
	 1	

2020-01-30	version	1.2	
	

DAT096	2020	
	

Git	exercises	
by	Andreas	Wieden	for	DAT290	2019	

andreas.wieden@chalmers.se	
	

English	version	for	DAT096	by	Lena	Peterson	
lenap@chalmers.se	

	

Introduction	
The	purpose	of	these	exercises	is	to	teach	you	the	basic	functionality	of	the	version	
control	system	Git.	For	this	purpose	you	will	use	the	commands	in	a	terminal	
environment	(rather	than	in	a	GUI	where	the	commands	may	differ	between	various	GUI	
implementations	of	Git).	The	main	advantage	is	that	you	get	a	better	overview	and	
control,	even	if	you	would	later	opt	to	use	a	GUI-based	implementation	of	version	
control.	
	

GitBash	and	the	terminal	environment	
These	exercises	are	based	on	a	simulated	Linux	environment	through	the	application	
GitBash.	Therefore	we	start	with	a	short	overview	of	the	most	commonly	used	Unix	
commands,	in	case	you	are	not	used	to	Linux.	On	the	lab	computers	(and	probably	other	
Windows	computers	at	Chalmers)	you	start	GitBash	by	clicking	the	Windows	button	in	
the	lower	left-hand	corner	of	the	screen,	typing	gitbash	to	find	the	application	and	then	
hitting	“Enter”.	
	
In	the	terminal	window	that	appears	you	write	in	commands	that	are	executed	when	
you	hit	“Enter”;	below	we	call	this	procedure	to	“issue”	a	command.	Some	commands	
take	arguments	and	these	have	to	be	separated	with	space.	You	can	get	information	
about	which	arguments	a	specific	command	takes	using	help <command>.	For	
example,	if	you	want	to	know	more	about	how	the	command cd works	you	issue	the	
command	help cd.

Below	is	a	list	of	the	most	common	Linux	commands	that	we	will	use	in	this	exercise.		
	
pwd	 	 Prints	the	search	path	to	the	working	directory.	
	
cd	 Changes	the	working	directory;	without	arguments	sets	the	working	

directory	to	the	user’s	home	directory.	
	
ls	 Lists	all	files	and	directories	in	the	working	directory.	If	you	add	the	flag	

–l,	the	list	contains	more	information.	
	
mkdir	 Creates	a	new	subdirectory	in	the	working	directory.	Takes	the	name	of	

the	new	directory	as	an	argument	
	

	 2	

touch	 Creates	one	or	more	new	empty	files	for	files	that	do	not	exist.	For	
existing	files	updates	the	modification	time.	Takes	one	or	more	file	
names	as	its	arguments.	

	
rm	 Removes	one	or	more	files	from	the	file	system.	To	remove	a	directory	

requires	the	flag	–r.	
	
mv	 Moves	a	directory	or	file	to	another	directory	in	the	file	system	

Before	you	start:	Configure	Git	
Git	uses	a	username	and	an	e-mail	address	to	be	able	to	connect	the	contributions	to	a	
project	from	a	certain	contributor	in.	We	strongly	recommend	you	to	use	your	proper	
name	and	e-mail	address	in	Git	because	it	makes	it	easy	to	see	who	did	what	in	the	
version	history	for	your	project.		
	
To	find	the	current	username	and	e-mail	address	issue	these	commands:	
git config –-global user.name
git config –-global user.email
	
To	change	the	settings,	issue:	
git config –-global user.name “Your first and last name”
git config –-global user.email “Your email address”

Don’t	forget	the	quotes.	

Exercise	1:	Creating	a	repository	and	using	some	simple	commands	
Before	starting	create	a	directory	in	your	working	area	which	you	can	use	for	these	
exercises.	Call	the	directory	GITovn	and	place	it	close	to	the	root	of	your	user	area.	You	
can	accomplish	this	by	using	these	commands:	
	

1. Start	GitBash	as	described	above.	
2. GitBash	starts	and	you	can	write	in	commands.	Write	the	commands	below:	

	
You	have	now	created	a	directory	called	GITovn	(using	the	command	mkdir GITovn)	
in	your	home	directory.	Also	you	have	changed	your	working	directory	to	that	folder.	
You	can	start	a	file	viewer	in	Windows	to	check	that	this	is	the	case.	Also	test	the	
command	pwd	to	see	the	search	path	to	your	working	directory.	
	
