2020-01-30 version 1.2

DAT096 2020

Git exercises

by Andreas Wieden for DAT290 2019
andreas.wieden@chalmers.se

English version for DAT096 by Lena Peterson
lenap@chalmers.se

Introduction

The purpose of these exercises is to teach you the basic functionality of the version
control system Git. For this purpose you will use the commands in a terminal
environment (rather than in a GUI where the commands may differ between various GUI
implementations of Git). The main advantage is that you get a better overview and
control, even if you would later opt to use a GUI-based implementation of version
control.

GitBash and the terminal environment

These exercises are based on a simulated Linux environment through the application
GitBash. Therefore we start with a short overview of the most commonly used Unix
commands, in case you are not used to Linux. On the lab computers (and probably other
Windows computers at Chalmers) you start GitBash by clicking the Windows button in
the lower left-hand corner of the screen, typing gitbash to find the application and then
hitting “Enter”.

In the terminal window that appears you write in commands that are executed when
you hit “Enter”; below we call this procedure to “issue” a command. Some commands
take arguments and these have to be separated with space. You can get information
about which arguments a specific command takes using help <command>. For
example, if you want to know more about how the command cd works you issue the
command help cd.

Below is a list of the most common Linux commands that we will use in this exercise.
pwd Prints the search path to the working directory.

cd Changes the working directory; without arguments sets the working
directory to the user’s home directory.

Is Lists all files and directories in the working directory. If you add the flag
-], the list contains more information.

mKkdir Creates a new subdirectory in the working directory. Takes the name of
the new directory as an argument

touch Creates one or more new empty files for files that do not exist. For
existing files updates the modification time. Takes one or more file
names as its arguments.

rm Removes one or more files from the file system. To remove a directory
requires the flag -r.

mv Moves a directory or file to another directory in the file system

Before you start: Configure Git

Git uses a username and an e-mail address to be able to connect the contributions to a
project from a certain contributor in. We strongly recommend you to use your proper
name and e-mail address in Git because it makes it easy to see who did what in the
version history for your project.

To find the current username and e-mail address issue these commands:
git config ——global user.name
git config ——global user.email

To change the settings, issue:
git config ——global user.name “Your first and last name”
git config ——global user.email “Your email address”

Don’t forget the quotes.

Exercise 1: Creating a repository and using some simple commands

Before starting create a directory in your working area which you can use for these
exercises. Call the directory GITovn and place it close to the root of your user area. You
can accomplish this by using these commands:

1. Start GitBash as described above.
2. GitBash starts and you can write in commands. Write the commands below:

w1and42@CSE-272984 MINGW64
$ cd z:

wiand42@CSE-272984 MINGW64
$ mkdir GITovn

wian42@CSE-272984 MINGW64
$ cd GITovn/

You have now created a directory called GITovn (using the command mkdir GITovn)
in your home directory. Also you have changed your working directory to that folder.
You can start a file viewer in Windows to check that this is the case. Also test the
command pwd to see the search path to your working directory.

Now create a directory in GITovn called Projektrepo. See details below:

wi1and42@CSE-272984 MINGW64
$ mkdir Projektrepo

wiand42@CSE-272984 MINGW64
$ 1s
Projektrepo/

The command mkdir again creates a new directory. Verify that this is the case by
viewing it in the file viewer and by using the command 1s.

Change your working directory to Projektrepo.

Initiating a repository
Check that your working directory is Projektrepo using the command pwd. If that is not
the case follow the steps shown above to fix this.

Before you create a Git repository try the command git status.
Write the command git status in GitBash and check the resulting error message.

What is the error message?

What do you think that means?

Now you are ready to create a Git repository using the command git init.Issue the
command in GitBash and follow it with git status. See below:

Wi1an42@CSE-272984 MINGW64
$ git init
Initialized empty Git repository in Z:/GITovn/Projektrepo/.git/

wiand42@CSE-272984 MINGW64 (master)

$ git status

lon branch master

Initial commit

nothing to commit (create/copy files and use "git add" to track)

You now find that git status returns information indicating that a Git repository
exists.

Using some common Git commands

Your next step is to create a couple of files and add them to the staging area so that Git
knows that you want Git to handle these files. Then you will commit these files so that
they are included in the version history.

