SSY200

Computational Electromagnetics

Assignment 3

Finite-difference Time-Domain Scheme

Anna-Maria Unterberger (CID: annunt)

Tuesday 20" April, 2021

CHALMERS

UNIVERSITY OF TECHNOLOGY



Computational Electromagnetics Anna-Maria Unterberger
SSY200 Assignment 3 CID: annunt

Problem Description

In this assignment a rectangular waveguide of fixed dimensions is modeled and evaluated using
the FDTD scheme. The input signal is a Gaussian pulse containing a range of frequencies and we
obtain the transmission and reflection coefficients of the system in frequency domain.

Solution

Numerical Implementation

The finite-difference time-domain (FDTD) method of solving differential equations involves finite-
difference approximate evaluations of both spatial and time derivatives. Its major strength is that
it allows explicit time-stepping, meaning that computationally expensive systems of equations are
avoided. Its two major weaknesses are that it is unsuited to dealing with boundaries that do not
conform to the underlying Cartesian grid, and that there is an inherent limit on the time-step size
At < h/ ¢V/3, making it practically useful only for problems involving characteristic lengths on the
order of a wavelength. This makes it particularly suited to microwave problems.
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Figure 1: Typical Yee-cell. E on edges, H on faces.
Source: Zohar0729, CC BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0, via Wikimedia Commons

In this task, the waveguide interior is discretised using a 3D grid of Yee-cells. A Yee-cell is a
construct used to dicretise 3D space into two staggered grids, spaced a half grid-space apart. This
is particularly suited to solving the coupled first-order differential form of Maxwell’s equations.

For first-order derivatives, derivatives taken across a single cell, with the derivative value on the
half-grid, has a smaller leading error than that of the derivative taken across two cells with the
derivative value all on a single grid. This is the major advantage of staggered grids. Another issue
affecting single grid discretisation in this case is that the two field variables have the potential to
uncouple under certain conditions, making it unsuited.

To generalise these staggered grids to three dimensions a so-called Yee-cell is used, a cuboid (usually
with sides of equal length) with one variable’s vector components centered on its edges and the
other variable’s vector components centered on its faces, in this case the electric and magnetic
fields, respectively. The center of the edges is taken to be on the full grid, and the center of the
faces is thus on the half-grid.

The differential equations that govern the electromagnetic wave, namely Ampére’s law and Fara-
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day’s law are as follows (in differential form)

It is assumed here that fv =0.

. . JE

H=J, +e— 1
V x Jotes (1)

q oH

E=_p=—— 2
V x P (2)

The above equations are rearranged to solve for OF and 0H , and cumulatively summed in each
time-step, essentially integrating, to give £ and H.

The expression for the curl of a vector field in Cartesian coordinates is given by

OF,  0Fy
oy 0z
| 0Fy _ OF.
VxF= %= % (3)
oF, _ oF,
ox oy
Thus, the above expressions can be rearranged as
'3Hz__aHy
P Jy 0z
= Ot lon, om
6E7:z; 5z Oz (4)
OH, _ 9H,
L Oz oy
'aEz _ BEy 8E?/ _ aE‘z
oy 0z 0z 9y
aH’— o 7@ O0E, _ O0E. | _ @ OE, _ 0E, (5)
- U 0z ox - ° ox 0z
9By,  OE, 0B, _ 9L,
L Oz oy Oy ox

Differentiation is carried out using the MATLAB diff () function, which, for a vector of length
N, returns a vector of length N-1 with the difference between adjacent elements ie. [V(2) —
V(1),V(3) = V(2),..,V(N) — V(N — 1)]. The behaviour is similar for matrices: a dimension to
differentiate along is specified and each vector along that dimension is processed as before.

As an example, aab; ¢ is processed using diff(Ey, 1, 3), where E, is a three dimensional matrix

representing a scalar field (a single component of a vector field), the second argument is the order
of differentiation and the third argument is the dimension along which to differentiate.

A matrix of N x N x N elements, representing the scalar field will return an N x N x N — 1
matrix in this case, which must be taken into consideration when setting the dimensions of the
field matrices.

