
SSY200

Computational Electromagnetics

Assignment 2, 2022
Assignment 3, 2021

Finite-difference Time-Domain Scheme

Anna-Maria Unterberger (CID: annunt)

Friday 25th February, 2022

Computational Electromagnetics
SSY200 Assignment 3

Anna-Maria Unterberger
CID: annunt

Problem Description

In this assignment a rectangular waveguide of fixed dimensions is modeled and evaluated using
the FDTD scheme. The input signal is a Gaussian pulse containing a range of frequencies and we
obtain the transmission and reflection coefficients of the system in frequency domain.

Solution

Numerical Implementation

The finite-difference time-domain (FDTD) method of solving differential equations involves finite-
difference approximate evaluations of both spatial and time derivatives. Its major strength is that
it allows explicit time-stepping, meaning that computationally expensive systems of equations are
avoided. Its two major weaknesses are that it is unsuited to dealing with boundaries that do not
conform to the underlying Cartesian grid, and that there is an inherent limit on the time-step size
∆t < h/c

√
3, making it practically useful only for problems involving characteristic lengths on the

order of a wavelength. This makes it particularly suited to microwave problems.

Figure 1: Typical Yee-cell. ~E on edges, ~H on faces.
Source: Zohar0729, CC BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0, via Wikimedia Commons

In this task, the waveguide interior is discretised using a 3D grid of Yee-cells. A Yee-cell is a
construct used to dicretise 3D space into two staggered grids, spaced a half grid-space apart. This
is particularly suited to solving the coupled first-order differential form of Maxwell’s equations.

For first-order derivatives, derivatives taken across a single cell, with the derivative value on the
half-grid, has a smaller leading error than that of the derivative taken across two cells with the
derivative value all on a single grid. This is the major advantage of staggered grids. Another issue
affecting single grid discretisation in this case is that the two field variables have the potential to
uncouple under certain conditions, making it unsuited.

To generalise these staggered grids to three dimensions a so-called Yee-cell is used, a cuboid (usually
with sides of equal length) with one variable’s vector components centered on its edges and the
other variable’s vector components centered on its faces, in this case the electric and magnetic
fields, respectively. The center of the edges is taken to be on the full grid, and the center of the
faces is thus on the half-grid.

The differential equations that govern the electromagnetic wave, namely Ampère’s law and Fara-

Page 1

https://creativecommons.org/licenses/by-sa/4.0

Computational Electromagnetics
SSY200 Assignment 3

Anna-Maria Unterberger
CID: annunt

day’s law are as follows (in differential form)

∇× ~H = ~Jv + ε
∂ ~E

∂t
(1)

∇× ~E = −µ∂
~H

∂t
(2)

It is assumed here that volume current density ~Jv = ~0.

The above equations are rearranged to solve for ∂ ~E and ∂ ~H, and cumulatively summed in each
time-step, essentially integrating, to give ~E and ~H.

The expression for the curl of a vector field in Cartesian coordinates is given by

∇× ~F =


∂Fz

∂y −
∂Fy

∂z

∂Fx

∂z −
∂Fz

∂x

∂Fy

∂x −
∂Fx

∂y

 (3)

Thus, the above expressions can be rearranged as

∂ ~E =
∂t

ε


∂Hz

∂y −
∂Hy

∂z

∂Hx

∂z −
∂Hz

∂x

∂Hy

∂x −
∂Hx

∂y

 (4)

∂ ~H = −∂t
µ


∂Ez

∂y −
∂Ey

∂z

∂Ex

∂z −
∂Ez

∂x

∂Ey

∂x −
∂Ex

∂y

 =
∂t

µ


∂Ey

∂z −
∂Ez

∂y

∂Ez

∂x −
∂Ex

∂z

∂Ex

∂y −
∂Ey

∂x

 (5)

Differentiation is carried out using the MATLAB diff() function, which, for a vector of length
N, returns a vector of length N-1 with the difference between adjacent elements i.e. [V (2) −
V (1), V (3) − V (2), ..., V (N) − V (N − 1)]. The behaviour is similar for matrices: a dimension to
differentiate along is specified and each vector along that dimension is processed as before.

As an example,
∂Ey

∂z is processed using diff(Ey, 1, 3), where Ey is a three dimensional matrix
representing a scalar field (a single component of a vector field), the second argument is the order
of differentiation and the third argument is the dimension along which to differentiate.

