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Instrument and measurement automation for
classical control of a multi-qubit quantum processor

CHRISTIAN KRIŽAN

Department of Computer Science and Engineering
Chalmers University of Technology

Abstract
The recent field of quantum computing has seen great progress in the development of multi-qubit
systems, with qubit usability lifetimes increasing, putting practical quantum computers on the
near-horizon. As these systems take shape, scalability becomes of high priority as implementable
algorithms require a multitude of qubits to function. Such systems will require precise timing
control using instrument platforms for their development to continue. In this thesis, I develop and
present such an instrument platform solution. This platform consists of automated instrument
drivers written for Zurich Instruments’ HDAWG arbitrary waveform generator and UHFQA lock-
in amplifier i.e. classical electronic control systems. The drivers are integrated in the experiment-
control software Labber, and verified by characterising a multi-qubit quantum processor loaded
with a two-qubit DUT. One qubit is further characterised using the drivers, with extracted values
of interest including: the qubit frequency, f01, located at 4.302665 GHz ± 3.916 MHz; the π-pulse
amplitude, Ω, of 721 mV ± 20 mV; and the energy relaxation time, T1, of ~57.6 µs. The platform
is then benchmarked in terms of duration times for typical events in a running experiment, such
as Labber-to-instrument connection times (2 603 ms and 2 328 ms for the UHFQA and HDAWG
respectively), compilation times (632 ms and 1 288 ms), and finally also waveform data upload
times to the instruments (764 ms and 1 481 ms). The platform control was optimised in terms of
upload speed, using a memory injection technique for the HDAWG. The upload time was reduced
to 131 ms, typically demonstrating an averaged improvement of >91 % (131 ms vs. ≥1 481 ms).
Finally, I discuss some observed potential for improvement, and speculate as to the onwards out-
look regarding the future of the delivered instrument automation platform.

Keywords: quantum, processor, superconducting, Python, spectroscopy, Bloch, qubit, resonator,
dispersive, Rabi.
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Terms and abbreviations

Term Written out Brief explanation
AWG Arbitrary Waveform Instrument for generating output

Generator waveforms following a user-defined
blueprint.

classical In the field of quantum computing,
the prefix classical denotes that a
device is operating using classical physics.
Loosely, it may be seen as synonymous
with non-quantum.

driver A program that enables a personal
computer to control a connected device.

(c)QED (Circuit) quantum The (on chip) study of the interaction
electrodynamics between atoms and photons.

DUT Device Under Test Device undergoing testing, commonly
in a verified rig.

EESD Embedded Electronic Field within electrical engineering,
System Design focusing on computational systems with

dedicated purposes within electronics.
GUI Graphical User User interface where the technical control

Interface is achieved using graphics, icons etc.
Labber Laboratory instrument skeletal framework

software that controls instruments,
conducts measurements, and logs data.

lock-in (AWG-based) carrier-wave generator
amplifier combined with an oscilloscope, used for

measuring signals in noisy environments.
micrograph Microscope photography.
MSO Mixed-signal oscilloscope Oscilloscope combined with a logic analyser,

allowing for mixed-signal observations.
Python An interpreted object-oriented

programming language.
QPU Quantum Processor (Unit) Processor manipulating information using

quantum mechanical phenomena.



Term Written out Brief explanation
qubit quantum bit The discrete unit of information of a

quantum two-level system, analogous with
a bit in classical computing.

SEM Scanning electron Microscope that produces images by
microscope scanning an electron beam, capable of

relaying imagery at nanometre resolution.
TTL Transistor-Transistor Used in this report to denote a defined

Logic voltage span for representing a high or low
logical state.

VNA Vector Network Instrument for measuring electrical network
Analyser parameters, commonly capable of measuring

scattering parameters.
ZI Zurich Instruments Manufacturer of the UHFQA and HDAWG

instruments.



1
Introduction

Acting as an introduction to the report, this chapter will begin by providing the reader with a
background, explaining the current superconducting quantum computing scene and its recent need
for instrument automation. Following this explanation, this chapter will describe the research
question in greater detail and the intended accomplishments of this master’s thesis. Finally, this
chapter will conclude by outlining the executive methodology of how this thesis will attempt to
answer the aforementioned research question and accomplish the goals as outlined.

1.1 Background

Quantum computing has the potential of vastly outperforming classical computing technology at
certain computational tasks [1]–[6], with many algorithms executing at an exponential gain in
computing efficiency [7]. A very important step towards making quantum computing practical,
is extending the current potential of multi-qubit processing systems [2, 8, 9]. Superconducting
microwave circuits can be seen as one of the most promising pathways of implementing a practi-
cal quantum computer [10]–[13], realising the aforementioned sought-for potential. The control of
such quantum computers relies on classical electronics [14, 15], often separate from the quantum
processor core, necessitating precise timings of different microwave instruments in a scalable and
controllable manner. Because of this instrument control complexity, all settings in turn need to be
managed via a program for instrument control and measurement automation. An example of such
a program is the Python-based instrument control platform Labber [16].

It is imaginable that future experiments in quantum computing may benefit from having the
quantum processor hardware abstracted, similar to how a programmer does not write machine
code to run a website. This abstraction requires a software stack between the programmer and
the quantum processor, an example of which can be seen with for instance the IBM Q Experience
[17]. Striving to extend the potential of multi-qubit quantum computing, the Quantum Technology
laboratory at Chalmers University of Technology is currently building a processor control platform
suitable as a layer in such a software stack. This platform (controlled using Labber) is built using
the Zurich Instruments HDAWG [18] and UHFQA [19] instruments, which as a platform has not
been demonstrated before. By developing this instrument platform, we will provide researchers
with a simplified method of controlling scalable multi-qubit processors and performing affiliated
experiment measurements. The exemplified stack is illustrated for clarity in Fig. 1.1.

This master’s thesis thus consists of developing drivers for the HDAWG and UHFQA instruments,
and integrating these in the Labber instrument platform. A driver in this sense constitutes a
program that allows a microcomputer to control an attached device. The final instrument setup
will then be verified using both high-performance measurement equipment (such as an MSO), as
well as a live quantum processor. Optimisation of the speed and quantum processor scalability is
of high priority. The main application of this project thus lies in the research domain, with the
overall objective of assisting scientific advancements in superconducting quantum computing.
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Figure 1.1: Illustration of a proposed software stack highlighting the perspective of this thesis.
The Labber-based instrument platform will be at the second-lowest layer, driving the quantum
hardware based on compiled quantum code. The need for a parameter database mainly stems
from the fact that quantum computers are dissimilar to one-another by topology and capabilities.

1.2 Problem description
As outlined in the introductory background, the Quantum Technology laboratory is currently
constructing a control system for a superconducting quantum processor using an instrument au-
tomation platform. The processor’s qubits consist of microwave circuits, whose degrees of freedom
(see subsection 2.1.2) are controlled using microwave pulses. In turn, this platform will control
the classical generation of IQ-modulated pulses for qubit control and readout. The main research
question is: how should one construct a scalable instrument-automation platform that can control
a multi-qubit superconducting quantum processor setup, using arbitrary waveform generation and
lock-in amplifier readout?

In the setup of such a processor we require the ability to generate qubit control waveforms and
probe resonators for S21 responses [20] as shown in subsection 2.3.2. S21 represents the transmis-
sion coefficient [21] which in turn represents the amplitude received at the output port relative to
the amplitude at the input port of a device. The resonator conveys information about the qubit
state without having to probe it directly, which would degrade its quantum information proper-
ties. The readout should be done preferably using a lock-in amplifier in order to achieve a sufficient
signal-to-noise ratio. The instruments required for the sought-for control and readout abilities will
need to be controlled using an automation platform, for instance Labber. An important step on
the path of multi-qubit computing is scalability [8, 9], which is of essence in any quantum processor
architecture. A comparable example of a scalability issue could be imagined with a 100 000−qubit
QPU bearing 100 000 cable feedlines, which is a non-scalable solution.

2



1. Introduction

One must also consider the time required for uploading a specified waveform into an AWG
(Arbitrary Waveform Generator) from the automation suite. For comparison, current Labber-
based setups for quantum processor control and readout upload complex waveforms to AWGs by
defining each discrete sample of the entire waveform curve. In contrast to the extended functionality
available in the HDAWG and UHFQA instruments, the current method of AWG control sequence
uploading arguably qualifies as a brute-force method which requires an increasing amount of time as
processor scalability increases. The present system is prohibiting the platform from expanding in a
scalable fashion as the mere upload process becomes very lengthy for even rather simple algorithms.

The instrument automation platform should also be verifiable. This verification can be done in
steps by initially verifying that arbitrary waveforms from the HDAWG are correctly generated
using oscilloscope readouts. The UHFQA can be verified by generating known test sequences from
its AWG and verifying that these are read by and fed to the internal oscilloscope. Once the con-
stituent parts are created, a final Labber implementation should be able to operate all constituent
instruments, and thus also be verifiable on a real quantum processor. Expected readout from such
an experiment is in turn well established in theory and from empirical experiments.

The implementation also exhibits additional problems to be tackled; even though the HDAWG
can conditionally execute code and loop commands which in turn is a prerequisite for a Turing-
complete machine [22] potentially allowing the user to execute anything, its memory is not runtime
rewritable except for the samples constituting the currently played back waveform (see section 3.4).
An automated program should not require the user to script waveforms for upload, implying that a
standalone Python program (or similar) must be used to derive how to best generate the required
waveform generation scripts for the instruments. The Python code may in turn be run as firmware
in the Labber instrument platform. Based on this, one may tackle the problem of scalability
within the Python program, as it can generate an execution script bearing as many waveform
repetitions as one may require. Potentially parts of waveforms may be identified as repetitive
and can in turn be called upon to mitigate instrument memory usage, similar to the very common
Lempel-Ziv data compression techniques [23]-[25]. Such a method is further explored in section 5.1.

A drawback of conventional arbitrary waveform generators is that sequence tables cannot sup-
port control flow beyond simpler, repeated operations [26]. Furthermore, extended functionality is
sought for in the form of conditional execution, arbitrary nesting subroutines and loop execution.
To respond to these requests for extended functionality, an automated instrument platform should
at least be able to add complexity into the repeated control execution. An additional requirement
of such an instrument platform, is that control software running on classical hardware must also
be able to specify waveform construction at the nanosecond level, i.e. typically a hundredth of the
quantum system’s coherence times [26], see section 2.4.

The reader has now been presented with a background to the problem at hand as well as its
description and main research question. The upcoming sections will detail the aims of this project
set in order to answer said research question.

1.3 Aim
Following the problem description in section 1.2, this project features a set of required accomplish-
ments which will be presented as goals in subsections 1.3.1 and 1.3.2.

1.3.1 Core goals
This project will initially accomplish the following tasks:

3



1. Introduction

• Implement waveform upload functionality for the Zurich Instruments HDAWG and UHFQA
respectively in the Labber software, in order to realise qubit control- and readout waveforms.

Through Labber, the operator shall be able to specify an arbitrary waveform to be uploaded
into the HDAWG instrument, for instance by defining numerical values. Through Labber,
values read by the UHFQA instrument shall be presented in a likewise suiting and observ-
able manner, for instance by graphical representation of the read waveform demonstrating
a mapping of a qubit’s state to its respective resonator’s response.

• Verify generator control- and lock-in amplifier readout waveforms, played back at room tem-
perature using oscilloscopes and/or spectrum analysers.

The HDAWG instrument is to be analysed at its outputs; waveform generation is considered
implemented when an arbitrary waveform can be requested and played back using the in-
strument’s driver. The output is to be verified by comparing signal amplitudes, component
frequency contents, and overall shape. The goal is considered achieved when any differences
in the aforementioned categories differ by at most a few percent between specified and mea-
sured waveforms. Larger differences may be acceptable provided that they can be reasonably
shown to stem from specified hardware constraints or similar. The lock-in amplifier shall
be able to read out S21 parameters from either actual or simulated qubit-affiliated readout
resonators, simulated using either instruments or assemblies of simple electronic filters. The
lock-in amplifier is considered verified when a pulsed carrier wave, passed through an actual
or a simulated qubit-affiliated resonator, exhibits notch attenuation peaks of at least 10 dB
at all frequency bands corresponding to the intended resonator frequencies as demonstrated
from theory in subsection 2.3.2.

• Verify expected qubit feedthrough using the Zurich Instruments platform by demonstrating
expected correspondence of input waveform versus resonator readout on a multi-qubit QPU.

Through Labber, the read waveform from the UHFQA shall by visual inspection demon-
strate harmonic matching to a control sequence uploaded to the HDAWG. Implying success-
ful instrument automation for classical control of a multi-qubit quantum processor.

1.3.2 Auxiliary goal
Key optimisations of the core instrument driver can be seen in functionality, upload speed and
scalability, desirable features of which are missing in the current instrument platform. As an aux-
iliary goal, the drivers are to be optimised in terms of upload speed to the instruments in order
to circumvent the current method of individually defined samples uploaded to the device. This
project thus also aims to accomplish the following task:

• Optimisation of the waveform generator upload process in terms of speed.

This auxiliary goal is considered achieved when the waveform upload time is diminished by
a relatively significant portion in time. The relativeness factor is given by perspective: a
very complex and non-periodic waveform may require the software to define every discrete
waveform sample, providing close to no upload speed reduction. A waveform with repetitive
elements may however be defined as only one small set of discrete samples followed by a
repeat-after-time value, greatly decreasing the upload speed. Another way to interpret the
aforementioned relativeness factor could be via a change of uploading procedure altogether,
provided a great upload speed increase is shown compared to what was used previously.
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1.4 Limitations
A set of limitations have been identified as related although redundant for this project’s execution.
These will be presented and motivated in this section.

1.4.1 This project will not feature quantum programming
As the core project goals are centred about establishing an instrument platform necessary for scal-
able quantum processor control, this project will not include elements of quantum programming
nor its optimisation for the scalable platform. During testing and verification, only known and
verifiable test patterns and experiments will be executed on the instrument platform. Likewise,
waveforms that shall be uploaded to the platform are to be pre-generated using existing virtual
instruments. The topic of quantum programming can arguably be considered a covered topic,
with work done in key areas such as suggested compilation toolchains [27], programming languages
[28] and algorithms with corresponding improvements over their non-quantum counterparts [29].
Quantum programming is thus seen as out-of-scope for this project.

1.4.2 Final verification will be done on currently existing
QPU hardware

Even though the intended software functionality includes scalability to an arbitrary number of
qubits, no hardware modifications will be done on the existing quantum processors in the Quantum
Technology laboratory in order to stretch the capabilities of the control drivers during functional
verification. This implies that the final control scalability will be evaluated to an arbitrary amount
of qubits currently loaded in the QPU used for final functional verification.

1.5 Method description and problem approach
A multi-qubit control setup must be able to also control a single qubit. The project will thus
commence with theoretical groundwork as to how single qubit control and readout is performed
at the Quantum Technology laboratory. The existing methods of single-qubit control and readout
will be replicated using a currently existing quantum processor with an associated control setup,
albeit using the new automation platform. A known and specified microwave waveform will be
input into an arbitrary waveform generator and verified at its output using a high-performance
oscilloscope located in the laboratory. The generated signal will then be verified by comparing it
to the specified waveform, and adjusted accordingly if needed.

The waveform will be fed through a quantum processor setup using the HDAWG and have its
corresponding resonator response analysed using the UHFQA lock-in amplifier. If the generated
probing signals produce readout signals which imply corresponding (expected) qubit responses as
known in theory (see section 2.3), then proof that quantum processor control and readout has been
acquired by theoretic replicability.
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The instrument drivers that control the platform will be optimised with respect to upload speed
to the arbitrary waveform generators and scalability to multi-qubit setups. The upload speed is
planned for optimisation by for instance discovering repeating patterns in the requested waveform,
and requiring the waveform generator to replay these patterns. If this provides the same output as
in the single-qubit verification, albeit at a more flexible and scalable uploading process, this would
prove that Labber instrument drivers with higher flexibility has been created for the HDAWG
and UHFQA instrumentation platform. Another plan is to investigate more optimised waveform
uploading methods and attempt to implement these into the platform, using the same criteria
for verification as just mentioned. The aforementioned optimisation plan brings forth the method
description of the auxiliary goal as set by this project, which will be described below.

Method for the additional work
An auxiliary achievement has been outlined for this project; as this goal depends on the develop-
ment workflow done during the core goal implementations, the exact execution method has been on
purpose left flexible in comparison to the core goals’ achievement criteria. It’s problem approach
has been outlined as the following:

• Optimise the UHFQA and HDAWG waveform upload speeds. Investigate how the upload
process can be shortened, for instance by analysing waveform compression techniques, and
attempt to implement these in the Python drivers for the AWGs. Or, swap upload method
entirely if possible provided that it improves the upload speed of what currently is available.
Verification is done continuously by measurement of upload times for different waveform
uploads. See subsection 1.3.2 for the brief achievement criteria.