The discretised versions of equations 4 and 5 are as follows:

n+1 n
Em|p+%7q7r o Ez|p+%,qm
€ (6)
At
n+i n+i
— H, "2 I
_ Hz|p+%,q+%w Hz‘p+%7q—%w B y|p+%,q7r+% y‘p-i—%,qw—%
Ay Az
n—i—% n+%
EM = EB” At Hz|p+%,q+%7r_ Hz|p+%,q—%7r _ y|p+%,q,r+§ y|p+%,q7r—%
Clprg,ar = TTptgar Ay Az

E, and E, are similarly discretised.

For the magnetic field the discretisation is similar, now expressed for H, at half time-steps.
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|n+% _ g |n7%
L z p,q+%,r+% x P»q+%,7‘+% (7)
At
n n n n
. y|p7q+%,r+1 o Ey|p,q+%,r _ Ez|p,q+17r+% - Ez|p7q7r+%
Az Ay
n n n n
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= H,| 1 = Hyl 1,411 — -
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H, and H, are, again, similarly discretised.

These equations can then be directly expressed in Matlab using the diff () command, as previously

discussed:
Dx = h;
Dy = h;
Dz = h;

Hx = Hx + (Dt/mu0) * (diff(Ey,1,3)/Dz - diff(Ez,1,2)/Dy);
Hy = Hy + (Dt/mu0) * (diff(Ez,1,1)/Dx - diff(Ex,1,3)/Dz);
Hz = Hz + (Dt/mu0) * (diff(Ex,1,2)/Dy - diff(Ey,1,1)/Dx);

Ex(: ,2:Ny, 2:Nz)

Ex(: ,2:Ny, 2:Nz) + (Dt/eps0) * ...

(diff(Hz(:,:,2:Nz),1,2)/Dy - diff(Hy(:,2:Ny,:),1,3)/Dz);

Ey(2:Nx ,: ,2:Nz)

Ey(2:Nx ,:

,2:Nz) + (Dt/epsO) * ...

(diff (Hx(2:Nx,:,:),1,3)/Dz - diff(Hz(:,:,2:Nz),1,1)/Dx);

Ez(2:Nx, 2:Ny, :)

Ez(2:Nx, 2:Ny, :) + (Dt/eps0) * ...

(diff(Hy(:,2:Ny,:),1,1)/Dx - diff(Hx(2:Nx,:,:),1,2)/Dy);
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Figure 2: E, for T'Ey( in the empty waveguide as the mode propagates. The half-wave transverse
pattern indicates that only TE;q is propagating, as expected.

Numerical Tests

For an empty wave guide, we do not expect there to be any reflections or attenuation of the

propagating modes.

The TE;( mode has the lowest cutoff frequency (this is generally true for waveguides with dimen-
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sions L, > L) and is given by the equation:

k 1 m n
= e [(22)2 4+ (=2)2 = 3, 7474 GH 8
flO 271_ TL& 2 /TLg (L:p> +(Ly) Z ( )

is the cutoff wave number and m,n are the mode indices.

where k.,

The second lowest cutoff is for mode TEq;, which using the equation above has a cutoff frequency
of
feor = 6,6621 GHz

There are no corresponding TM modes for these indices.

For a Gaussian pulse input containing energy between 3.9-6.5 GHz, the entire spectrum is contained
in the TE;p mode and not in any other mode. Since TE;j is the only propagating mode, the entire
pulse is propagated.

This indeed appears to be the case based on results in the time-domain in fig. 3, fwhich appears
to show that the input signal propagates unchanged, despite the expectation of dispersion. It can
be conclude that the propagation distance is sufficiently short, making the dispersion is small.

-0.5 7

_1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18

t [ns]

Figure 3: Amplitude of E, in time domain at z = 0 and z = Lz, respectively. The incident pulse
is omitted from s;, showing only the reflected signal.

The time-domain signals at each port are then transformed to frequency-domain in order to cal-
culate the reflection and transmission coefficients as a function of frequency. This is done using
MATLAB’s £fft(x) and fftshift(X) functions. The implementation is done using a separate
function for the fft procedure: function X = scaled_shifted fft(x). The scatter parameters
are calculated as follows:

S1lin = scaled_shifted_fft(s);
Slout = scaled_shifted_fft(siR(:,1));
S2out = scaled_shifted_fft(s2T(:,1));

S11 = Siout./Slin;
S21 = S2out./Slin;

function X = scaled_shifted_fft(x)

Y = £fft(x);
L = length(x);
P2 = abs(Y./L); % Normalise amplitude by sample length. Take absolute value.
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P1 = fftshift(P2,1); % fft(x) returns vector with *positivex freq components first,
% then negative components. fftshift(X) switches the order.

