
 Advanced Material: Implementing Cache
Controllers

Th e section starts with the SystemVerilog of the cache controller from Section 5.9
in eight fi gures. It then goes into details of an example cache coherency protocol
and the diffi culties in implementing such a protocol.

SystemVerilog of a Simple Cache Controller
Th e hardware description language we are using in this section is SystemVerilog.
Th e biggest change from prior versions of Verilog is that it borrows structures
from C to make the code easier to read. Figures 5.12.1 through 5.12.8 show the
SystemVerilog description of the cache controller.

package cache_def;
 // data structures for cache tag & data

 parameter int TAGMSB = 31; //tag msb
 parameter int TAGLSB = 14; //tag lsb

 //data structure for cache tag
 typedef struct packed {
 bit valid; //valid bit
 bit dirty; //dirty bit
 bit [TAGMSB:TAGLSB]tag; //tag bits
 }cache_tag_type;

 //data structure for cache memory request
 typedef struct {
 bit [9:0]index; //10-bit index
 bit we; //write enable
 }cache_req_type;

 //128-bit cache line data
 typedef bit [127:0]cache_data_type;

FIGURE 5.12.1 Type declarations in SystemVerilog for the cache tags and data. Th e tag
fi eld is 18 bits wide and the index fi eld is 10 bits wide, while a 2-bit fi eld (bits 3–2) is used to index the block
and select the word from the block. Th e rest of the type declaration is found in the following fi gure.

5.12

 5.12 Advanced Material: Implementing Cache Controllers 5.12-3

Figures 5.12.1 and 5.12.2 declare the structures that are used in the defi nition
of the cache in the following fi gures. For example, the cache tag structure
(cache_tag_type) contains a valid bit (valid), a dirty bit (dirty), and an 18-
bit tag fi eld ([TAGMSB:TAGLSB] tag). Figure 5.12.3 shows the block diagram of
the cache using the names from the Verilog description.

 // data structures for CPU<->Cache controller interface

 // CPU request (CPU->cache controller)
 typedef struct {
 bit [31:0]addr; //32-bit request addr
 bit [31:0]data; //32-bit request data (used when write)

etirw = 1 ,daer = 0 : epyt tseuqer// ;wr tib
 bit valid; //request is valid
 }cpu_req_type;

 // Cache result (cache controller->cpu)
 typedef struct {
 bit [31:0]data; //32-bit data
 bit ready; //result is ready
 }cpu_result_type;

 //--
 // data structures for cache controller<->memory interface

 // memory request (cache controller->memory)
 typedef struct {
 bit [31:0]addr; //request byte addr
 bit [127:0]data; //128-bit request data (used when write)

etirw = 1 ,daer = 0 : epyt tseuqer// ;wr tib
 bit valid; //request is valid
 }mem_req_type;

 // memory controller response (memory -> cache controller)
 typedef struct {
 cache_data_type data; //128-bit read back data
 bit ready; //data is ready
 }mem_data_type;

endpackage

FIGURE 5.12.2 Type declarations in SystemVerilog for the CPU-cache and cache-memory interfaces. Th ese are nearly
identical except that the data is 32 bits wide between the CPU and cache and is 128 bits wide between the cache and memory.

5.12-4 5.12 Advanced Material: Implementing Cache Controllers

Figure 5.12.4 defi nes modules for the cache data (dm_cache_data) and cache
tag (dm_cache_tag). Th ese memories can be read at any time, but writes only
occur on the positive clock edge (posedge(clk)) and only if write enable is a 1
(data_req.we or tag_req.we).

cpu_req.addr
(showing bit positions)

Data

Hit

Data

Tag

V D Tag

32

18

=

Index
18 10 Byte

offset

31 14 13 3 2 1 04

2

Block offset

1024
entries

18 bits

128

128

Mux

Mux Mux Mux Mux

Data Read

Data Write

mem_data.data

cpu_req.data

FIGURE 5.12.3 Block diagram of the simple cache using the Verilog names. Not shown are the write enables for the cache tag
memory and for the cache data memory, or the control signals for multiplexors that supply data for the Data Write variable. Rather than have
separate write enables on every word of the cache data block, the Verilog reads the old value of the block into Data Write and then updates the
word in that variable on a write. It then writes the whole 128-bit block.

 5.12 Advanced Material: Implementing Cache Controllers 5.12-5

Figure 5.12.5 defi nes the inputs, outputs, and states of the FSM. Th e inputs are
the requests from the CPU (cpu_req) and responses from memory (mem_data),
and the outputs are responses to the CPU (cpu_res) and requests to memory
(mem_req). Th e fi gure also declares the internal variables needed by the FSM.
For example, the current state and next state registers of the FSM are rstate and
vstate, respectively.

Figure 5.12.6 lists the default values of the control signals, including the word
to be read or written from a block, setting the cache write enables to 0, and so
on. Th ese values are set every clock cycle, so the write enable for a portion of the
cache—for example, tag_req.we—would be set to 1 for one clock cycle in the
fi gures below and then would be reset to 0 according to the Verilog in this fi gure.