The reader has now been presented with the introduction to this master’s thesis, presenting the
field background, the current problem and how it’s intended to be solved. As expected, the reader
does run the risk of not understanding the problem’s solution should adequate theory be left
non-introduced. The next chapter will lay the theoretical groundwork needed to comprehend the
implemented solution to the research question.

6



2
Theory

This chapter aims to introduce the reader to an adequate set of theory governing quantum com-
putation. As is correctly assumed by the reader, this area is greater than what is relevant for
this thesis, thus this chapter will mainly focus on an applied view of quantum computation. The
upcoming sections have been written assuming that the reader has a background in embedded
electronic system design, with the main goal being that the reader should understand why the
implemented functions are required for successful quantum processor control and readout automa-
tion. Simply put, the reader should understand how a (superconducting, multi-qubit) quantum
processor is constructed in essence, as well as how it is controlled.

In brief, this chapter is constructed from a bottom-up approach starting with an explanation as to
why quantum computations are useful. As there are many different quantum computation meth-
ods, this chapter will delve into the superconducting topology as is used by the quantum processor
in this master’s thesis. The reader will be introduced to a circuit-level layout of the implemented
qubits along with an introduction to dispersive readout techniques and qubit control methods us-
ing microwave pulse generation. Finally, the chapter will end with a theoretical explanation of
the quantum analyser calibration procedure, why this process is important in terms of this thesis,
providing linkage to chapter 3 (Implementation) which explains how the goals in this project were
tackled.

2.1 Introductory quantum computing theory for
electronics engineers

The goal of this section is to provide the necessary quantum theory required for understanding
why the instruments included in this thesis have been automated the way they have. As noted,
the intended background is within the area of EESD, thus the main outline will be comprehensible
for readers of various technical backgrounds. It has however been assumed that the reader has a
basic level understanding of algorithmic hardness, such as NP-completeness.

2.1.1 The benefits of quantum systems
This section will act as a brief inlet describing why quantum information processing is useful where
its classical computing counterpart is not.

Imagine two computational entities, chips if you may. One operates using eight classical bits
whereas the other one operates using eight quantum bits. For the electronics engineer, the classi-
cal entity is assumed to be represented by synchronous combinational logic and may thus assume at
most 28 different output values (not counting driver metastates such as ’the wire is cut,’ ’the wire
is weakly driven’ etc.). To acquire all of these output states with 100% certainty, assuming each
single input state would generate a uniquely corresponding output state, one would be required to
manipulate the bit input set 28 times by executing 28 known input combinations. The quantum

7



2. Theory

entity differs in that every input could represent a simultaneous state of both 0 and 1 [3, 30, 31].
This concept is known as quantum parallelism. However at this point in time, we simply do not
know which of the 28 output values is present on the output port. And as is commonly known with
Schrödinger’s cat box [3], actually measuring the output port provides us with the one computed
answer. As we now have spoiled the answer, the quantum property is lost, commonly known as
collapsing the quantum system. For the electronics engineer, one may expand the analogy by
claiming that it represents a MISO system with every possible input combination represented at
once by the M.

The reader should be aware that the logical value of a multi-qubit setup is a multidimensional
entity and is not losslessly equatable to a set of parallel bits. More specifically, the previous com-
parison has over-simplified the fact that n quantum bits represent an exponentially growing vector
space [30]; n qubits represent 2n mutually orthogonal quantum states in Hilbert space, whereas 2n
bits represent 2n distinct values [2]. Subsection 2.1.2 will expand further on the major differences
of bits versus qubits.

An example that demonstrates a clear benefit from having a quantum processor as opposed to
a classical processor can be seen with the Bernstein-Vazirani problem [32]–[34]. The Bernstein-
Vazirani problem is an example of an algorithm where a classical processor requires exponential
complexity increase whereas a quantum processor only requires a logarithmic complexity increase
[4], the electronics engineer would know this as a superpolynomial speedup. The Bernstein-Vazirani
problem starts by defining a black box problem, i.e. a problem where some string of zeroes and
ones enters a black box, some string of zeroes and ones leaves the box, and the box owner is
assigned to figure out some property of that box (usually its transfer function) [34]. An additional
piece of information about the box is known as a promise. In the Bernstein-Vazirani problem, we
are promised that some input s yields an output as seen in

s −→ (r · s+ h) mod 2, (2.1)

where the task of the problem is to determine r and h [34]. We are also promised two boundary
conditions regarding r and h as given by

r ∈ {0, 1}n, h ∈ {0, 1}, (2.2)

which dictates that r is an n-length string of ones and zeroes whereas h is either just a one or
a zero. It can be shown that any optimal classical algorithm, deterministic or random, requires
n attempts for finding r [4, 34] and one additional attempt for finding h [34]. Furthermore, a
quantum algorithm can be shown to require two attempts only [34], while a classical computer
would have to brute-force every single input bit until the correct answer is found with 100% cer-
tainty [4]. This solution is accomplished using so-called Hadamard quantum gates, which provide
quantum entanglement thus enable the sought-for quantum parallelism via superposition. With
some simplification, this parallelism is what enables such a brisk solution for finding r.

Do note that it is possible to construct algorithms for which increased parallelism does not reduce
the required computational time sufficiently [2], meaning that neither quantum nor classical com-
puters compute the answer in satisfyingly short timespans. Quantum computers are expected to be
apex problem solving machines when the problem does not scale polynomially with input length,
and the output is not verifiable in polynomially scaling verification time [5]. Relatively few natural
problems fit these criteria (input not in P, verification not in NP) [5] but a substantial amount
of quantum algorithms are still available [29]. The reader is encouraged to look at [6] should the
concept of complexity theory in quantum systems be of interest; claiming that parallelism gives
a quantum system its strength discards the verifiability hardness, with some claiming that the
real potential in quantum algorithms stem from being able to cancel out probabilities in collapsed
systems. With this subsection as motivation, we now understand why quantum computers provide
advantages to classical logic in theory. As with any logic, quantum computing relies on descriptive
states. The upcoming section will outline how to interpret the logical states of a quantum bit.
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2.1.2 Computational logic states, from bits to qubits
The state of a single classical bit is commonly seen as 0 or 1 not counting metastates; these two
discrete values usually represent that the observed wire features a relative potential to ground
within two defined voltage ranges. TTL-logic levels for instance commonly define these intervals
to span from 0 – 0.5 V to 2.7 – 5 V [35] for a 0 and 1 respectively (although the exact values differ
depending on the implementation). We may imagine that the entire range of voltage values from
0 to 5 constitutes a continuous line. When we measure a given point on this line, we interpret
the voltage value and discretise it as a logical 0 or 1, provided that the voltage was within the
two defined logic-valued ranges. This discretised value is known as a bit; voltage-defined logic
arguably comprises the vast majority of classic computation though not necessarily as seen with
current-logic and many other methods. Similar to the bit, the full set of values available for a single
qubit can also be seen as continuous in nature, and likewise the qubit is also discretised upon its
interpretation. For quantum logic, the line is expanded into an opaque sphere, commonly known
as a Bloch sphere shown for illustration in Fig. 2.1. The sphere is of unit radius, and is commonly
used to model quantum two-level systems - in our case, the qubit [39]. While the classical bit could
attain any value along its logical line, the single qubit may instead attain any value on and within
this sphere. A vector is drawn from the absolute centre of the sphere to the point indicated by its
coordinate values as given by a Cartesian coordinate system. This vector in turn represents the
current logical state of the single qubit, and is known as a Bloch vector [39].

|ψ〉

|0〉+|1〉√
2 ,X

|0〉−|1〉√
2

|0〉+j|1〉√
2 ,Y|0〉−j|1〉√

2

|0〉 ,Z

|1〉

Figure 2.1: Illustration of the Bloch sphere logic model used for describing the logic state of the
single qubit. The vector ψ describes the qubit state value, and is operated upon when the logic
state is manipulated. The X and Y axes respectively represent superpositions between the states
|0〉 and |1〉.

The discrete logic values of the single qubit are plotted on the surface of the sphere, with the north
pole corresponding to |0〉 and the south pole corresponding to |1〉. This notation encapsulating 0
and 1 is expected to be alien for the electronics engineer; it is known as a bra-ket notation [36] and
is common in the field of quantum mechanics. It is mainly used to describe quantum states, more
particularly how quantum phenomena interact with each other using linear algebra. The notation
|0〉 represents an orthogonal quantum state of the single qubit, likewise |0100〉 represents the state
of a four-qubit register.

The electronics engineer may find that for many intents and purposes, the bra-ket encapsulation
surrounding 0 and 1 may be ignored and simply seen as ’1 or 0.’ It should be noted that this
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omission severely limits the potential of the quantum information contained within. As shown by
[40], the general state of n qubits is described by a 2n-dimensional vector where one dimension
distinguishes a state of the n systems. Furthermore these states may show entanglement and may
thus not be described as a product of the states of the n qubits. This information and more is lost
by omitting the bra-ket notation.

Where the ranges on the voltage line in the previous paragraphs were known as ’logical low’ and
’logical high’ for the 0 and 1 discretised voltage ranges respectively, the single qubit in the super-
conducting topology is said to be at its ’ground state’ at |0〉 and at its ’excited state’ at |1〉. As
will be seen shortly, an actual measured output from a quantum processor will infer a phase value
θ. Similarly to a spherical coordinate system, this value corresponds to the angle between the
vector and the XY-plane in the Bloch sphere. In the specific topology of this master’s thesis, the
discretisation from an analogue value (the phase) simply corresponds to the sign of θ, where +θ
corresponds to |0〉 and vice versa.

The superconducting topology used in this master’s thesis brings with it further modifications to
our Bloch sphere model; as will be demonstrated in section 2.3, rotations of the Bloch vector about
the X and Y axes are crucial for pointing it to specific coordinates within the Bloch sphere, i.e.
realising particular logic states using our single qubit. What has been purposely left out until now
is that the Bloch sphere is a rotating coordinate system, implying that the vector naturally rotates
(or precess) about the Z-axis in time at the frequency of the qubit. The X/Y-operations can thus
be realised by first rotating the vector to the equator, followed by idle waiting for a calculated
amount of time for it to naturally rotate in the sphere. Rotations of the Bloch vector are in spirit
not very indifferent to alternating the wire voltage of the classical logic entity from earlier, as both
actions represent state transitions. A state transition in the Bloch sphere corresponding to π ra-
dians worth of Bloch vector rotation about a particular axis is commonly known as a π-pulse [41],
likewise a rotation of π

2 radians is known as a π
2 -pulse. These pulses have particular importance

for this thesis as will be expanded upon later. Some of the initial QPU calibration is devoted
solely to finding the shape and settings which create the π-pulse with as good precision (fidelity)
as possible, as can be seen in subsection 4.1.2.

Bell states

In theory, the polar states of the Bloch sphere equates to the common digital states of 1 and 0.
It can thus be speculated that a quantum computer is in theory at least as ’useful’ as a classical
one [30]. However, the non-polar locations of the Bloch sphere is what truly sets this state model
apart from traditional logic. A rotation of π

2 radians for instance puts the Bloch vector on the
equator, in which the logical state is in a 50-50 superposition of |0〉 and |1〉 [37]. Please observe
Fig. 2.1: let’s imagine that we start a computation with the Bloch vector being located in the
ground state (which is the expected common case). We now rotate the vector π

2 radians about
the Y axis heading down the positive X direction. The vector is now pointing straight at the pure
X-axis. As the reader can see in the figure, our coordinates are now

|ψ〉 = 1√
2
|0〉+ 1√

2
|1〉 . (2.3)

Let’s imagine that we are monitoring a wire with a signal bearing (2.3). We as monitors are also
capable of attaining such an exotic state if we wish. We also say that we signal |0〉 if we see a
|0〉 and signal |1〉 if we see a |1〉. What do we then signal when we spot the superposition state?
There is a |0〉 present, we thus signal |0〉, and there is a |1〉 present thus we also signal |1〉 at the
same time. We have been put in what is known as a Bell state [37]. By applying a single quantum
gate (a so-called CNOT-gate), we have opened up two branches of the computation. In one, we
returned |0〉 and in the other one we returned |1〉. From a classical truth table point-of-view, we
are treating two columns simultaneously using only one operation [37]. The state of our two-qubit
system however, is now
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1√
2
|00〉+ 1√

2
|11〉 , (2.4)

where our particular signal has been colour-coded red to show the reader our output. Please do note
that what has been described is a CNOT gate. For reference, its (classical) truth table has been
synthesised in Fig. 2.2. As we were originally in the ground state, the |0〉-monitoring branch of the
equation output |0〉, while the |1〉-monitoring branch inverted its input (|0〉) and now outputs a |1〉.

J
Q

M

0

1

Figure 2.2: Synthesised Q <= NOT(J) WHEN M ELSE J; – ergo the logic of the CNOT gate
as it would behave if it was classical.

Finally, what do we read out if we actually collapse ’the red signal?’ At this point, we enter the
realm of probability, and we get a 50-50 chance of the output being strictly either a |0〉 or a |1〉.

The reader has now been introduced to the logic model of the single qubit used for carrying out
quantum logic. For this model to be practical, we require a component which has the ability to
represent it. The last subsection of this chapter introduce the reader to the Josephson junction,
along with a set of relevant circuit quantum electrodynamics theory.

2.1.3 Circuit quantum electrodynamics and the Josephson
junction

The Josephson junction constitutes a crucial component of circuit quantum electrodynamics (cQED)
[11, 15, 38]; as a circuit element, it features a particularly important role in superconducting
quantum computing since it realises the theoretical Bloch sphere model outlined previously.

Circuit QED (more specifically the Josephson junction) allows us to separate the energy needed for
forcing an artificial atom from |0〉 to |1〉, from the energy needed to force the artificial atom from
for instance |1〉 to |2〉 (or some other energy band) [15]. This is accomplished via the junction’s
non-linear behaviour, as it features a sinusoidal potential well [39]. Familiar to the electronics
engineer, a sinusoidal potential well requires different amounts of energy for traversing the dis-
tance L from the bottom up, than it would require traversing the same distance L from the middle
up. There is now some method of detecting the state of the qubit, which can be applied to con-
vey computed logic. Quantum signal processing using linear components is considered impossible
[10]: by comparison, should the sinusoidal well be made quadratic, the energy needed to traverse
the well would be distance-dependant only (linear to L) [31, 39]. Also, superconducting quantum
circuits require the non-linear elements to be non-dissipative meaning that classical logic circuitry
is unusable for quantum computation in the first place [10].

Since the Josephson tunnel junction is a circuit element that enables both non-linear [10, 15] and
non-dissipative operation [10], it seems to be a natural choice for superconducting quantum com-
puters. For clarity’s sake, it should at this point be mentioned that a qubit is in essence any
realisation of a quantum two-level system [31], such as two orthogonal polarisations of a photon, or
more importantly an atom’s ground state and its excited state [40]. By construction, the Josephson
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junction is created by stacking a sub-nanometre insulator between two layers of superconducting
material [10, 38] because this allows for sought-for tunnelling effects [10].

The qubit-based system logic has been realised using the Josephson junction. In the upcoming
section, these junctions are now to be integrated into a superconducting transmission line circuit.

2.2 The superconducting embedded electronics
This section will cover how the specific quantum processor architecture is engineered, with a basis
in the Josephson junction used to realise qubits using superconducting circuits. As this field of
research is expanded upon constantly, this section will only cover the specific architecture used in
this particular project and its interfaced quantum processor setup.

2.2.1 The qubit in a circuit diagram setup
Fig. 2.3 illustrates a Josephson element as would be seen in a circuit diagram [10]. Its equivalent
circuit behaviour as a component constitutes a non-linear current-dependent variable inductor. Do
note, ’tunable’ inductance is a big topic in this field, which is not the property being described here.

Figure 2.3: Schematic illustration of the Josephson junction. The symbol is unfortunately iden-
tical to the common schematic illustration of a circuit fault.

Manufacturing a Josephson junction produces an equivalent capacitor in parallel over the Joseph-
son element, forming an LC-circuit as seen in Fig. 2.4. The added capacitance is known as the
junction capacitance CJ , and will be of theoretical importance later. Fig. 2.4 shows the Josephson
tunnel junction along with the equivalent subcircuit contained within [10].