X = P1;
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Figure 4: Frequency-domain plots of the input signal and transmitted output signal, as well as the

reflection and transmission coefficients (S11 and S21, respectively).

This is what is expected for the magnitude plots, as R = 0 and T = 1 over the frequency range of
interest: that of the input signal. The exponential nature of the plot for S21 outside this range of
interest is due to the low amount of energy at these frequencies. Calculations at these points are

thus subject to numerical noise.

To confirm the results for S21, we can compare it to the analytical frequency function, given by

the following formulae.

First, we require the cutoff wavenumber for TE g k.19, the wavenumber k and the propagation

constant .

T is then simply

ko= (22 + (3

Yy

k = wy/ue

B =k =k

T — ¢ JBL=
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The numerical and analytical results match almost precisely in the region of interest, with negligible
error, as shown in fig. 5.
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Figure 5: S21 numerically and analytically. f;,, represented by the dashed line.

We see from the graphs in fig. 4 that whereas the original signal (Slin) has a linear phase change
over a wide frequency range, starting at a point before the cutoff frequency of the waveguide, the
output signal (S2out) has this linear phase shift slightly truncated, starting at the cutoff frequency.
This is expected, as lower frequency components ([do not propagate and have no influence: [S2out
is also shifted significantly more, though in a nearly linear fashion, indicating dispersion. Putting
this together explains why the phase of the transmission coefficient (S21) [Fises slightly before the
cutoff frequency, and why its phase decreases with frequency after the cutoff frequency, showing
the phase shift caused by dispersion. The computed phase follows the theoretical phase precisely
apart from the initial increase, since energy in the input signal below the cutoff frequency is not
accounted for in the theoretical expression.
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For the dispersion you want to compare the phase of the input (S1in) to that of the output (S2out) which is what you have in the phase plot of S21. Here the dispersion is seen from the phase being frequency dependent (indicating that different frequencies arrive at port 2 at different times, i.e. dispersion).

CHOLMBER
Markering
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Appendix
FdtdLab.m:
Tootototo foTo FotoToto o oo fo o o
% Problem Setup %
Toto oo o fos Foto To oo oo Fo o o
clear

close all

% Physical constants
epsO = 8.8541878e-12;
mu0 = 4e-7 * pi;

c0 = 299792458;

% Cell size
h = 0.0025;

% Waveguide dimensions

Lx = 0.040;
Ly = 0.0225;
Lz = 0.160;

% Number of cells in each direction
Nx = round(Lx / h);
Ny = round(Ly / h);
Nz = round(Lz / h);

% Length of time steps
Dt = h / (cO * sqrt(3));

% Insignal data

t_max = 16e-9;

Nt = ceil(t_max / Dt);
t = (1:Nt)’ * Dt;

f_min = 4e9;
f_max = 7e9;
f_mid = (f_max + f_min) / 2;

BWr = (f_max - f_mid) / f_mid;
f = ((0:Nt-1)’-floor(Nt/2)) / Nt / Dt;
[s, sq, se] = gauspuls(t-0.2e-8, f_mid, BWr,

% % Square wave

% s=square(le9*pi.*t-0.2e-8)

% s(1:100) = 0;

% s(500:end) = 0;

% % Sinc

% s = zeros(length(t),1);

% s(1:501) = sinc((-250:250)/(1*2*pi));
% plot(s)

% Allocate field matrices

Ex = zeros(Nx, Ny + 1, Nz + 1);
Ey = zeros(Nx + 1, Ny, Nz + 1);
Ez = zeros(Nx + 1, Ny + 1, Nz )R
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Hx = zeros(Nx + 1, Ny, Nz )
Hy = zeros(Nx , Ny + 1, Nz )
Hz = zeros(Nx , Ny, Nz + 1);

oo oo oo oo o o o o To T To To T T To T oo oo oo

% Initiation of boundary conditions %

TololotoToToTo oo oo o o o o o o o o Too o o oo o o o o o o o o o e
disp(sprintf(’Initiate boundary conditions...’))
NumModesTE = 7; % 01 10 11 20 21 30 31
NumModesTM = 3; % 11 21 31

