. a-h om fjärränden istället är kopplad till en rent resistiv last med im-
pedansen 100 Ω.
l) Upprepa deluppg. a-h om fjärränden istället är kopplad till en last med en komplex im-
pedans 200(1 + j) Ω.
m) Upprepa deluppg. a-h om fjärränden istället är kopplad till en rent resistiv last med im-
pedansen 400 Ω.
n) Beräkna ståendevågförhållandet för spänningen (SVF; VSWR på engelska) på ledningen
för de olika belastningsfallen enligt ovan.
o) Beräkna den till beloppet minsta och största impedans (|Z|min, |Z|max) längs ledningen för
de olika belastningsfallen enligt ovan. Vilket värde har Γ för dessa impedanser? Vilka sam-
band råder mellan |Z|min, |Z|max, Z0, ZL och SVF?

L14.
a) Härled uttrycken för reflexionskoefficienten Γ(x) och ledningsimpedansen Z(x) för en led-
ning med karakteristiska impedansen Z0, som är avslutad med en last med impedansen ZL.
Låt lastens position vara x = 0
b) Vilken periodicitet (d.v.s. med vilket längdintervall återkommer samma värde) uppvisar
Γ(x) respektive Z(x)? Förklara orsaken till denna periodicitet.

L15. Beräkna inimpedansen som funktion av ledningslängden (mätt i våglängder) för en för-
lustfri ledning med karakteristiska impedansen Z0, samt ange för vilka ledningslängder den är
rent reell (då uppför sig ledningen som en parallell- eller serieresonanskrets) eller rent imagi-
när (d.v.s. rent induktiv resp. kapacitiv). Gör dessutom en skiss av |Z(x)|. Gör beräkningarna
(använd Smithdiagrammet!) i intervallet x = [−λ, 0]. Studera fallen då ledningens fjärrände
(vid x = 0) är:
a) kortsluten,
b) öppen,
c) ZL = 5Z0,
d) ZL = 0, 2Z0,
e) ZL = Z0,
f) ZL = jZ0,
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g) ZL = −jZ0,
h) ZL = (1 + j)Z0,
i) ZL = (1− j)Z0.

L16. En komplex impedans Z = 20 + j40 Ω är given. Beräkna den komplexa admittansen
Y = 1

Z
. Gör beräkningen dels analytiskt, dels m.h.a. Smithdiagrammet.

L17. En förlustfri ledning med karakteristiska impedansen 50 Ω och längden 0,3 m matas med
en signal med frekvensen 100 MHz varvid fashastigheten uppmäts till 108 m s−1. Vidare har
man uppmätt ståendevågförhållandet till 2,5 och att första spänningsminimum räknat från last-
position inträffar på avståndet 0,2 m från lasten. Bestäm:
a) lastens impedans och reflexionskoefficient,
b) ledningens inimpedans,
c) ledningens inadmittans.

L18. En förlustfri ledning med karakteristiska impedansen 50 Ω är koppad till en last med
impedansen ZL = 60 + j50 Ω. Beräkna (analytiskt, använd gärna även datorhjälpmedel.):
a) reflexionskoefficienten vid lasten,
b) ståendevågförhållandet på ledningen,
c) ledningens impedans på avståndet λ

8
från lasten,

d) lasten admittans,
e) ledningens admittans på avståndet λ

8
från lasten,

f) Rita en graf av totala spänningens toppvärde |V (x)| som funktionen av positionen längs
ledningen, om |V |min = 1 volt.

L19. En rent resistiv last med impedansen ZL är kopplad till en ledning med en reell karakte-
ristisk impedans. Bestäm sambandet mellan ledningens inimpedans (Zin), Z0 och ZL om:
a) ledningens längd är λ

2
,

b) ledningens längd är λ
4
.

L20. Två ledare, med karakteristiska impedanserna Z0,A = 50 Ω resp. Z0,B = 75 Ω kaskad-
kopplas. I den lediga änden av ledning B ansluter man en last med impedansen ZL = 100 Ω.
Bestäm systemets inimpedans (d.v.s. impedansen vid ingången av ledning A) i följande fall:
a) båda ledningarna har längden λ

4
,

b) båda ledningarna har längden 3λ
4

,
c) båda ledningarna har längden λ

2
,

d) båda ledningarna har längden 5λ
4

,
e) båda ledningarna har längden λ,
f) ledning A har längden λ

2
och ledning B har längden λ

4
,

g) ledning A har längden λ
4

och ledning B har längden λ
2
.

h) gör om fallen a och b med den modifikationen att en resistor med med Z = 25 Ω kopplas
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in parallellt i skarven mellan ledningarna.

L21. En komplex last ZL = 50(1 + j) Ω har anslutits till en ledning med Z0 = 50 Ω.
a) Bestäm ståendevågförhållandet.
b) I vilka positioner (ange avstånden i våglängder räknat från lastpositionen) är ledningsim-
pedansen rent reell?
c) I vilka positioner (ange avstånden i våglängder räknat från lastpositionen) är ledningsim-
pedansens realdel lika med Z0?
d) I vilka positioner (ange avstånden i våglängder räknat från lastpositionen) är ledningsad-
mittansens realdel lika med Y0?

L22. Man vill åstadkomma en resonanskrets avstämd till frekvensen 300 MHz m.h.a. en kon-
densator på 10 pF och en luftisolerad ledningsbit med Z0 = 50 Ω. Beräkna lämpligt minsta
värde på ledningslängden om man vill ha en:
a) parallellresonanskrets (inadmittans=noll),
b) serieresonanskrets (inimpedans=noll).

L23. En förlustfri luftisolerad koaxialledning med Z0 = 50 Ω matas med en växelspänning
med frekvensen 1,0 GHz. Ståendevågförhållandet mäts till 1,8. Man finner ett spänningsmax-
imum på avståndet 18 cm från lasten. Bestäm lastimpedansen.

L24. En förlustfri luftisolerad koaxialledning med Z0 = 50 Ω är i sin fjärrände belastad med
kapacitansen C = 10 pF. Man vill av utrymmesskäl förkorta ledningen med 75 cm, dock ut-
an att inimpedansen förändras vid den aktuella frekvensen. Vilken kapacitans eller induktans
skall placeras i den avkapade ledningsänden för att åstadkomma en oförändrad inimpedans
om arbetsfrekvensen är f = 50 MHz.

L25. Med belastning ansluten var ståendevågförhållandet 2,6 för en förlustfri ledning med
karakteristiska impedansen 50 Ω. Då belastningen utbyttes mot en kortslutning, så flyttades
ståendevågsmönstret 1,75 cm i riktning mot lastpositionen. Avståndet mellan två på varandra
följande minima var 12,5 cm. Beräkna belastningens impedans.

L26. Inimpedansen till en i fjärränden öppen koaxialledning uppmättes till −j160 Ω. Inim-
pedansen till samma kabel med fjärränden kortsluten uppmättes till +j40 Ω. Mätfrekvensen
var 75 MHz och fashastigheten på ledningen är densamma som ljushastigheten i vakuum. Led-
ningens primära konstanter R och G kan sättas lika med noll. Beräkna:
a) reflexionsfaktorn på ingången med fjärränden öppen resp. kortsluten,
b) karakteristiska impedansen och de primära konstanterna L och C,
c) transmissionsledningens kortaste möjliga längd.
d) Antag istället att de uppmätta inimpedanserna var +j160 Ω för öppen ledning och −j40 Ω
för kortsluten ledning och gör om deluppg. a-c.

14



L27. Över en transmissionsledning med en karakteristiska impedansen 100 Ω har man mätt
upp spänningsfördelningen som funktion av positionen med ett toppvärdesvisande instrument.
Den uppmätta spänningen varierar mellan 0,8 V och 1,2 V. Minima inträffar vid positionerna
x=-1 m, -3 m och -5 m från lastpositionen (x = 0), medan maxima inträffar vid lasten samt
-2 m och -4 m från lasten. Beräkna:
a) reflexionskoefficienten vid lasten,
b) lastens impedans,
c) impedansen vid x = −1 m,
d) strömamplituden genom lasten,
e) strömamplituden vid x = −1 m,
f) signalens frekvens om vågutbredningen sker med ljusets fart i vakuum,
g) effektutvecklingen i lasten.

L28. För vågamplituderna på en viss förlustfri ledning gäller följande (lastens position anges
med x = 0): V +(0) = 1 V, V −(0) = 0, 4 V, V +(0)/I+(0) = 100 Ω.
Totala spänningen respektive strömmen är V (x) = V +(x) + V −(x) resp. I(x) = I+(x) +
I−(x). Den infallande vågens våglängd är 2 m. Beräkna:
a) ledningens karakteristiska impedans,
b) V +, V − och V vid x = −0, 5 m,
c) V +, V − och V över lasten,
d) I+, I− och I vid x = −0, 5 m,
e) I+, I− och I genom lasten,
f) Z vid x = −0, 5 m,
g) lastimpedansen,
h) effektförbrukning i lasten,
i) Skissera (analytiskt och med något datorprogram) |V (x)| i en graf över intervallet -5 m till
0 m.
j) Våglängden ökas till 200 m. Gör om deluppg. h-i.

L29.
a) Härled telegrafekvationerna.
b) Definiera utbredningskonstanten γ = α + jβ m.h.a. ledningens primära parametrar.
c) Lös telegrafekvationerna för en våg med harmoniskt (dvs. sinus- eller cosinusformat) tids-
beroende. Ange lösning dels som komplexa spänningar och strömmar, dels som reella spän-
ningar och strömmar. Kommentera innebörden av parametrarna α och β.
d) Härled ett uttryck för den karakteristiska impedansen.
e) Härled ett uttryck för ledningens impedans som funktion av positionen.
f) Härled ett uttryck för reflexionskoefficienten (för spänning) som funktion av positionen.
g) Bestäm γ, Z0 och vfas för en förlustfri ledning (R = 0 och G = 0). Förklara att ledningen
är även distorsionsfri.
h) Härled approximationer till γ, Z0 och vfas för en ledning med små förluster (d.v.s. om
R� ωL och G� ωC). Förklara, att ledningen inte är distorsionsfri.
i) Bestäm γ, Z0 och vfas för en ledning med R

L
= G

C
. Förklara att ledningen är förlustbehäftad,
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men distorsionsfri.
i) Bestäm γ, Z0 och vfas för en ledning med R

L
= G

C
. Förklara att ledningen är förlustbehäftad,

men distorsionsfri.
j) Härled approximationer till γ, Z0 och vfas för en ledning med stora förluster i själva ledarna
(d.v.s. om R � ωL och G � ωC). Uppstår distorsioner? Förklara också att ledningen kan
modelleras som en RC-länk.
k) Bestäm γ och Z0 då L = 0 och C = 0 och förklara orsaken till att i detta fall skulle det inte
ske någon vågutbredning överhuvudtaget.
l) Lös telegrafekvationerna för en våg i form av ett spänningsteg som inkopplas vid tiden noll.
Använd Laplacetransformen och notera hur spänningsstegets utbredning ses som en ’fördröj-
ning’ i ekvationen. Identifiera vågens fart i ekvationen.