LJ CJ

Figure 2.4: Schematic illustration of the Josephson tunnel junction along with its equivalent
subcircuit.
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This configuration is expanded further in Fig. 2.5, where the Josephson tunnel junction has been
connected to a large shunting capacitance Cs � CJ ; the circuit is now known as a transmon qubit.
In practice, superconducting qubits are relatively large and are thus more easily susceptible to
environmental disturbances [11]. As will be further delved into in section 2.4, this susceptibility
to disturbances reduces the time for which the quantum properties are preserved in the system.
It is argued that the transmon qubit has been designed the way it has been in order to reduce
sensitivity to electric charge density fluctuations [11] and its sensitivity to charge noise [46], leading
to increasingly longer preservation times of the system’s quantum properties.

Cs

Figure 2.5: Schematic illustration of the transmon qubit.

The transmon qubit now constitutes a (weak) harmonic oscillator. As will be shown in subsection
2.3.2, its inherent resonant frequency is key to interacting with the logical state of the qubit. But,
as noted in subsection 2.1.1, one should not measure the resonant frequency of this circuit directly
as this collapses its quantum state. Instead, this qubit circuit is coupled to a resonator as shown
in Fig. 2.6. Subsection 2.3.2 will explain why such a structure is preferred, for now it is sufficient
to know that the resonator acts as the tool used for (more) safely probing the qubit to read out
its logical state.

Figure 2.6: Schematic illustration of the transmon qubit (bottom) coupled to a readout resonator
(top). The resonator schematic represents a quarter-wave waveguide resonator. In contrast to the
Josephson junction, this resonator (and the transmon qubit) are macroscopic in size, measuring in
the order of hundreds of micrometers.
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Figure 2.7: Schematic illustration of a transmon qubit coupled to a readout resonator, in turn
coupled to a transmission line via inductive coupling.

Similar to two pendulums connected by a spring, the qubit resonance circuit is now able to alter
the resonance frequency of the resonator, as will be of greater importance in subsection 2.3.2. The
resonator now acts as a probe of sorts, thus all readout circuitry will from this point interface to
the resonator. The resonator is thus connected to the outside world via an inductive coupling as
shown in Fig. 2.7.

Measuring the logical state of the qubit is commonly known as a readout, and is done via a probing
signal sent through the upmost transmission line in Fig. 2.7. Measuring the resonator voltage is
in turn commonly known as dispersive readout [10]. This upmost node is connected to a transmis-
sion line, and the whole resonator-transmon circuit is repeated in parallel to it depending on the
amount of qubits one desires. Fig. 2.8 illustrates a three-qubit setup done using superconducting
topology.
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Readout
resonators

Transmon
qubits

Figure 2.8: Schematic illustration of three qubit-resonator circuits connected to a common trans-
mission line. It is important to note that the qubits are entangled thus affecting the states of each
other. This is illustrated by including capacitances (yellow) between the individual transmon
qubits. The transmission path has been illustrated using blue arrows at the top of the figure.

Selecting the value of the coupling capacitor between a resonator and its qubit constitutes an en-
gineering trade-off. Larger coupling enables a stronger connection from the qubit to the resonator.
As will be shown in subsection 2.3.2, a strong coupling lets through more of ’the probing signal’
(the readout pulse) from the transmission line to the qubit, in turn implying that scoping the logic
value of the qubit is less noisy. But, a strong coupling also implies that the qubit is more strongly
coupled to its environment, in which the quantum properties of the system will be lost faster.

Fig. 2.9 depicts a micrograph of a typical sample constructed using the aforementioned schematic
description. The equivalent components constituting the sample have been colour-coded in Fig.
2.10. Fig. 2.11 demonstrates a zoomed-in micrograph of the Josephson junction. Fig. 2.12
demonstrates an SEM image of said Josephson junction as connected in a so-called Xmon qubit
configuration, characterised by the large cross-shape. Fig. 2.13 and 2.14 demonstrates clearer
imagery of the Josephson junction along with appropriate dimensions.

The images and schematics throughout section 2.2 introduced the reader to how the Bloch sphere
and related quantum information logic is integrated into a physical device. The next subsection
will introduce the reader to the required circuitry for controlling the qubit, which is essential for
executing quantum programs on the device.
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Figure 2.9: Micrograph of two bare resonators without transmons (top) and three resonators
with attached transmon qubits (bottom). The resonator portion has been highlighted by a black
box, the qubit portion has been highlighted by a red box. The left- and rightmost triangular shapes
are connector pads. The particular type of transmons seen in the sample are known as Xmons,
characterised by their large cross shapes.

(a) (b)

Figure 2.10: False-coloured, mirrored micrograph of a resonator (a) and its corresponding circuit
elements using a lumped element model (b).

16



2. Theory

Figure 2.11: Micrograph of the Xmon transmon illustrating the Josephson junction (bottom)
connected to the cross-shaped island.

Figure 2.12: SEM image of a Josephson junction part of the Xmon. Note the tiny γ-like connec-
tion just right of the absolute centre of the image: this is the Josephson junction as will be made
clearer in Fig. 2.13 and 2.14.
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Figure 2.13: SEM image of the Josephson junction part of the Xmon, along with relevant length
measurements.

Figure 2.14: Zoomed-in SEM image of the Josephson junction itself, along with appropriate
size measurements. The full junction in essence consists of two strands of overlapping aluminium
(white and grey respectively) layered on top of each other, visible inside the centre green box.
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2.2.2 Qubit control circuitry
The previous subsection explained how the sought-for qubit logic is realised using the Josephson
junction connected to a resonator via a transmission line. Such a setup provides the user with
the ability to probe (and thus listen to) the resonator for the current state of the qubit, however
the important property of state manipulation is not yet realised. Qubit control can be generally
represented as seen in Fig. 2.15.

Figure 2.15: Schematic illustration of a transmon qubit coupled to a resonator with an additional
control line, modelled as a capacitance seen to the left of the Josephson tunnel junction. The
generator illustrates where the control signals enters the qubit setup, however omits any microwave
circuitry used to attenuate/amplify the control signal. The control line is connected to the wire of
the circuit known as ’the island’ which in itself is a broader topic in quantum computing. Fig 2.14
demonstrates a micrograph of the actual hardware making up the island for the Xmon transmon,
namely the cross shape.

The setup as depicted in Fig. 2.15 allows for logic using single qubit gates, typically by connecting
the control line to an external waveform generator. Similar to classical logic, gates constitute the
elements required for manipulating information through the execution of a program. A major
difference to classical logic however, is that quantum gates are not bound to specific circuitry but
instead to the shape of the microwave pulses used to control them. The upcoming section will
leave the circuitry constituting the embedded electronic system, and instead enter the realm of
quantum program execution on this device.
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2.3 Quantum program execution and its setup
Subsection 2.1.3 described a hardware component capable of realising the Bloch sphere logic of the
qubit. Section 2.2 in turn laid out a hardware setup which could apply the Josephson junctions
in a controllable and measurable fashion. The upcoming section will describe the principles of
program execution on the aforementioned superconducting quantum processor hardware.

Similar to a classical program, a quantum program equates to a list of instructions to be executed
in sequence. A compiled quantum program in turn constitutes an instruction set of microwave
pulses to be input in sequence onto the qubit island as seen in Fig. 2.15. As seen from theory,
these pulses constitute rotations of the logic vector inside the Bloch sphere. By rotating the vector,
and allowing the qubit to interact with its neighbouring qubits, one may effectively manipulate in-
formation according to a given set of instructions. In essence, one has gained the ability to execute
algorithms which infers the ability to execute programs. The microwave pulses are generated by
external (classical) waveform generators, containing their own configured waveform programs to
be executed. Automating the waveform program construction and the executing firmware of these
generators constitutes a crucial part of this thesis, and is covered in chapter 3.

The electronics engineer is familiar with the textbook conceptual computer as made up of a pro-
cessing unit, memory and a connecting bus. Should we choose to store the program inside the
memory, one has effectively equated the program memory. In a typical von Neumann architecture
one would expect (among other specifications) the instructions of the program to be fetched, and a
subset of the processor’s gates manipulated depending on the instruction [42]. A superconducting
quantum processor does not execute using these methods, instead the instructions themselves con-
stitute the gates and the hardware is identical for every operation. The program memory would
be equated by the waveform playback memory of external devices used for generating the pulses
needed for rotating the vector inside the Bloch sphere. These waveforms may consist of a collection
of sinusoidal pulses [41], where the lengths, amplitudes and phases determine the equated value
sent onto the qubit. This thesis utilised mainly gaussian pulses for qubit control, as doubling
the top amplitude of a gaussian distribution equates to also doubling its integral ergo the energy
contained within the sent pulse. Each pulse in the sent signal’s pulse train are part of (calculated)
subsequences of pulses corresponding to particular quantum gates, as dictated by the compiled
output of quantum program algorithm. It should be noted that many gates require at minimum
two qubits; these are commonly known as two-qubit gates. As correctly assumed, two-qubit gates
require two sets of pulse trains to execute the required gate. Simple quantum program algorithms
can usually be drawn from left to right in so-called quantum circuits, an example of which has
been illustrated in Fig. 2.16. The reader should note that the algorithm is performed from left to
right however the calculations are performed right to left [39].

Q0

Q1

Q2 0

0

0 S

Z

H

Y X

Figure 2.16: Cartoon of a fictional quantum program algorithm. The three qubits, given in the
far left, begin in their ground states and are manipulated upon by control sequences illustrated
in the quantum gates. The gates included in the circuit above are comprised of Pauli-X (X),
Pauli-Y (Y), Pauli-Z (Z), Hadamard (H), Phase (S) and the CNOT-gate (crossed circles with
interconnections). The Pauli gates for instance equates to rotating the logic state of the Bloch
vector π radians about the corresponding axis. The CNOT gates for instance equates to inverting
Q1 if Q0 is set (see Fig. 2.2). The rightmost dial-like boxes correspond to state value readouts.
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The upcoming section will outline a set of common measurement techniques used for character-
isation of a QPU. These values are commonly used in this field when comparing the apples and
oranges of QPUs, and are in turn interesting side-effects resulting from the final verification stages
as outlined in the goals of this master’s thesis.

2.3.1 Quantum processor characterisation process
In order to efficiently compile a quantum program for a quantum processor, the compiler must
typically know a set of parameters in order to be part of the software stack (Fig. 1.1). These
parameters are shown in Tab. 2.1. The parameters marked red are further investigated and deter-
mined in the final verification stages of the thesis.

Table 2.1: Table of quantum processor parameters needed from a calibration run in order to
compile a quantum program using the superconducting topology.

Parameter Brief explanation
f0,N Bare resonator frequencies under minimal

qubit influence.

χ Dispersive frequency shift on a qubit’s resonator.

fq Spectrum location of the qubit transition
frequency, corresponding to transferring from
state |0〉 to |1〉 (thus commonly denoted f01).

Ω Amplitude of a control pulse corresponding to
a π-pulse. Please note that Ω usually denotes
the Rabi frequency.

T1 Energy relaxation time.

T2 Dephasing time.

g Coupling strength between qubit and resonator.

α Anharmonicity given by DRAG pulsing.

f12 Frequency corresponding to transferring from
state |1〉 to |2〉.

η Anharmonicity, i.e. the difference in frequency
between f12 and f01 (fq).

F Single-qubit gate fidelity.

21



2. Theory

The calibration process for acquiring the parameters seen during the final verification of this thesis
is further delved into in this subsection. The overall calibration procedure of the quantum pro-
cessor is briefly described as the following:

• Frequency scan at swept power, in order to acquire resonator frequencies for which the
attached qubits do/do not contribute to the resonance point. The qubits attached to the
resonators skew their resonance frequencies, however at an inversely power-dependent rate.
Should the scan be done at high power, the bare resonator frequency is shown. A low power
frequency scan likewise corresponds to acquiring a spectral point for which the qubit may
skew the resonance point in a dispersive shift. The low-power frequency value is in turn
required for qubit control.

• Find the qubits using qubit spectroscopy and the previously acquired resonator frequencies.

• At the found frequency: calibrate the appearance (amplitude and/or duration) of the π-
pulse, a Z-axis bitflip on the Bloch sphere. This in turn yields so-called Rabi oscillations by
monitoring the output as the input amplitude/pulse duration is swept.

• Acquire coherence times; start by measuring the energy relaxation time T1 by pulsing the
qubit and sweep the readout delay until a usable output can no longer be seen. See sub-
section 2.3.4.

• Continue by acquiring the dephasing time T2 using Ramsey spectroscopy. The qubit is
put at the equator of the Bloch sphere, held there for some time, and flipped to a readout
position.

• Apply DRAG pulsing in order to determine the coupling strength and a ’proper’ π-pulse
using the acquired parameters.

• Spectral locationing of the state transitions, and thus the qubit anharmonicity.

• Finally determine the gate fidelity of the system, typically using benchmarking methodology.

2.3.2 Dispersive readout, acquiring outputs from the QPU
The transmission line visible at the upmost position in Fig. 2.8 may be swept (and measured)
in frequency using classical electronics, i.e. signal generators and oscilloscopes provided sufficient
quality. Due to the very weak signal produced by the setup quantum electronic system, a read-
out is commonly performed using a lock-in amplifier. The lock-in amplifier constitutes one of the
two major instruments paramount in this master’s thesis (the UHFQA quantum analyser). The
resonators are ’interrogated’ by spectroscopy: a microwave frequency sweep is generated by the
AWG inside the lock-in amplifier, and is put on the transmission line. The lock-in amplifier fea-
tures an oscilloscope for monitoring the other end (the output) of the transmission line. Once the
frequency sweep reaches a resonance frequency of a particular resonator, the signal amplitude will
drop typically about 30 dB causing a noticeable dip in transmitted signal as much of it is routed
to ground. A typical S21-sweep is illustrated in Fig. 2.17, note that the values are near-arbitrary.
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The resonance frequency of the transmon will contribute to the resonance frequency of the res-
onator as is demonstrated in (2.5). The reader should note the annotation used for the frequency
shift addition χ, which is a common parameter in this field. The shift contribution is negatively
dependent to the input signal power, thus the aforementioned frequency sweep was performed at
a relatively high signal power in order not to be affected by the transmons connected to the res-
onators. This is done to acquire the spectral position of the resonators.

fres = f0 ± χ, (2.5)

where f0 is the bare resonance frequency of the resonator, χ is the dispersive frequency shift and
fres the observed resonance frequency when the resonator is coupled to the qubit. The qubit con-
tribution χ is a desired property when scoping the resonator for the current logical state of the
qubit. As is seen in Fig. 2.18 at low signal input powers, the transmon manages to shift the
readout frequency’s spectral location for which the signal is attenuated. This shift is known as a
dispersive shift; in the superconducting quantum processor topology, it ultimately demonstrates
whether the vector inside the Bloch sphere is pointing within the northern or southern hemisphere
as was described in subsection 2.1.2.

Performing these readouts and measuring the logical state of the qubit constitutes a large portion
of this master’s thesis, namely the UHFQA readout. Acquiring the resonators’ spectral positions
constitutes only the very beginning of the quantum processor calibration process.
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Figure 2.17: Illustration of a fictitious albeit typical resonator sweep using near-arbitrary values.
This plot would be a typical output from a VNA during an S21 transmission characterisation. The
dip in signal amplitude is characteristic of a QPU-affiliated resonator. The physical quantities of
the axes are signal amplitude (P) and swept signal frequency (f).
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Figure 2.18: Illustration of a fictitious albeit typical dispersive shift. As the qubit is excited,
the resonance frequency changes slightly. One of these lines correspond to the qubit being at its
ground state, while the other one corresponds to the qubit being at its excited state. The shift is in
turn known as a dispersive shift. The direction of the shift, i.e. if moving rightwards or leftwards
in the spectrum corresponds to |1〉, is however uncertain from this plot alone. Thus, this plot is
usually done while sweeping the readout power as well, forming a 2D-plot where the shift can be
connected to |0〉 at high output power. Do note that the values chosen are near-arbitrary. The
physical quantities of the axes are signal amplitude (P) and swept signal frequency (f).

2.3.3 Qubit spectroscopy, acquiring qubit frequencies
Following the previous experiments, we have acquired the spectrum location at which we may
listen to a qubit’s resonator in order to spot changes onto its state. It is now of interest to figure
out the frequency fq (f01) we may stimulate the qubit with, in order to change its state from |0〉 to
|1〉. This frequency is found using qubit spectroscopy; the experiment described in this subsection
corresponds to performing a so-called two-tone spectroscopy. As the reader may have guessed, the
main calibration parameter of interest following the experiment is fq (= f01).

