
FPGA-based QPU interface unit for
fast qubit control and readout

General notes on development and testing procedures

Christian Križan1,3 and Mats Tholén2,3

1 Quantum Technology Laboratory, MC2, Chalmers University of Technology
krizan@chalmers.se

2 Intermodulation Products AB
3 WACQT, Wallenberg Centre for Quantum Technology

Abstract. This document outlines general hints on development and
testing procedures, as well as a prioritisation list, for usage during the
2020 DAT096 project ’FPGA-based QPU interface unit for fast qubit
control and readout.’

1 Hints on development and the verification thereof

This section outlines suggested development methods for this project.

The key take-home message is to use loopback development to the greatest
extent possible, as your access to the target hardware is limited during the ver-
ification process. The loopback methodology is in turn supported additionally
through the upstream/downstream nature of the device design.

Your available development hardware (mainly, the Nexys 4 DDR) was con-
stantly considered during the specification of this project. Implying that every
block should be developable and verifiable with hardly any access to the target
hardware platform.

1.1 Suggestions on development methodology

At more or less every point in your signal path, you may find that attaching some
output of the upconversion datapath to some equivalent input of the downcon-
version path allows for verification of any subsection in this project. Meaning,
you may develop the entire datapath step-by-step, and verify your incremental
progress by linking output to input.

Developing the central stream controller might be more challenging, as it will
require generation of data stream packets at seemingly random FIFOs. One idea
could be to clock the central stream controller at a very low speed, and use the



2 Christian Križan and Mats Tholén

toggle switches on the board to fake incoming/outgoing stream data. However,
this will not alone provide you with the very real memory access constraint of
your design. Memory read/write times will be a crucial constraint in this module
as memory access is considerably slower than your internal communication.

You should think about designing the central stream controller’s manage-
ment on paper before development, or possibly even use tricks learnt in real
time scheduling to set internal FIFO read/write deadlines and the management
thereof. Perhaps a very basic EDF scheduling plan is in order to manage the
flow of data?

Remember that all FIFOs should indicate when they have one memory slice
ready for readout, or when they have space for fitting an outbound memory slice.

1.2 Expected outputs and testing of DSP portions

A key question during testing should be: ’How do I know whether I’m seeing the
correct output?’

In the DSP portions of your board, ie. the up- and downconversion stages,
you will undoubtedly come across a substantial amount of human-unreadable
data. HDL simulators such as Modelsim or Vivado Simulator will in turn at
their basic configuration merely show sinusoidals of the waveforms described by
the data.

A suggested approach would be to export the simulated data generated in
the DSP portions to some text file format, and import said data into Matlab
for FFT analysis. Or, you may do an approach more similar to that done in
industry; design the DSP datapath in Simulink and export ready-made VHDL
for implementation on the Nexys 4. From personal experience, this approach is
very resource intense relative to what you currently have available. But, we’ve
been assured that such an approach can be made very resource effective indeed.
Yet, do note that there are several groups who have failed at such an approach
in DAT096. While there are groups who have made complex DSP datapaths
using Modelsim and Matlab FFT analysis. Also, considering Mats’ commercial
affiliations, such an export would likely yield unusable VHDL for his applications.

Testing and verification on the non-DSP portions of your design, ie. the Eth-
ernet and datastream management portions, will be much more similar to what
you have already done in earlier course work. Meaning, simulating and verifying
that certain data words are available at certain ports at the correct strike of
the system clock etc. Remember that do-files and testbenches are not just for
passing DAT093, but are in fact useful.



FPGA-based QPU interface unit for fast qubit control and readout 3

1.3 Test sequences and how development is done at QTL

At QTL, we start by setting up the experiment in a multi qubit pulse generator.
This generator is a software plugin in a large instrument framework based on
Python.

In this project, a plugin will very likely be made for this framework for
generating the test sequences you might want to use - your test signals would
thus contain actual quantum experiment data. At the least, these sequences will
consist of data stream packages as well control words. Depending on the time
available by the product owner, a full Ethernet frame may be put around said
data. Although, this might prove excessive depending on how you figure out how
to send data onto the Ethernet interface from the host PC onto the FPGA.