L30. Betrakta ett Smithdiagram.
a) Förklara vad Smithdiagrammet beskriver och hur det är uppbyggt! Vilka ekvationer ligger
bakom Smithdiagrammets konstruktion?
b) Vad avses med en normerad impedans (=impedanstalet) resp. normerad admittans? Förkla-
ra orsaken till att man normerar med karakteristiska impedansen resp. karakt. admittansen.
c) Hur bestämmer man reflexionskoefficienten i en given position längs ledningen om posi-
tionens normerade impedans är känd?
d) Hur bestämmer man den normerade impedansen i en given position längs ledningen om
positionens reflexionskoefficient är känd?
e) Hur bestämmer man Γ(x) och z(x) i en punkt x = x1 om någon av dessa storheter är känd
i en annan punkt x = x2?
f) Hur finner man admittansen om impedansen är känd? Motivera med en kort analytisk be-
räkning.
g) Förklara orsaken till att ett varv i Smithdiagrammet omfattar en sträcka motsvarande en
halv våglängd av ledningen.
h) Var i ett Smithdiagram med impedanskoordinater är |Γ| = 1? Var finns en kortslutning
resp. ett avbrott?
i) Var i ett Smithdiagram med admittanskoordinater är |Γ| = 1? Var finns en kortslutning resp.
ett avbrott?
j) Förklara att för en förlustfri ledning innebär en förflyttning längs ledningen, att man i Smith-
diagrammet rör sig längs en cirkel. Vilken radie har cirkeln? Var ligger cirkelns centrum?
k) Visa att en av skärningspunkterna mellan |Γ| =konstant cirkel och Smithdiagrammets rea-
laxel ger det ståendevågförhållande som råder på ledningen. Du skall alltså visa att SV F =
z(x) då z(x) är reell och större än 1.
l) Var i diagrammet är Γ = 0? Vad innebär Γ = 0?

Inför beteckningar för real- och imaginärdelarna hos den normerade impedansen och reflex-
ionskoefficienten enligt: z = r + jx (obs! blanda ej ihop reaktansen x med rumskoordinaten
x!) och Γ = Γr + jΓi.
m) Visa att om r hålls konstant, så beskriver Γ en cirkel med radien 1

1+r
och centrum i punkten

(Γr,Γi) = ( r
1+r

, 0).
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n) Visa att om x hålls konstant, så beskriver Γ en cirkel med radien 1
x

och centrum i (Γr,Γi) =
(1, 1

x
).

o) Förklara de olika stegen i användandet av Smithdiagrammet vid dimensionering av en
impedansanpassare i form av dels en kvartsvågstransformator, dels en parallellkopplad, kort-
sluten stubbe.

L31. En ledning med karakteristiska impedansen 100 Ω är avslutad med lasten ZL = 50 +
j20 Ω.
a) På vilka avstånd från lasten är impedansen reell? Ange de två närmaste positionerna?
b) Bestäm lastens admittans. På vilka avstånd lasten är (normerade) admittansens realdel lika
med 1? Ange de två närmaste positionerna?

L32. En belastningsimpedans ZL = 30 + j20 Ω är ansluten till en förlustfri transmissionsled-
ning med karakteristiska impedansen 50 Ω. Lasten skall impedansanpassas till ledningen.
a) Utför anpassningen med en parallellkopplad, förlustfri, kortsluten stubbe (med karakteris-
tiska impedansen 50 Ω), som skall placeras så nära belastningen som möjligt. Dimensionera
stubben, d.v.s. beräkna hur långt från lasten stubben skall placeras samt stubbens längd. Ut-
tryck dessa längder i antal våglängder.

b) Utför istället anpassningen med en kvartsvågstransformator, d.v.s. bestäm position (uttryckt
i våglängder) och karakteristisk impedans för kvartsvågstransformatorn.

L33. Beräkna position, längd och karakteristisk impedans för en kvartsvågstransformator i
form av en koaxialkabel (med ett isoleringsmaterial med εr = 2, 25), som skall anpassa en
antenn med RL = 200 Ω till en koaxialledning med karakteristiska impedansen 50 Ω. Fre-
kvensen är 100 MHz.

L34. En koaxialledning med R0 = 100 Ω är belastad med impedansen ZL = 60 − j70 Ω.
Belastning skall anpassas till ledningen. Dimensionera anpassaren om den utgörs av:
a) en kvartsvågstransformator,
b) en parallellkopplad, kortsluten stubbe (med samma R0 som koaxialledningen),
c) en parallellkopplad, öppen stubbe (med samma R0 som koaxialledningen),
d) en seriekopplad, kortsluten stubbe (med samma R0 som koaxialledningen),
e) en seriekopplad, öppen stubbe (med samma R0 som koaxialledningen),
f) Byt ut lasten till ZL = 60 + j70 Ω och gör om deluppgift a-b.

L35. En transmissionsledning med R0 = 200 Ω är avslutad med en last med impedansen
ZL = 85− j34 Ω.
a) Bestäm ståendevågförhållandet på ledningen.
b) Dimensionera en impedansanpassare i form av en kortsluten stubbe.
c) Hur stort är ståendevågförhållandet efter att anpassning har utförts?
d) Gör om deluppg. b, denna gång med en kvartsvågstransformator.
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L36. En belastning med ZL = 200− j100 Ω skall anpassas med hjälp av en kvartsvågstrans-
formator till en ledning med Z0 = 150 Ω.
a) Dimensionera kvartsvågstransformatorn.
b) Antag att frekvensen hos inkopplad signal fördubblas (jämfört med frekvensen för vilken
anpassningen gjordes). Bestäm ståendevågförhållandet på ledningen. Förklara orsaken till att
anpassningen ej längre råder.
c) Betrakta samma ledning och samma last som i deluppg. a och utför anpassningen med en
kortsluten stubbe istället.
d) Diskutera hur en frekvensdubbling skulle påverka resultatet i deluppg. c.

L37. En TEM-våg med frekvensen 100 GHz utbreder sig i luft.
I området mellan x = −d och x = 0 har man placerat ett materialskikt (ett praktiskt exempel
är s.k. radomen kring radioteleskop eller radarantenner).
a) Bestäm vilken εr skiktmaterialet skall ha så att ingen reflekterad våg uppstår i området
x < −d. Skikttjockleken är d = λskikt

2
, notera att våglängden i detta uttryck är våglängden

i skiktmaterialet. Bestäm d. Förklara dessutom den fysikaliska mekanismen bakom elimine-
ringen av reflexerna.
b) Fungerar antireflexbehandlingen enligt deluppgift a frekvensen fördubblas eller halveras?
Motivera svaren!
c) Om ditt svar i deluppgift b var nej, antag att εr bibehålles oförändrad och dimensionera om
d för eliminering av reflexer.
d) Gör om c men använd det värde på skiktets tjocklek som erhölls i deluppg. a och dimen-
sionera om εr.

För uppgifterna L38-L40: Jämför din lösning med LTspice körningar.

L38. En likspänningskälla med polspänningen EG = 27 V och inre resistansen RG = 200 Ω
är kopplad till en koaxialledning via en strömbrytare. Koaxialledningen, som är förlustfri, har
karakteristiska impedansen 100 Ω och längden 600 m. Isoleringsmaterialet mellan ledarna är
luft. Ledningen är avslutad med en last med impedansen 50 Ω. Brytaren sluts vid tiden t = 0.
a) Beräkna och rita en graf som visar hur spänningen över ledningsingången varierar de första
8µs.
b) Beräkna och rita en graf som visar hur spänningen mitt på ledningen varierar de första 8µs.
c) Beräkna och rita en graf som visar hur spänningen över lasten varierar de första 8µs.
d) Beräkna slutvärdet av spänningen över en godtycklig punkt längs ledningen.

L39. En likspänningskälla med polspänningen EG = 10 V och inre resistansen RG = 25 Ω
är kopplad till en koaxialledning via en strömbrytare. Koaxialledningen, som är förlustfri, har
karakteristiska impedansen 100 Ω och längden 300 m. Isoleringsmaterialet mellan ledarna är
luft. Ledningens fjärrände är öppen. Brytaren sluts vid tiden t = 0.
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a) Beräkna och rita en graf som visar hur spänningen över ledningsingången varierar de första
10µs.
b) Beräkna och rita en graf som visar hur spänningen mitt på ledningen varierar de första
10µs.
c) Beräkna och rita en graf som visar hur spänningen över lasten varierar de första 10µs.
d) Beräkna slutvärdet av spänningen över en godtycklig punkt längs ledningen.

L40. En likspänningskälla med polspänningen EG = 36 V och inre resistansen RG = R0

2
är

kopplad till en ledning via en strömbrytare. Ledningen har karakteristiska impedansen R0 och
längden 1 000 m. Vågutbredningsfarten på ledningen är lika med ljusets fart i vakuum. Led-
ningens fjärrände är kortsluten. Brytaren sluts vid tiden t = 0.
a) Beräkna och rita en graf som visar hur spänningen över ledningsingången varierar de första
10µs.
b) Beräkna och rita en graf som visar hur spänningen mitt på ledningen varierar de första
10µs.
c) Beräkna och rita en graf som visar hur spänningen över lasten varierar de första 10µs.
d) Beräkna slutvärdet av spänningen över en godtycklig punkt längs ledningen.

