DAT096 Reference Project

Bhavishya Goel

CHALMERS

Hardware Design for DAT096

* The input from microphones is sent to FPGA board in 1-
bit PDM Format

* The FPGA converts 1-bit PDM to 16-bit PCM
* The raw PCM data is sent to PC over Ethernet

Microphone
Arrays

] Ac701 [Ethernet —
| FPGA Board | ' - 3
<

)

rtere e e e e e e e @ 4F|

|
[2C]

Reference Design

* You have been given an FPGA source code that takes
input from a single microphone and sends to PC

* You need to expand this code to simultaneously take
input from multiple microphones and implement

acoustic source localization (either on FPGA itself or on
PC)

* You can download the reference design
dat096_ref_design.zip from Canvas

https://chalmers.instructure.com/courses/8939/files/folder/Hardware

Reference Design Block Diagram

Microphone
POM CiC Halfband Low Pass | pcw FIFO
DATA —A—= . . . yi
! Filter FIR Filter FIR Filter |71
CLK 16 b2
100 Clock |seasa| Clock |zezza| Clock jan:
R -
MHz Wizard MHz Div/2 MHz Diwv/2 MHz

Memory
Write

AHE

Bus

This reference design writes PCM data to on-board Memory instead of
streaming the data directly over Ethernet (streaming will be supported

in future).

A special utility on PC connects to the board, reads the memory
contents and dumps them in a file.

The PCM sampling rate in this design is 44.1 Khz and the PDM rate is
1.4112 Mhz (44.1 Khz x 32). You can change this sampling rate as per

your requirements.

Reference Design Clocking

Microphone

100 Clock |ssaas| Clock |z2a8224| Clock |12 POM

— e e CLK DATA—F—=
Mez | Wizard | e | Divi2 | e Div/2 | Mk !

1

The microphone output sampling rate depends on the input clock, so
the first step is to generate appropriate clock inside FPGA.

The design uses Clocking Wizard IP to generate clock. But because of
hardware limitations, it cannot generate 1.4112 Mhz clock directly
from 100 Mhz input clock. So we have to use clock dividers to bring
down the clock frequency to 1.4112 Mhz.

But you may not need clock dividers if you output clock frequency is
within the clock wizard specifications. For example, you can directly
generate 4.8 Mhz clock from 100 Mhz input clock (on AC701).

https://www.xilinx.com/support/documentation/ip_documentation/clk_wiz/v6_0/pg065-clk-wiz.pdf

PDM to PCM Conversion

Microphone

FOM CIC Halfband Low Pass | pey

DATA =7, Filter " FIR Filter — 1 FIR Filter 7@~
+|.E| *?

* The output from Microphone is in 1-bit PDM format, so it needs to be
converted to PCM before it can be processed as shown in the figure above.

 The design uses CIC Filter IP to decimate the PDM input by a factor of 16,
Halfband FIR Filter to downsample by CIC output by 2 and another instance
of FIR filter configured as low pass single rate filter to remove the high
frequency noise.

* The least significant bits of FIR filter are truncated to get 16-bit PCM output.

* You can read more about the PDM to PCM conversion filter design in PCM to
PCM Conversion.pdf on Canvas.

* This design is optimized for good SNR. If you don’t care about SNR, you
can optimize this filter design in later stages of the project.

https://www.xilinx.com/support/documentation/ip_documentation/cic_compiler/v4_0/pg140-cic-compiler.pdf
https://www.xilinx.com/support/documentation/ip_documentation/fir_compiler/v7_2/pg149-fir-compiler.pdf
https://chalmers.instructure.com/files/folder/courses_8939/Technical%20reading/Sound%20localization

Memory and Etherent Interface

PCM ‘
FIFO Memory
FfE 552 . ;’;2
Write
=
™ Memory
oFE— = 2 DDE
= Controller
Ethernet
EthEmat s—— + +
Controller

* In this design, we write the PCM samples to on-board DDR and then read
them from PC over ethernet

* For this, we need memory controller, ethernet controller and a bus
implementation in FPGA to connect these blocks

* We use the readymade blocks from GRLIB library get this interface up and
running

* Hopefully, you won’t need to modify this part of the design at all

https://www.gaisler.com/products/grlib/grlib.pdf

Vivado Project

* You have been given a zip of vivado project.
Start with extracting the file locally.

* Now open vivado, File-Project-Open..,
navigate to extracted reference project folder
and open dat096_ref design.xpr.

* Once the project is open, click on open Block
Design under IP Integrator.