In qubit spectroscopy, a two-tone experiment is performed in which the resonator is probed (and
thus listened to) using one tone, while the qubit control line is swept using the other tone [44]. As
the control tone is swept in frequency, we monitor the readout for a sudden spike in transmitted
amplitude [20, 43]. At this point, the qubit has attained a blended state signalling that the drive
tone is now matching the qubit frequency [44]. For a brief understanding as to why this happens,
please observe Fig. 2.18: imagine that we are probing the DUT’s readout line with a 2.094 GHz
readout tone without driving the qubit (note: arbitrary values). We would expect to see a vastly
diminished output as contrasted with most other points in the spectrum, because we are reading
the resonator at its resonant frequency (a large amount of signal is shunted to ground). Should we
however drive the qubit with a frequency corresponding to fq, we would cause a dispersive shift in
the resonance frequency. We now see a vast increase in transmitted power since the probing signal
is not as strongly routed to ground. For comparison, please observe the figure again at 2.094 GHz
and keep in mind that the qubit is now driven, implying that the blue line now represents the
qubit+resonator transfer function. The expected output from a qubit spectroscopy experiment is
thus a sudden increase in transmitted power at some drive frequency [20, 43, 45], as is illustrated
in Fig. 2.19.
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Figure 2.19: Illustration of a fictitious albeit typical output following qubit spectroscopy. As the
actual amplitude may depend on a broad range of parameters, the y-axis is shown normalised. The
peak’s spectral width constitutes a clear spike in the ideal case. This width is in turn related to
the power of which the qubit is being driven. Please note that the values used are near-arbitrary.
The physical quantities of the axes are transmitted amplitude A and control-line tone frequency v.

Given the qubit frequency, the next calibration process step is commonly to characterise the π-
pulse for setting said qubit into the excited state. The next subsection thus introduces the reader
to Rabi oscillations.

2.3.4 Rabi oscillations, acquiring the pi-pulse and T1
Of the electronics engineer, I ask to imagine a floating, undriven antenna. The antenna will absorb
incoming electromagnetic waves, which excites the antenna. As it is excited, it emits electromag-
netic waves of its own in a process you know as scattering. Similar to this is the qubit under
the incident oscillatory stimulus, such as a microwave. The qubit will absorb photons from the
stimulus, and re-emit them due to stimulated emission - dropping the particle in energy level. This
oscillatory behaviour under incident stimulus is commonly known as Rabi oscillations.

These oscillations are a main staple in the field of quantum computing, as they provide sought-for
information regarding the nature of the quantum computing system. For instance, this could in-
clude the amplitude corresponding to the control pulse (= incident stimulus) which would rotate
the qubit’s Bloch vector π radians about the Bloch sphere origin. Implying that we then know
how much energy is required for flipping the qubit from the ground state |0〉 to its excited state
|1〉. This value is commonly labelled Ω, and denotes the voltage of the control pulse.

Considering the theory as previously laid-out in this chapter, we may observe Fig. 2.20 and link
the Rabi oscillations to the Bloch sphere in the following way: please observe subfigure (b). It
illustrates a fictitious Rabi oscillation run where the amplitude of a control pulse is swept as the
amplitude of the readout pulse is read. As the input amplitude increases, the qubit rotates more
and more in the θ-direction as shown in (a). At U = 851 mV, we notice a change of direction of
the oscillation. This corresponds to having put π-radians worth of energy onto the qubit, we note
this value down and label it Ω. At this point in time, we now know the frequency of the qubit and
the amplitude of the π-pulse.
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Figure 2.20: Illustrations of (a) the Bloch sphere seen from the negative Y-axis and (b) a typical
(but fictitious) Rabi oscillation. The axes of (b) are the demodulated voltage A, i.e. the read-out
and integrated qubit value; and input signal amplitude U of the control pulse, as is applied onto
the qubit typically by a waveform generator. Please note that the values are near-arbitrary.

Having acquired the amplitude of the π-pulse, we have acquired the parameters needed for setting
the qubit to |1〉 in a somewhat accurate manner. This allows us to measure the energy relaxation
time T1, a characteristic decay time [39] used as a merit for measuring the energy loss of the system
[47].

T1 is prompted from the system by setting the qubit in state |1〉, which is done by sending the
π-pulse onto it. The readout resonator is then read immediately as the qubit has rotated to the
excited state. The experiment continues by sweeping a delay time τ added after the control pulse
end, and reading the resonator. This is shown in Fig. 2.21.

t

π

Ω τ

Figure 2.21: Illustration of a typical T1 experiment. The yellow line corresponds to the control
line stimulus onto the qubit, while the purple line corresponds to the readout pulse sent by the
lock-in amplifier. The delay between the last sample of the π-pulse and the first sample of the
readout pulse is made larger as the experiment progresses.

The read output from the procedure in Fig. 2.21 will look similar to an exponentially decaying
curve, which demonstrates the rate at which the qubit is approaching its ground state. The energy
relaxation time is thus modelled as a fitted decaying exponential function

e−t/T1 . (2.6)
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Further, when normalising the Y-axis so that the maximum amplitude is one and the trend con-
verges to zero, it is trivial to see that when t = T1:

e−T1/T1 = e−1 = 0.368, (2.7)

thus we easily locate T1 on the x-axis as shown in Fig. 2.22.
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Figure 2.22: Fictitious illustration of a typical T1 decaying function. As the energy relaxation
follows an exponential decay, it becomes trivial to locate T1 at 34.8 µs in this fictitious graph.

From now on, the reader is expected to have a basic and sufficient understanding of applied
quantum computing theory in order to understand the terminology and modus operandi of the
Implementation and Results chapters. Before this report delves into how the specific project was
implemented, the reader is encouraged to look through section 2.4 in order to see some of the
engineering caveats and most importantly the topic of coherence.

2.4 Engineering caveats and quantum coherence
A closed-off qubit with no stimulus from the outside world would be deterministic at any point
in the future, provided we know its starting position and behavioural model (its Hamiltonian)
[39]. Such a closed-off qubit would however be impossible to interact with, thus real-life qubits are
expected to be exposed to environmental noise. Quantum computers are highly sensitive to envi-
ronmental noise [48], because this outside interference interacts with the qubits - putting them in
unknown, undefined or unwanted logical states. With time, the qubit’s state will be very different
from what is predicted by our models, and the computation is rendered unusable after what is
known as the decoherence time (the length in time for which the system retains its quantum prop-
erties [11]). The system has to be kept coherent during the entire calculation for the output to be
reliable [50]. Typical sources of noise leading to quantum decoherence can for instance be found in
the microwave signals probing the qubits; these may for instance have amplitude or phase variations
from some oscillator which adds thermal noise to the system [39]; or, the signals may contribute to
the noise by adding photons with noise levels determined by their quantum properties [49]. Noise
temperature in classical logic is a common foe in quantum electronics as well; along the compu-
tational transmission line path, a set of attenuators and/or amplifier stages are included which
contribute with a vast array of noise properties known to the electronics engineer. The circuitry
used in superconducting quantum computing also requires temperatures in the millikelvin-range; it
follows naturally that quantum computers are operated in large fridges capable of millikelvin-levels
of temperature, known as dilution refrigerators.
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To isolate the qubits from the contributing noise, they are separated from their manipulative en-
vironment wherever possible. The act of trying not to disturb a qubit puts effort into engineering
a trade-off between noise-cancellation while simultaneously probing the qubit resonators for their
logical states. Superconducting qubits are typically also large, thus arguably hard to separate from
their affecting environment [11].

Another engineering caveat of interest can be found on the topic of attenuation. As is shown in an
actual quantum processor setup in Fig. 3.1, the reader might notice the heavy usage of attenua-
tion in the signal path. A caveat of interest can be found here with attenuating the output of the
instruments directly. Apart from being ultra-low voltage electronics, the typical demodulated volt-
age of a QPU readout is on the order of a few millivolts (as will be shown in chapter 4). However,
a typical instrument is capable of supplying 1,000 times this value at minimum. It is imaginable
that instruments may in turn even be optimised in measurement accuracy somewhere in the centre
of their output span. By applying attenuation straight to the output of the instrument, one may
use larger output voltages in their experiment. The inherent noise from the generated signal is
relatively smaller, and the instrument may even be put in a more optimised voltage range. Albeit,
this does not account from additional noise from the attenuator itself. The distributed attenua-
tion in the different stages of the dilution refrigerator’s cryostat, can in turn be argued to have
a diminishing effect on thermal radiation propagating from the room-tempered equipment down
onto the hypercold DUT [44].

The next chapter will enter the very specific domain of this master’s thesis project by introducing
the reader to the instrument platform’s implementation.
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Implementation

This chapter aims to introduce the reader to how the goals of this project were tackled, and by
extent how the research question was answered. The initial part of the chapter will lay out a
full quantum processor system description, mainly for attempts at reproducibility and experiment
transparency. The experiments involving driver verification via quantum processor characterisa-
tion will likewise be presented in such a way that the eligible reader should be able to reproduce
them on their own quantum processor using Labber and the ZI (Zurich Instruments) instrument
platform. The sections following this part will constitute very implementation-specific descriptions
of the instrument automation software.

The software portions of this chapter will start from the perspective of Labber, aiming to introduce
the reader to how Labber operates the drivers. As there are parts of the drivers which are non-
trivial in terms of simply setting API node values, these parts will be explained in subsections 3.2.2
and 3.2.3 while the API nodes needed for the experiments in this thesis is left as an appendix (see
appendix A). Playing back waveform information using the instruments requires the construction
of sequencer scripts for the AWGs; these scripts will be explained as well as their automatic gen-
eration by the instrument automation software. Finally, the implementation chapter will conclude
by outlining how the auxiliary goals of this thesis were tackled, namely AWG upload optimisation
and gate-fidelity benchmarking.

3.1 Quantum processor verification setup

The final driver verification as performed by this thesis was done on a multi-qubit quantum pro-
cessor loaded with a DUT bearing two qubits, one control line and three resonators for the respec-
tive elements. Every component of the system setup has been outlined in Fig. 3.1.

All measurements were carried out using Labber’s measurement editor, and logged using Labber’s
log browser. Via the drivers written for this master’s thesis, I could use the measurement editor
to control all required aspects of the instrument platform, described on individual-usage cases in
section 4.1 for the final QPU verification. The user is free to assume that in every mentioning of
an instrument being set to a particular value, it has been done using its Labber drivers through
the Labber measurement editor (the experiment setup portion of the program). Specific details
regarding the usage of Labber in combination with the UHFQA and HDAWG drivers for measuring
is given in section 3.2.
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Figure 3.1: Multi-qubit quantum processor system setup used for readout- and control driver
experimentation as well as the system characterisation seen in section 4.1. A component declaration
is given in Tab. 3.1. All vector signal generators, the HDAWG and the UHFQA are synchronised
using a 10 MHz rubidium reference clock. The asterisk-marked components close to the UHFQA’s
lower right are denoted After Frequency Downconversion (AFD) in Tab. 3.1.
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Table 3.1: Component declaration for the quantum processor system layout as seen in Fig. 3.1.
AFD: After frequency downconversion.

Layout symbol Component
Room temperature amplifiers Pasternack PE1522
HEMT amplifier Low Noise Factory LNF-LNC4_8C
Dual junction isolators Low Noise Factory LNF-ISISC4_8A
Band pass filter Mini Circuits VBFZ-6260-S+
Low pass filters AFD Mini Circuits VLFX580
Amplifiers AFD Mini Circuits ZFL-100LN+
Rubidium reference clock SRS Model FS725
Vector signal generators (IQ) Rohde & Schwartz SGMA SGS100A 6GHz IQ
Vector signal generator (LO) Rohde & Schwartz SGMA SGS100A 12.75GHz CW
VNA Keysight ENA E5080A 9kHz - 9GHz

3.2 Instrument automation using Labber
Labber’s role in the experimental setup is that of an umbrella program, encompassing a broad setup
of drivers and sending data vectors between the different instruments under its control. Each driver
controls its own instrument; Labber’s purpose is to communicate to the different drivers via its
own Python API [51]. The API in principle consists of a Python package which monitors specific
key functions that are expected to exist in the drivers. The full Labber interface in turn operates
by Opening the instrument connection → Set/Get variables (→ Close the instrument connection).
Interfacing to the UHFQA and HDAWG instruments is no different, and is done through the
Labber API.

However, the communication from Python to the ZI instruments is done using another API namely
the ZI API. To the ZI API, a user may send data commands to address strings similar to URL-
addresses. These URLs are instances of the ZI API as an object, fetched by Labber during the
opening of the instrument connection. Since Labber always performs an instrument initialisation
when connecting to a new instrument [51], it is only suiting that the ZI API object is fetched
during this time. Similarly to the ZI API object, the two ZI instruments have an AWG object
each which the driver may use to command their respective AWGs. The UHFQA also features a
Scope object, used for controlling its oscilloscope functions. Waveforms generated in the AWGs
are defining in turn using program scripts for the playback sequencers, known as SeqC-code. This
waveform generation will be further presented in section 3.3.

In order to automate the instruments needed for the final quantum processor verification, a user
must be able to configure the instruments to a broad range of input setups, sampling ranges, and
similar. The instruments do however offer much functionality beyond what has been used to com-
plete the tasks set by this thesis. Thus, only a subset of the full functionality offered has been
implemented and is visible as appendix A to this thesis. The reader should further note that not all
functions are readily available as simple API commands, for instance executing Rabi-oscillations
or a T1 measurement. Such procedures would be arduous to implement as ready-made function-
ality in the stock instrument since they depend on multiple other instruments. The upcoming
subsections will describe the more complex functions designed for this driver by this master’s the-
sis project, starting with how the automation suite generates control and readout pulses. This is
followed by the non-API Python functions written for the UHFQA, and ends with the HDAWG
functions respectively.
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3.2.1 Labber readout- and control pulse generation
The Labber automation suite features a multi-qubit pulse generator. This generator is a virtual
instrument used for generating arrays of waveform samples, constituting pulses used for a broad
variety of quantum applications. For this thesis, this multi-qubit pulse generator has been used
exclusively for generating the applied microwave waveforms on par with the limitations following
subsection 1.4.1.

Using the aforementioned measurement program (Measurement editor) part of the Labber instru-
ment automation suite, a user may operate the pulse generator to for instance procure a gaussian
pulse. The output of the pulse generator (the gaussian pulse) may then be linked to the input of
the HDAWG (the vectors which the user wishes to play back) graphically in Labber’s measure-
ment editor. As Labber executes an experiment, the measurement editor will fetch and load the
gaussian pulse into the HDAWG. This procedure is identical for any cross-instrument data sent
through Labber. In future applications, it is not unimaginable that a quantum program compilation
stack generates the waveform data fed into the automation platform instead of the pulse generator.

The reader is now expected to understand that every time a pulse has been generated out of thin
air, it has been calculated by the pulse generator depending on what the user has requested in
their measurement editor instrument settings.

3.2.2 Non-API Labber functionality for the UHFQA
The main functionality needed for operating the UHFQA not covered by the simple API functions
is demonstrated in Tab. 3.2. These functions are expanded upon in this subsection, presented by
descriptions and algorithmic flowcharts.

Table 3.2: Non-API custom UHFQA driver functions for execution on the personal computer.

Function Brief purpose
get ScopedVector Allows Labber to execute scope acquisitions,

keeps track of enabled channels, formats scoped
data to a Labber-compatible format.

runScopeDataAcquisition Handles the UHFQA oscilloscope, pushes
relevant API commands to configure and
acquire data from the oscilloscope ports on the
UHFQA.

generateLocalAwgProgram Generates the SeqC program depending on user-
selected options.

loadLabberVectorIntoProgram Inserts fetched waveform vectors from Labber
into the SeqC program.

localProgramPlayback Sets a playback repetition rate; the waveform
will repeatedly be played back after a given
amount of seconds.

compileAndUploadSourceString Compiles the SeqC program and uploads it to
the instrument. Keeps track of the compilation
process.
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get ScopedVector:
Acquire and send scoped data array to Labber
Expects: Labber quant object
Returns: Formatted array of scoped data

As Labber’s measurement program runs an experiment, the user may choose to log an arbitrary
amount of data variables. Two of these variables are the arrays ScopedVector1 and ScopedVector2,
which contain scoped data from the two inputs of the UHFQA. Should ScopedVector1 or ScopedVector2
be marked for logging, then upon each iteration throughout the experiment Labber will trigger
this function as a ScopedVector is get.

Since the UHFQA acts as the sole readout point for observing outputs from the QPU, it follows nat-
urally that the ScopedVector variables will be fetched on each and every iteration of the experiment
run by the measurement program. Thus, this subfunction contains calls to loadLabberVectorIntoProgram,
compileAndUploadSourceString and finally runScopeDataAcquisition - in order to upload and
scope the output following the upload of a new readout waveform. As seen in section 2.3, altering
the readout waveform and scoping for new data is common procedure for a large subset of QPU
experiments, necessitating this function’s design.