Create a text file called hello.txt. You can accomplish this by creating a file in a text
editor and saving it to the Projektrepo directory with the name hello. A faster way to
create a file is to use the Linux command touch:

wW1an42@CSE-272984 MINGW64
$ touch hello.txt

Check that the file was created.
Also create the two files wrongname. txt and trash. txt in the same directory.
Again check that the files were created and that they are located in the intended

directory.

Again use the command git status to get information about the Git repository:

w1and42@CSE-272984 MINGW64 (master)
$ git status
on branch master
Initial commit
untracked files:
(use "git add <file>...

to include in what will be committed)

hello.txt
trash.txt
wrongname. txt

nothing added to commit but untracked files present (use "git add"” to track)

You should see the new files appear in red. The red color indicates that these files are
not included in the staging area, so that these are not yet tracked or added by a new
commit. So your next step is to add these files to the staging area using the command
git add.See below:

Wi1and42@CSE-272984 MINGW64 (master)
$ git add hello.txt

wian42@CSE-272984 MINGW64 (master)
$ git add trash.txt

wiand2@CSE-272984 MINGW64 (master)
$ git add wrongname.txt

Again use git status to getinformation about the repository. Se below:

w1and42@CSE-272984 MINGW64 (master)
$ git status
on branch master

Initial commit

Changes to be committed:

(use "git rm --cached <file>...

to unstage)

new file: hello.txt
new file: trash.txt
new file: wrongname . txt

The previously red files are now shown in green text, which indicates that these files are
included in the staging area and will be included when you do the next commit. That will
be your next step.

Write the comment git commit —m followed by a short message. Note that it is
important to enclose the message within double quotes. It is common to use the

message “Initial commit” when a new repository is created. See below.
Wiand2@CSE-272984 MINGW64 (master)

$ git conmit -m "initial commit”

[master (root-commit) 493602a] initial commit

3 files changed, 0 insertions(+), 0 deletions(-)
create mode 100644 hello.txt

create mode 100644 trash.txt

create mode 100644 wrongname.txt

Again use git status to check what information you get about the repository.
The result should be that the green files are not shown anymore which means that they
have been included in the version history.

Now write the command git log as shown below:

Wi1an42@CSE-272984 MINGW64 (master)
$ git log

lAuthor: Andreas wieden <andreas.wieden@chalmers.se>
Date: Fri Sep 14 09:00:41 2018 +0200

initial commit

What you see now is the first commit in the version history. The first line gives a unique
number that can be used as a reference. This is practical if you run into trouble and want
to revert to an earlier version that is known to be correct. Then you would use the
reference number to tell Git which of the versions in the version history you want to
revert to.

The following lines contain information about who created the commit, when it was
created, and the message that was added when the commit was done.

Now open the file hello. txt in a text editor and write some text in it. Then save the
file and repeat the procedures above to add it to the staging area and commit the

change. Remember to add a short but descriptive comment when you run the commit
command.

Your next task is to remove the file trash. txt. First issue the command git status
to check that the repository is clean (that is, there are no files that have not been
committed). To remove the file, you will use the command git rm. Issue that
command and thereafter git status. See below:

wWiand2@CSE-272984 MINGwW64
$ git rm trash.txt
rm” "trash.txt’

wian42@CSE-272984 MINGWG64
$ git status
on branch master
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

deleted: trash.txt

We see that the file is shown in green text and that it is shown as deleted. That means
that the file is in the staging area, but it has not yet been removed in the version history.
To do this use the command git commit — m “deleted trash.txt”.

After the version history has been updated check that the file has been removed.
Also issue the command git log to see that the new version is in the version history.

Your next task is to change the name of the file wrongname . txt to
rightname.txt. You will do that using the command glt mv. See below.

wi1and42@CSE-272984 MINGW64
$ git mv wrongname.txt rightname.txt

Use the git status command to confirm that Git has changed the file name in the
staging area so that it will be part of the next commit. Then commit again with a suitable
commit message. Finally check that the file has changed name.

Now issue the command git log to see the commit messages that are in the history.
Then write gitk & (don’t forget the & sign) in GitBash. This command starts a program
that visualizes the version history as a tree. Note that the commit messages you saw
with git logare also shown by the gitk application.