L41. Studera en förlustfri transmissionsledning (med karakteristiska impedansen Z0), som
exciteras i ena änden av en i tid sinusformad spänning med toppvärdet VG och inre resistansen
ZG. Den andra änden är ansluten till en lastimpedans ZL.
Sätt ledningslängden till λ

2
och skissa en graf som visar hur spänningens toppvärde varierar

längs ledningen när stationärtillstånd råder. Studera följande fall (förklara även i ord orsaken
till grafernas form):
a) ZG = ZL = Z0,
b) ZG = Z0 och ZL > Z0,
c) ZG = Z0 och ZL < Z0,
d) ZG > Z0 och ZL > Z0,
e) ZG < Z0 och ZL < Z0.
f) Sätt ledningslängden till λ

4
och gör om deluppg. a-e.

g) Välj själv några kombinationer av ZG, ZL och Z0. Använd datorhjälpmedel för att rita gra-
fer av spänningens toppvärde som funktion av positionen längs ledningen. Använd det exakta
uttrycket för toppvärdesvariationen (se föreläsningsanteckningar).

L42. Betrakta en supraledande plattledning med måtten b = 1 mm och a = 7, 5 mm, l =
75 mm. En signalgenerator (som ger en i tid sinusformad spänning) med inre resistansen 10 Ω
kopplas in i plattledningens ena ände. Generatorns toppvärde vid tomgång är 12 V . Till led-
ningens fjärrände har man anslutit en last med impedansen 5,0 Ω.
a) Beräkna effektutvecklingen i lasten om frekvensen är 1 MHz.
b) Frekvensen ökas till 1 GHz. Beräkna toppvärderna för spänningen över och strömmen ge-
nom lasten, samt medeleffektutvecklingen i lasten.
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c) Byt ut ledningen till en med längden l = 150 mm och gör om deluppg. a och b.
d) Förklara i ord hur det kommer sig att effektutvecklingen i lasten blir så olika i fallen ovan,
trots att generatorspänningens toppvärde är detsamma hela tiden.
e) Skissera (analytiskt och med datorhjälpmedel ståendevågmönstret längs ledningen i fallen
a-c.
f) Antag att lasten byts mot en last med impedansen 100 Ω. Gör om deluppg. a-c, e.
g) Antag att frekvensen fördubblas (till 2 GHz) och gör om deluppg. b-c och e, dels med den
ursprungliga lasten, dels med lasten 100 Ω inkopplad.

L43. Ett sätt att antireflexbehandla ytor (med brytningsindex nyta) är att lägga på ett tunt skikt
av ett material med ett brytningsindex nskikt. Bestäm skiktets tjocklek och brytningsindex om
nyta = 1.5 och man vill eliminera reflexioner för ljus med våglängden 600 nm. Ytans tjock-
lek är mycket större än våglängden. Det infallande ljuset (som kan anses vara en TEM-våg)
befinner sig i luft och infallet sker vinkelrätt mot ytan.

L44. Studera ett system bestående av en signalgenerator, en förlustfri transmissionsledning
och en rent resistiv last (RL 6= Z0). Signalgeneratorn är impedansanpassad till ledningen
och har en i tid sinusformad utspänning. Antag, att våglängden är mycket större än ledning-
ens längd och studera m.h.a. en ledningsteoretisk betraktelse den resulterande spänningen på
ledningen när stationärtillstånd har inträtt. Jämför resultatet med det som erhålls ur vanlig
växelströmsteori (Kirchhoff).

L45. En koaxialkabel av typen RG58/U har följande data: innerledarens diameter är 0,406 mm,
ytterledarens innerdiameter är 1,48 mm och relativa permittiviteten hos isoleringsmaterialet
mellan ledarna är εr = 2, 26. Antag att ledningen är förlustfri.

a) Bestäm ledningens karakteristiska impedans och fashastighet.
b) Betrakta tre mycket långa RG58/U ledningar. Ledningarna 2 och 3 är (parallell)kopplade till
fjärränden av ledning 1 via en T-kontakt. En i tid sinusformad signal med frekvensen 10 MHz
infaller i ledning 1 mot T-kontakten. Bestäm hur stor del av den infallande effekten reflekteras
tillbaka in i ledning 1, samt hur stor del av effekten transmitteras till ledning 2 respektive 3.
c) Dimensionera en impedansanpassare i form av en kortsluten stubbe, som eliminerar reflex-
ioner vid T-kontakten.

L46. En förlustfri ledning med karakteristiska impedansen 50 Ω är avslutad med en last med
impedansen 100 exp(j60◦) Ω [anmärkning: ’exp’ står för exponentialfunktionen]. En spän-
ningsvåg med amplituden 10 volt och våglängden 1,5 m infaller mot lasten. Fashastigheten är
lika med ljusets fart i vakuum.
a) Bestäm den reflekterade vågens amplitud och våglängd.
b) Dimensionera en impedansanpassare i form av en kortsluten stubbe.

L47. Man har mätt upp följande inimpedanser till en 20 m lång, förlustfri ledning: −j25 Ω då
ledningsänden var kortsluten, respektive j225 Ω då ledningsänden var öppen. Frekvensen hos
mätsignalen var 500 kHz. Ledningslängden är < λ

2
.
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Bestäm ledningens karakteristiska impedans och vågens fashastighet.

L48.
a) Ett isoleringsfel har uppstått i en förlustfri transmissionsledning. Felet kan modelleras som
en parallellkopplad resistans (Rf ). För att lokalisera felstället ansluts en likspänningsgenera-
tor till ledningen. Ett likspänningsteg kopplas in till ledningsingången vid tiden t = 0 och
en reflexionsmätning utförs. Totala spänningen vid ledningsingången mäts som funktion av
tiden. Man finner att i tidsintervallet t = 0 till t = 48µs är spänningen 12 volt, medan efter
t = 48µs ligger spänningen konstant på nivån 9 volt. Fashastigheten kan sättas till 2·108 m s−1

och ZG = Z0=50 Ω.
Bestäm avståndet till felstället och felresistansens storlek (Rf ).
b) Antag istället att ett ’kontaktfel’ har uppstått (kan modelleras som en extra längsresistans
hos ledningen) och att totala spänningen efter t = 48µs är 15 volt. Bestäm felresistansens
storlek.

L49. Ett filter i form av en parallellresonanskrets skall konstrueras m.h.a. två förlustfria trans-
missionledningar, som parallellkopplas genom att koppla samman deras ’ingångsändar’. Led-
ning 1 har karakteristiska impedansen 50 Ω och skall ha öppen fjärrände, medan ledning 2
har längden 12 cm, karakteristiska impedansen 75 Ω och skall vara kortsluten i fjärränden.
Bestäm längden för ledning 1 (den skall vara så korta som möjligt) så att resonansfrekvensen
blir 500 MHz.

L50. En förlustfri transmissionsledningen med längden l och karakteristiska impedansen Z0

är ansluten till en komplex last med impedansen ZL. Lasten är vid x = 0 och generatorn vid
x = −l. Signalgeneratorn är anpassad till ledningen.
a) Visa att den i lasten utvecklade aktiva effekten kan uttryckas som

PL = |V +(0)+V −(0)|2
2

Re( 1
Z∗
L
) = |V +(−l)+V −(−l)|2

2
Re( 1

Z∗
in

) =
|V +

0 |
2

2Z0
(1− |ΓL|2).

b) Vilket/vilka av dessa uttryck gäller även då ledningen har dämpning?

L51. En förlustfri ledning är ansluten till signalgenerator med spänningen VG. Impedansan-
passning råder i generatoränden (ZG = Z0). Visa att toppvärdet för spänningen över lasten
kan beräknas med uttrycket |VL| = VG | ZL

ZL+ZG
| om VG är reell.

För beräkningarna i L52-L64 nödvändiga formler finns i dokumentet
Formler för mikrostripledning på kurshemsidan.

Elektriska fältet i en mikrostripledning genomkorsar såväl luft som kretskortmaterialet (sub-
stratet). Vid beräkningar används en effektiv relativ permittivitet εeff som tar hänsyn till sub-
stratets εr och ledningens geometri (W/h). Ibland används enheten mil (1 mil = 1 millitum =
0,0254 mm) för substratets tjocklek och stripens bredd.

L52.
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a) En mikrostripledning med bredden 2,44 mm tillverkas på ett kretskort där substratet har
tjockleken 0,7874 mm och relativa permittiviteten εr = 2, 23. Ledningen är ansluten till en
signalkälla med frekvensen 2 GHz.
Bestäm ledningens effektiva relativa permittivitet, karakteristiska impedans samt våglängden
hos den kvasi-TEM våg som utbreder sig utmed mikrostripen. Bestäm också ledningens längd
(i mm) om L = λ

4
. Sätt mikrostripens tjocklek till noll.

b) Sätt bredden till 1,04 mm, tjockleken till 1,6 mm och εr till 6. Gör om beräkningarna i del-
uppg. a).
c) Sätt mikrostripens bredd till 1,6 mm och tjocklek till noll. Kretskortmaterialet har tjockle-
ken 1,6 mm och εr=4,54. Gör om beräkningarna i deluppg. a).

L53.
a) En mikrostripledning skall dimensioneras så att den får en karakteristisk impedans på 75 Ω.
Kretskortets substrat har εr = 9, 6 och tjockleken 1,016 mm. Bestäm mikrostripens bredd (an-
tag att tjockleken är noll).Beräkna också εff och våglängden (om f = 3 GHz).
b) Gör om deluppg. a) för en ledning som ska ha Z0=50 Ω då εr = 2, 17 och substratet tjock-
leken 1,27 mm.
c) Gör om deluppg. a) för en ledning som ska ha Z0=100 Ω då εr = 4, 54 och substratet tjock-
leken 1,6 mm.

L54. Betrakta en högfrekvenstransistor som arbetar vid 2,4 GHz och har utimpedansen 10 +
j4 Ω. Transistorn skall anslutas reflexionsfritt till en 50 Ω last. Anslutning sker med en mik-
rostripledning (tjocklek noll) som består av en λ

4
lång strip som vid ingången har en parallell-

kopplad stubbe med öppen ände.
a) Vilken Z0 skall den 0, 25λ långa mikrostripen ha?
b) Även stubben utgörs av en mikrostrip med samma Z0 som 0, 25λ stripen. Hur lång är stub-
ben mätt i våglängder?
c) Substratet har εr = 9, 6 och tjockleken 1,27 mm. Bestäm bredden och längderna (i millime-
ter) för de två mikrostriparna.

L55. Beräkna karakteristiska impedansen för följande mikrostripledningar:
a) εr = 5, W/h = 0, 2
b) εr = 5, W/h = 2
c) εr = 5, W/h = 10
d) Substrat med tjockleken 25 mil och relativa permittiviteten 9,8. Stripens bredd är 1,935 mm.

L56. Skissera grafer av Z0 som funktion av W/h för intervallet 0, 1 ≤ W/h ≤ 10. Använd
formler från Ulaby. Gör tre kurvor: εr = 2, εr = 5 respektive εr = 10.

