
FPGA-based QPU interface unit for
fast qubit control and readout

Module description document

Christian Križan1,3 and Mats Tholén2,3

1 Quantum Technology Laboratory, MC2, Chalmers University of Technology
krizan@chalmers.se

2 Intermodulation Products AB
3 WACQT, Wallenberg Centre for Quantum Technology

Abstract. This document provides additional specifications to all mod-
ules present in the 2020 DAT096 project ’FPGA-based QPU interface
unit for fast qubit control and readout.’

1 How to read this document

The intention of this document is to specify the VHDL modules expected to be
present in the final device, although this does not set a limit for including more
modules into the design should your design process deem this a valid strategy.
Some parts of the specification are stricter in this regard than others. The Eth-
ernet communications module is for instance more defined as to how it should
look like and act, whereas the central stream controller will look very different
between the different groups implementing it. Many intra-device ports in turn
also feature specifications where this is desired, such as the AXI buses.

The design purposely lacks detail where design decisions are best made by
the implementer (you), meaning that there has been room left over for creative
solutions. However, remember that you are not supposed to be left alone without
adequate specifications to complete your task.

Requested changes to the already made specifications themselves should
preferably be communicated to the product owner (krizan@chalmers.se). Nec-
essary changes to the overall specification will be informed to all groups, please
inform the product owner whether a change impacts some feature of your al-
ready implemented design.

The rest of this section will outline details for the HDL modules present in
the map, as well as the dataflow overview. Do note that all specified port names
are suggestions.



2 Christian Križan and Mats Tholén

2 Ethernet communications module

Device-to-host communication will be achieved via a custom Ethernet commu-
nications module, specifically designed to handle streaming from and to a host
device. In the interest of rapid transmission, the specification has been lim-
ited as to what package type is expected when receiving a data stream packet.
It is adamant that this Ethernet interface should be UDP-based and not be
host-CPU dependent. The interface should preferably be able to handle corrupt
and/or lost frames. Frames not containing UDP content should not simply be
thrown away, but instead sent onwards to the other data tx bus as will be re-
peated shortly.

Incoming relevant UDP packets containing data for the central stream con-
troller will be addressed in the port range 30000 to 30255. The port numbers
will correspond to what FIFO is targeted in the central stream controller. Ev-
erything else should be considered as ’other data,’ for instance control words
used to set various modules in your system (for instance, the upconversion NCO
frequency). You are allowed to assume that all data received in this port range
can be considered as valid stream data.

The last paragraph has an additional implication: a given output DAC chan-
nel is targeted by writing a sample to the FIFO given by the received port
number. Ie. writing a data sample to the very first FIFO (data stemmed from
port 30000) will put this sample into the very first output register in the DAC.

Control words are received on port 29999; these differ syntactically to the
datastream words, and are given in detail in subsection 5.3.

With the particular development board in mind, you have been requested to
coform to an MII (Media-independent interface). More specifically, RMII (Re-
duced media-independent interface). Documentation relating to this interface,
such as signals and clocking requirements, is broadly available online. You are
not expected to implement every detail of a full standard into your module -
your goal should be to strive for a sleek solution.

The connection of other data rx to the UDP packet stream uplink block is
a suggestion, it might be more useful to simply send whatever data is present
on this line straight onto the Ethernet frame transmitter. Although, it is highly
recommended to stick to UDP on the uplink as well.

The Ethernet communications module is expected to feature ARP function-
ality. This implies that the Ethernet frame receiver / transmitter is expected to
forward ARP requests to the ARP resolver and back. The reason for including
ARP is that assigning MAC addresses to static IP’s in some operating systems
require elevated access rights for the user.



FPGA-based QPU interface unit for fast qubit control and readout 3

The UDP packet streaming blocks will send data onwards onto the central
stream controller using an AXI bus, this bus should utilise at least the AXI
signals TDATA, TVALID, TLAST and TREADY.

Stream package content information is available in section 5.1.



4 Christian Križan and Mats Tholén

Ethernet frame
receiver

UDP packet
stream downlink

ARP resolver

UDP packet
stream uplink

Ethernet frame
transmitter

other_data_tx

stream_id_tx

[AXI stream bus]

other_data_rx

stream_id_rx

[AXI stream bus]

rx_from_arp

rx_from_udp_stream_str

tx_to_arp

tx_to_udp_stream_str

rmii_tx

rmii_rx

Ethernet communications module

Fig. 1. An overall view of the Ethernet communications module, available as a separate
graphic.