NumModes NumModesTE + NumModesTM;

disp(sprintf(’ Compute TE modes’))

[ExTE, EyTE, K2TE] = ComputeTEModes (NumModesTE, Nx, Ny, h, h);
disp(sprintf(’ Compute TM modes’))
[ExTM, EyTM, K2TM] = ComputeTMModes(NumModesTM, Nx, Ny, h, h);

ModalEx = [ExTE ExTM];
ModalEy = [EyTE EyTM];
ModalK2 = [K2TE K2TM];

ModalNm = sum(ModalEx."2) + sum(ModalEy."2); % Normalizing constants

clear ExTE EyTE ExTM EyTM

% Compute Impulse response for

IR = zeros(Nt, NumModes); %
s1R = zeros(Nt, NumModes); %
s1 = zeros(Nt, NumModes); Y%
s2T = zeros(Nt, NumModes); %
s2 = zeros(Nt, NumModes); %

the propagating mode

Impulse response

Reflected signal at z = Dz

Total signal at z = 0

Transmitted signal at z = Lz - Dz
Total signal at z = Lz

for k = 1:NumModes

disp(sprintf(’ Computing Impulse response for Mode %d’, k))

IR(:,k) = ComputeIR(Dt, h, Nt, ModalkK2(k));
end

T Tototo o ToToto o Too 1o o

% Main Loop. %

Tl hoholoToToToToToToo

disp(sprintf (’Start time stepping...’))
% Set initial source boundary conditions
sEy = Ey(2:Nx, :, 2);

sEx = Ex(:, 2:Ny, 2);

sEy(:) = s(1) * ModalEy(:,1);

sEx(:) s(1) * ModalEx(:,1);

Ey(2:Nx, :, 1) = sEy;

Ex(:, 2:Ny, 1) = sEx;

s1(1,1) = s(1);

CH =Dt / (h * muO);
CE =Dt / (h * eps0);
ks = 400;

for k = 2:Nt
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if k > 250 && k < 600
figure(99)
mesh(0:Nz, 0:Nx, squeeze(0.5*%Ey(:,6,:))), axis equal, axis([0 Nz 0 Nx -6 6])
xlabel(’z’);ylabel(’x’) ;zlabel(’y’);
caxis([-6 6]), view(145,30)
drawnow
end

% % Export pretty image.
% if (k == 450)

% figure
% mesh(0:Nz, 0:Nx, squeeze(0.5%Ey(:,6,:))), axis equal, axis([0 Nz 0 Nx -6 6])
% xlabel(’z’) ;ylabel(’x’);zlabel(’y’);
% caxis([-6 6]), view(145,30)
% export_fig(’TE10-Ey.pdf’, ’-painters’, ’-transparent’)
% pause ()
% end
yA ===},
% FDTD update loops %
% %

% _____________________________________________________________
% | ADD FDTD UPDATE LOOPS

e |
% [

% \ /
% \ /
% \/
R = cO«Dt/h; % Numerical Dispersion parameter ~0.58 by default. 1 is magic. >1 diverges.

% Ex = zeros(Nx, Ny + 1, Nz + 1);

% Ey = zeros(Nx + 1, Ny, Nz + 1);

% Ez = zeros(Nx + 1, Ny + 1, Nz )

yA

% Hx = zeros(Nx + 1, Ny, Nz )

% Hy = zeros(Nx , Ny + 1, Nz )

% Hz = zeros(Nx , Ny, Nz + 1);

% %% Update Hx
% for i = 1:Nx+1

% for j = 1:Ny

% for k = 1:Nz

% Hx(i,j,k) = Hx(i,j,k) + CH*...

% ((Ey(i,j,k+1)-Ey(i,j,k)) - (Ez(i,j+1,k)-Ez(i,j,k)));
% end

% end

% end

%

b %% Update Hy

% for i = 1:Nx

% for j = 1:Ny+1

% for k = 1:Nz

% Hy(i,j,k) = Hy(i,j,k) + CHx...

A ((Ez(i+1,j,k)-Ez(i,j,k)) - (Ex(i,j,k+1)-Ex(i,j,k)));
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% end

% end

% end

%

% %% Update Hz

% for i = 1:Nx

h for j = 1:Ny

% for k = 1:Nz+1

% Hz(i,j,k) = Hz(i,j,k) + CHx...