L57. Du har tillgång till tre olika kretskortsmaterial. Substraten har εr = 2, εr = 5 respektive
εr = 10. Vilka Z0 kan realiseras om W/h kan väljas mellan 0,1 och 10?

L58.
a) Rita en graf av εeff som funktion av W/h då W/h varieras mellan 0,1 och 10. Sätt εr = 5
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b) Vilket värde närmar sig εeff då W/h→∞? Vilken typ av ledning liknar mikrostripledning-
en i detta gränsfall?
c) Vilket värde närmar sig εeff dåW/h→ 0? Vilken typ av ledning liknar mikrostripledningen
i detta gränsfall?

L59. Bestäm bredden för följande mikrostripledningar:
a) Z0 ≈ 50 Ω, substrattjocklek 0,5 mm och εr = 10,
b) Z0 ≈ 50 Ω, substrattjocklek 1,0 mm och εr = 10,
c) Z0 ≈ 50 Ω, substrattjocklek 2,0 mm och εr = 10,

d) Z0 ≈ 50 Ω, substrattjocklek 1,55 mm och εr = 4, 7,
e) Bestäm fashastigheten på ledningen i deluppgift a och d.

L60. Dimensionera en λ
4

ledning (εr = 4, 7, substrattjocklek 50 mil) om frekvensen är 3 GHz
och:
a) Z0 ≈ 50 Ω,
b) Z0 ≈ 100 Ω,
c) Hur lång ärZ0 ≈ 50 Ω ledningen om εr = 9, 8? Svara i antal våglängder och i mm.

L61.
a) Dimensionera en Z0 ≈ 50 Ω mikrostripledning om εr = 2, 2 och substratets tjocklek är 100
mil.

Ledningen ansluts till en Z0 ≈ 50 Ω last. Vad blir inimpedansen om ledningslängden är:
b) l = λ

4
,

c) l = 3λ
8

.

L62. a) Dimensionera en Z0 ≈ 75 Ω mikrostripledning om εr = 9, 8 och substratets tjocklek
är 0,70 mm.

Ledningen ansluts till en Z0 ≈ 50 Ω last. Vad blir inimpedansen om ledningslängden är:
b) l = λ

4
,

c) l = λ
2
.

L63. En mikrostripledning har följande data: εr = 2, 2, substratets tjocklek är 1,0 mm och stri-
pens bredd är 2,0 mm. Fjärränden är öppen. Bestäm ledningens längd så att dess inimpedans
vid frekvensen 5 GHz motsvarar en:
a) 10 pF kondensator,
b) 10 nH induktor.

L64. Dimensionera en λ
4
−transformator i form av en mikrostrip (εr = 4, 4, substrattjocklek

3,0 mm) som anpassar
a) en 300 Ω last till en 50 Ω ledning,
b) en 20 Ω last till en 75 Ω ledning.
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OPTISK FIBER.

O1. En ljuskälla genererar fotoner med våglängden 1 550 nm. Medeleffekten hos ljuset är 1
mW. Bestäm hur stor energi varje foton har och hur många fotoner sänds ut varje sekund.

O2.
a) Förklara mekanismen bakom ljusutbredning i en optisk fiber och orsaken till att brytnings-
indexet för manteln måste vara mindre än brytningsindexet för kärnan.
b) Förklara vad som avses med den numeriska aperturen (NA) och acceptansvinkeln? Härled
uttryck för dem i en stegindexfiber.
c) Förklara vad som avses med moddispersion och hur den begränsar dataöverföringshastig-
heten (bithastigheten) i en stegindexfiber. Kan moddispersion undvikas (och i så fall hur)?
d) Härled ett uttryck för moddispersionen (uttryckt i tid).
e) Härled ett uttryck för den maximala bithastigheten (uttryckt i bitar per sekund) när den
begränsas av moddispersion.
f) Förklara vad som avses med kromatisk dispersion.
g) Redogör för hur man genom erbiumdopning kan förstärka en signal som utbreder sig i en
optisk fiber.

O3. En fiber har en kärna med brytningsindexet 1,6 och en mantel med brytningsindexet 1,5.
Bestäm fiberns acceptansvinkel och numeriska apertur.

O4. Om ett luftgap finns i skarven mellan två fibrer, så kommer en del av effekten att reflek-
teras. Hur stor del reflekteras om båda fibrerna har brytningsindexet 1,5 i kärnan? Bortse från
eventuella interferensfenomen.

O5. En 10 km lång optisk fiber skall överföra en signal med datahastigheten 1 Gbit per se-
kund. Hur stor moddispersion kan fibern tillåtas ha?

O6. För en viss stegindexfiber gäller att brytningsindexen för fiberns kärna respektive mantel
är 1,42 resp. 1,40. Fibern befinner sig i luft. Antag att fibern är förlustfri.
a) Beräkna den numeriska aperturen (NA) och acceptansvinkeln (maximal infallsvinkel).
b) Vid inkoppling av effekt in i fibern kommer en del av effekten reflekteras vid gränsytan
mellan mediet varifrån infallet sker och fibermaterialet. Beräkna hur stor del av effekten re-
flekteras i fibern med data enligt ovan.
c) Gör en uppskattning av den maximala dataöverföringshastigheten (uttryckt i antal bitar per
sekund) om 2 km fiber med ovanstående data placeras mellan en sändare och mottagare.
d) Antag att fibern istället befinner sig i vatten (brytningsindex 1,33) och gör om deluppgif-
terna a-c.
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O7. Effektförluster i övergången mellan två fibrer kan även uppstå om de två fibrerna har oli-
ka stora numeriska aperturer. Uppskatta hur stor del av effekten går förlorad om en fiber med
NA = 0, 3 belyser en fiber med NA = 0, 2.

O8. Om två fibrer har ett litet gap mellan sig, så fås effektförluster inte bara p.g.a. reflexion
utan även bl.a. p.g.a. att ljusstrålen divergerar. Kvoten mellan förlusteffekten och inmatade
effekten kan beräknas med uttrycket: Pf

Pin
= 1 −

[
D/2

D/2+l tan(arcsin(NA/n))

]2
, där D är fiberns

diameter, l är gapets bredd och n är brytningsindexet för materialet i gapet.
Beräkna hur stor andel av den infallande effekten förloras i ett fall där två fibrer med diame-
tern 25µm har ett luftgap med bredden 10µm mellan sig. Numeriska aperturen för fibern är
0,26.

O9. Strålningseffekten 10µW kopplas in i en stegindexfiber med följande data: dämpningen
är 0,2 dB per km, brytningsindexen hos kärna och mantel är 1,48 resp. 1,45. Fibern befinner
sig i luft.
a) Beräkna kvarvarande effekt efter 5 km gångsträcka. Bortse från eventuella förluster vid själ-
va inkopplingen.
b) Hur stor är moddispersion (uttryckt i µs) efter 5 km gångsträcka?
c) Uppskatta maximala bithastigheten om avståndet mellan sändare och mottagare är 5 km.

O10. Information skall överföras med en optisk fiber (av modell stegindexfiber) med längden
20 km. Brytningsindexen för fiberkärna och mantel är 1,47 resp. 1,45. Fibern skall kopplas
samman med en annan fiber, vars kärna har brytningsindexet 1,40. För att undvika reflexioner
i gränsytan mellan fibrerna måste man placera in en impedansanpassare (i form av ett skikt
med tjockleken λ

4
) mellan fibrerna. Ljusets våglängd i fiberkärnan hos fiber 1 är 1 300 nm. An-

tag att ljuset i fibrerna kan anses uppföra sig som TEM-vågor. Bestäm skiktets brytningsindex
och tjocklek (uttryckt i nanometer).
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KOMPLEXA TAL, SIGNALER & SPEKTRA.

S1. Låt Z1 = 1 + 4j och Z2 = 3− 2j.
a) Rita in Z1, Z∗1 , Z2 och Z∗2 i det komplexa talplanet.
b) Beräkna |Z1| & |Z2|, samt arg(Z1) & arg(Z2). Ange dessa i den figuren för deluppgift a.
c) Skriv Z1 och Z2 på polär form.

Beräkna och rita in resultatet i det komplexa talplanet:
d) 2 · Z1

e) −1 · Z1

f) ej30◦ · Z1

g) e−j30◦ · Z1

h) Z1 · Z∗1
i) Z1 + Z2

j) Z1 − Z2

k) Z1 · Z2

l) Z1 · Z∗2
m) Z1/Z2

n) Z−1
1

o) Z−1
2

p)
√
Z1

q)
√
Z2

r)
√
Z1 · Z2

s)
√

Z1

Z2

Låt Z vara ett komplext tal.
t) Längs vilken kurva förflyttar man sig i det komplexa talplanet om Z multipliceras med ett
reellt tal K?
u) Längs vilken kurva förflyttar man sig i det komplexa talplanet om Z multipliceras med ejθ

där θ är ett reellt tal?
v) Vilken geometrisk figur i det komplexa talplanet beskrivs av de Z för vilka gäller att |Z|=1?
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S2. Bestäm amplitudspektrum och medeleffekt (sätt lastresistansen till 1 Ω) för följande tids-
signaler:
a) v(t) = sin(1000 t)
b) v(t) = cos(1000 t)
c) v(t) = sin(1000 t) + sin(2000 t)
d) v(t) = sin(1000 t) + cos(1000 t)
e) v(t) = 0, 5 · sin(1000 t) + 2 · sin(500 t)
f) v(t) = 3 · cos(100 t) + 2 · cos(500 t) + 0, 2 · cos(2000 t)
g) v(t) = 0, 25 · cos(2π 9 · 104 t) + 2 · cos(2π 105 t) + 0, 25 · cos(2π 1, 1 · 105 t)
h) v(t) = −3 · cos(100 t) + 2 · cos(500 t)− 0, 2 · cos(2000 t)
i) v(t) = sin(1000 t) sin(1000 t)
j) v(t) = sin(1000 t) sin(3000 t)
k) v(t) = sin(1000 t) cos(1000 t)
l) v(t) = cos(1000 t) cos(1000 t)
m) v(t) = cos(1000 t) cos(3000 t)
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MODULATIONSTEORI: ANALOG BÄRVÅGSMODULATION.

I många av uppgifterna är det bra att dels räkna analytiskt för hand, dels använda mate-
matikprogram eller ännu hellre ett kretssimuleringsprogram.