FPGA-based QPU interface unit for fast qubit control and readout 5

3 Central stream controller

Managing the high data rates expected in this device is best handled by a central
stream controller. The stream controller will have to store large amounts of data
for efficient stream handling. Data going to pretty much whatever destination
can arrive at any time, meaning that the data rate going in is highly inconsistent.
Keep in mind that this does not change the sampling rate of the data contained
within the packet going in - or out for that matter.

For this datastream management, it is recommended that you utilise the ca-
pabilities of the Nexys 4 board. A suggestion is to investigate the capabilities
of the included BRAM, as well as the on-PCB DDR memory. This module and
its implementation is largely uncharted territory, its implementation will depend
greatly on your findings.

The officially recommended method of implementing the Nexys 4 DDR is
via the Memory Interface Generator (MIG). Tutorials and settings required are
available online. Moreover, the UCF file containing the DDR mapping is avail-
able at Digilent’s website. This file cuts down a lot on the complexity when
using the MIG. You are not recommended to implement your own, custom DDR
controller for this project. Do note that the interface generated by the MIG is
likely an advanced superset of the AXI bus, which is far more complicated than
what is recommended here for the datastream signal path. This will pose another
engineering trade-off for you to explore.

A requested feature is that the operator should be able to set and change
windowing on the received waveform on-the-fly. This is likely best solved in the
downconversion stage, using the skip/store block. Whether you wish to imple-
ment windowing in the central stream controller is of course up to you depending
on your implementation.

The up- and downconversion lanes will typically feature many stages. These
will all separately be interfaced to via AXI buses. It is recommended to include
a ’FIFO not full’ signal, in order to indicate to the datastream manager that
the FIFO may still be written to. The ’FIFO not full’ signal in the upconversion
means that the FIFO can now be written to by the central stream controller, ie.
one slice of the DRAM buffer can be extracted and put in the requesting FIFO.
Your lead goal should always be that all FIFOs are kept as full as possible, effec-
tively placing a specified constraint in the dataflow management of your system.

Writing to an already full FIFO should by your design not cause a package
drop, the handling of this case is best done as per your specific implementation.
One recommendation is, as mentioned, to use a DRAM memory to your advan-
tage where so is needed.



6 Christian Križan and Mats Tholén

Reading from the downconversion stage FIFOs are best done when the ’FIFO not full’
signal goes low. Meaning that one slice can now safely be extracted and put in
the stream control memory.

General hint: the FIFOs including the not-full-signal and their behaviour,
were specified the way they were due to more causes than those inferred by this
document...



FPGA-based QPU interface unit for fast qubit control and readout 7

Central stream controller

Datastream manager

Buf 0

Buf 1

- - - - - - - - - - - -

Buf J

DRAM
buffer manager

[AXI stream bus]

stream_id_rx

[AXI stream bus]

stream_id_tx AXI bus to Upconversion
lane stage

AXI bus from
Downconversion lane stage

'FIFO not full' bus
(Upconversion lane)

'FIFO not full' bus
(Downconversion lane)

Fig. 2. An overall view of the central stream controller module, available as a separate
graphic.



8 Christian Križan and Mats Tholén

4 Up- and downconversion lanes

During normal operation, the stream controller will have sent some amount of
data to the lane stage’s initial FIFO. This FIFO is expected to output a data
sample at some steady clock rate. The intended final data output from the DAC
is 4 GSa/s, which is unreasonable on the Nexys 4 board. A currently very vague
preliminary decision has been taken that the FIFO should output as much data
as possible per time. Do note that the FIFO output clock will have to be re-
adjustable, typically using generics, on the target FPGA.

A very important detail regarding the up- and downconversion as to how the
GSa-output is established: the central clock on the target FPGA is 500 MHz.
To output 4 GSa/s, the DAC has eight parallel registers which it reads from at
a much higher pace than the central clock, one at a time. For every strike of the
main system clock, you are expected to have prepared and set the next eight
samples in the DAC channel registries. Meaning that you will have to run eight
output channels in parallel in order to keep up with the final DAC output pace
of 4 GSa/s. See figure 4 for further reference.

The samples in the upconversion lane will be run length encoded (RLE), the
format of which will likely be decided for you in order to provide sufficient test
vectors. The reason for including RLE is to not send 150 packets of zeroes into
the device just because you can, but to easen the traffic congestion in the central
stream controller. It then makes more sense to simply send one control signal
telling something (hint: the RLE block) to send 150 words of zeroes onto the
upconversion stage the next 150 strikes of the main system clock.

Once the sample has been decoded by the RLE, it will consist of two 16-bit
words describing the I and Q components of some signal’s sample sent by the
operator.4 This microwave pulse will as expected carry some frequency content.
Before sending this pulse to a qubit, it has to undergo frequency upconversion
since the differences are typically in the order of kHz versus GHz. The upcon-
version is expected to utilise IQ mixing, as we do not want to taint the quantum
system with unwanted sideband spurs if these can be avoided. Analysis of re-
ceived signal sidebands is a key part of investigating the returned QPU readout
signal, thus we should not infer that our QPU does / does not carry particular
characteristics.