~ PROJECT MANAGER
£} sSettings

Language Templates

¥ IP Catalog

v [P INTEGRATOR
Create Block Design
Open Block Design

Generate Block Design

Vivado Project contd.

fife_ge or 0
cic_compiler_0 fir_compiler_ 0 N .
tocics fir_compiler_1 FIFO_WRITE
pimltocic = =_ i almaest_ful
i ‘L E+ 5_AXIS DATA ; = E = C e M_AXIS_DATA N == 5_AxiS_DATA - ,%\ 3 -
pdm_data D—<| pdm_data RTL cie_datal7:01 W S axis data_tdatalT:0l = ° m_axis_ata 2300 » 8 2301 s230l B souttisol e .
L ,’— P s_axis_data_tvaiid o m_axis_ ready 4 5. ay = e R . -
S — m, 5
PO ILoCcE v1 0 ack) Eamd and m_axis_data_tvalid P s_axis_data_tvalid - ’:’ eI . I I .
start [ack . b _file
_empty
CIC Compiler FIR Compiler — 1:0]
fifo_rd_en [— o
fif Ik [r ok
FIFO Generat
> fifo_almost_emp
3 Ik
resetn [———a reses
ye clock [— < ex ea
clie_gi ”
- fifo_almest_full
util ds_buf 0 ¢ 3
Ik_div_v1 - - {3 pem_data[31:0]
clk_div_v1 0 e in
- dm_clk[0:0
BUFGIID:0] BUFG_O[0:0] P— e [0:0]
Utility Buffer

clk_div_v1 0

* The entire PDM to PCM conversion design described before is
implemented as block design in this project.

* Feel free to explore different IP blocks

* Note: Using Block design feature in Vivado is good as a beginner, but
moving forward, you should instantiate the IPs in your VHDL code
directly instead of using block design feature since it is not scalable.

PROJECT MANAGER - dat096_ref design

[. Sources 2 _00OX Project Summary
Vlvad O P ro I eCt CO ntd Q If. s + & home/goelb/DATO96
. Y . Q
_ & Bock Dasigns 1 120 e
filter : pdm_to_pcm_wrapper 5 n pém_ta_pem Lk v
port map f B openfie
fifo_almost_empty == fifo_rd in.empty.
fifo_almost_full == fifo_rd_in.almost_full, EE— y -
flfﬂ_r‘d_clk == C]_km R View Instantiation Template vrf
fifo_rd en => fifo_rd out.rd en, e .
pcm_data == fifo_rd_in.data,
pdm_clk == pdm_clk, :
pdm_data == pdm_data, X Remove File from Project... 3
resetn == rstn, Diesble File L
start == switch (), I
S}fE_C‘l_l:lck —= C'Lkm Hierarchy IP Sources z:tl:;i‘:mm - i
Source File Properties Edit Simulation Sets... i
:| : pdm_to_pem bd Associa te ELF Files. I
4 add sources... s

) Enabled

 Take a look at how the pdm to pcm block has been instantiated in the
top file leon3mp.vhd

* The pdm_to_pcm_wrapper.vhd file is generated by vivado from the
block design by right clicking on pdm_to_pcm block design in IP Sources
and then selecting Create HDL Wrapper.

Hardware Setup

* Generate the bitstream by clicking on Program and Debug = Generate Bitstream.
This will take around 5-7 minutes.

« Before powering up the AC701 board, make sure that DIP Switch SW1 is on ON-OFF-ON
position (JTAG boot mode) and SW2 has all switches set to OFF.

* Connect the FMC breakout board directly to FMC connector (J30) of AC701 and then
connect microphone array board to connector "A” of breakout board using the ribbon
cable.

* You have been provided a USB-to-Ethernet adapter. Plug it in USB port of PC, situated
on the front panel, at the very bottom (if using your own laptop, it doesn’t matter).
Connect the etherent port of AC701 board with adapter using ethernet cable.

* Now connect the AC701 board to a power source using power cable and connect the
USB-JTAG port to PC’'s USB port using a USB cable. Refer to AC701 user guide if
required.

* Power up the board and open Hardware Manager in Vivado. Click on open Target =
Auto connect. Vivado should now be connected to the board. Program the newly
generated bitfile on the board.

https://www.xilinx.com/support/documentation/boards_and_kits/ac701/ug952-ac701-a7-eval-bd.pdf

Connecting to the board

We will use GRMON Utility from Gaisler to connect to the board. It is already installed on
lab computers, but if you can also install it on your own laptop

Open windows command prompt. Enter command

"C:\Program Files\grmon-eval-3.2.0\windows\bin64\grmon.exe” -eth 192.168.0.51

* If everything went right, you should now be connected to the board.
* You can look at the contents of the memory by using command
grmon> mem 0x40000000

* Now to start recording the microphone input, set dip switch SW2(0) to ON for few
seconds, then set it back to OFF. Now check memory contents at 0x40000000 to see if
the memory contents have changed.

* To dump 5 seconds of data from memory to file, enter command
grmon> dump —-binary 0x40000000 441000 pcm_b5s.raw

* You can listen to the recorded data by importing the binary file pcm_5s.raw in a free
software like Audacity or convert raw pcm to wav file using Matlab/Python.

	Slide 1
	Basic Design
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