M1. Betrakta en AM-signal (DSB-FC) som har erhållits genom modulation av en bärvåg med
en entonig meddelandesignal. Båda signalerna har cosinusformat tidsberoende (men med oli-
ka frekvenser). Beskriv hur man bestämmer frekvens och amplitud för bärvågen, frekvenser
och amplituder för sidovågorna (sidbanden), modulationsgraden och bandbredden hos AM-
signalen om man känner till dess:
a) tidsfunktion,
b) amplitudspektrum.

Härled matematiska uttryck för de efterfrågade storheterna och visa också hur man beräknar
effektivvärdet för AM-signalen samt effektförbrukningen hos en resistor som AM-signalen är
kopplad till.

c) Rita grafer som visar amplitudspektra för DSB-FC signaler med modulationsgraderna 0.5,
1.0 respektive 2.0.
d) Rita grafer (för hand, eller med datorhjälpmedel[matematikprogram eller kretssimulerings-
program) som visar tidsfunktionerna för DSB-FC signaler med modulationsgraderna 0.5, 1.0
respektive 2.0.

M2. En AM-signal har följande data: bärvågssignalen har toppvärdet 100 V och frekvensen
50 kHz, meddelandesignalen har toppvärdet 25 V och frekvensen 1 kHz.
a) Bestäm AM-signalens modulationsgrad,
b) Bestäm uttrycket för AM-signalens tidsfunktion.
c) Rita grafer av bärvågens, meddelandets och AM-signalens tidsfunktioner.
d) Rita ett amplitudspektrum för AM-signalen.
e) Bestäm vilken bandbredd som krävs för att överföra hela AM-signalen.
f) AM-signalen kopplas till en 100 Ω resistor. Bestäm effektutvecklingen i resistorn.

M3. En AM-signal har följande data: bärvågssignalen har frekvensen 1 MHz, meddelandesig-
nalen har toppvärdet 50 V och frekvensen 100 kHz, modulationsgraden är 1

3
.

a) Beräkna bärvågens amplitud,
b) Bestäm uttrycket för AM-signalens tidsfunktion.
c) Rita grafer av bärvågens, meddelandets och AM-signalens tidsfunktioner.
d) Rita ett amplitudspektrum för AM-signalen.
e) Bestäm vilken bandbredd som krävs för att överföra hela AM-signalen.
f) AM-signalen kopplas till en 100 Ω resistor. Beräkna effektutvecklingen i resistorn.

M4. Spänningen hos en amplitudmodulerad radiosignal beskrivs av uttrycket:
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u(t) = 100 · (1 +m · cos(4 000 t)) · sin(8 · 104 t) volt.
Vidare gäller, att effektivvärdet för hela radiosignalen är fyra gånger större än effektivvärdet
hos ett av sidbanden. Bestäm

a) bärvågens frekvens och vinkelfrekvens,
b) sidbandens frekvenser och vinkelfrekvenser,
c) modulationsgraden.

M5. Spänningen hos en radiosignal beskrivs av följande uttryck:
u(t) = 50 · sin(2 π · 104 t) + 25 · cos(2π · 1 000 t) · sin(2π · 104 t) volt.
Bestäm
a) vilken modulationsmetod som har använts,
b) modulationsgraden,
c) bärvågens frekvens, effektivvärde och toppvärde,
d) meddelandesignalens frekvens, effektivvärde och toppvärde,
e) Radiosignalens effektivvärde och största ögonblicksvärde.

Rita sedan
f) grafer som visar tidsfunktionerna för radiosignalen, bärvågen och meddelandesignalen.
g) radiosignalens amplitudspektrum och bestäm bandbredden.

Antag nu att radiosignalen kopplas till en 50 Ω resistor. Beräkna
h) effektförbrukningen hos resistorn,
i) effektivvärde och toppvärde för spänningen över och strömmen genom resistorn.

M6. Nedanstående figur visar uppmätning av en AM-signal m.h.a. ett digitalt minnesoscillo-
skop.
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Beräkna:
a) modulationsgraden,
b) modulationssignalens frekvens och amplitud,
c) bärvågens frekvens och amplitud,
d) nödvändig bandbredd för att kunna överföra hela signalen,
e) effektutvecklingen i en 50 Ω last som kopplas till AM-signalen.

M7. Figuren nedan (tidsaxeln skall vara graderad i µs ej ms som det står) visar en högfre-
kvent signal vars amplitud varierar periodiskt i tiden. En frekvensanalysator registrerar denna
sammansatta signal, som är summan av tre sinusformade signaler.
a) Bestäm m.h.a. data från figuren amplituderna och frekvenserna för de tre signalerna.
b) Rita grafer, som visar tidsfunktionerna för de tre delsignalerna.
c) Rita en graf, som visar den sammansatta signalens amplitudspektrum.
d) Beräkna effekten, som utvecklas när den sammansatta signalen kopplas till en 10 Ω resistor.
e) Antag, att man filtrerar den sammansatta signalen så att endast den delsignal som har lägst
frekvens blir kvar. Hur stor är effektutvecklingen i resistorn nu?
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M8. En AM-signal har en tidsfunktion enligt nedanstående graf. Bestäm:
a) AM-signalens topp-till-toppvärde,
b) modulationsgraden,
c) bärvågens amplitud (kan man säga något om frekvensen?),
d) meddelandesignalens frekvens och amplitud,
e) centerfrekvensen och minsta bandbredden för ett bandpassfilter, som medger transmission
av hela radiosignalen.
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M9. En med sinusformad spänning amplitudmodulerad ström passerar genom en resistor med
resistansenR, som är seriekopplad med en effektivvärdesvisande amperemeter. Över resistan-
sen är en toppvärdesvisande voltmeter inkopplad. Vid en viss modulationsgrad visade instru-
menten 2,01 A respektive 420 V. Då sinussignalen kopplades bort visade voltmetern 233 V.
Beräkna
a) modulationsgraden,
b) resitansen R,
c) effektutvecklingen i resistorn under modulationen.

M10. En amplitudmodulerad signal ges av uttrycket
vAM = Vc cos(2π fc t) · (1 +m · cos(2π fm t)) =
A1 cos(2π f1 t) + A2 cos(2π f2 t) + A3 cos(2π f3 t)

a) Beräkna A1, A2, A3 samt f1, f2, f3 som funktion av Vc,m, fc och fm.
b) Uppskatta A1, A2, A3 samt f1, f2, f3 för en AM-signal med nedanstående tidsfunktion.
Tidsaxeln skall vara graderad i µs ej ms som det står.
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M11. En vanlig effektangivelse i samband med amplitudmodulerad kommunikation är sig-
nalens PEP-värde (Peak Envelope Power). Med PEP-värdet avses normalt medelvärdet av
effekten i modulationstoppen, d.v.s. medeleffekten inom ett tidsintervall motsvarande en pe-
riodtid hos bärvågen kring den tidpunkt då AM-signalens toppvärde är som störst. För en
AM-signal, där den modulerande signalen är entonig med cosinusformat tidsberoende, så har
bärvågseffekten uppmätts till 1,25 kW. Modulationsgraden är 65%. Beräkna:
a) medeleffekten,
b) PEP-värdet.

M12. I en AM-sändare med bärvågsfrekvensen 400 kHz moduleras bärvågen innan den slut-
liga förstärkningen i slutsteget. Modulationsspänningen vm(t) = 28 cos(ωmt) volt modulerar
bärvågen till 100 %. När endast bärvåg sänds avger sändarens slutsteg 10 W i en resistiv last
på 75 Ω. Beräkna:
a) modulationsgraden om modulationsspänningen är 14 cos(1500πt) volt,
b) uteffekten i 75 Ω:s-lasten med en modulationsspänning enligt deluppg. a,
c) spänningsförstärkningen i slutsteget.

M13. Toppvärdet hos en till 50% amplitudmodulerad radiosignal uppmättes till 90 V. Antag
att meddelandesignalen är entonig (frekvens 10 kHz) med cosinusformad tidsvariation. Be-
räkna radiosignalens
a) effektivvärde och bandbredd,
b) effektivvärde och bandbredd om ena sidbandet filtreras bort.

M14. För en viss amplitudmodulerad radiokommunikationssignal uppges, att förhållandet
mellan effekten i en sidovåg och effekten i bärvågen är 1:10. Antag att det rör sig om en
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entonig meddelandesignal och beräkna modulationsgraden.

M15. En DSB-modulerad AM-sändare sänder ut effekten 30 kW då radiosignalens modula-
tiongrad är 60%. Beräkna den utsända effekten om bärvågens effekt dämpas med 10 dB och
det ena sidbandet filtreras bort helt.

M16. Betrakta en AM-signal (DSB-FC) som har erhållits genom modulation av en bärvåg
med en entonig meddelandesignal. Båda signalerna har cosinusformat tidsberoende. Visa att
verkningsgraden (η=kvoten mellan effekten i sidbanden och den totala effekten) är maximalt
ηmax = 1

3
om övermodulation inte accepteras.

M17. En AM-signal har följande data: bärvågssignalen har toppvärdet 100 V och frekvensen
50 kHz, meddelandesignalen består av summan av två i tid cosinusformigt varierande signa-
ler, som har toppvärdena 40 V respektive 10 volt och frekvenserna 1 kHz resp. 5 kHz.
a) Bestäm uttrycket för AM-signalens tidsfunktion.
b) Rita grafer av bärvågens, meddelandets och AM-signalens tidsfunktioner.
c) Rita ett amplitudspektrum för AM-signalen.
d) Bestäm vilken bandbredd som krävs för att överföra hela AM-signalen.
e) AM-signalen kopplas till en 25 Ω resistor. Bestäm effektutvecklingen i resistorn.

M18. Betrakta en DSB-AM signal, som har bandbredden 35 kHz och effektivvärdet 40 volt.
Modulationsgraden är 0,8 och meddelandesignalen är entonig.
Bestäm meddelandesignalens amplitud och frekvens, samt bärvågens amplitud.