Do note that IQ mixing brings with it various challenges in sampling and
filtering. Your design might just as likely stem from an academic paper as it

4 Example clarifying this previous paragraph: imagine a three sample long operator-
specified signal waveform with samples W1, W2 and W3. On the host-PC, these
samples will be split into I and Q components, resulting in two vectors I1 I2 I3 and
Q1 Q2 Q3. These will be combined to constitute three data stream package payloads,
I1Q1, I2Q2, I3Q3. Thus, packages must be split in order to do your IQ mixing.



FPGA-based QPU interface unit for fast qubit control and readout 9

might stem from a book on DSP design.

To add to that, this frequency should be changeable without having to re-
compile the FPGA. Typically this implies that your NCO block, the module
generating the sinusoids required for the IQ mixer, is settable. To clarify: the
operator should be able to specify that the NCO generates sinusoids with some
frequency F. In turn, this setting will steam from some host block that you
configure using the other data tx signal, see the previous section describing the
Ethernet communications module.

The ’Add N’ module is a sum block. The operator should be able to specify
that an arbitrary amount of channels H through G should be combined sample-
by-sample and put on this channel output. This allows for clever tricks in quan-
tum experiment design. The summation is done by element-wise summation,
including adding negative elements (subtracting). The result of the summation
will be sent to the first channel, aka. channel H. All other channels from H+1
through G should go dormant, we are not interested in processing these further.

The target waveform played from a channel on the upconversion DAC will
typically consist of some cosine or gaussian envelopes encapsulating some carrier
frequency. These waveforms can very easily be faked at will, please contact the
product owner (krizan@chalmers.se) in case you wish to procure typical qubit
control pulse data for testing purposes. Dissecting such a waveform in Matlab
could for instance be useful to determine whether your mixer is operating as
expected.

The downconversion stage is very similar in function to a reversed upconver-
sion stage. However, the RLE has been replaced with a skip / store block. This
can be used to your advantage when considering how you wish to implement
windowing on the received waveform, or to manage stream control at an early
stage. The skip/store block will be your primary tool in applying basic window-
ing to the received waveform. The operator should be able to define that some
interval in the received waveform should be kept, while throwing away all other
data samples. In a sense, this is a windowing operation with an ideally square
pulse, and it is conceivable that denoting this as a windowing block might be
slightly deceptive.



10 Christian Križan and Mats Tholén

U
pc

on
ve

rs
io

n 
la

ne
, o

ne
 s

ta
ge

 o
f

D
AC

 1
 C

ha
nn

el
 1

As
se

m
bl

ed
 m

ic
ro

w
av

e 
si

gn
al

D
A

C
 1

, C
ha

nn
el

 1
R

un
 le

ng
th

de
co

de
r

FI
FO

IQ
 u

pc
on

ve
rs

io
n

C
om

bi
ne

 s
ta

ge
(A

dd
 N

)

[A
XI

 s
tre

am
 fr

om
st

re
am

 c
on

tro
lle

r]

fif
o_

no
t_

fu
ll

D
ow

nc
on

ve
rs

io
n 

la
ne

, o
ne

 s
ta

ge
 o

f

AD
C

 1
 C

ha
nn

el
 1

Sa
m

pl
ed

 m
ic

ro
w

av
e 

si
gn

al
A

D
C

 1
, C

ha
nn

el
 1

Sk
ip

 / 
St

or
e

sa
m

pl
e

FI
FO

IQ
 d

ow
nc

on
ve

rs
io

n

[A
XI

 s
tre

am
 to

st
re

am
 c

on
tro

lle
r]

fif
o_

no
t_

fu
ll

Se
le

ct
ed

up
co

nv
er

si
on

ch
an

ne
ls

N
C

O

[C
on

tro
l h

os
t s

ig
na

ls
]

[C
on

tro
l h

os
t s

ig
na

ls
]

[C
on

tro
l h

os
t s

ig
na

ls
]

[C
on

tro
l h

os
t s

ig
na

ls
]

N
C

O

[C
on

tro
l h

os
t s

ig
na

ls
]

Fig. 3. An overall view of one declared stage of the up- and downconversion lane. This
image is available as a separate graphic.