The algorithm for this function is illustrated in Fig. 3.2.

runScopeDataAcquisition:
Acquire data array from the oscilloscope
Expects: Self instance
Returns: Averaged, unformatted acquired data (dict of lists of floats)

The lock-in amplifier, consisting of an arbitrary waveform generator and an affiliated oscilloscope,
must be able to use said oscilloscope for acquiring the readout pulses sent through the quantum
processor. The runScopeDataAcquisition function serves as the main oscilloscope method for the
UHFQA. Bear in mind, it does not run the AWG portions of the lock-in amplifier.

During a normal run of the oscilloscope in the UHFQA, a number of records are collected al-
most asynchronously in comparison to the PC communication. Thus, the ZI scope module [19]
must be polled to acquire the current status of the scope. Via a tunable variable in Labber
(RecordAmountToAverage), the user may request how many records the user wishes to scope. In
practice, this sets a duration limit for the current scope run, which will break when the oscilloscope
has been re-run sufficiently for acquiring the requested amount of records. The main purpose of
acquiring more records for the driver is to average the measurements using element-wise averaging
(mainly to reduce noise).

Parallel to this, the scope module also has a progress metric, which also signals when the scope is
finished. Together with the amount of records gotten, these constitute the main criteria for halting
the oscilloscope run. At this stage, should the amount of records be inadequate, the entire func-
tion is re-run. These criteria are checked under the influence of timeouts and attempt iterators, in
order to avoid stuck-at-looping faults. Such faults commonly and easily occur when the user has
misconfigured the oscilloscope trigger in the experiment setup, meaning the function will loop as
no records are acquired.
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The quickest poll to the scope module from the driver returns about 30 records. Should averaging
not be an issue with respect to the manipulation of the acquired data, the user is encouraged to use
about 30 records as minimum averaging, as this adds no delay in comparison to even single-shot
measurements. Records fetched in excess of the selected averaging variable are simply discarded
otherwise. Likewise, the poll to the scope module returns a full status dict containing data about
the measurement, which is also discarded. The algorithm of this function is visible in Fig. 3.3.

generateLocalAwgProgram:
Generate SeqC program
Expects: Self instance
Returns: (None)

The generateLocalAwgProgram function creates a single string, with appropriate tags at various
locations. These tags are replaced by different functions throughout the driver, resulting in a fin-
ished SeqC program. In order not to upload non-compilable code to the UHFQA, these tags are
left as commented lines. The string, known as a source string [18, 19], is stored in the self instance
for later usage by the compileAndUploadSourceString function.

Because the generateLocalAwgProgram function generates the entire source string template, it also
serves as a SeqC-program reset at specific instances in the driver.

Illustrating this function in an algorithmic plot is unnecessary: its only action is to generate a
string. A typical finished source string (a SeqC program) is illustrated in Fig. 3.12.

loadLabberVectorIntoProgram:
Load data vector from Labber into the SeqC program
Expects: Self instance, Channel selection (int)
Returns: (None)

This function modifies the source string (SeqC program) as generated by generateLocalAwgProgram
for the UHFQA. The appropriate code lines are uncommented depending on for instance which
channels the user has activated. This function also marks the channels as valid when they are
loaded, which is used to configure the oscilloscope, since the returned data dict is altered depend-
ing on which combination of input channels received data.

This function also does the main insertion of the data previously loaded from Labber in the get
ScopedVector function. This is done by flushing the currently loaded vector data in the source
string and inserting the fetched data anew. The finished SeqC program is stored in the self instance.

The function has been illustrated in Fig. 3.4.
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localProgramPlayback:
Internal waveform playback repetition
Expects: Self instance, Current playback status flag (int)
Returns: Current playback status flag (int)

In certain measurements, such as sweeping for resonator locations using the UHFQA, the HDAWG
is superflous as it would merely act as a trigger generator. The localProgramPlayback function
takes care of this by inserting a local playback repetition into the SeqC program. This enables for
instance doing a resonator sweep using only the UHFQA instrument.

Should the rate be set to 800 ns for instance, then a loaded waveform into the UHFQA waveform
memory is to be played back at a given UHFQA output every 800 ns. This necessitates that the
loaded SeqC program is to be rewritten from the instrument driver, which this function also does.

The internal playback algorithm at its current state provides a playback resolution close to the
theoretical maximum (1/sample playback rate) as is shown in subsection 4.2.3.

The currently implemented algorithm is demonstrated in Fig. 3.5.

compileAndUploadSourceString:
Compile and upload SeqC program to the instrument
Expects: Self instance
Returns: (None)

The compile and upload source string function is identical for both the UHFQA and the HDAWG.
Provided that the generateLocalAwgProgram function ran, the compileAndUploadSourceString
function attempts to fetch a defined source string from the self instance.

This function initiates the compilation procedure, continuously fetching the status from the AWG
module’s compiler. The compiler in turn has a set of status flags for indicating its current status
[18, 19]. Likewise the compiler also provides compiler-specific errors; these are fetched if any and
simply fed onto a raised exception from the function. Warnings are fed onto Labber’s instrument
log, similar to a console where the user can see driver printouts. After the compilation stage, there
have been no identified usage cases where the compiled output could not instantly be uploaded
to the devices, hence the upload functionality. The upload procedure continuously fetches status
information as well as upload progress and relays this onto the instrument log.

As the AWG defaults to an off-state, some additional code fetches a status package from the
UHFQA, derives whether the AWG was playing before compile-and-upload, and resets it to this
value after the function has been executed.

The algorithm corresponding to this function is illustrated in Fig. 3.6.

35



3. Implementation

3.2.3 Non-API Labber functionality for the HDAWG
Similar to what was mentioned in subsection 3.2.2, the main functionality needed for operating
the HDAWG that is not covered by the simple API functions is demonstrated in Tab. 3.3. These
functions are likewise expanded upon in this subsection, presented by descriptions and algorithmic
flowcharts.

Table 3.3: Non-API supported custom HDAWG driver functions for execution on the personal
computer.

Function Brief purpose
generateLocalAwgProgram See Tab. 3.2. The function itself differs from

the UHFQA version in content albeit not in
purpose.

loadVectorsFromLabber Fetches waveforms from Labber, calculates
whether the sequencer program requires
recompilation and reuploading depending on
loaded vectors. Sets which vectors are to be
injected into the HDAWG sequencer memory.

compileAndUploadSourceString See Tab. 3.2.
writeWaveformToMemory Prepares injectable interleaved packages of

waveform data, enables the HDAWG to accept
said package, injects the package accordingly.

generateLocalAwgProgram:
Generate SeqC program

Expects: Self instance, Internal repetition rate (double), Buffer length (int)
Returns: (None)

The generateLocalAwgProgram for the HDAWG has a similar purpose to that of the same function
in the UHFQA. A key difference is that the HDAWG driver’s function contains semi-automated
characterisation options which assist in setting up the measurement program in Labber. Should
the user request a characterisation run, the driver will default to HDAWG channels 1 and 2 for
running the measurements. The difference in SeqC output from the function can be seen in Fig.
3.10 versus Fig. 3.11.

The function supports an internal repetition rate similar to what is done in the UHFQA, which is
received as an input parameter. The same code is utilised for calculating the delay needed during
characterisation runs such as Rabi oscillations or a T1 measurement. Because the HDAWG uses
memory injection for uploading waveforms, the SeqC program will be different in that a predefined
zero vector will be allocated for the memory injection. For this, the function requires a buffer
length input parameter, which consists of how many samples are needed for storing the longest
(active) waveform that will be uploaded.

The finished product of the generateLocalAwgProgram is a SeqC skeleton stored in the driver’s self
instance, constructed according to variables as set in the measurement program. The algorithm
generating the SeqC program for the HDAWG is illustrated in Fig. 3.7.
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loadVectorsFromLabber:
Load data vectors from Labber
Expects: Self instance
Returns: (None)

During HDAWG startup, a set of vectors are tagged by Labber as the initial set procedures take
place after connecting to (’opening’) the instrument. This procedure tags a set of channels which
will be used during the experiment. The loadVectorsFromLabber function goes through all tagged
channels, stores the previous waveform, fetches new waveforms from Labber, and if finding the
waveforms to be different - signals the driver to update the waveform requested by the measure-
ment program. This is in turn done through the writeWaveformToMemory function.

loadVectorsFromLabber also administrates all flags in the driver which control whether a vector
triggers a SeqC program compile-and-upload. If the requested waveform (is valid and) differs in
length in comparison to the currently loaded waveform in the HDAWG memory, a new SeqC pro-
gram must be uploaded to the sequencer. Also, this function administers the flags that set which
waveforms are to be uploaded by the writeWaveformToMemory function.

Fig. 3.8 illustrates the algorithm depicting how vectors are loaded from Labber for the HDAWG.

compileAndUploadSourceString:
Compile and upload SeqC program to the instrument
Expects: Self instance
Returns: (None)

See compileAndUploadSourceString in subsection 3.2.2: this function is identical.

writeWaveformToMemory:
Inject waveform vector data into allocated memory
Expects: Self instance, Current playback status flag (int)
Returns: Current playback status flag (int)

The writeWaveformToMemoryFunction serves as the primary method of actual waveform data up-
loading for the HDAWG, using direct sample injection into a pre-allocated memory space via the
sequencer program. It replaces sequencer-defined vector data (as done in the UHFQA) in order to
optimise the upload speed to the device.

The algorithm is illustrated in Fig. 3.9. The function itself is described thoroughly in section 3.4.
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3.3 AWG sequencer code generation
The Zurich Instruments UHFQA and HDAWG both require waveform playback for conducting
experiments; the HDAWG must play back control waveforms for the quantum gates whereas the
UHFQA generates the readout pulses that probe the readout resonators (see subsection 2.3.2). All
but the simplest of sinusoidals must be generated using so-called sequencer programs in order to
run on the ZI instruments. These programs are typically used to specify any arbitrary waveform
to be played back, or the location of a CSV file containing waveform data to be loaded and played
back. The resulting output of a sequencer program consists of compiled code for an FPGA soft-
core. The user scripts these programs using the proprietary language Sequence C (SeqC), which is
compiled and uploaded to the selected unit upon request. The language draws heavy inspiration
from C-like syntax, although puts heavy restrictions on variable usage.

As noted in section 1.2, an automated system should not require the user to script waveform pro-
grams. Thus, the drivers produced for this thesis have automated the process of SeqC generation.
As the user controls the instruments (and experiment) through Labber, the SeqC programs are
automatically generated depending on the requested functionality by the experiment. A Rabi-
oscillation experiment will for instance generate one SeqC program for execution on the HDAWG,
while an unspecified waveform playback experiment will trigger the default SeqC program genera-
tion. As can be seen in section 3.2, these programs are also automatically compiled and uploaded
to the instruments when deemed necessary by the drivers.

For further reference, the reader should be aware that waveforms defined in the SeqC programs
may also consist of explicitly defined vectors of data. Another method of waveform definition
consist of allocating memory (by defining vectors of zeroes) and filling these with waveform data
packages during runtime using the personal computer. The main advantage of the latter method is
that the program does not require recompilation nor reuploading to the devices, thus this method
is usually the fastest possible waveform upload method [18, 19]. These latter two methods were
used for the final experiments of this thesis; the UHFQA used data vector definitions while the
HDAWG used memory allocation with runtime data vector writing. See section 3.4 for a brief
mention as to why the UHFQA was not configured to use the most optimal method of waveform
uploading ergo runtime data injection.

The following subsections will present the SeqC program skeletons as automatically generated by
the Python drivers.
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3.3.1 HDAWG driver SeqC skeletons

A typical output of a default SeqC program skeleton is given in Fig. 3.10. The algorithm im-
plemented for generating this skeleton is presented in Fig. 3.7. As can be seen in Fig. 3.10, a
specified number of waveforms are defined as vectors of zeroes, waveform memory allocation if
you may. These are rewritten at runtime using vector data memory injection, the algorithm of
which is presented in Fig. 3.9. Even though the instrument offers sequencer rerun functionality
mitigating the usage of a while loop, it is still recommended to run sequencer programs using while
loop methodology as this improves on the playback jitter greatly [18, 19].

// Waveform definitions
wave w1 = zeros(1000); // End of w1 definition.
wave w2 = zeros(1000); // End of w2 definition.

while(1){
    playWave(1, w1, 2, w2);
    waitWave();
    wait(100);
} // End of while loop

Figure 3.10: SeqC skeleton as automatically generated by the HDAWG driver during default
mode (no preset QPU characterisation set). The wave w# definitions are expanded depending on
how many waveforms the user has requested to play back in the Labber measurement program;
in this example the user specified two waveforms for playback. The zeros(1000) are automatically
expanded to the amount of samples needed to accommodate the longest specified waveform. In
this example the user requested to play back two waveforms with the longest one consisting of
1000 samples. playWave specifies what ports the waveforms should be played back on, and will
expand to accommodate all specified waveforms. In this example, the user requested some inter-
nal waveform playback repetition, presumably about 350 ns at the default instrument settings.
wait(100) corresponds to 100 ticks of the internal sequencer clock; the tick amount is calculated by
the driver depending on the currently loaded settings in the instrument. Should no such delay be
requested, this line is removed. This SeqC-code lacks synchronisation with the UHFQA, which is
further discussed in subsection 5.2 as this is a potential improvement over the current experiment
methods.

The HDAWG features ready-made functionality for executing some QPU characterisation routines,
such as Rabi-oscillations and T1 measurements. These routines are requested by setting their
respective flag (boolean) inside the Labber measurement editor. This will trigger an if-statement
inside the SeqC-generating function within the driver, causing it to instead generate the SeqC-
program skeleton as is visible in Fig. 3.11.
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// Waveform definitions
wave w1 = zeros(1000); // End of w1 definition.
wave w2 = zeros(1000); // End of w2 definition.

playWave(1, w1, 2, w2);
wait(100 + getUserReg(0));

playWave(1, w1, 2, w2);
wait(100);

setTrigger(1); setTrigger(0); // Mark for the UHFQA
waitWave();

Figure 3.11: SeqC skeleton as automatically generated by the HDAWG driver during QPU
characterisation mode. This mode is triggered when the user request a Rabi or T1 measurement.
In contrast to the default mode depicted in Fig. 3.10, this mode only generates two waveform
definitions and one marker for the UHFQA to use as a readout trigger. The zeros(1000) are
automatically expanded to the amount of samples needed to accommodate the longest specified
waveform. During characterisation, this waveform will typically be a gaussian pulse. In this
example the default setting of two waveforms were defined with the longest one consisting of 1000
samples. playWave specifies what ports the waveforms should be played back on. getUserReg(0)
fetches a value from the AWG instrument’s user register 0 as this is among the only methods of
executing arbitrary variables in the sequencer; typically this value expands in a characterisation
measurement in increments set by the user using the Labber measurement program. Expanding
this waiting time is normal procedure during for instance a T1 measurement. The driver has
support for a so-called Ramsey measurement, used for characterising T2 albeit not done for this
thesis. Should a Ramsey measurement be requested, another waveform will be played before the
readout trigger is sent (using setTrigger). Should a Ramsey measurement not be requested, the
green lines are omitted. wait(100) corresponds to 100 ticks of the internal sequencer clock, this
tick amount is calculated from the required playback length of the allocated waveform space by
the driver. This way, the second phase of the program (setTrigger if Rabi, playWave if Ramsey)
is executed at the very finishing sample of the initial wave. At the start of any characterisation,
user register 0 will be 0 implying no delay between the first waveform and second waveform /
trigger. This method puts a minimum delay resolution in any Rabi and Ramsey measurement
corresponding to typically 3.3 ns, depending on the current sequencer clock rate settings.