A matrix of N × N × N elements, representing the scalar field will return an N × N × N − 1
matrix in this case, which must be taken into consideration when setting the dimensions of the
field matrices.

The discretised versions of equations 4 and 5 are as follows:

ε
Ex|n+1

p+ 1
2 ,q,r
− Ex|np+ 1

2 ,q,r

∆t
(6)

=
Hz|p+ 1

2 ,q+
1
2 ,r
− Hz|p+ 1

2 ,q−
1
2 ,r

∆y
−
Hy|

n+ 1
2

p+ 1
2 ,q,r+

1
2

− Hy|
n+ 1

2

p+ 1
2 ,q,r−

1
2

∆z

=⇒ Ex|n+1
p+ 1

2 ,q,r
= Ex|np+ 1

2 ,q,r
+

∆t

ε

[
Hz|p+ 1

2 ,q+
1
2 ,r
− Hz|p+ 1

2 ,q−
1
2 ,r

∆y
−
Hy|

n+ 1
2

p+ 1
2 ,q,r+

1
2

− Hy|
n+ 1

2

p+ 1
2 ,q,r−

1
2

∆z

]

Ey and Ez are similarly discretised.

For the magnetic field the discretisation is similar, now expressed for Hx at half time-steps.

Page 2

Computational Electromagnetics
SSY200 Assignment 3

Anna-Maria Unterberger
CID: annunt

µ
Hx|

n+ 1
2

p,q+ 1
2 ,r+

1
2

− Hx|
n− 1

2

p,q+ 1
2 ,r+

1
2

∆t
(7)

=
Ey|np,q+ 1

2 ,r+1 − Ey|np,q+ 1
2 ,r

∆z
−
Ez|np,q+1,r+ 1

2
− Ez|np,q,r+ 1

2

∆y

=⇒ Hx|
n+ 1

2

p,q+ 1
2 ,r+

1
2

= Hx|
n− 1

2

p,q+ 1
2 ,r+

1
2

+
∆t

µ

[
Ey|np,q+ 1

2 ,r+1 − Ey|np,q+ 1
2 ,r

∆z
−
Ez|np,q+1,r+ 1

2
− Ez|np,q,r+ 1

2

∆y

]

Hy and Hz are, again, similarly discretised.

These equations can then be directly expressed in Matlab using the diff() command, as previously
discussed:

Dx = h;

Dy = h;

Dz = h;

Hx = Hx + (Dt/mu0) * (diff(Ey,1,3)/Dz - diff(Ez,1,2)/Dy);

Hy = Hy + (Dt/mu0) * (diff(Ez,1,1)/Dx - diff(Ex,1,3)/Dz);

Hz = Hz + (Dt/mu0) * (diff(Ex,1,2)/Dy - diff(Ey,1,1)/Dx);

Ex(: ,2:Ny, 2:Nz) = Ex(: ,2:Ny, 2:Nz) + (Dt/eps0) * ...

(diff(Hz(:,:,2:Nz),1,2)/Dy - diff(Hy(:,2:Ny,:),1,3)/Dz);

Ey(2:Nx ,: ,2:Nz) = Ey(2:Nx ,: ,2:Nz) + (Dt/eps0) * ...

(diff(Hx(2:Nx,:,:),1,3)/Dz - diff(Hz(:,:,2:Nz),1,1)/Dx);

Ez(2:Nx, 2:Ny, :) = Ez(2:Nx, 2:Ny, :) + (Dt/eps0) * ...

(diff(Hy(:,2:Ny,:),1,1)/Dx - diff(Hx(2:Nx,:,:),1,2)/Dy);

0

10

20

30

40

50

60 z

0

10

x

-5

0

5

y

Figure 2: Ey for TE10 in the empty waveguide as the mode propagates. The half-wave transverse
pattern indicates that only TE10 is propagating, as expected.

Numerical Tests

For an empty wave guide, we do not expect there to be any reflections or attenuation of the
propagating modes.