Y% (Ex(i,j+1,k)-Ex(i,j,k)) - (Ey(i+1,j,k)-Ey(i,j,k));
% end

% end

% end

%  %h E-field

% h% Update Ex except on boundary

% for i = 1:Nx

h for j = 2:Ny

% for k = 2:Nz

Y, Ex(i,j,k) = Ex(i,j,k) + CEx...

% (Hz(i,j,k)-Hz(i,j-1,k)) - (Hy(i,j,k)-Hy(i,j,k-1));
% end

yA end

% end

% %% Update Ey

% for i = 2:Nx

h for j = 1:Ny

yA for k = 2:Nz

h Ey(i,j,k) = Ey(i,j,k) + CE*...

h (Hx(i,j,k)-Hx(i,j,k-1)) - (Hz(i,j,k)-Hz(i-1,j,k));
% end

% end

yA end

yA

yA %% Update Ez

% for i = 2:Nx

h for j = 2:Ny

yA for k = 1:Nz

h Ez(i,j,k) = Ez(i,j,k) + CEx...

h (Hy (i, j, k)-Hy(i-1 ,j, ®)) - (Hx(i, j, k)-Hx(i, j-1, k));
% end

% end

% end

%% Based on Rylander pg.76.

Dx = h;
Dy = h;
Dz = h;

Hx = Hx + (Dt/mu0) * (diff(Ey,1,3)/Dz - diff(Ez,1,2)/Dy);
Hy = Hy + (Dt/mu0) * (diff(Ez,1,1)/Dx - diff(Ex,1,3)/Dz);
Hz = Hz + (Dt/mu0) * (diff(Ex,1,2)/Dy - diff(Ey,1,1)/Dx);

Ex(: ,2:Ny, 2:Nz) = Ex(: ,2:Ny, 2:Nz) + (Dt/epsO) * (diff(Hz(:,:,2:Nz),1,2)/Dy - diff(Hy(:,2:Ny,:)
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Ey(2:Nx ,: ,2:Nz) = Ey(2:Nx ,:

Ez(2:Nx, 2:Ny, :)

A
A
b
)

,2:Nz) + (Dt/epsO) * (diff(Hx(2:Nx,:,:),1,3)/Dz - diff(Hz(:,:,2:Nz)
Ez(2:Nx, 2:Ny, :) + (Dt/eps0) * (diff(Hy(:,2:Ny,:),1,1)/Dx - diff(Hx(2:Nx,:,:)

e |

%ol

% _____________________________________________________________

YA

1)

% Metal Boundary Conditions %

A

h

A
% | ADD METAL OBJECTS FOR FILTERING

h !

A
A
)
A

%% Narrow midsection

% ____________
b | ——-1
) |-——-1
% ____________
b

% % Set E and H to O within PEC walls.
% Ex(1:2, :, 25:39) = zeros(2,10,15);

% Ex(end-1:end, :, 25:39) =

zeros(2,10,15);

% Ey(1:2, :, 25:39) = zeros(2,9,15);

% Ey(end-l:end, :, 25:39) =

zeros(2,9,15);

% Ez(1:2, :, 25:39) = zeros(2,10,15);

% Ez(end-1:end, :, 25:39) =

zeros(2,10,15);

% Hx(1:2, :, 25:39) = zeros(2,9,15);

% Hx(end-1:end, :, 25:39) =

zeros(2,9,15);

% Hy(1:2, :, 25:39) = zeros(2,10,15);

% Hy(end-1:end, :, 25:39) =

zeros(2,10,15);

% Hz(1:2, :, 25:39) = zeros(2,9,15);

% Hz(end-1:end, :, 25:39) =

A
b
)

zeros(2,9,15);
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A [
h mmmmmmm T T Too oo |
bl |
A —
) h
% Boundary Conditions at Z = 0 %
Y3 )

% Extract transverse fields at z = dz %
sEy = Ey(2:Nx, :, 2);
sEx = Ex(:, 2:Ny, 2);

% Compute modal voltages %
s1R(k,:) = (sEy(:)’ * ModalEy + sEx(:)’ * ModalEx) ./ ModalNm;

% The reflected modal amplitude at z = Dz is the difference between the
% total modal amplitude and that of the incoming wave. The amplitude of
% the incoming wave at z = Dz is a convolution of the insignal at z = 0
% and the impulse response of the wave guide.