Now	create	a	directory	in	GITovn	called	Projektrepo.	See	details	below:	

	
The	command	mkdir	again	creates	a	new	directory.	Verify	that	this	is	the	case	by	
viewing	it	in	the	file	viewer	and	by	using	the	command	ls.	
	
Change	your	working	directory	to	Projektrepo.	

	 3	

Initiating	a	repository	
Check	that	your	working	directory	is	Projektrepo	using	the	command	pwd.	If	that	is	not	
the	case	follow	the	steps	shown	above	to	fix	this.	
	
Before	you	create	a	Git	repository	try	the	command	git status.	
Write	the	command	git status	in	GitBash	and	check	the	resulting	error	message.	
	
What	is	the	error	message?	
	
	
	
What	do	you	think	that	means?	
	
	
	
Now	you	are	ready	to	create	a	Git	repository	using	the	command	git init.	Issue	the	
command	in	GitBash	and	follow	it	with	git status.	See	below:	

	
You	now	find	that	git status	returns	information	indicating	that	a	Git	repository	
exists.	

Using	some	common	Git	commands	
Your	next	step	is	to	create	a	couple	of	files	and	add	them	to	the	staging	area	so	that	Git	
knows	that	you	want	Git	to	handle	these	files.	Then	you	will	commit	these	files	so	that	
they	are	included	in	the	version	history.	
	
Create	a	text	file	called	hello.txt.	You	can	accomplish	this	by	creating	a	file	in	a	text	
editor	and	saving	it	to	the	Projektrepo	directory	with	the	name	hello.	A	faster	way	to	
create	a	file	is	to	use	the	Linux	command	touch:	

	
Check	that	the	file	was	created.	
	
Also	create	the	two	files	wrongname.txt	and	trash.txt	in	the	same	directory.	
Again	check	that	the	files	were	created	and	that	they	are	located	in	the	intended	
directory.	
	
Again	use	the	command	git status	to	get	information	about	the	Git	repository:	

	

	 4	

You	should	see	the	new	files	appear	in	red.	The	red	color	indicates	that	these	files	are	
not	included	in	the	staging	area,	so	that	these	are	not	yet	tracked	or	added	by	a	new	
commit.	So	your	next	step	is	to	add	these	files	to	the	staging	area	using	the	command	
git add.	See	below:	

	
Again	use	git status	to	get	information	about	the	repository.	Se	below:	

	
The	previously	red	files	are	now	shown	in	green	text,	which	indicates	that	these	files	are	
included	in	the	staging	area	and	will	be	included	when	you	do	the	next	commit.	That	will	
be	your	next	step.	
	
Write	the	comment	git commit –m	followed	by	a	short	message.	Note	that	it	is	
important	to	enclose	the	message	within	double	quotes.	It	is	common	to	use	the	
message	“Initial	commit”	when	a	new	repository	is	created.	See	below.	

	
Again	use	git status	to	check	what	information	you	get	about	the	repository.	
The	result	should	be	that	the	green	files	are	not	shown	anymore	which	means	that	they	
have	been	included	in	the	version	history.	
	
Now	write	the	command	git log	as	shown	below:	

	
What	you	see	now	is	the	first	commit	in	the	version	history.	The	first	line	gives	a	unique	
number	that	can	be	used	as	a	reference.	This	is	practical	if	you	run	into	trouble	and	want	
to	revert	to	an	earlier	version	that	is	known	to	be	correct.	Then	you	would	use	the	
reference	number	to	tell	Git	which	of	the	versions	in	the	version	history	you	want	to	
revert	to.	
	
The	following	lines	contain	information	about	who	created	the	commit,	when	it	was	
created,	and	the	message	that	was	added	when	the	commit	was	done.	
	