The TE10 mode has the lowest cutoff frequency (this is generally true for waveguides with dimen-

Page 3

Computational Electromagnetics
SSY200 Assignment 3

Anna-Maria Unterberger
CID: annunt

sions Lx > Ly) and is given by the equation:

fc10 =
kc10

2π
√
µε

=
1

2
√
µε

√
(
m

Lx
)2 + (

n

Ly
)2 = 3, 7474 GHz (8)

where kc10 is the cutoff wave number and m,n are the mode indices.

The second lowest cutoff is for mode TE01, which using the equation above has a cutoff frequency
of

fc01 = 6, 6621 GHz

There are no corresponding TM modes for these indices.

For a Gaussian pulse input containing energy between 3.9-6.5 GHz, the entire spectrum is contained
in the TE10 mode and not in any other mode. Since TE10 is the only propagating mode, the entire
pulse is propagated.

This indeed appears to be the case based on results in the time-domain in fig. 3. We observe a
small amount of dispersion in s2, since the gaussian pulse is no longer symmetrical. This is due to
the frequency dependent velocity of the signal (as seen in eq. 12) as well as numerical dispersion
inherent in the FDTD method.

0 2 4 6 8 10 12 14 16 18

t [ns]

-1

-0.5

0

0.5

1

s
1
(t)

s
2
(t)

Figure 3: Amplitude of Ey in time domain at z = 0 and z = Lz, respectively. The incident pulse
is omitted from s1, showing only the reflected signal.

The time-domain signals at each port are then transformed to frequency-domain in order to cal-
culate the reflection and transmission coefficients as a function of frequency. This is done using
MATLAB’s fft(x) and fftshift(X) functions. The implementation is done using a separate
function for the fft procedure: function X = scaled shifted fft(x). The scatter parameters
are calculated as follows:

S1in = scaled_shifted_fft(s);

S1out = scaled_shifted_fft(s1R(:,1));

S2out = scaled_shifted_fft(s2T(:,1));

S11 = S1out./S1in;

S21 = S2out./S1in;

function X = scaled shifted fft(x)

Y = fft(x);

L = length(x);

Page 4

Computational Electromagnetics
SSY200 Assignment 3

Anna-Maria Unterberger
CID: annunt

P2 = abs(Y./L); % Normalise amplitude by sample length. Take absolute value.

P1 = fftshift(P2,1); % fft(x) returns vector with *positive* freq components first,

% then negative components. fftshift(X) switches the order.

X = P1;

0 2 4 6 8 10

f (Hz) 109

0

0.02

0.04

0.06

|S
(f

)|

S1in

S

0 2 4 6 8 10

f (Hz) 109

-60

-40

-20

0

angle S1in

S1in
f
c

0 2 4 6 8 10

f (Hz) 109

0

0.02

0.04

0.06
S2out

S2T

0 2 4 6 8 10

f (Hz) 109

-100

-50

0

angle S2T

S2T
f
c

0 2 4 6 8 10

f (Hz) 109

0

0.5

1

1.5

2
S21

S21 (T)
f
c

mag Tanalytical

0 2 4 6 8 10

f (Hz) 109

-50

0

50

100

150
angle S21

S21 (T)
f
c

phase Tanalytical

Figure 4: Frequency-domain plots of the input signal and transmitted output signal, as well as the
transmission coefficient S21. The reflection coefficient S11 has negligible SNR and is thus omitted.
The phases of S21 and the analytical value of T have been normalized at fc, since only the relative
phase above fc is interesting.

This is what is expected for the magnitude plots, as R = 0 and T = 1 over the frequency range of
interest: that of the input signal. The exponential nature of the plot for S21 outside this range of
interest is due to the low amount of energy at these frequencies. Calculations at these points are
thus subject to numerical noise.

To confirm the results for S21, we can compare it to the analytical frequency function, given by
the following formulae.

First, we require the cutoff wavenumber for TE10 kc10, the wavenumber k and the propagation
constant β.

kc10 =

√(mπ
Lx

)2
+
(nπ
Ly

)2
(9)

k = ω
√
µε (10)

β =
√
k2 − k2c10 (11)

Page 5

Computational Electromagnetics
SSY200 Assignment 3

Anna-Maria Unterberger
CID: annunt

T is then simply
T = e−jβLz (12)

We see from the graphs in fig. 4 that whereas the original signal (S1in) has a linear phase change
over a wide frequency range, starting at a point before the cutoff frequency of the waveguide, the
output signal (S2out) has this linear phase shift slightly truncated, starting at the cutoff frequency.
This is expected, as lower frequency components should not propagate and can be regarded as noise.
S2out is also shifted significantly more, though in a nearly linear fashion, indicating dispersion.
Putting this together explains why the phase of the transmission coefficient (S21) rises slightly
before the cutoff frequency, and why its phase decreases with frequency after the cutoff frequency,
showing the phase shift caused by dispersion. The computed phase follows the theoretical phase
precisely apart from the initial increase, since energy in the input signal below the cutoff frequency
is not accounted for in the theoretical expression.