M19. Betrakta en FM-signal som har erhållits genom modulation av en bärvåg med en ento-
nig meddelandesignal. Båda signalerna har cosinusformat tidsberoende (men med olika fre-
kvenser). Beskriv i ord (illustrera med figurer) hur man bestämmer frekvens och amplitud
för bärvågen, frekvenser och amplituder för sidovågorna (sidbanden), modulationsindexet,
frekvensdeviationen, högsta och lägsta ögonblicksvärdet av FM-signalens frekvens, samt (en
uppskattning av) bandbredden hos FM-signalen om man känner till dess:
a) tidsfunktion (i form av en graf, uppmätt exempelvis med oscilloskop),
b) amplitudspektrum (i form av en graf, uppmätt exempelvis med oscilloskop).

c) Härled matematiska uttryck för de ovan efterfrågade storheterna.
d) Hur beräknar man effektförbrukningen hos en resistor som FM-signalen är kopplad till.
e) För vilka modulationsindex blir effekten hos spektralkomponenten på bärvågsfrekvensen
lika med noll?
f) Om man känner tidsfunktionen för FM-signalen, hur bestämmer man då amplituden för den
spektralkomponent som har f = fc?
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M20. En frekvensmodulerad radiosignal har amplituden 25 V, bärvågsfrekvensen 5 MHz och
frekvensdeviationen 75 kHz. Meddelandet är en entonig spänning med frekvensen 100 kHz.
a) Ange uttrycket för FM-signalens tidsfunktion.

Beräkna:
b) modulationsindexet,
c) högsta och lägsta ögonblicksvärdet hos radiosignalens frekvens,

d) Rita FM-signalens amplitudspektrum.
e) Bestäm amplituden hos spektralkomponenterna på bärvågsfrekvensen och de tre första pa-
ren av sidovågorna.
f) Uppskatta bandbredden med Carsons regel.

M21. En FM-signal har en spänningsvariation enligt funktionen:
v(t) = 20 cos(2π 107 t+ 5 sin(2 π 104 t)) volt.
Bestäm:
a) bärvågsfrekvensen,
b) meddelandesignalens frekvens,
c) signalens maximala frekvensdeviation,
d) signalens högsta och lägsta momentana frekvens.

e) Rita FM-signalens amplitudspektrum.

Beräkna sedan:
f) effekten, som signalkomponenten med frekvensen 10,04 MHz utvecklar i en 10 Ω resistor.
g) effekten i signalkomponenten med bärvågsfrekvensen,
h) omodulerade bärvågens amplitud,
i) den effekt, som hela FM-signalen utvecklar i en 10 Ω resistor.
j) bandbredden.

M22. En frekvensmodulerad signal beskrivs av funktionen
v(t) = 0, 253 cos[5, 62 · 108t+ 5 sin(9, 1 · 104t)]
Bestäm:
a) den omodulerade FM-signalens effektivvärde,
b) bärvågsfrekvensen och meddelandets frekvens,
c) modulationsfrekvensen,
d) modulationsindexet och frekvensdeviationen,
e) kortaste och längsta periodtid hos FM-signalen,
f) bandbredd enligt Carsons regel respektive 1% regeln,
g) hur stor andel av totala effekten som återfinns hos den spektralkomponent som har f = fc,
h) hur stor andel av totala effekten som återfinns inom bandbredden bestämd av Carsons regel.

M23. En radiostation sänder en frekvensmodulerad signal med bärvågsfrekvensen 101 MHz.
Modulationsindexet (=fasdeviationen) är 4 radianer och bärvågens amplitud är 8 volt.
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a) Vid ett tillfälle sänder man ut en testton (d.v.s. en entonig meddelandesignal) med frekven-
sen 440 Hz. Rita FM-signalens amplitudspektrum (minst sex spektralkomponenter skall tas
med).
b) Upskatta signalens bandbredd dels med Carsons regel, dels med 1%-regeln.

M24. Nedanstående figur visar uppmätning av en FM-signal m.h.a. ett digitalt minnesoscillo-
skop. De två kurvorna representerar extremvärden i signalens periodtid.
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Beräkna:
a) bärvågens amplitud och frekvens,
b) frekvensdeviationen,
c) modulationsindex om modulationsfrekvensen är 10 kHz.

d) Rita amplitudspektrum.

M25. Insignalerna VA,in och VB,in passerar genom var sitt idealt bandpassfilter. Båda filtren har
gränsfrekvenserna f1 = fc − 0, 5 fm och f2 = fc + 2, 5 fm. Vidare gäller att fm � fc. Utsig-
nalerna från de två filtren betecknas VA,ut respektive VA,ut. Insignalernas tidsfunktioner ges av:

VA,in(t) = 10 · cos(2π fc t) · (1 + 0, 8 · cos(2π fm t)) volt

VB,in(t) = 10 · cos(2π fc t+ 2 · sin(2π fm t)) volt

a) Vilken modulationsmetod har använts vid genereringen av signalerna VA,in respektive VB,in?
b) Beräkna toppvärdena av VA,in och VB,in.
c) Beräkna toppvärdena av VA,ut och VB,ut.
d) Beräkna effektivvärdena av VA,in och VB,in.
e) Beräkna effektivvärdena av VA,ut och VB,ut.
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M26. Grafen nedan (tidsaxeln skall vara graderad i µs ej ms som det står) visar tidsfunktionen
för en frekvensmodulerad signal.
a) Bestäm bärvågens frekvens, meddelandesignalens frekvens, (maximal) frekvensdeviation
och modulationsindex.
b) FM-signalen ansluts till en 100 Ω resistor. Beräkna effektutvecklingen i resistorn.

Antag nu, att samtliga spektralkomponenter utom bärvågskomponenten filtreras bort.
Beräkna:
c) amplituden hos den kvarvarande signalen,
d) effektutvecklingen i 100 Ω resistorn,
e) centerfrekvensen och bandbredden hos ett bandpassfilter som kan utföra filtreringen enligt
specifikation.
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M27. En spektrumsanalysator har använts för att mäta på en FM-signal. En bärvåg med fre-
kvensen var 100 MHz frekvensmoduleras med ett meddelande i form av en entonig signal.
Amplituden hos meddelandet är till en början noll. Innan signalen matas in i en effektförstär-
kare är den omodulerade bärvågens amplitud 15 volt. Ur spektrat avläses att det är 10 kHz
mellan spektrallinjerna.

a) Rita FM-signalens amplitudspektrum.

Succesivt ökas meddelandesignalens amplitud tills amplituden hos spektralkomponenten, som
ligger på bärvågsfrekvensen, för första gången blir lika stor som amplituden hos det första si-
dovågsparet.

b) Bestäm modulationsindexet.
c) Rita FM-signalens amplitudspektrum.
d) Beräkna den modulerande tonens amplitud om det råder ett linjärt samband mellan ampli-
tud och frekvensdeviation med proportionalitetskonstanten 30 kHz V−1.
e) Bestäm amplituden för spektralkomponenten med frekvensen 100,030 MHz.
f) Beräkna erforderlig bandbredd.
g) Den omodulerade bärvågens effekt efter slutsteget i sändarens förstärkare är 5kW. Beräk-
na effekten hos spektralkomponenten på bärvågsfrekvensen, samt sammanlagda effekten hos
sidbanden hos den den modulerade signalen .
h) Bestäm minsta amplitud hos den modulerande tonen för att ingen effekt skall överföras på
bärvågsfrekvensen.

M28. FM-systemet för rundradio på UKV, 88 – 108 MHz, är dimensionerat för god ljudkva-
litet. Praktiskt taget hela örats frekvensområde överförs och fm,max = 15 kHz.
a) Vilken maximal frekvensdeviation kan tillåtas om totala bandbredden är max 180 kHz?
b) Hur stor är fasdeviationen för den maximalt utstyrda FM-signalen vid modulationsfrekven-
sen 15 kHz?
c) FM-signalen genereras vid en lägre bärvågsfrekvens för att sedan frekvensmultipliceras
upp till den slutliga bärvågsfrekvensen 100,9 MHz. Vilken lägre bärvågsfrekvens skall väljas
om fasdeviationen vid denna frekvens skall vara högst 0,2 rad?
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M29. Figuren nedan visar amplitudspektrumet för en FM-signal. Beräkna:
a) bärvågsfrekvensen och modulationsfrekvensen,
b) bärvågens amplitud,
c) frekvensdeviationen,
d) FM-signalens bandbredd,
e) Om amplituden hos meddelandesignalen fördubblas, hur stor blir amplituden för den spektral-
komponent som har f = fc? Hur ändras bandbredden?
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M30. Man har mätt upp amplitudspektrumet för en sinusformad bärvåg som har modulerats
med en entonig, sinusformad meddelandesignal. Spektrumet uppvisar tre spektralkomponen-
ter: den starkaste har amplituden 10 volt och frekvensen 100 MHz, de resterande två kompo-
nenterna har båda amplituden 1 volt och frekvensen 95 MHz respektive 105 MHz. Spektrum
med detta utseende fås vid DSB-AM (d.v.s. DSB-FC) och även (approximativt) vid smalban-
dig FM (NBFM).
a) Antag att man har tillämpat modulationsmetoden DSB-AM. Rita tidsfunktionen för med-
delandesignalen respektive den omodulerade bärvågen.
b) DSB-AM signalen är kopplad till en 100 Ω:s resistor. Bestäm effektförbrukningen hos re-
sistorn.
c) Antag nu istället, att spektrat gäller för en smalbandig FM-signal. Bestäm vilken frekvens-
deviation som har använts.

M31. En FM-signal har följande data: bärvågssignalen har toppvärdet 100 V och frekvensen
90 MHz, meddelandesignalen består av summan av två i tid cosinusformigt varierande signa-
ler med frekvenserna 3 kHz resp. 15 kHz.
a) Rita en graf av FM-signalen som funktion av tiden under mellan t = 0 och t = 2

3
ms.

Bestäm FM-signalens amplitudspektrum om:
b) båda meddelandetonerna har β = 0, 1, d.v.s. FM-signalen kan anses vara smalbandig.
c) β = 1 för 5 kHz tonen och β = 5 för 15 kHz tonen.

M32. Rita tidsfunktionen och amplitudspektrumet för en:
a) AM-signal där fm = fc,
b) FM-signal med ∆fc = fc,
c) FM-signal med fm = fc,
d) FM-signal med ∆fc = fc = fm,

M33. En radiosignal amplitudmoduleras (med modulationsgraden 80%) med en lågfrekvent
entonig meddelandesignal. Båda signalerna har ett cosinusformat tidsberoende. Bärvågsfre-
kvensen är mycket högre än meddelandesignalens frekvens. Efter utförd modulation filtreras
det ena sidbandet filtreras bort. Beräkna kvoten mellan den största och den minsta amplituden
hos den resulterande spänningen.

