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Presentation Outline

The Method of Moments — Basic method
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Poisson’s equation and its solution

Poisson’s equation is

V2= -2
€0

has the solution

o) = [ 2 v

dmeg|i — 7|
which is based on the superposition of contributions

_dd
dmep|i — 7|

dg(7) =

with point charges dq’ = p(7")dV’ at locations 7’/
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Integral equations

Known potential ¢(7") = ¢gpec(7) on conductor surfaces S yields
integral equation

1 s (77 / .
/S L (T ) s’ = ¢spec(7")

dmegy Jg |7 — 7|
to solve for the unknown charge density ps(7’) on the surface of
the conductor.

In 2D, the surface integral reduces to a line integral

1
2meg

/S (Y I |7 = 7 |dl = Gopec():

which is based on the superposition of the potential from a line
charge

=/ dl/
LAGRLSNPY
2meg

() = —
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Presentation Outline

Green’s functions for electrostatics in 3D and 2D
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Green’s function in 3D

The potential from a point charge in three dimensions satisfies
Poisson’s equation,

where 03(7 — ) is the 3D Dirac delta function.

In Cartesian coordinates, we have
SBF—7") =8z — 2oy — ) (2 — 7))
where (¢ — &) =0 for € # £ such that

{ 1 ifég <& <&

0 otherwise

&2
[ ate - e =
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Green’s function in 3D

The Green’s function G(7,7") satisfied
~VIG(F, ) = (7~ )

where V2 acts on the 7 argument.

By symmetry, we have G(7,7’) = G(R) with the distance
R = |F— 7| between the source and observation point.

For R > 0, we have

in spherical coordinates with the origin at the point source.
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Green’s function in 3D

We have two possible solutions

G1 = a; (rejected since no electric field)

a
Gr= 7

where a9 is a constant to be determined.
Thus, we have the Green’s function

az

G:GQZR
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Green’s function in 3D

Integrate —egV2G(7,7") = §3(7 — #') over sphere of radius Ry

—60/ V- -VGdV = —Eof VG - ndS
R<Rg R=Ry

as
= —€ <_R(2)) -4 R2

= 4mepay (left-hand side)
=1 (right-hand side)
which gives ay = 1/(4mep) and

_ 1
 dmeg|F — 7|

_a_ 1 > !
G(R) = I —47T60R:>G(r,7")
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Green’s function in 2D

Redo the derivation with cylindrical coordinates for r > 0,

which gives
ek (LAGN
Orar \"ar ) T

with the origin at the point/line source.

We get (after rejecting the constant solution G; = a;) that
G = G2 = a Inr

(Note that G — o0 as r — c0.)
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Green’s function in 2D

Integration of —eqV2G(7,7") = 62(# — ') over a cylinder of
radius rg and length L gives

—€0 V-VGdV = 607{ VG - ndS
r<ro
= —60— 2mroL (left-hand side)
7o
= L (right-hand side)

which gives ay = —1/(27ep) and we get

1
G(r)=— Inr = GF,7") = -

TEQ 2meg

— —»l|

In|F—7

11/28



Presentation Outline

The Method of Moments — General formulation
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General formulation

For a differential equation L[f] = s with a field f related to a
source s by means of a differential operator L, we have

(5
u/" 7 a/ a/ d‘f/

L, [G(F )]
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Presentation Outline

Solution by means of weighted residuals
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FEM solution in 3D

Expand the unknown charge distribution ps(7) in terms of basis
functions 1;(7) and coefficients a; (to be determined) as

N
F)ZZ%%‘(F)
1 ( / / !
47reo/5\7“—r’\d 47reoZ S\T—r dS

— Zajqﬁj(f") = ¢(77) = ¢spec(77)
j=1

where the potential ¢; due to 1; is
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Point matching or collocation

As an example, we subdivide surface into cells with piecewise
constant basis functions (7).

At the center 7; of each cell i, we require that
¢(772) = ¢spec(77i)

fori=1,2,...,N.