Page 6

Computational Electromagnetics
SSY200 Assignment 3

Anna-Maria Unterberger
CID: annunt

Appendix

FdtdLab.m:

%%%%%%%%%%%%%%%%%

% Problem Setup %

%%%%%%%%%%%%%%%%%

clear

close all

% Physical constants

eps0 = 8.8541878e-12;

mu0 = 4e-7 * pi;

c0 = 299792458;

% Cell size

h = 0.0025;

% Waveguide dimensions

Lx = 0.040;

Ly = 0.0225;

Lz = 0.160;

% Number of cells in each direction

Nx = round(Lx / h);

Ny = round(Ly / h);

Nz = round(Lz / h);

% Length of time steps

Dt = h / (c0 * sqrt(3));

% Insignal data

t_max = 16e-9;

Nt = ceil(t_max / Dt);

t = (1:Nt)’ * Dt;

f_min = 4e9;

f_max = 7e9;

f_mid = (f_max + f_min) / 2;

BWr = (f_max - f_mid) / f_mid;

f = ((0:Nt-1)’-floor(Nt/2)) / Nt / Dt;

[s, sq, se] = gauspuls(t-0.2e-8, f_mid, BWr, -12);

% % Square wave

% s=square(1e9*pi.*t-0.2e-8)

% s(1:100) = 0;

% s(500:end) = 0;

% % Sinc

% s = zeros(length(t),1);

% s(1:501) = sinc((-250:250)/(1*2*pi));

% plot(s)

% Allocate field matrices

Ex = zeros(Nx, Ny + 1, Nz + 1);

Ey = zeros(Nx + 1, Ny, Nz + 1);

Ez = zeros(Nx + 1, Ny + 1, Nz);

Page 7

Computational Electromagnetics
SSY200 Assignment 3

Anna-Maria Unterberger
CID: annunt

Hx = zeros(Nx + 1, Ny, Nz);

Hy = zeros(Nx , Ny + 1, Nz);

Hz = zeros(Nx , Ny, Nz + 1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Initiation of boundary conditions %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

disp(sprintf(’Initiate boundary conditions...’))

NumModesTE = 7; % 01 10 11 20 21 30 31

NumModesTM = 3; % 11 21 31

NumModes = NumModesTE + NumModesTM;

disp(sprintf(’ Compute TE modes’))

[ExTE, EyTE, K2TE] = ComputeTEModes(NumModesTE, Nx, Ny, h, h);

disp(sprintf(’ Compute TM modes’))

[ExTM, EyTM, K2TM] = ComputeTMModes(NumModesTM, Nx, Ny, h, h);

ModalEx = [ExTE ExTM];

ModalEy = [EyTE EyTM];

ModalK2 = [K2TE K2TM];

ModalNm = sum(ModalEx.^2) + sum(ModalEy.^2); % Normalizing constants

clear ExTE EyTE ExTM EyTM

% Compute Impulse response for the propagating mode

IR = zeros(Nt, NumModes); % Impulse response

s1R = zeros(Nt, NumModes); % Reflected signal at z = Dz

s1 = zeros(Nt, NumModes); % Total signal at z = 0

s2T = zeros(Nt, NumModes); % Transmitted signal at z = Lz - Dz

s2 = zeros(Nt, NumModes); % Total signal at z = Lz

for k = 1:NumModes

disp(sprintf(’ Computing Impulse response for Mode %d’, k))

IR(:,k) = ComputeIR(Dt, h, Nt, ModalK2(k));

end

%%%%%%%%%%%%%%

% Main Loop. %

%%%%%%%%%%%%%%

disp(sprintf(’Start time stepping...’))