M34. Ett cosinusformat meddelande med frekvensen 10 kHz modulerar en cosinusformad
bärvåg så at en AM-signal med 60% moduleringsgrad erhålls. Därefter filtreras ett av sidban-
den bort. Beräkna med hjälp av visardiagram fas- och frekvensdeviation hos den filtrerade
signalen. Notera att resulterande signal är både amplitud- och frekvensmodulerad.

40



M35. Figuren nedan visar amplitudspektrumet för en AM-signal.
a) Rita en graf som visar hur bärvågen varierar med tiden.
b) Rita en graf som visar hur ett av sidovågorna varierar med tiden.
c) Rita en graf som visar hur AM-signalen varierar med tiden.
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M36. En radiosignal är uppbyggd av en bärvåg (frekvens 100 kHz) som har frekvensmodule-
rats med ett entonigt meddelande (amplitud 4,0 volt, frekvens 15 kHz). Såväl bärvågen som
meddelandet har cosinusformat tidsberoende. Modulatorns känslighet är k0 = 7, 5 kHz V−1.
När radiosignalen kopplas till en 10 Ω resistor så utvecklas medeleffekten 5,0 W.

a) Bestäm och rita radiosignalens amplitudspektrum.
b) Uppskatta radiosignalens bandbredd.
c) Hur stor bandbredd hade krävts, om man istället hade använt sig av amplitudmodulation
(DSB-SC)?
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KRETSAR FÖR AM OCH FM.

K1. Rita blockschema för modulatorerna enligt nedan stående specifikationer. Bestäm också
utsignalens tidsfunktion och amplitudspektrum om bärvågen ges av cos(ωc t) och meddelan-
designalen är cos(ωm t).

a) Generering av en DSB-SC signal mha en blandare, samt oscillatorer för bärvåg och med-
delande.
b) Generering av en DSB-FC signal mha en blandare och en adderare, samt oscillatorer för
bärvåg och meddelande.

K2. Rita ett blockschema för en SSB-SC sändare som tillämpar fasmetoden och verifiera att
utsignalen består av endast:
a) undre sidbandet om man adderar de två DSB-SC signalerna som genereras av blandarna,
b) övre sidbandet om man subtraherar de två DSB-SC signalerna som genereras av blandarna.

K3.
a) Rita kretsschema för en enveloppdetektor och förklara dess funktionsprincip.
b) Visa att maximala värdet för kapacitansen hos kondensatorn i en enveloppdetektor ges av
Cmax =

√
m−2−1

Rωm,max
.

Ledning: För att utsignalen skall kunna följa enveloppens tidsvariation (Vc ·(1+m·cos(ωm t)),
så måste urladdningstakten hos kondensatorn skall vara högre än förändringstakten hos AM-
signalens envelopp.

K4. Signalen i uppgift M6 skall detekteras med en enveloppdetektor.
a) RC-filtret har R = 1 kΩ. Låt diodens framspänningsfall vara noll. Beräkna lämpligt värde
på kondensatorn i RC-filtret och skissera utseendet hos den demodulerade signalen.
b) Sätt framspänningsfallet hos dioden till 0,2 V och skissera den demodulerade signalen.
c) Använd ett kretssimuleringsprogram: Bygg upp kretsen och studera utsignalen.

K5.
a) Rita ett blockschema för en produktdemodulator och visa att man kan demodulera DSB-SC
och SSB-SC signaler med den.
b) Studera hur ett fasfel hos lokaloscillatorn, som utgör den återinsatta bärvågen, påverkar
utsignalen. Vilket fasfel leder till att utsignalen blir noll?
c) Studera hur ett frekvensfel hos lokaloscillatorn, som utgör den återinsatta bärvågen, påver-
kar utsignalen.
d) Beskriv hur man kan utvinna bärvågsinformation från en DSB-SC signal.

K6. Rita blockschema för en kvadraturmodulator respektive en kvadraturdemodulator. Tek-
niken används för att sända två meddelanden med samma bärvåg. Antag, att bärvågen be-
skrivs av cos(ωc t) och att meddelandena kan skrivas som m1(t) = A1 cos(ω1 t) rep. m2(t) =
A2 cos(ω2 t).
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a) Visa att sändarens utsignal är A1 cos(ω1 t) · sin(ωc t) + A2 cos(ω2 t) · cos(ωc t), vilket in-
nebär att m2 utgör amplituden för den del av utsignalen som är i fas med bärvågen och m1

utgör amplituden för den del av utsignalen som är i kvadratur (90◦ ur fas) med bärvågen.
b) Visa att utsignalen i mottagarens Q-kanal är m1 och i I-kanalen erhålls m2.
c) Ange lämpliga gränsfrekvenser för lågpassfiltren.

K7. En blandare genomför en multiplikation av två signaler. En metod för åstadkomma detta
är att använda sig av komponenter med icke-linjär ström-spänningkarakteristik. Betrakta en
komponent, för vilken gäller att i(t) = I0 + a v(t) + b v2(t), där a och b är konstanter.
a) Antag att spänningen v(t) utgörs av summan av två spänningar, v1(t) = A1 cos(ω1 t) resp.
v2(t) = A2 cos(ω2 t) och bestäm vinkelfrekvenserna för de spektralkomponenter som ström-
mens amplitudspektrum kommer att innehålla. Skissa spektrat i en graf. Notera att de för en
DSB-signal särskilt intressanta vinkelfrekvenserna ω1 + ω2 och ω1 − ω2 är representerade.
b) En ickelinjär komponent ger ofta även upphov till termer av ordning högre än två. Vilka
vinkelfrekvenser har signalkomponenter som har sitt ursprung i en kubisk term (v3(t))? Detta
kan leda till s.k. tredje ordningens intermodulationsdistorsion.
c) Rita ett spektrum som innehåller alla spektralkomponenter från första, andra och tredje ord-
ningens termer.

K8. En diod kan användas som en effektmätare av svaga radiosignaler. Betrakta en radiosignal
med spänningen VRF cos(ωRF t) som kopplas in på en diod, som är förspänd med en konstant
spänning Vb. Strömmen genom dioden ges av I = I0 [exp(αV )−1], där V är totala spänning-
en över dioden: V = Vb + VRF cos(ωRF t).
a) Antag att αV � 1 och visa att diodströmmen är (efter lämplig filtrering) en linjär funktion
av medeleffekten i radiosignalen. Om du vill så kan du först studera fallet då Vb = 0.
b) Rita en graf av I/I0 som funktion av tiden. Sätt α = 1

40
volt−1, VRF = 0, 1 volt och

Vb = 0 volt. Öka sedan Vb till 0,7 volt.
c) Rita en graf av I/I0 som funktion av V 2

RF vid tiden t = 0 och jämför med deluppg. a.
d) Demonstrera att en blandare efterföljd av ett LP-filter fungerar som en effektmätare om
signalen man vill mäta på kopplas in till blandarens båda ingångar.

K9. Argumentera för att multiplikation av två signaler kan utföras genom att låta en hög-
frekvent signal ’switcha’ ett meddelande. Ett exempel är den s.k. ringmodulatorn, där man
använder en diodbrygga som switch. Switchningsfrekvensens bestäms av bärvågsoscillatorn.

K10. Rita blockschema för en superheterodynmottagare och förklara dess funktionsprincip
och de olika delarnas uppgift!

Antag att mottagaren används för att detektera en AM-signal med bärvågsfrekvensen 800 kHz
och att mellanfrekvensförstärkarens centerfrekvens är 455 kHz.
a) Bestäm frekvensen hos lokaloscillatorn.
b) Bestäm den s.k. spegelfrekvensen. Förklara orsaken till att det inte är önskvärt att en signal
med denna frekvens kommer in i mottagarsystemet. Hur kan signalen elimineras?
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Antag istället att mottagaren används för att detektera en FM-signal med bärvågsfrekvensen
85,3 MHz och att mellanfrekvensförstärkarens centerfrekvens är 10,7 MHz.
c) Gör om deluppg. a och b.

K11. Bestäm frekvensbandet för radiosignalen resp. spegelsignalen för en superheterodyn-
mottagare där LO-signalen kan avstämmas inom frekvensbandet 85-116 GHz och MF-förstärkaren
har en centerfrekvens på 4 GHz.

K12. Rita blockschema och förklara funktionsprincipen för en FM-demodulator i form av en:
a) flankdetektor,
b) kvadraturdetektor,
c) faslåst slinga (PLL).

K13. Studera utsignalen från en blandare där insignalen och LO-signalen har samma frekvens.
Ange tidssignal och rita amplitudspektrum. Kretsen är en s.k. homodynmottagare.

K14. Studera ett meddelande med tidsfunktionen vm = Vm cos(ωm t). Visa att om en FM-
signal deriveras (t.ex. med en RC-länk) så erhålls en en signal där amplituden följer frekven-
sen hos den ursprungliga FM-signalen. Meddelandet i FM-signalen kan nu utvinnas genom
att koppla in den deriverade signalen i en AM-demodulator.

K15. Betrakta en FM-signal, som ansluts till ett filter så att bärvågsfrekvensen hamnar i ett
frekvensområde där filtrets bandpasskurva är en linjär funktion (polynom med gradtal 1) av
frekvensen. Visa att utsignalen blir en AM-signal där amplituden är proportionell mot ögon-
blicksvärdet av insignalens frekvens. FM-signalen kan efter denna filtrering detekteras med
en AM-demodulator. Uppgiften visar funktionsprincipen för en ’flankdemodulator’.

K16. Studera ett meddelande med tidsfunktionen vm = Vm cos(ωm t).
a) Visa att en PM-signal erhålls om tidsderivatan av meddelandet frekvensmoduleras.
b) Visa att en FM-signal erhålls om integralen av meddelandet fasmoduleras.

K17.
a) Visa att en DSB-FC modulator genererar en smalbandig PM-signal om bärvågssignalen
fasvrids 90 grader innan den matas in i blandaren.
b) Visa att om meddelandet integreras innan inmatning i blandaren så blir utsignalen i kretsen
i deluppg. a en smalbandig FM-signal. Detta tillämpas i t.ex. Armstrongmodulatorn i uppgift
K18.