siR(k,1) = siR(k,1) - s(1:k-1)’ = IR(k-1:-1:1,1);

% Port Amplitude: sum of insignal and convolution of the reflected
% signal at z = Dz with the impulse response
for 1 = 1:NumModes
s1(k,1) = siR(1:k-1, 1)’ * IR(k-1:-1:1, 1);
end
s1(k,1) = s1(k,1) + s(k);

% Set port 1 Dboundary conditions %
sEy(:) = ModalEy * si(k,:)’;

sEx(:) = ModalEx * si(k,:)’;
Ey(2:Nx,:,1) = sEy;

Ex(:,2:Ny,1) = sEx;

Y5 h
% Boundary Conditions at Z = Lz 7%
)5 h

% Extract transverse fields at z = Lz - Dz %
sEy = Ey(2:Nx, :, Nz);
sEx = Ex(:, 2:Ny, Nz);

% Compute modal voltage at z = Dz
s2T(k,:) = (sEy(:)’ * ModalEy + sEx(:)’ * ModalEx) ./ Modallm;

% Port Amplitude
for 1 = 1:NumModes

s2(k,1) = s2T(1:k-1, 1)’ * IR(k-1:-1:1, 1);
end

% Set port 2 Dboundary conditions %

sEy(:) = ModalEy * s2(k,:)’;
sEx(:) = ModalEx * s2(k,:)’;
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Ey(2:Nx,:,Nz+1) = sEy;
Ex(:,2:Ny,Nz+1) sEx;

if (mod(k,100) == 0)
disp(sprintf(’ step %5d of %5d’, k, Nt))
end

end;

% remove the incoming sigland from the total signal at port 1.
s1(:,1) = s1(:,1) - s; % slout?

figure(6)

T = tx1e9;
plot(T,s1(:,1),T,s2(:,1))
legend(’s_1(t)’,’s_2(t)’)
xlabel(’t [ns]’);

% \ /
% \ /
f = £(£>=0);

Slin = one_sided_scaled_fft(s);

Slout = one_sided_scaled_fft(s1R(:,1));
S2out one_sided_scaled_fft(s2T(:,1));

S11 = Siout./Slin;
S21 = S2out./Slin;

% Plot transmission coefficient T(w)
figure

plot (f, S21)

grid on

title(’T(\omega)’)

x1im([3e9 10e9]);

ylim([0 2]);

xlabel(P£f’);

ylabel(’ [T(\omega) |’);

hold on

% Plot S2out frequency domain
figure

plot(f, unwrap(angle(S1in)))
hold on

plot(f, unwrap(angle(S2out)))
legend(’S1lin’, ’S2out’)
x1im([0 10e9])

grid on

% Plot Analytical Transmission coefficient T(w).
omega = 2*pi.x*f;

Page 13



Computational Electromagnetics
SSY200 Assignment 3

Anna-Maria Unterberger
CID: annunt

k = omega.*sqrt (muO*eps0) ;

kc = sqrt((1*pi/Lx) "2 + (0*pi/Ly)~2);
beta = sqrt(k."2 - kc."2);
Tanalytical = exp(-lixbetaxLz);
plot(f, abs(Tanalytical))

hold on

fcTE10 = 1/(2+Lx*sqrt(muO*eps0)); % Cutoff frequency

plot([£fcTE10 fcTE10], [-2 101, ’--’)
ylim([-3 10])
x1im ([0 10e9])

legend (’T(\omega) Numerical’, ’T(\omega) Analytical’)

grid on

%% Subplots
figure(2)

% Input signal: s
subplot (421)
plot(f,abs(S1lin))
title(’S1lin’)
x1im([0 10e9])
xlabel(’f (Hz)’)
ylabel(’ |S(£) 1)
legend(’S?)

grid on

hold on

% Slin phase

subplot (422)

plot (f,unwrap(angle(S1in)))
title(’angle S1in’)

xlabel(’f (Hz)’)

x1im ([0 10e91)

ylim([-70 10])

grid on

hold on

% TE10 cutoff frequency (Cheng. eq:10-163)
fcTE10 = 1/(2+Lx*sqrt(mulO*eps0))

plot ([£cTE10 fcTE10], [0 150], ’--r’)
legend(’S1lin’, ’f_c’)