% Set initial source boundary conditions

sEy = Ey(2:Nx, :, 2);

sEx = Ex(:, 2:Ny, 2);

sEy(:) = s(1) * ModalEy(:,1);

sEx(:) = s(1) * ModalEx(:,1);

Ey(2:Nx, :, 1) = sEy;

Ex(:, 2:Ny, 1) = sEx;

s1(1,1) = s(1);

CH = Dt / (h * mu0);

CE = Dt / (h * eps0);

ks = 400;

for k = 2:Nt

Page 8

Computational Electromagnetics
SSY200 Assignment 3

Anna-Maria Unterberger
CID: annunt

if k > 250 && k < 600

figure(99)

mesh(0:Nz, 0:Nx, squeeze(0.5*Ey(:,6,:))), axis equal, axis([0 Nz 0 Nx -6 6])

xlabel(’z’);ylabel(’x’);zlabel(’y’);

caxis([-6 6]), view(145,30)

drawnow

end

% % Export pretty image.

% if (k == 450)

% figure

% mesh(0:Nz, 0:Nx, squeeze(0.5*Ey(:,6,:))), axis equal, axis([0 Nz 0 Nx -6 6])

% xlabel(’z’);ylabel(’x’);zlabel(’y’);

% caxis([-6 6]), view(145,30)

% export_fig(’TE10-Ey.pdf’, ’-painters’, ’-transparent’)

% pause()

% end

%===================%

% FDTD update loops %

%===================%

% ---

% | ADD FDTD UPDATE LOOPS |

% -- |

% | |

% \ /

% \ /

% \/

R = c0*Dt/h; % Numerical Dispersion parameter ~0.58 by default. 1 is magic. >1 diverges.

% Ex = zeros(Nx, Ny + 1, Nz + 1);

% Ey = zeros(Nx + 1, Ny, Nz + 1);

% Ez = zeros(Nx + 1, Ny + 1, Nz);

%

% Hx = zeros(Nx + 1, Ny, Nz);

% Hy = zeros(Nx , Ny + 1, Nz);

% Hz = zeros(Nx , Ny, Nz + 1);

% %% Update Hx

% for i = 1:Nx+1

% for j = 1:Ny

% for k = 1:Nz

% Hx(i,j,k) = Hx(i,j,k) + CH*...

% ((Ey(i,j,k+1)-Ey(i,j,k)) - (Ez(i,j+1,k)-Ez(i,j,k)));

% end

% end

% end

%

% %% Update Hy

% for i = 1:Nx

% for j = 1:Ny+1

% for k = 1:Nz

% Hy(i,j,k) = Hy(i,j,k) + CH*...

% ((Ez(i+1,j,k)-Ez(i,j,k)) - (Ex(i,j,k+1)-Ex(i,j,k)));

Page 9

Computational Electromagnetics
SSY200 Assignment 3

Anna-Maria Unterberger
CID: annunt

% end

% end

% end

%

% %% Update Hz

% for i = 1:Nx

% for j = 1:Ny

% for k = 1:Nz+1

% Hz(i,j,k) = Hz(i,j,k) + CH*...

% (Ex(i,j+1,k)-Ex(i,j,k)) - (Ey(i+1,j,k)-Ey(i,j,k));

% end

% end

% end

%

%

% %% E-field

% %% Update Ex except on boundary

% for i = 1:Nx

% for j = 2:Ny

% for k = 2:Nz

% Ex(i,j,k) = Ex(i,j,k) + CE*...

% (Hz(i,j,k)-Hz(i,j-1,k)) - (Hy(i,j,k)-Hy(i,j,k-1));

% end

% end

% end

%

% %% Update Ey

% for i = 2:Nx

% for j = 1:Ny

% for k = 2:Nz

% Ey(i,j,k) = Ey(i,j,k) + CE*...

% (Hx(i,j,k)-Hx(i,j,k-1)) - (Hz(i,j,k)-Hz(i-1,j,k));

% end

% end

% end

%

% %% Update Ez

% for i = 2:Nx

% for j = 2:Ny

% for k = 1:Nz

% Ez(i,j,k) = Ez(i,j,k) + CE*...

% (Hy(i, j, k)-Hy(i-1 ,j, k)) - (Hx(i, j, k)-Hx(i, j-1, k));

% end

% end

% end

%% Based on Rylander pg.76.