3.3.2 UHFQA driver SeqC skeletons

Identical to what was shown in subsection 3.3.1, the UHFQA driver also generates SeqC code
automatically albeit less dependent on the chosen measurement experiment. The major difference
between the UHFQA and HDAWG in terms of the SeqC skeleton stem from the fact that the
HDAWG uses vector memory injection while the UHFQA loads and defines waveforms into the
SeqC code. Fig. 3.12 demonstrates the SeqC program skeleton as automatically generated by the
UHFQA driver. Do note the waitDigTrigger call at the top of the skeleton: a similar call is missing
in the HDAWG code which is arguably inflexible. This is discussed further in section 5.2.
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const RSC = 1/0.75; // Range scaling

// Waveform definitions
wave w1 = RSC * vect(0.45, 0.55, 0.65); // End of w1 definition.
wave w2 = RSC * vect(0.45, 0.55, 0.65); // End of w2 definition.

while(1){

    // if (t == 0) {
        waitDigTrigger(1,1)
        setTrigger(1);
        playWave(1, w1, 2, w2)
        waitWave();
        setTrigger(0);        

    // t = t + 1;
// } // End of t-swap

    // if (t == 1) {
        // wait(100);
        // t = 0;
    // } // End of t-reset

} // End of while-loop

Figure 3.12: SeqC skeleton as automatically generated by the UHFQA driver during default
operation. Note the vect() functions: in a typical measurement, the user requests the I and Q
waveforms corresponding to the readout pulse. These waveforms are loaded via Labber’s measure-
ment editor, and the vect contents are replaced with each individual sample of the two waveforms.
The user may select to only apply one waveform, in which the second definition will be omitted.
The parts marked in green correspond to the user setting an internal waveform playback rate.
Should such a playback repetition be requested, the green sections will uncomment, and the wave-
form will be replayed at a calculated interval present at wait(100). The vectors w1 and w2 are
in turn zero-padded with the intent that the playback repetition rate reaches near sample-rate
resolution, as is visible in subsection 4.2.3. The seemingly interesting way of resetting t stems from
the fact that ’setting a wait’ inside the main loop does not execute as expected, this is presumed
to be due to compiler optimisation or similar phenomena. Thus, the t variable is used in order to
acquire a playback repetition delay. The range scaling parameter may be changed using a custom
response to the range setting command; should the user request the instrument to change output
voltage range, a condition is triggered in which the 0.75 factor in this SeqC skeleton is modified
accordingly. This range scaling exists in order to match the output voltage of the UHFQA to that
defined by the multi-qubit pulse generator. The waitDigTrigger function exists in order to await
signalling from the HDAWG, as often the readout measurements must occur as soon as possible
when an algorithm has executed on the qubits.

3.4 AWG waveform upload speed optimisation
As explained in 1.3.2, this project proclaimed an auxiliary achievement in the form of waveform
upload optimisation in the created drivers. This section will outline how the solution to this aux-
iliary goal was implemented.

As explained in section 3.2, both the HDAWG and UHFQA instruments contain AWGs for gen-
erating control- and readout pulses respectively. These AWGs are controlled through a sequencer
program as explained in section 3.3. Generation of the waveforms may be done through the pro-
gram directly as shown in subsection 3.3.2, however this solution is very inflexible: the sequencer
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program is not real-time rewritable, it requires compilation and device uploading before any wave-
form data can be output. As shown in section 4.3, this process is very lengthy in comparison to
the time expected for simply uploading packages of playable waveform data. Both device specifica-
tions feature memory pre-allocation for data injection, meaning that provided the user has defined
a set memory allocation - playable vector data may be injected from the personal computer during
runtime. Such an upload method is expected to greatly improve on the waveform upload speeds,
as no recompilation of the sequencer program nor SeqC uploading is required.

The memory allocation was done in the SeqC generation stages, as shown in section 3.3. The
vector to be uploaded is fetched from Labber and analysed for its length. The SeqC program is
automatically written bearing an arbitrary amount of zero vectors, as visible in Fig. 3.10. Us-
ing the algorithm in Fig. 3.9, the program uploads the vector data more or less during runtime,
foregoing the need for SeqC compilation and upload as long as the vectors’ sizes remain identical.
A natural question to ask following this is why one may not simply allocate all of the available
memory space and simply upload what sizes of waveform is needed. The simple answer is due
to how the waveforms are played back. Observe the waitWave() command in Fig. 3.10: should
the pre-allocated vector be larger than the loaded vector, the final product will contain a large
zero-padding in the end. For many categorisation experiments such as Rabi oscillations, such a
delay would be greatly detrimental to accurately measuring the QPU performance parameters as
is for instance shown in subsection 2.3.4. Through experiment design, the need for SeqC updating
has been kept to a minimum and thus a great optimisation in terms of upload times has been
accomplished as is shown in section 4.3. The memory uploading procedure has been further opti-
mised by using a feature known as interleaving [18]. Essentially the waveforms to be uploaded are
separated two-and-two, and appended one onto the other. For eight waveforms, the driver now
only has to upload four packets of two.

The AWG for readout waveform generation inside the UHFQA also supports memory injection
according to the documentation of the device [19]. However in a personal written conversation,
Philip Heringlake at Zurich Instruments verified on the 14th of May that this feature is currently
bugged and thus this auxiliary goal was not achievable for the UHFQA. The main established
method of waveform upload optimisation consisted of foregoing the compilation and upload stages
of a typical upload, which none of the three other upload options [19] do. The upload time bot-
tleneck was instead bypassed via experiment design, such as sweeping the local oscillator of the
mixers instead of defining new waveform vectors.

We have reached the end of the Implementation chapter. The upcoming section will present the
results as acquired by this thesis.
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Figure 3.2: Algorithm of the main function for acquiring data when performing a measure-
ment using the UHFQA. Upon Labber requesting a new datapoint from the UHFQA, this func-
tion manages and calls the loadLabberVectorIntoProgram, compileAndUploadSourceString and
runScopeDataAcquisition subroutines. This function is run on every single iteration in a typical
QPU experiment.
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Figure 3.3: Algorithm flowchart of the UHFQA oscilloscope function. Visible in the lower right
is also an averaging stage, which performs element-wise averaging if requested by the user. The
wave nodepath construction in the beginning is used for sifting through the returned data for a
successfully scoped vector.
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Figure 3.4: Algorithm flowchart of the UHFQA’s function for loading Labber vectors into the
SeqC program. The definition stages near the end represent source string rewrite functions, im-
plying altering the SeqC code.
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Figure 3.5: Algorithm flowchart of the currently implemented waveform playback function. The
latter stages of the algorithm consist of time/sample playback conversions as well as padding until
no more resolution accuracy can be gained due to the minimum time needed to play back a sample.
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Figure 3.6: Algorithm flowchart of the compilation and upload procedure as used by both the
HDAWG and UHFQA instruments.
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Figure 3.7: Algorithm flowchart of SeqC program generation for the HDAWG. As the HDAWG
driver includes some assisting functionality in terms of QPU characterisation, the right path of the
algorithm will result in a noticeably different SeqC program than the left one as can be seen in
Fig. 3.10 versus Fig. 3.11.
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Figure 3.8: Algorithm flowchart of the HDAWG function used to load specified vectors from
Labber into the driver. Do note the four inquisitive stages near the end of the algorithm: these
make sure that no invalid vectors are loaded, no duplicate waveforms are uploaded, and tries to
avoid a sequencer compilation and upload. This is done to minimise waveform upload times, as
the SeqC program is only updated when necessary.
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Figure 3.9: Algorithm flowchart of the waveform data memory injection function for the HDAWG.
Do note the fetching of vector data from the self instance: the instance has a dict storing all channel
waveforms, which is manipulated by the loadVectorsFromLabber function. The fetch thus consists
of a dict lookup. Likewise the self instance provides information on what channels have changed
since the function was last called, in order not to unnecessarily update identical waveforms.
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Results

This chapter will present the outcome of the problem solving process as laid out by this thesis.
The initial chapters will focus on the quantum processor verification, presenting the results of the
QPU characterisation done with the thesis’ drivers in order to acquire the marked parameters
from Tab. [2.1]. The QPU-related experiment setups are outlined in chronological order in their
respective subsections. All QPU experiments have taken place using the setup as shown in section
3.1 apart from the initial VNA sweep in which the cryostat readout line up to the mixer stages
was connected to the VNA directly. After the QPU verification, this chapter will continue by pre-
senting Labber-related results such as demonstrations of the implemented functionality and some
driver-related characteristics such as driver timing benchmarks.

4.1 Driver verification by QPU characterisation

This section will demonstrate the results of the QPU characterisation, following a broad variety
of experiments done in order to acquire typical figures of merit of the QPU core. As was outlined
in sections 1.2 to 1.5, the drivers are to be seen as verified should a list of objectives be fulfilled.
Among these included final QPU verification, which this section aspires to treat.

The verification procedure is seen as the following: the QPU core was previously characterised by
one of my supervisors using the same hardware setup as is given in Fig. 3.1 although with stock
solutions and otherwise different drivers operating the instruments. The setup was then loaded
with the drivers as procured by this thesis in order to constitute the automated platform. Verifi-
cation success is measured on basis with how similar my measurements match those done on the
same hardware with an arguably experienced operator.

A full list of acquired parameters is given in Tab. 4.1. The remainder of this section will present
detailed information regarding these values. Do note that all error bars have been taken using
tool-assisted visual estimation based on acquired data. The comparable values have also been
extracted by me using the data collected by my supervisor. The experiments are described in a
chronological order, meaning that in case no other information regarding a certain parameter is
supplied, it has not changed since it last was mentioned in this section.
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Table 4.1: Table of acquired QPU characteristics versus target values taken using the same
measurements on the same instrument platform, albeit using different instrument drivers. The
top and middle values for f0 and χ correspond to qubits 1 and 2 respectively. The third value
corresponds to the resonance frequency of the interconnecting coupler’s resonator between the two
transmons, the coupler of which is connected to its resonator using two Josephson junctions in a
so-called SQUID configuration. Implying that the coupler also expresses similar behaviour as the
other transmons. The dilution refrigerator temperature were on the order of 7.5 mK in the 10 mK
stage.

Parameter Acquired values Comparable values
f0 6.1717500 GHz ± 125 kHz 6.1717500 GHz ± 85 kHz

6.0372855 GHz ± 68 kHz 6.0372875 GHz ± 88 kHz
6.716 GHz ± 1 250 kHz 6.716 GHz ± 235 kHz

χ 1.159 MHz ± 0.235 MHz 1.19 MHz ± 0.127 MHz
1.830 MHz ± 0.171 MHz 1.871 MHz ± 0.096 MHz
8.00 MHz ± 1.24 MHz 7.60 MHz ± 1.59 MHz

fq, QB2 4.302665 GHz ± 3.916 MHz 4.300000 GHz ± 4.146 MHz
Ω QB2 721 mV ± 20 mV 740 mV ± 15 mV
T1, QB2 ~57.6 µs ~62 µs

4.1.1 Resonator spectral detection and qubit spectroscopy
The theory underlying this subsection is outlined in subsections 2.3.2 and 2.3.3. This subsection
establishes preliminary values for the resonators’ spectral locations, preliminary values for the
qubits’ dispersive shifts and the qubit resonance frequencies. Tab. 4.2 shows characterised values.

Table 4.2: Table of acquired QPU characteristics in this subsection. The method is outlined in the
section itself, additional information in Tab. 4.1. Do particularly note fq, QB2: this value requires
both successful operation of the UHFQA and HDAWG instruments to be acquired, effectively
proving that the platform as created by this thesis can be used to acquire realistic values given the
verification method is trusted.

Parameter Acquired values Comparable values
f0 6.1717500 GHz ± 125 kHz 6.1717500 GHz ± 85 kHz

6.0372855 GHz ± 68 kHz 6.0372875 GHz ± 88 kHz
6.716 GHz ± 1 250 kHz 6.716 GHz ± 235 kHz

χ 1.159 MHz ± 0.235 MHz 1.19 MHz ± 0.127 MHz
1.830 MHz ± 0.171 MHz 1.871 MHz ± 0.096 MHz
8.00 MHz ± 1.24 MHz 7.60 MHz ± 1.59 MHz

fq, QB2 4.302665 GHz ± 3.916 MHz 4.300000 GHz ± 4.146 MHz
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For acquiring initial estimations for the spectral locations DUT resonators, one could in theory
use the UHFQA to sweep (S21) an extreme bandwidth to observe all resonator dips that follow
from such an experiment. In the interest of life quality, one usually considers the designer’s word
regarding where the DUT’s resonators are located within the spectra; to gain a somewhat sufficient
readout of said locations, one may use a VNA to characterise the first parameter of the QPU core,
namely the spectral locations of the resonators. The DUT loaded in the final verification setup
contains three resonators, coupled to two qubits and a separate coupler between said qubits. Fig.
4.2 demonstrates a VNA sweep of the DUT and the spectral locations of the DUT resonators.

The sweep is done in power as well as in frequency. Keep in mind that the dispersive shift is
inversely power-dependent as mentioned in subsection 2.3.2. This implies that at ’high power,’
the χ-factor will be low yielding the so-called bare resonance frequency of the resonators. The
dispersive shift is however present in the lower power ranges. As we see in Fig. 4.1 and 4.2, the
χ-factor is visible as the S21 dip moves in frequency (blue). It should be mentioned that the power
sweep could have been initialised at an even lower value to guarantee that the dispersive shift had
yet to take effect. Same is inversely valid for the upper sweep bound.

Figure 4.1: VNA frequency versus output power sweeps of the coupler resonator located between
the two qubits. The IF bandwidth was 1 kHz, 100 averages per sweep, swept from −35 dBm to
5 dBm. As opposed to Fig. 4.2, the two Josephson junctions (SQUID) mounted to the resonator
from the coupler line demonstrate a leftwards dispersive shift. All acquired values are presented
in Tab. 4.2. A suggested improvement to the sweep would be to extend the output power limits,
as this usually better guarantees that the qubits are / are not affecting the measurement. This is
further discussed in Fig. 4.4.
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Figure 4.2: VNA frequency versus output power sweeps of qubits 1 (top) and 2 (bottom). The
IF bandwidth was 1 kHz, 100 averages per sweep, swept from −35 dBm to −2 dBm. The blue
portions of the images demonstrate where relatively low power is transferred through the system
from the VNA, implying that the readout line is stricken into resonance. These regions are used
to locate preliminary values for the resonator frequencies. We also see that the dispersive shift χ
is rightwards for both DUT qubits. All acquired values are presented in Tab. 4.2. As in the case
with Fig. 4.1, these sweeps show clearer potential for improvement by extending the output power
limit. This is seen in the blue lines connecting to the borders of the figure: more accurate values
would be expected should they be allowed to straighten out. As of now, some qubit-dependency
can be suspected from the image (some curvature is present).
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To verify the UHFQA driver, we may now use the UHFQA to locate the spectral locations of
the resonators while under the influence of the transmons. Due to the limit in output power and
the differences in spectroscopy using continuous wave measurements vs. the pulsed nature of the
UHFQA, these measurements are unsuitable to repeat at high output power. The UHFQA is
dependent on external mixers in order to generate frequency content at the correct spectrum for
the DUT. A readout pulse sweep was thus constructed using

freadout − fLO + foffset, (4.1)

where: freadout was 6.17302 GHz and 6.03914 GHz, for qubits 1 and 2; fLO was 6.393 GHz, for both
qubits; and foffset = ± 2 MHz, in 101 steps. This sweep was fed into Labber’s multi-qubit pulse
generator, which constructed a 100 mV cosine pulse to be loaded into the UHFQA. The reason for
(4.1) stems from a decision made to sweep the LO instead of sweeping the readout pulse, since this
would create new waveform values to be loaded into the UHFQA for every measurement. This in
turn would imply lengthy measurement times. Thus, to keep the waveform value to be loaded into
the UHFQA constant, the LO was configured to sweep from

6.393 GHz + foffset. (4.2)

The UHFQA driver in turn correctly detected duplicate upload attempts of a non-changed wave-
form, which optimised the measurement time noticeably. The UHFQA was set to 512 samples
averaging. Fig. 4.4 demonstrates the resulting outcome of the experiment. Fig. 4.3 demonstrates
an identical experiment for the coupler’s resonator, apart from the sweep interval (-3 to -10 MHz
in 501 steps), LO frequency (6.932 GHz) and sample averaging (32 vs. 512).

Figure 4.3: UHFQA readout of the coupler resonator. The symmetry of the resonator is very
low, of which I have been assured was replicable. The main purpose of this graph is thus to verify
that the coupler’s resonator is working in the DUT. The noise level could have been mitigated by
increasing the sample averaging, likewise some curve could have been fitted to the plot although
this would not serve a useful purpose. Do note that the resonator dip in this image does not match
the value in Tab. 4.2. Probable explanations could be the nature of the VNA’s CW sweep versus
the UHFQA’s pulse sweep, but it is more likely that the UHFQA is outputting a signal power in
which the qubits are affecting the result. This suspicion is emphasised following Fig. 4.4, in which
this influence is clearly visible.
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Figure 4.4: UHFQA-sweep demonstrating successful load-and-scope functionality of the UHFQA.
Likewise, the existence of two resonators has been confirmed. The UHFQA was configured to use a
0% scope reference window, 0 µs hysteresis - in order to initiate the scoping at the trigger. Trigger
holdoff was set to the lowest possible (20 µs). The integration time was set to 5 µs, which is longer
than the 4 µs pulse length. Do note the differences in resonator frequency values in the notch vs.
Tab. 4.2. A probable source of error could be the relatively ’high’ output power from the UHFQA
in this figure. It is visible that the shape of the notch is not as symmetrical as shown in Fig.
2.17, which indicates that the qubits are affecting the results by shifting the resonance frequency.
Another probable source of asymmetry could be due to impedance mismatch within the QPU core
with regards to the transmission line [52].
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As can be seen in Fig. 4.5, the UHFQA can demonstrate a notch peak attenuation from −37.49 dB
to −47.83 dB, as gauged in the top graph of Fig. 4.4. The goal achieved (>10 dB) made quantified
by asserting a number to it does however not prove the point: using the UHFQA, the user can reg-
ister notch peaks which clearly match the overall theoretical expectations (Fig. 2.17) which in turn
imply that the UHFQA’s scoping capabilities appear to be functional. A suggested improvement
to the verification methodology could instead be to compare the acquired value to a more trusted
source, such as a commercial oscilloscope with averaging capabilities, and then inspect suitable
differences.