BT chanped rme wrongrame == it Ardreas Wisden <snd 2018-03-14 10.(G-43
- E Erdress Wieden <snd J078-03-14 100008
re

nitial comre Acdreas YWeden <and 2018-03-14 08:0041 *

daloted £ile mode 100644
index etWde2y. . S000000

Exercise2: Using the version history

The purpose of this exercise is to investigate earlier versions in the version history you
created in exercise 1. Before you do that issue the 1s command so that you know what
files there are and what they are named in the current version.

Issue get log and note the ID number for the first commit in the history. Then issue
git checkout <ID number first commit>.Again check what files there are
and what their names are.

Do you see any changes?

Alsodo git status,git logand gitk & to see how the version history looks now.
See below for the details of what to do.

v1an42@CSE-272984 MINGW64 (master)
s
hello.txt rightname.txt

wiap42@CSE—272984 MINGWG64 (master)
$ git log

lAuthor: Andreas wieden <andreas.wieden@chalmers.se>
Date: Fri Sep 14 10:03:49 2018 +0200

changed name wrongname -> rightname
lAuthor: Andreas wieden <andreas.wieden@chalmers.se>
Date: Fri Sep 14 10:00:06 2018 +0200

deleted trash.txt

lAuthor: Andreas wieden <andreas.wieden@chalmers.se>
Date: Fri Sep 14 09:00:41 2018 +0200
initial commit

vian42@CSE-272984 MINGW64 (master)
$ Is
hello.txt rightname.txt

wian42@CSE-272984 MINGW64 (master)

$ git checkout 493602aa2

Note: checking out '493602aa2’.

You are in 'detached HEAD' state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in this
state without impacting any branches by performing another checkout.

If you want to create a new branch to retain commits you create, you ma¥
do so (now or later) by using -b with the checkout command again. Example

git checkout -b <new-branch-name>

HEAD is now at 493602a... initial commit

wian42@CSE-272984 MINGW64 ((493602a...))
$ 1s

hello.txt trash.txt wrongname.txt

vian42@CSE-272984 MINGW64 ((493602a...))
$ git log

lAuthor: Andreas wieden <andreas.wieden@chalmers.se>
Date: Fri Sep 14 09:00:41 2018 +0200

initial commit

v1an42@CSE-272984 MINGW64 ((493602a...))
$ git status

HEAD detached at 493602a

nothing to commit, working tree clean

You can now move back in the version history to the first commit. You can examine this
version if you want to.

To return to the latest version issue the command git checkout master. After you
have done so, again investigate which files exist, how they are named, the status of the
staging area and the version history the way you did before.

If you want to return to an earlier version and at the same time remove everything in
the history after that version, the command to use is git reset —hard <ID
number for commit>.Be very careful with this command, because it removes
subsequent commits from the version history.

A better way to return to an earlier version is to make a copy of the state in the earlier
version and place that at the front of the version history. The big difference is that the
commits in between are not removed and you can return to one of them later, if you

would want to.

The way to put an earlier version at the front of the version history is by using the
checkout command but with some other parameters that the ones we saw before.

You shall now restore the contents of the file hello. txt to its original version. Before
you do that, examine the current contents of that file (for example using a text editor

such as textpad++).

Issue the command git log and note the ID number for the first commit. Then issue
the command:

git checkout <version ID number first commit> -- hello.txt
Be sure to include the two minus signs in the command above.
Now check the contents of hello.txt the same way as before. Did it change?

Also issue git status (the file hello. txt is now shown in green text, which means
that changes are indexed and ready to commit).

Exercise 3: Using remote repositories

When you work alone on something it works well to use a local repository as you have
done so far. However, if you collaborate with others on a joint task, you will want to use
a remote repository that all collaborators can access.

In this exercise, you will practice working with a remote repository using a local remote
repository. We have decided to do it this way so that you can investigate some of the
problems that can appear with a shared remote repository. However, the commands
you use are the same regardless of whether the remote repository is stored locally or on
the internet, for example using GitHub or GitLab (which we will use in DAT096).

The only difference is the search path used to specify the location of the remote
repository.

Creating a local remote repository

First find the search path to your Projektrepo directory using the command pwd. Now
leave the directory Projektrepo and change the working directory to GITovn, that is the
parent directory of Projektrepo). The way to do this is using the command cd .. (note
the two dots with no space in between). Check that you are in the right directory using
pwd.