Dx = h;

Dy = h;

Dz = h;

Hx = Hx + (Dt/mu0) * (diff(Ey,1,3)/Dz - diff(Ez,1,2)/Dy);

Hy = Hy + (Dt/mu0) * (diff(Ez,1,1)/Dx - diff(Ex,1,3)/Dz);

Hz = Hz + (Dt/mu0) * (diff(Ex,1,2)/Dy - diff(Ey,1,1)/Dx);

Ex(: ,2:Ny, 2:Nz) = Ex(: ,2:Ny, 2:Nz) + (Dt/eps0) * (diff(Hz(:,:,2:Nz),1,2)/Dy - diff(Hy(:,2:Ny,:),1,3)/Dz);

Page 10

Computational Electromagnetics
SSY200 Assignment 3

Anna-Maria Unterberger
CID: annunt

Ey(2:Nx ,: ,2:Nz) = Ey(2:Nx ,: ,2:Nz) + (Dt/eps0) * (diff(Hx(2:Nx,:,:),1,3)/Dz - diff(Hz(:,:,2:Nz),1,1)/Dx);

Ez(2:Nx, 2:Ny, :) = Ez(2:Nx, 2:Ny, :) + (Dt/eps0) * (diff(Hy(:,2:Ny,:),1,1)/Dx - diff(Hx(2:Nx,:,:),1,2)/Dy);

% /\

% / \

% / \

% | |

% -- |

% | |

% ---

%==========================%

% Metal Boundary Conditions %

%==========================%

% ---

% | ADD METAL OBJECTS FOR FILTERING |

% -- |

% | |

% \ /

% \ /

% \/

%% Narrow midsection

% ------------ -------------

% |----|

% |----| x

% ------------ ------------- |

% -z

% % Set E and H to 0 within PEC walls.

% Ex(1:2, :, 25:39) = zeros(2,10,15);

% Ex(end-1:end, :, 25:39) = zeros(2,10,15);

%

% Ey(1:2, :, 25:39) = zeros(2,9,15);

% Ey(end-1:end, :, 25:39) = zeros(2,9,15);

%

% Ez(1:2, :, 25:39) = zeros(2,10,15);

% Ez(end-1:end, :, 25:39) = zeros(2,10,15);

%

% Hx(1:2, :, 25:39) = zeros(2,9,15);

% Hx(end-1:end, :, 25:39) = zeros(2,9,15);

%

% Hy(1:2, :, 25:39) = zeros(2,10,15);

% Hy(end-1:end, :, 25:39) = zeros(2,10,15);

%

% Hz(1:2, :, 25:39) = zeros(2,9,15);

% Hz(end-1:end, :, 25:39) = zeros(2,9,15);

% /\

% / \

% / \

Page 11

Computational Electromagnetics
SSY200 Assignment 3

Anna-Maria Unterberger
CID: annunt

% | |

% -- |

% | |

% ---

%==============================%

% Boundary Conditions at Z = 0 %

%==============================%

% Extract transverse fields at z = dz %

sEy = Ey(2:Nx, :, 2);

sEx = Ex(:, 2:Ny, 2);

% Compute modal voltages %

s1R(k,:) = (sEy(:)’ * ModalEy + sEx(:)’ * ModalEx) ./ ModalNm;

% The reflected modal amplitude at z = Dz is the difference between the

% total modal amplitude and that of the incoming wave. The amplitude of

% the incoming wave at z = Dz is a convolution of the insignal at z = 0

% and the impulse response of the wave guide.

s1R(k,1) = s1R(k,1) - s(1:k-1)’ * IR(k-1:-1:1,1);

% Port Amplitude: sum of insignal and convolution of the reflected

% signal at z = Dz with the impulse response

for l = 1:NumModes

s1(k,l) = s1R(1:k-1, l)’ * IR(k-1:-1:1, l);

end

s1(k,1) = s1(k,1) + s(k);

% Set port 1 boundary conditions %

sEy(:) = ModalEy * s1(k,:)’;

sEx(:) = ModalEx * s1(k,:)’;

Ey(2:Nx,:,1) = sEy;

Ex(:,2:Ny,1) = sEx;