% Transmitted signal: s2T
subplot (423)
plot(f,abs(S2out))
title(’S2out’)

xlabel(’f (Hz)’)

x1im([0 10e9])
legend(’S2T’)

grid on

hold on

% S1lin phase

subplot (424)

plot (f,unwrap(angle(S2out)))
title(’angle S2T°)

xlabel(Cf (Hz)’)

x1im([0 10e9])
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y1im([-100 10])

grid on

hold on

% TE10 cutoff frequency (Cheng. eq:10-163)
fcTE10 = 1/(2*Lx*sqrt(mul*eps0))

plot ([£cTE10 fcTE10], [0 150], ’--r’)
legend(°S2T’, ’f_c’)

% S11

subplot (425)
plot(f,abs(S11))
title(’S11’)
xlabel(’f (Hz)?)
legend(’S11 (R)’)
x1im ([0 10e9])
ylim([0 2]1)

grid on

hold on

% S11 phase

subplot (426)

plot (f,unwrap(angle(S11)))
title(’angle S11°)

xlabel (°f (Hz)’)

x1im([0 10e91)

ylim([-20 201)

grid on

hold on

% TE10 cutoff frequency (Cheng. eq:10-163)
fcTE10 = 1/(2*Lx*sqrt(muO*eps0))

plot ([fcTE10 fcTE10], [0 1501, ’--r’)
legend(’°S11 (T)’, ’f_c’)

% S21 mag
subplot (427)
plot (f,abs(S21))
title(’821°)
xlabel(Cf (Hz)’)
x1im ([0 10e91)
ylim([0 21)

grid on

hold on

% TE10 cutoff frequency (Cheng. eq:10-163)
fcTE10 = 1/(2*Lx*sqrt(muO*eps0))

plot ([fcTE10 fcTE10], [0 1501, ’--r’)
plot(f,abs(Tanalytical))

legend(’S21 (T)’, ’f_c’,’mag Tanalytical’)

% S21 phase

subplot (428)

plot (f,unwrap(angle(S21)))
title(’angle S21°)
xlabel(Cf (Hz)’)

x1im([0 10e9])
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%ylim([-20 20])

grid on

hold on

% TE10 cutoff frequency (Cheng. eq:10-163)
fcTE10 = 1/(2+Lx*sqrt(mul*eps0));

plot ([£cTE10 fcTE10], [0 150], ’--r’)
plot(f,unwrap(angle(Tanalytical)))
legend(’S21 (T)’, ’f_c’,’phase Tanalytical’)

% figure

% plot(f,unwrap(angle(Tanalytical))-345)

% x1im([0 10e9])

%k Misc

Modalfc = sqrt(ModalK2) ./ (2*pi*sqrt(mul*eps0));

% for blepz = 1:6

% % Analytical resonant frequency (Rylander eq5.21)

% hEf_TE10 = c0/2*%( (1/Lx)"2 + (0/Ly)~2 + (blepz/Lz)"2 )~ (1/2)

% plot([Modalfc(blepz) Modalfc(blepz)], [0 max(P1)], ’--’)

% end

%% Plot K vs omega
figure(4)

plot ((£cTE10:1000:8e9), sqrt((2*pix(£cTE10:1000:8e9)) .  2*mul*epsO - (pi/Lx)~2))

hold on

plot ((£cTE10:1000:8e9), sqrt((2*pix(£cTE10:1000:8e9))./c0))

xlabel(’£’);ylabel(’k_z’);
grid on

R = c0*Dt/Dz;

figure

hold on

grid on

k = omega./c0O

for R = [1 0.8 cO*Dt/Dz 0.1]
x = k.*xDz;
y = R.xsin(x./2);

plot( x,2*asin(y)./Dt.*Dz/c0)
ylim([0 pil)
x1im([0 pil)
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one_side_scaled_fft.m:

function X = one_sided_scaled_fft(x)
% FFT with correct amplitude and only positive frequency range.

Y = £fft(x);

L = length(x);

P2 = (Y./L); % Normalize amplitude by sample length.

%P1 = fftshift(P2,1); % fft(x) returns vector with *positivex freq components first, then negative c
P1 = P2(1:L/2+1); % Extract positive frequency components.

P1(2:end-1) = 2xP1(2:end-1); % Normalize one-sided spectrum.
X = P1(1:end-1); % Truncate last element in order to be consistent with f vector.
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