K18. Ett exempel på en s.k. ’indirekt’ FM-modulator är Armstrongmodulatorn, som genererar
en bredbandig FM-signal (a(t)) med flexibelt varierbar bärvågsfrekvens och frekvensdevia-
tion. Funktionsprincipen kan förstås genom analys av signalflödet i blockschemat enligt bi-
fogad figur. Först tillverkas en smalbandig FM-signal (x(t)) med låg bärvågsfrekvens genom
integration och fasmodulation av meddelandet (m(t)). Sedan ökas så väl bärvågsfrekvensen
som frekvensdeviation m.h.a. frekvensmultiplikatorer och blandare. I en frekvensmultiplika-
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Figur 1: Armstrongmodulator. Ring med × är en blandare, ring med Σ är en adderare.

tor multipliceras inkommande signals momentana frekvens med ett heltal (av praktiska skäl
ofta en heltalsmultipel av 2 eller 3).

I FM-systemet för rundradio är basbandet begränsat till frekvenser mellan 30 Hz och 15 kHz.
Den slutliga, bredbandiga, FM-signalen (utsignalen) har en bärvågsfrekvens i intervallet 88,1–
107,9 MHz, och en högsta tillåten frekvensdeviation på ∆fc = 75 kHz. Varje radiostation får
utnyttja en bandbredd på 200 kHz.

a) Bestäm hur amplitudspektra för insignalen (meddelandet m(t)), den smalbandiga FM-
signalen (x(t)) respektive utsignalen (den bredbandiga FM-signalen a(t)). Välj att studera
två av talsignalens spektralkomponenter, t.ex. fm = 100 Hz och 10 kHz. Sätt fc = 96 MHz
och ∆fc = 75 kHz. Rita grafer.
b) Vid vilken modulationsfrekvens får man störst fasdeviation hos signalen x(t)?
c) Härled ett samband mellan frekvensdeviationen hos a(t) och amplituden hos meddelande-
signalen.
d) Härled ett samband mellan slutgiltiga bärvågsfrekvensen fc och fc0, N1, N2 samt N3.
Ge förslag på val N1, N2, N3 så att fc = 96, 0 MHz erhålls. Sätt oscillatorfrekvensen till
fc0=200 kHz. Försök välja heltalen N så att de är heltalsmultiplar av 2 eller 3.
e) Mellan vilka värden kan modulationsindexet hos den smalbandiga FM-signalen respektive
utsignalen variera?

Ledning: Om modulationsindexet (β) är litet, så kan FM-signalen vc(t) = Vc cos[2πfct +
β sin(2πfmt)] approximeras med vc(t) ≈ Vc[cos(2πfct)− β sin(2πfmt) sin(2πfct)].
Den intresserade uppmanas att härleda denna approximation!

K19.
a) Demonstrera att en krets, som fungerar som en switch, kan användas som frekvensmulti-
plikator, d.v.s. att om kretsen matas med en signal med frekvensen ω0 så innehåller utsignalen
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spektralkomponenter med frekvenser som är heltalsmultiplar av ω0.
b) Argumentera för att frekvensmultiplikation kan även utföras m.h.a. en likriktare eller en
komponent med icke-linjär ström-spänningkarakteristik. Studera t.ex. dioden i uppg. K7 eller
K8.

K20. Konstruera ett blockschema för ett system som åstadkommer en frekvensmultiplexering
av tre meddelanden (samtliga entoniga, med frekvenser fm1, fm2 resp. fm3). Du får använda
dig av blandare, oscillatorer och adderare. Skissa också utsignalens amplitudspektrum.

K21. En och samma i tid cosinusformad signal matas in i båda ingångarna på en blandare.
a) Bestäm utsignalen.
b) Om utsignalen filtreras med ett lågpassfilter, vad är utsignalen från den ett mått på (d.v.s.
vad gör kretsen)?
c) Om blandarens utsignalen istället högpassfiltreras, vilken funktion har kretsen nu (d.v.s.
vad kan den användas till)?

I uppgifterna K22-K28 hänvisas till figurer och uppgifter i Principles of electronic com-
munication systems av Frenzel.

K22. Studera kretsen i Fig. 4-33. Visa att fasvridningen mellan in- och utsignalen är 90◦

K23. Studera kretsen i Fig. 4-7.
a) Visa att spänningen över resistor R3 kan skrivas V3 = R3(R1V2+R2V1)

R1R2+R3(R1+R2)
där V1 är spänningen

(meddelandesignalen) som ansluts till R1 och V2 spänningen (bärvågen) som ansluts till R2.
b) Antag att R1 = R2 � R3. Vad blir spänningen över R3 om V1 = 2, 0 V och V2 = 7, 0 V?
c) Sätt R1 = R2 = R3 och V1 = 2, 0 V och V2 = 7, 0 V, vad blir spänningen över R3?
d) Gör kretssimuleringar med följande val av komponenter: R1 = R2 = 100 Ω, R3 = 220 k
Ω, D1 är av typen BAT54, L = 10 mH, C = 22 nF, placera också en resistor R = 2, 2 k Ω
parallellt med induktorn och kondensatorn. Meddelandet (modulating signal) har toppvärdet
160 mV och frekvensen 1,0 kHz, bärvågen (carrier) har toppvärdet 200 mV och frekvensen
10,73 kHz. Studera formen hos spänningen över R3 och utsignalen (AM output). Vilken typ
av modulation utför kretsen? Resonera vad kopplingens olika delar har för roller. Testa att
ändra på LCR filtrets värden och studera utsignalen. Testa ändra på bärvågens och meddelan-
dets parametrar och studera utsignalen.

K24. Studera kretsarna i Figurerna 4-4, 4-6, 4-9 och 4-23 med kretssimuleringar. Välj själv
komponenter. Resonera också hur kopplingarna fungerar. Utgå från komponenternas egenska-
per, gör inga detaljerade beräkningar.

K25. Gör uppgift Critical Thinking 3 ur kap. 4 sid. 149.

K26. Studera pre-emfas och de-emfas kretsarna i Figur 5-13.
a) Bestäm brytfrekvenserna i respektive krets. Välj komponentvärden så överföringsfunktio-
ner enligt bokens grafer erhålls.
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b) Gör kretssimuleringar (rita ex.vis överföringsfunktioner), undersök funktionsprinciperna.
c) Koppla ihop de två kretsarna i din simulering och studera i vilket frekvensintervall man har
konstant överföringsfunktion (d.v.s. intervallet där de-emfas kretsen klarar av att kompensera
för pre-emfaskretsens inverkan på insignalen.

K27. Lös uppgifterna Problem 7, 9 samt Critical Thinking 3, 4, 5 ur kap. 5 sid. 170-171.

K28. Studera kretsen i Figur 6-15 med kretssimuleringar. Välj själv komponenter. Resonera
också hur kopplingarna fungerar. Utgå från komponenternas egenskaper, gör inga detaljerade
beräkningar.
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DIGITAL MODULATION.
D1. På en kommunikationskanal överförs digital information. Nedanstående signalform regi-
strerades under det tidsintervall, som det tar att överföra åtta bitar.

a) En PSK-demodulator behöver ha en fasreferens, d.v.s. ha kännedom om vilka faslägen som
motsvarar en logisk 1:a resp. 0:a, för att kunna göra en entydig demodulering. Vilka två bitse-
kvenser kan en PSK-demodulator tolka signalen ovan som, om fasreferens saknas?
b) Antag, att signalen istället representerar en DPSK-modulerad data. Vilken är bitsekvensen?
Även här finns två möjliga svar, om DPSK-modulatorn saknar fasreferens.
c) Vilken fördel har DPSK jämfört med PSK?

D2. Betrakta ett digitalt meddelande bestående av följande sekvens av logiska 1:or och 0:or:
1 0 0 1 0 1 1 0. Skissa tidsfunktionen för den modulerade signalen om man använder sig av me-
toderna ASK, FSK respektive PSK. Sätt pulslängden hos en bit till 1

fc
.

D3. Visa att en ASK-signal kan genereras m.h.a. en blandare, med en analog bärvåg (t.ex.
cos(ωc t) volt) och ett digitalt meddelande (ett pulståg där spänningsnivån kan anta två vär-
den, som båda är positiva eller ena är positivt och det andra noll) som insignaler.
Rita grafer som visar insignalerna och den modulerade signalen som funktioner av tiden för
det fall då meddelandet är ett pulståg där en logisk 1:a motsvaras av spänningsnivån +1 volt
och en logisk 0:a av noll volt, d.v.s. modulationsgraden är 100%. Rita också ett konstellations-
diagram.

D4. Visa att en binär PSK-signal kan genereras m.h.a. en blandare, med en analog bärvåg
(t.ex. cos(ωc t)) och ett digitalt meddelande (ett pulståg där spänningsnivån kan anta två vär-
den med samma belopp men olika tecken) som insignaler.
Rita grafer, som visar insignalerna och den modulerade signalen som funktioner av tiden för
det fall då meddelandet är ett pulståg där en logisk 1:a motsvaras av spänningsnivån +1 volt
och en logisk 0:a av −1 volt. Rita också ett konstellationsdiagram.

D5. En FSK-signal kan genereras m.h.a. en VCO (voltage-controlled oscillator, en spännings-
styrd oscillator), med ett digitalt meddelande som insignal. Rita grafer som visar insignalen
och den modulerade signalen som funktioner av tiden för det fall då meddelandet är ett pulståg
där en logisk 1:a motsvaras av spänningsnivån +1 volt och en logisk 0:a −1 volt. Antag, att
frekvensen för utsignalen från VCO:n följer sambandet fut = −500 vin + 1700 Hz, där vin är
insignalens spänningsnivå. Notera likheten med analog FM där extremvärdena hos frekven-
sens ögonblicksvärden ges av fc ±∆fc = fc ± k0 · Vm.
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D6. Rita konstellationsdiagram för modulationsmetoderna ASK, BPSK, QPSK, 8-PSK och
8-QAM. Ange tidsfunktionerna för några olika datasymboler modulerade med resp. metod.

D7. Rita blockschema för:
a) QPSK modulator resp. demodulator.
b) DPSK modulator (använd en adderare, en blandare och en fördröjare).
c) BPSK demodulator.

D8. Betrakta följande blockschema:

X

X

osc.

osc.
S

+

+

invert-

erare

cos(w1 t)

cos(w2 t)

insignal

utsignal

a) Bestäm utsignalen om insignalen är ’10011010’ representerat av ett pulståg där en ’1:a’ re-
presenteras av spänningen +1 volt och en ’0:a’ av spänningen 0 volt. Sätt pulslängden hos en
bit till 2π

ω2
. För oscillatorfrekvenserna gäller att ω1 = 2ω2. ’Inverteraren’ i kretsen omvandlar

en ’1:a’ till ’0:a’och vice versa.
b) Vilken modulationsmetod åstadkommer kretsen? Motivera!
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