%===============================%

% Boundary Conditions at Z = Lz %

%===============================%

% Extract transverse fields at z = Lz - Dz %

sEy = Ey(2:Nx, :, Nz);

sEx = Ex(:, 2:Ny, Nz);

% Compute modal voltage at z = Dz

s2T(k,:) = (sEy(:)’ * ModalEy + sEx(:)’ * ModalEx) ./ ModalNm;

% Port Amplitude

for l = 1:NumModes

s2(k,l) = s2T(1:k-1, l)’ * IR(k-1:-1:1, l);

end

% Set port 2 boundary conditions %

sEy(:) = ModalEy * s2(k,:)’;

sEx(:) = ModalEx * s2(k,:)’;

Page 12

Computational Electromagnetics
SSY200 Assignment 3

Anna-Maria Unterberger
CID: annunt

Ey(2:Nx,:,Nz+1) = sEy;

Ex(:,2:Ny,Nz+1) = sEx;

if(mod(k,100) == 0)

disp(sprintf(’ step %5d of %5d’, k, Nt))

end

end;

% remove the incoming sigland from the total signal at port 1.

s1(:,1) = s1(:,1) - s; % s1out?

figure(6)

T = t*1e9;

plot(T,s1(:,1),T,s2(:,1))

legend(’s_1(t)’,’s_2(t)’)

xlabel(’t [ns]’);

% ---

% | ADD SCATTERING PARAMETERS AS FUNCTION OF FREQUENCY |

% -- |

% | |

% \ /

% \ /

f = f(f>=0);

S1in = one_sided_scaled_fft(s);

S1out = one_sided_scaled_fft(s1R(:,1));

S2out = one_sided_scaled_fft(s2T(:,1));

S11 = S1out./S1in;

S21 = S2out./S1in;

% Plot transmission coefficient T(w)

figure

plot(f, S21)

grid on

title(’T(\omega)’)

xlim([3e9 10e9]);

ylim([0 2]);

xlabel(’f’);

ylabel(’|T(\omega)|’);

hold on

% Plot S2out frequency domain

figure

plot(f, unwrap(angle(S1in)))

hold on

plot(f, unwrap(angle(S2out)))

legend(’S1in’, ’S2out’)

xlim([0 10e9])

grid on

% Plot Analytical Transmission coefficient T(w).

omega = 2*pi.*f;

Page 13

Computational Electromagnetics
SSY200 Assignment 3

Anna-Maria Unterberger
CID: annunt

k = omega.*sqrt(mu0*eps0);

kc = sqrt((1*pi/Lx)^2 + (0*pi/Ly)^2);

beta = sqrt(k.^2 - kc.^2);

Tanalytical = exp(-1i*beta*Lz);

plot(f, abs(Tanalytical))

hold on

fcTE10 = 1/(2*Lx*sqrt(mu0*eps0)); % Cutoff frequency

plot([fcTE10 fcTE10], [-2 10], ’--’)

ylim([-3 10])

xlim([0 10e9])

legend(’T(\omega) Numerical’, ’T(\omega) Analytical’)

grid on

%% Subplots

figure(2)

% Input signal: s

subplot(421)

plot(f,abs(S1in))

title(’S1in’)

xlim([0 10e9])

xlabel(’f (Hz)’)

ylabel(’|S(f)|’)

legend(’S’)

grid on

hold on

% S1in phase

subplot(422)

plot(f,unwrap(angle(S1in)))

title(’angle S1in’)

xlabel(’f (Hz)’)

xlim([0 10e9])

ylim([-70 10])

grid on

hold on

% TE10 cutoff frequency (Cheng. eq:10-163)

fcTE10 = 1/(2*Lx*sqrt(mu0*eps0))

plot([fcTE10 fcTE10], [0 150], ’--r’)

legend(’S1in’, ’f_c’)

% Transmitted signal: s2T

subplot(423)

plot(f,abs(S2out))

title(’S2out’)

xlabel(’f (Hz)’)

xlim([0 10e9])

legend(’S2T’)

grid on

hold on

% S1in phase

subplot(424)

plot(f,unwrap(angle(S2out)))

title(’angle S2T’)

xlabel(’f (Hz)’)

xlim([0 10e9])