This gives a system of linear equations

o1(71)  o2(™) ... oNn(T1) ay Pspec(T1)
¢1(72)  @a(2) ... oN(T2) as Gspec(T2)

<

¢1(;?N) ¢2(;7N) ¢N<FN) G.N ¢Spe<;(77N)
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Weighted residual

Choose weighting functions w; = w;(7") and require that

/S i) [(F) — Gapec(T)] dS = 0
= <U}i, ¢> = <’LUZ', ¢spec>

fori=1,2,...,N.

Galerkin’s method: w; = 1;
Petrov-Galerkin’s method: w; # v;
Point matching: w; = 62(7%)
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Weighted residual

This gives a system of linear equations Ax = b with

[ (wi, 1) (wi,d2) ... (w1, énN)
(wa,01) (w2, d2) ... (w2, én)
A= : : - :
| (wn,¢1) (wn,d2) ... (wN, dN)
[ ai <’LU1, ¢spec>
X = a:Q and b= (e, ﬁbsPeC)
| AN <wN’ (lsspec)
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Weighted residual

We have the matrix entries

Ay = (widy) = [ wid)o(7as
= [0 [ | ﬁf]—(:ﬂds/] as
47F60/ / wilFYh () 45'dS

and the vector entries

by = (wy, ¢spec> = /SWZ(F)QSSpeC(F)dS
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Presentation Outline

Capacitance problem in 2D for an unbounded region
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Geometry of parallel plate capacitor

»

+V/2, +0

-V/2,-0
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Geometry of parallel plate capacitor

The potential is given by

N =
6(7) = =) In 7= 7|
. 1 . L
= do(T) = g — [ps(r')dl’] In |7 — 7|
1
= o(T) = —27T€0 / ps(F) In |7 — 7' |dl’
and here we get
1 w/2 \/ a\2
= — | — ——) da
$oy) =~ / 7 wyf@ a2+ (y-2) do
1 ’Ll)/2 2
— / :13 —— ln\/m—x +ﬁ) dz’
27‘(‘60 _w/g 2
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Symmetries and discretization

The surface charge density fulfills

pS(_xlv a/2) = ps(x/’ a/2)
ps(2',—a/2) = —ps(a’,a/2)

It is enough to discretize only the right half of the upper plate.
Use NV elements and ps(z,a/2) =3, Pjst j+%(x) for z > 0.
Discretize each capacitor plate by
» Introduce nodes at z; = jh with h = (w/2)/N and
ji=0,1,...,N
» Define elements on [z}, z;41] with j =0,1,...,N —1
> Piecewise constant basis functions 1, 1 (x)
(equal to one on element j and zero otherwise)

» Point matching et s = = %(cz:z + zit1)

Tipl
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Potential from one basis functions

observation point

charge
element £

The potential is given by

1 [
e tod) =~ [ B da

1 Le

1
= e [2fln(§2 + d?) — &€ + darctan(¢/d)

&s

for a basis function ¢, 1 (&) that is equal to one on the interval
& < & < & and zero otherwise.
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System of linear equations

We have
N-1
¢(xi+%7 y) = Ajj Pj+i
j=0
for the testing points Tiy1 fori=0,1,...,N -1
The matrix elements are given by
Ajj = I(x; — Tip 1y Tl = Ty L, 0) upper right quadrant
+I(—xj1 — il T H1,0) upper left quadrant
—I(x; — Tip 1, Tjpl = Ty 1,0 a) lower right quadrant
—I(—2j41 — x; il T xH_%,a) lower left quadrant

and the right-hand side b; = gbspec(a:iJr%, a/2) =U/2.
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Compute the capacitance

We have the capacitance per unit length as

C Q/L h
. ij+2

Linear convergence in h and ¢ = w = 1m gives (no symm.)

(AN [ ]| h[m] [C/L [pF/m] |
10 0.20000 | 18.0313850
20 0.10000 | 18.3729402
30 0.06666 | 18.4910121
50 0.04000 | 18.5869926
70 0.02857 | 18.6285417
100 0.02000 | 18.6598668
140 0.01428 | 18.6808279
200 0.01000 | 18.6965895
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Charge distribution — Uniform discretization

p_[C/m?]
w
S

S

n
(=

x [m] ’
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Charge distribution — Adaptively refined discretization

p [C/m?]

100
80,
60},
40},

20

0.2

0.8
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