Now	open	the	file	hello.txt	in	a	text	editor	and	write	some	text	in	it.	Then	save	the	
file	and	repeat	the	procedures	above	to	add	it	to	the	staging	area	and	commit	the	

	 5	

change.	Remember	to	add	a	short	but	descriptive	comment	when	you	run	the	commit	
command.	
	
Your	next	task	is	to	remove	the	file	trash.txt.	First	issue	the	command	git status	
to	check	that	the	repository	is	clean	(that	is,	there	are	no	files	that	have	not	been	
committed).	To	remove	the	file,	you	will	use	the	command	git rm.	Issue	that	
command	and	thereafter	git status.	See	below:	

	
We	see	that	the	file	is	shown	in	green	text	and	that	it	is	shown	as	deleted.	That	means	
that	the	file	is	in	the	staging	area,	but	it	has	not	yet	been	removed	in	the	version	history.	
To	do	this	use	the	command	git commit – m “deleted trash.txt”.	
	
After	the	version	history	has	been	updated	check	that	the	file	has	been	removed.	
Also	issue	the	command	git log to	see	that	the	new	version	is	in	the	version	history.	
	
Your	next	task	is	to	change	the	name	of	the	file	wrongname.txt	to
rightname.txt.	You	will	do	that	using	the	command	git mv.	See	below.	

	
Use	the	git status	command	to	confirm	that	Git	has	changed	the	file	name	in	the	
staging	area	so	that	it	will	be	part	of	the	next	commit.	Then	commit	again	with	a	suitable	
commit	message.	Finally	check	that	the	file	has	changed	name.	
	
Now	issue	the	command	git log	to	see	the	commit	messages	that	are	in	the	history.	
Then	write	gitk &	(don’t	forget	the	&	sign)	in	GitBash.	This	command	starts	a	program	
that	visualizes	the	version	history	as	a	tree.	Note	that	the	commit	messages	you	saw	
with	git log	are	also	shown	by	the	gitk application.		

	

	 6	

Exercise2:	Using	the	version	history	
The	purpose	of	this	exercise	is	to	investigate	earlier	versions	in	the	version	history	you	
created	in	exercise	1.	Before	you	do	that	issue	the	ls	command	so	that	you	know	what	
files	there	are	and	what	they	are	named	in	the	current	version.	
	
Issue	get log	and	note	the	ID	number	for	the	first	commit	in	the	history.	Then	issue	
git checkout <ID number first commit>.	Again	check	what	files	there	are	
and	what	their	names	are.		
	
Do	you	see	any	changes?	
	
Also	do	git status,	git log	and	gitk &	to	see	how	the	version	history	looks	now.	
See	below	for	the	details	of	what	to	do.	

	
	

	 7	

You	can	now	move	back	in	the	version	history	to	the	first	commit.	You	can	examine	this	
version	if	you	want	to.	
	
To	return	to	the	latest	version	issue	the	command	git checkout master.	After	you	
have	done	so,	again	investigate	which	files	exist,	how	they	are	named,	the	status	of	the	
staging	area	and	the	version	history	the	way	you	did	before.	
	
If	you	want	to	return	to	an	earlier	version	and	at	the	same	time	remove	everything	in	
the	history	after	that	version,	the	command	to	use	is git reset –hard <ID
number for commit>.	Be	very	careful	with	this	command,	because	it	removes	
subsequent	commits	from	the	version	history.	
	
A	better	way	to	return	to	an	earlier	version	is	to	make	a	copy	of	the	state	in	the	earlier	
version	and	place	that	at	the	front	of	the	version	history.	The	big	difference	is	that	the	
commits	in	between	are	not	removed	and	you	can	return	to	one	of	them	later,	if	you	
would	want	to.		
	
The	way	to	put	an	earlier	version	at	the	front	of	the	version	history	is	by	using	the	
checkout	command	but	with	some	other	parameters	that	the	ones	we	saw	before.	
	
You	shall	now	restore	the	contents	of	the	file	hello.txt	to	its	original	version.	Before	
you	do	that,	examine	the	current	contents	of	that	file	(for	example	using	a	text	editor	
such	as	textpad++).	
	