Page 14

Computational Electromagnetics
SSY200 Assignment 3

Anna-Maria Unterberger
CID: annunt

ylim([-100 10])

grid on

hold on

% TE10 cutoff frequency (Cheng. eq:10-163)

fcTE10 = 1/(2*Lx*sqrt(mu0*eps0))

plot([fcTE10 fcTE10], [0 150], ’--r’)

legend(’S2T’, ’f_c’)

% S11

subplot(425)

plot(f,abs(S11))

title(’S11’)

xlabel(’f (Hz)’)

legend(’S11 (R)’)

xlim([0 10e9])

ylim([0 2])

grid on

hold on

% S11 phase

subplot(426)

plot(f,unwrap(angle(S11)))

title(’angle S11’)

xlabel(’f (Hz)’)

xlim([0 10e9])

ylim([-20 20])

grid on

hold on

% TE10 cutoff frequency (Cheng. eq:10-163)

fcTE10 = 1/(2*Lx*sqrt(mu0*eps0))

plot([fcTE10 fcTE10], [0 150], ’--r’)

legend(’S11 (T)’, ’f_c’)

% S21 mag

subplot(427)

plot(f,abs(S21))

title(’S21’)

xlabel(’f (Hz)’)

xlim([0 10e9])

ylim([0 2])

grid on

hold on

% TE10 cutoff frequency (Cheng. eq:10-163)

fcTE10 = 1/(2*Lx*sqrt(mu0*eps0))

plot([fcTE10 fcTE10], [0 150], ’--r’)

plot(f,abs(Tanalytical))

legend(’S21 (T)’, ’f_c’,’mag Tanalytical’)

% S21 phase

subplot(428)

plot(f,unwrap(angle(S21)))

title(’angle S21’)

xlabel(’f (Hz)’)

xlim([0 10e9])

Page 15

Computational Electromagnetics
SSY200 Assignment 3

Anna-Maria Unterberger
CID: annunt

%ylim([-20 20])

grid on

hold on

% TE10 cutoff frequency (Cheng. eq:10-163)

fcTE10 = 1/(2*Lx*sqrt(mu0*eps0));

plot([fcTE10 fcTE10], [0 150], ’--r’)

plot(f,unwrap(angle(Tanalytical)))

legend(’S21 (T)’, ’f_c’,’phase Tanalytical’)

% figure

% plot(f,unwrap(angle(Tanalytical))-345)

% xlim([0 10e9])

%% Misc

Modalfc = sqrt(ModalK2)./(2*pi*sqrt(mu0*eps0));

% for blepz = 1:6

% % Analytical resonant frequency (Rylander eq5.21)

% %f_TE10 = c0/2*((1/Lx)^2 + (0/Ly)^2 + (blepz/Lz)^2)^(1/2)

% plot([Modalfc(blepz) Modalfc(blepz)], [0 max(P1)], ’--’)

% end

%% Plot K vs omega

figure(4)

plot((fcTE10:1000:8e9), sqrt((2*pi*(fcTE10:1000:8e9)).^2*mu0*eps0 - (pi/Lx)^2))

hold on

plot((fcTE10:1000:8e9), sqrt((2*pi*(fcTE10:1000:8e9))./c0))

xlabel(’f’);ylabel(’k_z’);

grid on

R = c0*Dt/Dz;

figure

hold on

grid on

k = omega./c0

for R = [1 0.8 c0*Dt/Dz 0.1]

x = k.*Dz;

y = R.*sin(x./2);

plot(x,2*asin(y)./Dt.*Dz/c0)

ylim([0 pi])

xlim([0 pi])

end

% /\

% / \

% / \

% | |

% -- |

% | |

% ---

Page 16

Computational Electromagnetics
SSY200 Assignment 3

Anna-Maria Unterberger
CID: annunt

one side scaled fft.m:

function X = one_sided_scaled_fft(x)

% FFT with correct amplitude and only positive frequency range.

Y = fft(x);

L = length(x);

P2 = (Y./L); % Normalize amplitude by sample length.

%P1 = fftshift(P2,1); % fft(x) returns vector with *positive* freq components first, then negative components. fftshift(X) switches the order.

P1 = P2(1:L/2+1); % Extract positive frequency components.

P1(2:end-1) = 2*P1(2:end-1); % Normalize one-sided spectrum.

X = P1(1:end-1); % Truncate last element in order to be consistent with f vector.

Page 17