FPGA-based QPU interface unit for fast qubit control and readout 11

Stage 6 Ch. 1 [n+6]

Stage 5 Ch. 1 [n+5]

Stage 4 Ch. 1 [n+4]

Stage 3 Ch. 1 [n+3]

Stage 2 Ch. 1 [n+2]

Stage 1 Ch. 1 [n+1]

Stage 0 Ch. 1 [n+0]

Stage 7 Ch. 1 [n+7]

4 GSa/s
Channel 1

Latches at
500 MHz

Switches
at 4 GHz

Fig. 4. Illustration of how eight parallel stages are clocked at 500 MHz by the target
FPGA DAC, although output at a rate of 4 GSa/s. This is achieved by reading the
content of the DAC input registers at a higher pace than what is latched at said register
inputs.



12 Christian Križan and Mats Tholén

5 Datastream

This section outlines a further description of the data sent to/from the PC host.

5.1 Stream package content

The data stream packages are defined using a custom format.

Bytes (LITTLE ENDIAN) Content (Starting at 0)

0 - 3 Packet sequence number

4 - 7 Address of first stream data in packet

[ start of A0 ]

8 - 11 Address of last stream data in packet

12 - 13 Data at A0

14 - 15 Data at A0 + 2

...

Do note, one set of ’Data’ comprises 2 bytes of a signal sample’s I-component,
followed by 2 bytes of its Q-component.

The packet sequence number is a running 16-bit number starting at 16b0.
Packet 16b0 is thus the very first packet generated by the test signal generator,
and should thus be the first packet expected to be received. Its main purpose is
to detect dropped packages; how this is handled further down the signal path is
up to you. The 16b0 value is expected to overflow after packet 216 − 1 has been
sent, and simply go back to 16b0 again.

The signal data is represented as NBCD, using a 2’s complement-signed
fixed point number format, 16 bits in total including the sign. This is what
was previously used in for instance DAT093. The unit is ’full scale;’ the operator
sets a range voltage for the output DAC, the output voltage from the device is
’data value’ · range (so, at range setting ±3 V, output range ε [-3 V, 2.9999 V]).

5.2 Control and readout pulses

When designing your filters, you might be interested in knowing the useful band-
width of a typical control pulse.

Interestingly enough, your experiments will run on some of the best qubits
on planet Earth; the interesting signal spectrum will fall within merely 200 Hz
spectral bandwidth (the rest of the band being noise). In the ideal case, the
qubits would return infinitely thin Dirac-pulses when viewed in the frequency
plane such as when running an FFT. However, no filter is perfect, but your tar-
get platform’s qubits are pretty close.



FPGA-based QPU interface unit for fast qubit control and readout 13

In a more normal qubit spectroscopy, a scoped qubit resonator’s spike in the
frequency spectrum will be closer to 20 MHz wide. Keep this in mind, as it is
unknown as of yet what qubits might be unavailable when you reach your final
verification stage.

Control pulses for the QPU encoded in the input data are ideally as thin
as possible spectrum-wise. Remember that control and readout pulses normally
contain some frequency content from the signal envelope, such as a (near) DC
signal from a flat readout pulse, while also containing the carrier frequency.

5.3 RLE and word syntax for the control host

The syntax for the control word host has been chosen to be the following.

Packages received on the other data tx bus on port 29999 is considered a
control word. This data may be considered valid for now, although a realistic
IRL implementation of this spec. will likely add an authenticity bitfield, in order
not to set various functionality within the interface when port 29999 is polled
by some rogue process. This is beyond the scope of this project.



14 Christian Križan and Mats Tholén

Control word Function Description

00000 Control word error Is returned to the host PC when
a control word was misunderstood.
Similar to an exception.

10000 Reset FIFO

01000 Blast stream controller memory

11000 (Not used)

00100 Force NCO oscillator reset

10100 Set lane stage I-phase

01100 Set lane stage Q-phase

11100 Set NCO oscillation frequency

00010 (Not used)

10010 Set lane stage I-scaling

01010 Set lane stage Q-scaling

11010 Set RLE Run length decoding, see [5.3]

00110 Add stage to combiner Where 0 is FIFO 0 (port 30000)

10110 (Not used)

01110 (Not used)

11110 Set initial sample skip amount

00001 Local echo Return the received UDP
datagram to the host PC.

10001 (Not used)

01001 (Not used)

11001 (Not used)

00101 (Not used)

10101 Get NCO I-phase offset

01101 Get NCO Q-phase offset

11101 Get NCO oscillation frequency

00011 (Not used)

10011 Get lane stage I-scaling

01011 Get lane stage Q-scaling

11011 Get RLE Run length decoding, see [5.3]

00111 Remove stage from combiner Where 0 is FIFO 0 (port 30000)

10111 (Not used)

01111 (Not used)

11111 Get initial sample skip amount

Run length encoding syntax

Table 1. Work in progress


	FPGA-based QPU interface unit forfast qubit control and readout