Create a new directory called Remoterepo using mkdir. Move to this directory using cd
Remoterepo. To tell git that this directory is to be a remote repository use the
commands shown below:

wian42@CSE-272984 MINGW64
$ git init --bare
Initialized empty Git repository in Z:/GITovn/Remoterepo/

wian42@CSE-272984 MINGW64 (BARE:master)
$ git update-server-info

This directory can now be used as a local remote repository. What remains to be done is
to push to the repository files that you want everyone to have access to. That is your
next step.

Return to the directory Projektrepo and issue the following commands:

wiand2Q@CSE-272984 MINGWG4 (master)
$ git remote add origin /z/GITovn/Remoterepo

wian42@QCSE-272984 MINGW64 (master)
$ git push -u origin master

The first command connects the existing repository to the remote repository with the
specified search path. The second command pushes everything in the existing
repository to the remote repository, in the Remoterepo directory. Now everyone who
has access to the remote repository can clone it (that is, make their own copy of it).

Working in a local remote repository

You and your fellow team member will now pretend that you are two subteams in your
team. One of you is in subteam A and the other one in subteam B. In this part of the
exercise each of you should perform the parts of the exercise that corresponds to
his/her subteam.

Leave the directory Projektrepo and return to its parent directory GITovn (use cd ..).
In this directory, create two new directories called PrjA and PrjB using mkdir.

PrjA: Go to directory PrjA using cd. Clone the remote repository that you created at the
beginning of the exercise, so that its content is now in the PrjA directory. This you
achieve using the command git clone <search path to Remoterepo>.

Issue 1s. You should now see a directory called Remoterepo. That is the directory you
just cloned. Move to that directory (cd) and create a new file called textA.txt. Add
the file to the staging area and commit it. Investigate what happened using the
commands you used before. Finally push the contents of your Remoterepo with the
command git push origin master.

PrjB: Move to the directory PrjB using cd and clone the Remoterepo repository the same
way as PrjA did above. Create a file named textB.txt, add it and commit. Then push
the contents up to the remote repository.

The next step is that both projects should pull from the Remoterepo instead of
cloning the way you did above.

PrjA: Move to the directory PrjA/Remoterepo and investigate what files and versions are
there (use 1s and git log).

Issue the command git pull origin master and check that the changes made by
PrjB are there (use 1s for this purpose). Then add some text in the file textA.txt and
save the file, add it and commit.

Run the command git log and check where the origin/master and origin HEAD are
in relation to the commit PrA just made.

Now push the changes you made, just as you did before.

Again, issue git log and investigate where origin/master and origin HEAD are in
relation to the commit PrjA just made.

What are your conclusions? What are origin/master and origin HEAD?

PrjB: Perform the same steps as PrjA did above; that is pull from Remoterepo and
investigate that you received the recent changes.

Resolving conflicts

A situation may occur where someone else has pushed a newer version to the remote
repository while you are working on your clone. If you have not modified the same files
Git can merge the changes.

But if two team members modify the same file(s), in their clones, then conflicts arise
that will need to be solved manually. This situation is the one we will investigate in the
next experiment.

PrjB: Make sure you have pulled the latest version of all files. Open the file textA. txt
in a text editor and add some random text to it. Save the file, add it, commit it and push
to the remote repository as you have done before.

PrjA: Do NOT do any pull! At least not yet.

Open your file textA.txt and write a few lines in it. Save the file, add it, commit it and
push to the remote repository as you have done before. Now you will get a conflict
message because there is already a modified version of textA. txt (since PrjB
modified it). When you try to push you get the information that there is already an
updated version in the remote repository.

In this conflict situation you have to first pull to get what is already in the remote
repository. When you do so investigate the message you get from Git when you execute
the pull command. Here you can see which file that causes the conflict. Open this file and
modify the text to want you want it to be. Then add, commit and push as usual. Now you
have manually resolved the conflict.

Useful links
These links are also available on the DAT096 page in Canvas on the Git page.

If you want interactive training and visualization of working with Git, GitHub has a
resource page, which can be of interest to you:

https://try.github.io/ (Links to an external site.)

Git references and documentation are available at:

http://git-scm.com/documentation (Links to an external site.)

Several tips and a quick walk-through is available at:

http://www-cs-students.stanford.edu/~blynn/gitmagic

10