Issue	the	command	git log	and	note	the	ID	number	for	the	first	commit.	Then	issue	
the	command:	
	
git checkout <version ID number first commit> -- hello.txt
	
Be	sure	to	include	the	two	minus	signs	in	the	command	above.	
	
Now	check	the	contents	of	hello.txt	the	same	way	as	before.	Did	it	change?	
	
Also	issue	git status	(the	file	hello.txt	is	now	shown	in	green	text,	which	means	
that	changes	are	indexed	and	ready	to	commit).	
	
	 	

	 8	

Exercise	3:	Using	remote	repositories	
When	you	work	alone	on	something	it	works	well	to	use	a	local	repository	as	you	have	
done	so	far.	However,	if	you	collaborate	with	others	on	a	joint	task,	you	will	want	to	use	
a	remote	repository	that	all	collaborators	can	access.	
	
In	this	exercise,	you	will	practice	working	with	a	remote	repository	using	a	local	remote	
repository.	We	have	decided	to	do	it	this	way	so	that	you	can	investigate	some	of	the	
problems	that	can	appear	with	a	shared	remote	repository.	However,	the	commands	
you	use	are	the	same	regardless	of	whether	the	remote	repository	is	stored	locally	or	on	
the	internet,	for	example	using	GitHub	or	GitLab	(which	we	will	use	in	DAT096).	
The	only	difference	is	the	search	path	used	to	specify	the	location	of	the	remote	
repository.	

Creating	a	local	remote	repository	
First	find	the	search	path	to	your	Projektrepo	directory	using	the	command	pwd.	Now	
leave	the	directory	Projektrepo	and	change	the	working	directory	to	GITovn	,	that	is	the	
parent	directory	of	Projektrepo).	The	way	to	do	this	is	using	the	command	cd ..		(note	
the	two	dots	with	no	space	in	between).	Check	that	you	are	in	the	right	directory	using	
pwd.	
	
Create	a	new	directory	called	Remoterepo	using	mkdir.	Move	to	this	directory	using	cd	
Remoterepo.	To	tell	git	that	this	directory	is	to	be	a	remote	repository	use	the	
commands	shown	below:	

	
This	directory	can	now	be	used	as	a	local	remote	repository.	What	remains	to	be	done	is	
to	push	to	the	repository	files	that	you	want	everyone	to	have	access	to.	That	is	your	
next	step.	
	
Return	to	the	directory	Projektrepo	and	issue	the	following	commands:	

	
The	first	command	connects	the	existing	repository	to	the	remote	repository	with	the	
specified	search	path.	The	second	command	pushes	everything	in	the	existing	
repository	to	the	remote	repository,	in	the	Remoterepo	directory.	Now	everyone	who	
has	access	to	the	remote	repository	can	clone	it	(that	is,	make	their	own	copy	of	it).	

Working	in	a	local	remote	repository	
You	and	your	fellow	team	member	will	now	pretend	that	you	are	two	subteams	in	your	
team.	One	of	you	is	in	subteam	A	and	the	other	one	in	subteam	B.	In	this	part	of	the	
exercise	each	of	you	should	perform	the	parts	of	the	exercise	that	corresponds	to	
his/her	subteam.	
	
Leave	the	directory	Projektrepo	and	return	to	its	parent	directory	GITovn	(use	cd ..).	
In	this	directory,	create	two	new	directories	called	PrjA	and	PrjB	using	mkdir.	
	

	 9	

PrjA:	Go	to	directory	PrjA	using	cd.	Clone	the	remote	repository	that	you	created	at	the	
beginning	of	the	exercise,	so	that	its	content	is	now	in	the	PrjA	directory.	This	you	
achieve	using	the	command	git clone <search path to Remoterepo>.	
Issue	ls.	You	should	now	see	a	directory	called	Remoterepo.	That	is	the	directory	you	
just	cloned.	Move	to	that	directory	(cd)	and	create	a	new	file	called	textA.txt.	Add	
the	file	to	the	staging	area	and	commit	it.	Investigate	what	happened	using	the	
commands	you	used	before.	Finally	push	the	contents	of	your	Remoterepo	with	the	
command	git push origin master.	
	