Figure 4.5: Snapshot from Labber’s logging browser using Labber’s marker gauge tools, with
values added for clarity.

Following locating the spectral positions of all resonators, we may continue by running both the
UHFQA and HDAWG together in order to find the qubit resonance frequencies. The verification
will from now on be done on a single qubit, more specifically qubit 2. The next experiment is
commonly referred to as qubit spectroscopy, described by theory in subsection 2.3.3. Fig. 4.6
demonstrates the qubit driven by the HDAWG output, and read out using the UHFQA.

The readout was performed as done previously, using relative parameters with a swept frequency
offset. The sweep was done from 4.2 GHz to 4.6 GHz in 301 steps. freadout was fixed at 6.03914 GHz,
and the UHFQA averaging was set to 2048 samples per data point. The HDAWG was added into
Labber’s instrument server along with another mixer, calibrated and pre-configured during the
comparable characterisation run. Since signal power affects the measurement (the fq spike widens
for instance), a somewhat careful value of -15 dBm was chosen. The HDAWG’s internal clock was
set to match that of the UHFQA at 1.8 GHz. Likewise the UHFQA was set in the measurement
setup to trigger its AWG using a trigger input from the HDAWG, since the readout pulse should
execute as soon as possible after the control pulse has been completed. As shown in the SeqC
implementation, the AWG in turn triggers the scope function via an internal signal call.

As is seen in Tab. 4.2 versus Fig. 4.6, the value fq, QB2 extracted from this experiment match
the expected value well, which in turn verifies the control and readout functionality of the platform.
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Figure 4.6: Qubit spectroscopy of qubit 2 in the multi-qubit QPU. Using the HDAWG and
UHFQA, qubit 2 is located to 4.302655 GHz. Do note the second-highest peaks at about 4.20 GHz,
these are heavily suspected to be remnants of LO leakage, since these provided similar signal
strength when the spectrum was scoped while the qubit was left non-driven.

4.1.2 Rabi oscillations and energy relaxation times
The theory underlying this subsection is outlined in subsection 2.3.4. This subsection establishes
preliminary values for the π-pulse amplitude Ω, as well as the energy relaxation time T1. Tab. 4.3
shows the values characterised in this subsection.

Table 4.3: Table of acquired QPU characteristics in this subsection. The method is outlined in
the section itself, additional information in Tab. 4.1.

Parameter Acquired values Comparable values
Ω QB2 721 mV ± 20 mV 740 mV ± 15 mV
T1, QB2 ~57.6 µs ~62 µs

Qubit spectroscopy allowed us to acquire the frequency used for controlling qubit 2. We also know
at what resonator we expect to see a response from it following stimulus. The multi-qubit generator
was reconfigured via Labber to output a mere waveform primitive in the form of another cosine
pulse. Its frequency was changed from −100 MHz to −225 MHz following analysis of a planned
Ramsey oscillation experiment, this will be delved into at the end of this subsection. The LO was
accordingly set to 6.395 GHz, and the generated readout waveform in the multi-qubit generator
followed accordingly. This pulse was as before fed into the HDAWG. A waiting time was set up for
the HDAWG of 10000 clock cycles in order to ensure that the qubit has sufficient time to relax into
the ground state after excitation. The amplitude of the HDAWG was set to sweep from 100 mV to
5 V in 101 datapoints, while the UHFQA was set to 512 samples averaging per acquired datapoint.
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Adjustments to the vector signal generators had to be made: the output power was set very low at
−60 dBm, at a new frequency of 4.525 GHz as the control waveform was changed. The expected
outcome of the experiment was a coarse, converging sine wave which was also the case as is visible
in Fig. 4.8. A finer sweep was promptly set up from 0 mV to 2 mV in 201 points, 4096 datapoints
averaging, −40 dBm output power. The results matches the theoretically expected output as shown
in subsection 2.3.4. Using Fig. 4.8, we may now estimate a preliminary value for Ω, which is seen
at 721 mV. A suggested improvement for further applications would have been to apply a fitted
converging sinusoidal to the analysed data, which lessens on having to estimate a fitted level inside
a noisy output. Another improvement in methodology would be to set the UHFQA to signal the
HDAWGwhen a measurement was completed. This improvement is discussed further in section 5.2.

Since we now know the preliminary amplitude Ω for setting the qubit to |1〉, we may now study
its energy dephasing time T1. The driver was set to run a T1 experiment which is identical to the
Rabi experiment apart from bearing a fixed amplitude and sweeping the delay at which a readout
pulse is ordered. The SeqC program allows for a user-settable delay without any code re-uploading,
in which user register 0 was used in a wait statement (see Fig. 3.11). User register 0, seen as τ in
(4.3), was swept from 0 to 90,000 which corresponds to delaying the readout pulse with

τ · 8
1.8 · 109 = delay ∈ [0, 400 µs], (4.3)

albeit neglecting the time required for calling getUserReg from the sequencer, and the time required
for triggering the UHFQA from the HDAWG. Investigating these values and including them to
the calculation could change this value with a nontrivial amount; improving on this methodology
would likely infer more accurate results in this experiment. The outcome of the T1 sweep is visible
in Fig. 4.7, matching the expected curve from theory as is shown in Fig. 2.22.

Figure 4.7: Energy dephasing time experiment at 721 mV input amplitude. The curve is presented
normalised to the maximum amplitude as well as the estimated convergence level, yielding at the
y = 0.368 point T1 = 57.6 µs. The experiment method is outlined in subsection 4.1.2. Note the
choice of y-axis normalisation, in particular the convergence line to the bottom right. As just
mentioned, T1 is likely slightly lower since some delay should be added. As is well-known in this
field, T1 may vary substantially over time - even for shorter timespans. No filtering was applied.
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Figure 4.8: Illustrations of two rounds of Rabi oscillation experiments on qubit 2, one done for
rough estimation (top) and the other one for finer data acquisition (bottom). The control pulse
input amplitude, shown on the x-axis, is comparable to the current Z-axis position of the Bloch
vector, implying pointing straight at |1〉 at 721 mV as seen in the lower figure. Ω was acquired at
the sine wave peak, with slight noise filtering applied post-measurement.

The next calibration step would normally be to acquire T2 using so-called Ramsey spectroscopy.
Some issues were had with the drivers in this regard: for a Ramsey spectroscopy experiment, two
π
2 -pulses are played back with a variable delay from 0 to τ between them. A readout is then
performed immediately after the second control pulse finishing. However, the loaded waveform
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primitives typically consist of a pulse envelope bearing a subtone of some modulation frequency.
This frequency is to remain constant, while the envelope is supposed to be swept as described.
Using the HDAWG SeqC code as shown in Fig. 3.11, this was not the experimental outcome, and
thus no T2 value was acquired. Since the main sample clock of the sequencer in the HDAWG ran at
225 MHz, it was thought that for this very specific frequency the envelope would correspond to the
correct one. Despite matching the generated waveform to the sequencer clock, no usable data was
acquired. Suggestions for future implementations would be to utilise the built-in oscillators of the
HDAWG to apply the required subtone, and use built-in functionality for modulating a Ramsey
spectroscopy experiment. Fetched waveform primitives may then in fact be identical to the one
used in the Rabi oscillation experiment, albeit halving the input amplitude Ω acquired from the
Rabi experiment since Ramsey spectroscopy is done using Ω

2 -pulses.

We may thus conclude the QPU characterisation experiments as done on the QPU in order to
verify proper functionality of the HDAWG and UHFQA drivers. The next section will treat the
operative properties of said platform, mainly from a perspective of the Labber framework itself.

4.2 Instrument control and automation using Labber

This section intends to demonstrate the functionality of specific programmed functions in the
HDAWG and UHFQA drivers. This demonstration will initialise with a simple demonstration of
what is being loaded versus what is played back by the drivers, continued by showing Labber’s
generated GUI along with the playback resolution accuracy, and finally demonstrating some typical
timestamp measurements done within Labber’s log functionality.

4.2.1 Waveform definition, playback, and scoping

As can be seen in Fig. 4.9, the drivers for the UHFQA can load and play back arbitrary waveforms.
The figure demonstrates an experiment where two complex waveforms were loaded one after each
other, one consisting of a 100 mV amplitude gaussian pulse and a 500 mV amplitude gaussian
pulse respectively. Subfigures (a) and (b) in Fig. 4.9 demonstrates the target loaded I and Q
waveforms, while (c) and (d) demonstrates the recorded output from the UHFQA’s AWG. The
scope data was captured using the same UHFQA driver. As can be seen in the image, the peaks of
the I waveforms were both defined to be located at 325 ns whereas the scoped input (synchronised
to the waveform playback using a digital marker) shows that the waveform peaks are located at
461.1 ns and 455.5 ns for the 100 mV and 500 mV I-curves respectively. This result implies a delay
from playback to scope in the order of 135 µs within the UHFQA. UHFQA-generated and scoped
waveforms undershoot when returning to 0 V: the 100 mV waveform undershoots with 11.3 mV
while the 500 mV waveform undershoots with 50.1 mV. As briefly noted in Fig. 4.9, the reason of
the observed undershoot is currently not understood, but speculated to stem from general non-
ideal variability within the setup.

Visible in Fig. 4.10, the drivers for the HDAWG can load and play back arbitrary waveforms. An
operator error was made as the scope was set to 50 Ω reference while the HDAWG was not coupled
this way, resulting in a distorted scoped amplitude.
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Figure 4.9: Graphical demonstrations of defined (a, b) versus actual waveforms as played back
(c, d) by the UHFQA driver. The defined pulse constitutes an (arbitrary, fictional) π-pulse
lacking a Q component. The played back Q component as would then be expected consists of
noise. Do note the differences in peak amplitude of the 100 and 500 mV I waves, this behaviour is
not understood at this time. Also note the undershoot of the measured 500 mV I wave, another
currently non-understood phenomenon albeit speculated to stem from general non-ideal (dynamic)
variability in the setup. Overall shape and amplitude of the specified and measured waveforms
correspond adequately.
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Figure 4.10: Scoped output of the HDAWG using an MSO. Captured at 8.40 GHz, 20.0 GSa/s,
2.00 kpts. The markers have been set following visual inspection. The yellow trace corresponds
to the I signal as defined in the multi-qubit pulse generator (Labber). The division is set to
50 mV/div in both shots. The time reference (x-axis) is to the HDAWG’s output marker’s rising
edge, as generated by the SeqC program. A choice was made to gauge the signal widths from more
easily identifiable wave edges, i.e. two sine wave crests, as the waveform start/end is embedded
in the noise floor and thus not as easily noticeable by eye. The MSO was set to 50 Ω reference
even though the HDAWG was not set to 50 Ω coupling, resulting in distorting the scoped output
amplitude. The relative amplitude from one point to the other within the waveforms do however
coincide well for both waveforms, implying that the HDAWG has loaded the vector data correctly.

63



4. Results

4.2.2 Manual instrument interface via Labber’s instrument
server

Integrating the Python drivers into the Labber instrument framework automatically generates a
graphical user interface along with set/get functionality for individual parameters as is shown in
Fig. 4.12. Using normal operation, all interface to the instruments would be done in the measure-
ment program using node values (see appendix A); this interface is only visible should the user
wish to engage in manual operation. The functions have been assorted into sections as is visible
to the left, and groups as is visible in the subwindows just right of the Sections column. The
assortment was done based in part on the ZI LabOne GUI interface, with the intent of easening
on operator confusion: an operator would only have to learn specific setting names and functions
in one of the interfaces, as the other one would feature similar naming.

Figure 4.11: Screenshot from Labber’s Measurement editor, currently seen defining a −225 MHz
control pulse to be fed into the HDAWG.
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Figure 4.12: Screenshots from Labber’s Instrument server, demonstrating manual control over
the HDAWG (top) and UHFQA (bottom). The HDAWG interface is demonstrated while bearing
an active connection to the instrument. The graphical window demonstrates loaded vectors related
to the instrument in Labber, and typically demonstrates the loaded or scoped waveform(s). Fig.
4.11 demonstrates a screenshot from within the measurement editor where the waveform is defined
in the multi-qubit pulse generator (virtual instrument).

65



4. Results

4.2.3 Internal playback repetition accuracy
This subsection demonstrates the internal waveform playback resolution of the AWG inside the
UHFQA, as was used for scoping results when no external trigger was provided by the HDAWG.

As can be seen in Fig. 4.13, the internal waveform playback resolution is not at its theoretically
maximum level (0.5̄ ns accuracy). This issue has been identified to be related to the zero-padding as
done in the algorithm as seen in Fig. 3.5. Experiments show a consistent 4.4̄ µs accuracy which cor-
responds to one period of the UHFQA clock related to the wait command as seen in stage Convert
waiting time to ticks of the built-in 225 MHz clock... in Fig. 3.5. Following this analysis, a future
improvement has been identified as trying to increase the repetition accuracy in the algorithm.
However, since most experiments are done using another ZI instrument as a ’master’ (in this case,
the HDAWG), thus not relying on the internal repetition accuracy - some thought should be given
as to the purpose of increasing the accuracy beyond 4.4̄ µs when there is no trigger master available.

Figure 4.13: Screen capture of a mixed-signal oscilloscope demonstrating the playback resolution
accuracy of the internal playback function as described in Fig. 3.5. The loaded waveforms are two
arbitrary parts of a sinusoidal, played by the I (yellow, top) and Q (blue, bottom) channels. The
flank markers have been manually set at a zoomed-in state. The playback rate was specified to be
10 µs, note the 0.003 µs offset in the measurement: this accuracy rate is not at the theoretically
maximum internal playback rate accuracy (0.5̄ ns), as outlined in subsection 3.2.2. The MSO was
set to 20 GSa/s sample rate, 500 MHz bandwidth and 220 kpts memory depth.
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4.3 Platform runtime measurements and upload
times

This section presents runtime measurements of specific durations within the constructed instru-
ment platform, such as the average time required for establishing an active instrument connection,
uploading a waveform etc. The HDAWG measurements were done on waveforms bearing 7472
samples while the UHFQA measurements were done on samples bearing a swept range, however
in similar orders of magnitude. The measurements are summarised in Tab. 4.4.

Table 4.4: Table of acquired runtime measurements. The HDAWG measurements have been
coloured red as the data illustrations in Fig. 4.14–4.16 use a red curve for illustrating the HDAWG
data and a black curve for the UHFQA data.