2 Development prioritisation

As repeatedly noted, completion of any of the four major specified modules yields
a result usable by somebody else once this project has finished. The follow-up
questions would be ’What is then more usable?’ as compared to what is less
usable in the end. It can be foreseen that some modules may receive less at-
tention than others when racing to achieve a system good enough to perform
final functional verification, as getting to run measurements on a real quantum
processor is pretty cool.

Hence, this section will outline a bare minimum system. Without the mod-
ules specified herein, you will simply not be capable of running the device on
actual quantum hardware. 4

2.1 Prioritisation list

In this subsection, the major modules have been ’ranked’ from most prioritised
to least prioritised.

4 You’d be unable to communicate with the qubits in the QPU.



4 Christian Križan and Mats Tholén

1. Ethernet communications module
Without the Ethernet communications module, you have no ability to inter-
face with the device other than going beyond the scope of this project.

2. Central stream controller
Not having any stream management would imply sending arbitrary data at
random times to the QPU, which will result in quantum gibberish. Thus it is
not suggested that you prioritise a bulletproof up-/downconversion lane sys-
tem until you have at least a very basic stream management up and running.

3. Up- and Downconversion lanes (equal prioritisation)
Finally, once you have the ability to receive streamed data in a non-panicked
fashion, you should strive to make the up- and downconversion lanes opera-
ble. It is suggested that you begin working on the upconversion lane, as the
downconversion lane is simpler and will re-use many of the assets that you
have developed for the upconversion lane.

2.2 A minimal system

Loosely, the bare minimum system consists of something which may set and
read data samples at some defined frequency band. You must thus be able to
send data to your device, put that sample at some frequency, and read back
the results onto the host PC. The bare minimum system must thus feature the
following:

1. Practically every module specified for the Ethernet communications mod-
ule, except for a control word host, and the ability to process ARP requests.
Meaning that you have to link MAC and static IP at the OS level, and that
modules will have to be configured at synthesis, using buttons on the board
or by similar methods. AXI bus compatibility can also be discarded for some
custom bus format.

2. The central stream controller can be made very dumb and näıve, in practice
without conflict handling ie. some packages may even be dropped because
a FIFO is full or similar. The memory management in turn does not have
to be DDR-based, it can be made using BRAM cells or even LUTRAM. In
fact, there might be no need for advanced memory management depending
on the implementation, and the quality (or a lack thereof) of your stream
manager. Although, the key principle must still be held that packages can
arrive at any FIFO at any time. Yet again, AXI buses can also be neglected
in favour of some custom format.



FPGA-based QPU interface unit for fast qubit control and readout 5

3. The upconversion stage can be made very minimal with a FIFO linked to
the DAC directly. The upconversion must then happen by hard-setting a
register on the physical DAC, which enables a built-in mixer. This mixer is
very inflexible during runtime, which is why your mixer is part of the speci-
fication in the first place. Alas, if the operator has cheated in setting up the
measurement and already swept the QPU using a standalone VNA, then the
operator already knows at what frequencies the qubits can be heard from.
The operator thus knows at what frequency the built-in DAC/ADC mixers
can be set to. The minimal upconversion stage would not feature RLE de-
coding, summation etc. And since there is no IQ mixer block, no NCO.

4. The downconversion stage can be made equally simple as the upconversion
stage, while also skipping the skip/store block. And in turn, setting the in-
ternal ADC mixer to one specific downconversion frequency. Implying that
the operator has to perform a lot of post-processing on a large dataset.5.

At the very least, this minimal system can be used to sweep a readout res-
onator spectroscopy. That would prove for instance whether the chip readout
resonators were successfully manufactured. By sending higher waveform ampli-
tudes, it should also be possible to check whether the qubits exert a dispersive
shift on these resonators. This shift in turn shows that ”the qubits are alive.”

If you can show that you can generate approppriate data ”at the DAC input”
port, and receive appropriate data at the corresponding eight ADC FIFOs, we
may instigate synthesis of your design on the target hardware platform so that
you can run your design on an actual quantum processor unit.

5 For comparison, in a real comparable case at QTL, one Ph.D. student is by himself
generating 250 gigabytes per week, which is why QTL is the largest generator of
data on the Chalmers intranet according to the MC2 IT-department.


	FPGA-based QPU interface unit forfast qubit control and readout