PrjB:	Move	to	the	directory	PrjB	using	cd	and	clone	the	Remoterepo	repository	the	same	
way	as	PrjA	did	above.	Create	a	file	named	textB.txt,	add	it	and	commit.	Then	push	
the	contents	up	to	the	remote	repository.	
	

The	next	step	is	that	both	projects	should	pull	from	the	Remoterepo	instead	of	
cloning	the	way	you	did	above.	

	
PrjA:	Move	to	the	directory	PrjA/Remoterepo	and	investigate	what	files	and	versions	are	
there	(use	ls	and	git log).	
	
Issue	the	command	git pull origin master	and	check	that	the	changes	made	by	
PrjB	are	there	(use	ls	for	this	purpose).	Then	add	some	text	in	the	file	textA.txt	and	
save	the	file,	add	it	and	commit.	
	
Run	the	command	git log	and	check	where	the	origin/master	and	origin	HEAD	are	
in	relation	to	the	commit	PrA	just	made.	
	
Now	push	the	changes	you	made,	just	as	you	did	before.	
	
Again,	issue	git log	and	investigate	where	origin/master	and	origin	HEAD	are	in	
relation	to	the	commit	PrjA	just	made.	
	
What	are	your	conclusions?	What	are	origin/master	and	origin	HEAD?	
	
	
	
	
	
	
	
	
PrjB:	Perform	the	same	steps	as	PrjA	did	above;	that	is	pull	from	Remoterepo	and	
investigate	that	you	received	the	recent	changes.	
	

Resolving	conflicts	
A	situation	may	occur	where	someone	else	has	pushed	a	newer	version	to	the	remote	
repository	while	you	are	working	on	your	clone.	If	you	have	not	modified	the	same	files	
Git	can	merge	the	changes.	
	
But	if	two	team	members	modify	the	same	file(s),	in	their	clones,	then	conflicts	arise	
that	will	need	to	be	solved	manually.	This	situation	is	the	one	we	will	investigate	in	the	
next	experiment.	
	

	 10	

PrjB:	Make	sure	you	have	pulled	the	latest	version	of	all	files.	Open	the	file	textA.txt	
in	a	text	editor	and	add	some	random	text	to	it.	Save	the	file,	add	it,	commit	it	and	push	
to	the	remote	repository	as	you	have	done	before.	
	
PrjA:	Do	NOT	do	any	pull!	At	least	not	yet.	
	
Open	your	file	textA.txt	and	write	a	few	lines	in	it.	Save	the	file,	add	it,	commit	it	and	
push	to	the	remote	repository	as	you	have	done	before.	Now	you	will	get	a	conflict	
message	because	there	is	already	a	modified	version	of	textA.txt	(since	PrjB	
modified	it).	When	you	try	to	push	you	get	the	information	that	there	is	already	an	
updated	version	in	the	remote	repository.	
	
In	this	conflict	situation	you	have	to	first	pull	to	get	what	is	already	in	the	remote	
repository.	When	you	do	so	investigate	the	message	you	get	from	Git	when	you	execute	
the	pull	command.	Here	you	can	see	which	file	that	causes	the	conflict.	Open	this	file	and	
modify	the	text	to	want	you	want	it	to	be.	Then	add,	commit	and	push	as	usual.	Now	you	
have	manually	resolved	the	conflict.	
	

Useful	links	
These	links	are	also	available	on	the	DAT096	page	in	Canvas	on	the	Git	page.	

If	you	want	interactive	training	and	visualization	of	working	with	Git,	GitHub	has	a	
resource	page,	which	can	be	of	interest	to	you:	

https://try.github.io/	(Links	to	an	external	site.)	

Git	references	and	documentation	are	available	at:	

http://git-scm.com/documentation	(Links	to	an	external	site.)	

Several	tips	and	a	quick	walk-through	is	available	at:	

http://www-cs-students.stanford.edu/~blynn/gitmagic	

	