Runtime Average Median Hi./Lo. Samples
logged [ms] [ms] [ms]
UHFQA 2,603 2,609 2,670 / 2,510 21
Connect
UHFQA 632 641 721 / 498 250
Compilation
UHFQA 764 701 1,452 / 701 250
Upload
UHFQA 1,673 1,639 2,324 / 1,466 240
Scope
HDAWG 2,328 2,329 2,391 / 2,211 25
Connect
HDAWG 1,288 1,325 1,454 / 1,018 274
Compilation
HDAWG 1,481 1,487 1,582 / 1,201 274
Upload
HDAWG 131 134 190 / 58 273
Injection

An interesting observation during an earlier memory injection in the HDAWG was that every
twelfth waveform uploaded to the instrument had a substantial increase in upload time, for rea-
sons which are not understood. The time increase were in the order of seven times longer versus
the average. The three highest upload times recorded were then 3 315 ms, 3 018 ms and 2 801 ms.
The three lowest were 30 ms, 31 ms and 31 ms (n = 36 in this separate run).
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Figure 4.14: Sample-duration graph of the connection times required for Labber to initiate
communication with the UHFQA (black) and HDAWG (red). As can be seen in comparison with
Fig. 4.15 and 4.16, the connection times are the lengthiest instances (measured) in the drivers.
Fortunately, these execute only once per measurement setup, which in turn also serves to explain
the lower sample counts as seen on the y-axis. The upward straightness of the lines further imply
that the connection times are rather consistent. Although as can be seen in Tab. 4.4, we notice
a difference of 160 ms between the shortest and longest established Labber connections in the
UHFQA and 180 ms for the HDAWG.
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Figure 4.15: Sample-duration graphs of the (a) compile duration times and (b) upload duration
times for the UHFQA and HDAWG respectively. As can be seen in (a), the compilation time
is not as easily estimated as for instance the connection times in Fig. 4.14, fortunately the skew
in the case of the HDAWG seems to be towards a shorter duration rather than longer ones as
visible by the non-linear break in the lower parts of the red curve. As is seen in (b), we notice
a particularly strange duration time set for the UHFQA: the perfectly straight portion implies
that the compilation always takes 701 ms, however there is a ladder-like behaviour skewing the set
towards longer compilation times. Code which may cause this structure could for instance be a
while-loop running in parallel with some function which checks for function completion at some
interval of delay. Should the first pass of the loop fail the break-case, albeit the second one (done
after some fixed delay) pass - then this would be the expected duration set. Although, please
observe the non-stairlike behaviour at sample ~225, which implies that there is still some variation
should the speculated loop structure be a feasible hypothesis. The sudden skew towards lower
times in the HDAWG upload times is also of interest, visible near the bottom. 69
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Figure 4.16: Sample-duration graphs of the (a) UHFQA scope functionality and the (b) HDAWG
memory injection functionality. As can be seen in (a), the oscilloscope duration times vary sub-
stantially between runs. The differences between the shortest and longest scope runs span 858 ms,
with a skew towards longer durations. The scope was set up in single-shot mode, meaning in turn
that for instance applied averaging would only serve to increase these times further. We see in
(b) when compared to Fig. 4.15 that there is a major improvement in waveform upload times for
the HDAWG when using memory injection as opposed to using SeqC code uploading. Also, the
upload times using injection shows slightly less variance, as seen in the vertical straightness of the
curve.
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5
Discussion & Conclusion

Following the execution of this master’s thesis project, a conclusion has been reached as will be
presented at the end of this chapter. Before this, there are noteworthy points of discussion that
should be addressed regarding various details throughout this thesis. This chapter assumes to
some extent that the reader is now acquainted with various topics described in the thesis content.

The first section will treat a different (considered) problem-solving approach to how the drivers
play back data. The next section will discuss observed shortcomings in the synchronisation between
the HDAWG and UHFQA, and how these could be solved in future implementations. Finally, this
chapter will briefly discuss social impacts etc. of this thesis and finally conclude with the answer
to the research question.

5.1 Compression-inspired sequencer programs
As was shown in section 4.3, the time required for uploading constitutes a significant portion of
the experiment time in comparison to other durations of an experiment.

Borrowing from techniques used in various standard compression algorithms such as LZ77/78, one
could imagine a future setup where waveform primitives (such as π-pulses) are defined in the SeqC
and played back when needed according to a list. A waveform primitive could be defined using
memory injection for fastest possible upload, then stored as an available waveform in the memory
ready to be played back according to some SeqC-program written following the sequence list. The
program itself would be automatically generated by the driver, with the overall goal of mimicking
compression lookup tables as given in the very common Lempel-Ziv algorithm [23]-[25]. This would
be done mainly by spotting identical subcomponents in a given set of data and re-using them in-
stead of redefining duplicate data. Even better would be if this algorithm could be controlled using
the User registers, allowing for potentially great waveform playback flexibility. For instance, a 3 in
User register 0 could correspond to playing a π-pulse, while a 100 in register 1 could correspond to
waiting 100 ticks at playback finish. This solution variant might however bring with it unwanted
side-effects, as calls to User registers are sluggish and cumbersome from the sequencer. ’Slow’
would imply that a single call to fetching the content of a user register is comparable to a large
portion of the energy relaxation time, effectively making the qubit useful for less time (which is
already at a premium).

For future projects, it is hereby instead suggested to split the multi-qubit generator in Labber into
a waveform primitive generator and a sequencer generator. The sequence generator could take a
custom algorithm to execute as a parameter, and fetch waveform primitives from the primitive
generator as needed. The output could then be interpreted by the drivers, which would generate
a SeqC program following the generators’ specifications.

Perhaps with the combination of User registers at suitable locations, this solution might forego the
need of sequencer code uploading altogether. This is speculated to keep the optimised runtime of
a measurement intact while allowing for custom algorithm construction.
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5.2 Synchronising the HDAWG to the UHFQA
On the 17th of April 2019, Bruno Küng of Zurich Instruments recommended that synchronisation
between the HDAWG and the UHFQA should be done using the triggering functionality, as the
intended intra-device communications link using ZI’s proprietary device connection is not yet im-
plemented for the HDAWG and the UHFQA combination. The user is thus tasked with designing
suitable SeqC code for intra-device communication, as would be needed in a vast number of ex-
periments.

Currently, there is no implemented functionality in the HDAWG for listening to the UHFQA’s
state of readiness after a scope run. Instead, the user has the option to set the amount of time in
which the HDAWG will cease operation after a played-back waveform set. For successful operation,
the operator must estimate how long time is needed for the UHFQA to complete its measurements
before a new waveform can be played, in which case the user likely sets unnecessarily long waiting
times to be safe. A suggested improvement for the future would be to include another trigger-
ing channel, in which the UHFQA can signal the HDAWG that a scope run has been completed.
However simple modification to the SeqC code will not suffice as the averaging is performed on
its master PC. The wiring solution can however remain intact with simple modifications to the
HDAWG’s driver, as the triggering ports are bidirectional and trigger port directional switching is
easily implemented in the drivers.

5.3 Social, economic and environmental factors
With sufficient modification, the instrument platform following this master’s thesis project could fit
inside a quantum-processor software stack. This would enable software developers to develop code
for generating compatible compilations into said platform, and hardware developers to implement
newer QPU hardware. This easening of development in turn implies a step closer to quantum
supremacy, which has a vast array of foreseen effects on everyday life in topics such as secure
communication and encryption breaking. Social and economic gains are however foreseen in for
instance the vast potential of natural quantum simulations enabled by quantum computing. It is
imaginable that such simulator systems could for instance improve our current understanding of
the environment. Many materials used in the production of quantum computing systems akin to
the one used in this thesis require rare-earth metals and conflict minerals for electronics produc-
tion. Procuring these materials is in turn by common knowledge known to have a social, economic
and environmental impact without need for further explanation.
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5.4 Conclusion of this master’s thesis
In this master’s thesis, I demonstrated an instrument and measurement automation platform
created using Python for implementation in Labber. The platform is currently operational in a
multi-qubit quantum processor located at the Quantum Technology laboratory, at the Department
of Microtechnology and Nanoscience, Chalmers. The platform created has automated much work
normally required to run the ZI instruments, and allowed for simplification as the data acquired is
now handled by instrument control software. Some parameters were acquired using these drivers for
the verifying QPU, specifically the spectral locations of its resonators, qubit frequency of one of its
qubits, said qubit’s π-pulse amplitude and energy relaxation time. The platform was benchmarked
in timestamps, revealing a large improvement depending on the choice of waveform upload method.

The introduction laid out the current research field of quantum computing, and emphasised the
need for control and readout automation in order to increase quantum-computer scalability. From
this need arose the research question: how should one construct a scalable instrument-automation
platform that can control a multi-qubit superconducting quantum-processor setup, using arbitrary
waveform generation and lock-in amplifier readout?

The answer to the research question is: by implementing the required instruments in a control
platform framework where ...

• The user-required interactivity should be minimised as much as possible as not to restrict
on experiment design.

• The drivers should (with supporting quantum theory) be optimised for low latency, for
instance minimising instrument intercommunication and optimising sequence tables in order
to reduce on lengthy function calls.

• The drivers should allow for arbitrary user-input, preferable calculated in the instrument
handling software.

• The automation platform should be verifiable on real hardware by replicating existing and
theoretically known experiments.

• The associated waveform upload times should be minimised.

For future implementations, I primarily expect the instrument and measurement automation plat-
form to improve in terms of SeqC code generation, upload times and known verified QPU experi-
ments.

The goals as laid out by this master’s thesis project were completed, which in turn implies that the
thesis resulted in instrument and measurement automation for classical control of a multi-qubit
quantum processor.
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A
Implemented ZI API commands

This appendix lists the implemented Zurich Instruments API functions for the UHFQA and
HDAWG respectively. Even though their API has support for a substantially larger number of
commands, the ones presented here were implemented as they constituted necessary functions for
combating the problems as laid out by this thesis.

The instruments feature lists of many identical calls, for instance the call to activate signal output
1 is the same as activating signal output 2 apart from the number used in the call. The drivers
thus iterate a received command to figure out what particular output (or similar) was activated.
These iterables have been colour-coded depending on how many options of the call may be iterated
through in the driver.

• Black commands are not iterable, this call is unique to one function in the instrument.

• Blue commands are iterable through 1 to 2.

• Red commands are iterable through 1 to 4.

• Green commands are iterable through 1 to 8.

• Pink commands are iterable through 1 to 16.

To demonstrate, SigOut1On is blue meaning that there are two functions in the driver named
SigOut1On and SigOut2On respectively. They in turn control the ports Signal out 1 and Signal
out 2. Some functions feature numbers as non-iterable parts of their call name, such as the
HDAWG command SineGen1EnableWave2. In these cases, it is the depicted 1 that iterates while
the 2 remains identical for all eight iterations.
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A. Implemented ZI API commands

A.1 Driver ZI API commands for the UHFQA

The implemented ZI API commands for the UHFQA are visible in Tab. A.1 and A.2.

Table A.1: Table of implemented booleans (top) and floats (bottom) for the UHFQA Labber
driver. The %s is replaced by the device ID of the instrument as set by the user when adding the
device to Labber’s instrument server.

Command Brief function API node name
SigOut1On Output on /%s/sigouts/0/on
ImpedanceFifty1On Apply 50 Ω to output /%s/sigouts/0/imp50
EnableScope Activate the scope /%s/scopes/0/enable
Force Scope Force the scope /%s/scopes/0/trigforce
SingleShotScope Single shot mode /%s/scopes/0/single
TriggerEnabledScope Use scope trigger /%s/scopes/0/trigenable
Auto Threshold Input 1 Automatically set /%s/triggers/in/0/autothreshold

threshold for trigger
input

Auto Range Input 1 Automatically set /%s/sigins/0/autorange
voltage range for
trigger input

ACSigIn1 AC couple signal input /%s/sigins/0/ac
FiftyOhmSigIn1 Apply 50 Ω to input /%s/sigins/0/imp50
HysteresisMode1 Alter trigger hysteresis /%s/scopes/0/trighysteresis/mode

from range percent to
fixed voltage

Command Brief function API node name
TriggerVoltageScope Scope trigger voltage /%s/scopes/0/triglevel
AmplitudeOutput1AWG Scale output waveform /%s/awgs/0/outputs/0/amplitude

of the AWG
RangeSigIn1 Set voltage range /%s/sigins/0/range

of the signal input
SampleLengthScope Amount of samples /%s/scopes/0/length

in a scope shot
ScalingSigIn1 Input voltage scalar /%s/sigins/0/scaling

for the signal input
Oscillator1 Output oscillators /%s/oscs/0/freq
TriggerDelayScope1 Time needed at valid /%s/scopes/0/trigdelay

trigger level
TriggerHoldoffScope1 Turn off the trigger /%s/scopes/0/trigholdoff

after valid trigger
AmplitudeOutput1 Output scalar /%s/scopes/0/trigholdoff
UserRegister1 Runtime-settable /%s/awgs/0/userregs/0

user registers
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A. Implemented ZI API commands

Table A.2: Table of implemented combinational lists (top) and complex functions (bottom) for
the UHFQA Labber driver. The functions in the complex subtable feature extended functionality
beyond simple API get/set calls. These contain several ZI API calls with various purposes.

Command Brief function API node name
TriggerFlankScope Trigger flank type /%s/scopes/0/trigslope
SignalSourceChannel1Scope Select what input /%s/scopes/0/channels/0/inputselect

to scope
SamplingRateScope Scope sampling rate /%s/scopes/0/time
TriggerSourceScope Scope trigger source /%s/scopes/0/trigchannel
DiffSigIn1 Set up digital input /%s/sigins/0/diff

differential modes
ModeOutput1AWG Select AWG output /%s/awgs/0/outputs/0/mode

mode, e.g. modulation
TriggerSourceAnalogue1AWG AWG analogue trigger /%s/awgs/0/triggers/0/channel

input source
TriggerSourceDigital1AWG AWG digital trigger /%s/awgs/0/auxtriggers/0/channel

input source
SlopeDigital1AWG AWG digital trigger /%s/awgs/0/auxtriggers/0/slope

slope type
OutputSamplingRateAWG AWG sampling rate /%s/awgs/0/time

Command Brief function
RangeSigOut1 Find impedance, update SeqC program RSC scalar
EnableAWG Activates output for the AWG
EnableRerunAWG Activates AWG rerun
SampleLengthScope Set scope sample rate, using appropriate datatype
ManualThresholdRefTrigInput1 Manual input voltage threshold, force Labber update
OffsetSigOut1 Manual output DC level, force Labber update
TriggerHysteresisScope Set absolute hysteresis mode, set value, force Labber update
RelativeTriggerHysteresisScope Set relative hysteresis mode, set value, force Labber update
TriggerReferenceScope Convert percent to decimal, set trigger reference
I messed up... Reset using ZI Utils ’disableEverything()’
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A.2 Driver ZI API commands for the HDAWG

The implemented ZI API commands for the UHFQA are visible in Tab. A.3 and A.4.

Table A.3: Table of implemented combinational lists (top) and other ZI API functions (bottom)
for the HDAWG Labber driver. The %s is replaced by the device ID of the instrument as set by
the user when adding the device to Labber’s instrument server.

Command Brief function API node name
SineGenOscSelect1 Set oscillator source /%s/sines/0/oscselect

for this signal
ModulationOutput1 Modulation type for the /%s/awgs/0/outputs/0/modulation/mode

selected output
DigitalTrigger1 Link digital trigger to /%s/awgs/0/auxtriggers/0/channel

corresponding port
SlopeDigitalTrigger Digital trigger slope /%s/awgs/0/auxtriggers/0/slope
ChannelGrouping Set channel grouping, /%s/system/awg/channelgrouping

for instance 1x8
AWGSequencerSampleRate Sequencer sample /%s/awgs/0/time

playback rate
RangeOutput1 Maximum voltage at port /%s/sigouts/0/range

Command Brief function
MarkerOutSignal1 Assign signal to selected marker output
I messed up... Reset using ZI Utils ’disableEverything()’
Disable all outputs Disable all output ports
LoadedVector1 Marks the channel as used in measurement
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Table A.4: Table of implemented booleans (top) and floats (bottom) for the HDAWG Labber
driver. The %s is replaced by the device ID of the instrument as set by the user when adding
the device to Labber’s instrument server. Do note that the SequencerEnable commands all have
identical ZI API node strings, which has caused severe workarounds in implementation and also
the iterability of each of these functions.

Command Brief function API node name
SineGen1EnableWave1 Amplitude of the first /%s/sines/0/enables/0

sine generator output wave
SineGen1EnableWave2 Amplitude of the second /%s/sines/0/enables/1

sine generator output wave
DirectOutput1 Bypass the output amplifier /%s/sigouts/0/direct
FilterOutput1 Add analogue output filter /%s/sigouts/0/filter
EnableOutput1 Enable output /%s/sigouts/0/on
HoldOutput1 Hold last output sample /%s/awgs/0/outputs/0/hold

constant even after the
wave finishes playing

SequencerEnable1x8Group1 Enable sequencer group /%s/awgs/0/enable
in 1x8 mode

SequencerEnable2x4Group1 Enable sequencer group /%s/awgs/0/enable
in 2x4 mode

SequencerEnable4x2Group1 Enable sequencer group /%s/awgs/0/enable
in 4x2 mode

EnableAWG Play sequencer program awgModule/awg/enable

Command Brief function API node name
UserRegister1 Runtime-settable /%s/awgs/0/userregs/0

user registers
Oscillator1Freq Oscillator frequency /%s/oscs/0/freq

at given port
SineGenHarmonic1 Multiplier for the /%s/sines/0/harmonic

oscillator’s reference
frequency

SineGenPhase1 Relative sine signal phase /%s/sines/0/phaseshift
SineGenAmplitude1Wave1 Amplitude of the first sine /%s/sines/0/amplitudes/0

generator output wave
SineGenAmplitude1Wave2 Amplitude of the second sine /%s/sines/0/amplitudes/1

generator output wave
DelayOutput1 Delay of the output signal /%s/sigouts/0/delay
OffsetOutput1 Analogue offset voltage /%s/sigouts/0/offset

in amplified mode
AmplitudeScalingOutput1 Digital scalar applied /%s/awgs/0/outputs/0/amplitude

to the output
ConfigClockReference Set system clock frequency /%s/system/clocks/sampleclock/freq
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