Th e last two fi gures show the FSM as a large case statement (case(rstate)),
with the four states splits across the two fi gures. Figure 5.12.7 starts with the Idle
state (idle), which simply goes to the Compare Tag state (compare_tag) if the
CPU makes a valid request. It then describes most of the Compare Tag state. Th e
Compare Tag state checks to see if the tags match and the entry is valid. If so, then
it fi rst sets the Cache Ready signal (v_cpu_res.ready). If the request is a write, it
sets the tag fi eld, the valid bit, and the dirty bit. Th e next state is Idle. If it is a miss,
then the state prepares to change the tag entry and valid and dirty bits. If the block
to be replaced is clean or invalid, the next state is Allocate.

Figure 5.12.8 continues the Compare Tag state. If the block to be replaced is dirty,
then the next state is Write-Back. Th e fi gure shows the Allocate state (allocate)
next, which simply reads the new block. It keeps looping until the memory is ready;
when it is, it goes to the Compare Tag state. Th is is followed in the fi gure by the
Write-Back state (write_back). As the fi gure shows, the Write-Back state merely
writes the dirty block to memory, once again looping until memory is ready. When
memory is ready, indicating the write is complete, we go to the Allocate state.

Th e code at the end sets the current state from the next state or resets the FSM to
the Idle state on the next clock edge, depending on a reset signal (rst).

Th e online material includes a Test Case module that will be useful to check the
code in these fi gures. Th is SystemVerilog could be used to create a cache and cache
controller in an FPGA.

5.12-6 5.12 Advanced Material: Implementing Cache Controllers

/*cache: data memory, single port, 1024 blocks*/
module dm_cache_data(input bit clk,
 input cache_req_type data_req,//data request/command, e.g. RW, valid
 input cache_data_type data_write, //write port (128-bit line)
 output cache_data_type data_read); //read port
 timeunit 1ns; timeprecision 1ps;

 cache_data_typedata_mem[0:1023];

 initial begin
 for (int i=0; i<1024; i++)
 data_mem[i] = ‘0;
 end

 assign data_read = data_mem[data_req.index];

 always_ff @(posedge(clk)) begin
 if (data_req.we)
 data_mem[data_req.index] <= data_write;
 end
endmodule

/*cache: tag memory, single port, 1024 blocks*/
module dm_cache_tag(input bit clk, //write clock
 input cache_req_type tag_req, //tag request/command, e.g. RW, valid
 input cache_tag_type tag_write,//write port
 output cache_tag_type tag_read);//read port
 timeunit 1ns; timeprecision 1ps;

 cache_tag_typetag_mem[0:1023];

 initial begin
 for (int i=0; i<1024; i++)
 tag_mem[i] = ‘0;
 end

 assign tag_read = tag_mem[tag_req.index];

 always_ff @(posedge(clk)) begin
 if (tag_req.we)
 tag_mem[tag_req.index] <= tag_write;
 end

endmodule

FIGURE 5.12.4 Cache data and tag modules in SystemVerilog. Th ese are nearly identical except that the data is 32 bits wide
between the CPU and cache and is 128 bits wide between the cache and memory. Both only write on positive clock edges if the write enable
is set.

 5.12 Advanced Material: Implementing Cache Controllers 5.12-7

/*cache fi nite state machine*/

module dm_cache_fsm(input bit clk, input bit rst,
 input cpu_req_type cpu_req, //CPU request input (CPU->cache)
 input mem_data_type mem_data, //memory response (memory->cache)
 output mem_req_type mem_req, //memory request (cache->memory)
 output cpu_result_type cpu_res //cache result (cache->CPU)
);

 timeunit 1ns;
 timeprecision 1ps;

 /*write clock*/
 typedef enum {idle, compare_tag, allocate, write_back} cache_state_type;

 /*FSM state register*/
 cache_state_typevstate, rstate;

 /*interface signals to tag memory*/
 cache_tag_typetag_read; //tag read result
 cache_tag_typetag_write; //tag write data
 cache_req_typetag_req; //tag request

 /*interface signals to cache data memory*/
 cache_data_typedata_read; //cache line read data
 cache_data_typedata_write; //cache line write data
 cache_req_typedata_req; //data req

 /*temporary variable for cache controller result*/
 cpu_result_typev_cpu_res;

 /*temporary variable for memory controller request*/
 mem_req_typev_mem_req;

 assign mem_req = v_mem_req; //connect to output ports
 assign cpu_res = v_cpu_res;

FIGURE 5.12.5 FSM in SystemVerilog, part I. Th ese modules instantiate the memories according to the type defi nitions in the
previous fi gure.

5.12-8 5.12 Advanced Material: Implementing Cache Controllers

always_comb begin

 /*-------------------------default values for all signals------------*/
 /*no state change by default*/
 vstate = rstate;
 v_cpu_res = ‘{0, 0}; tag_write = ‘{0, 0, 0};

 /*read tag by default*/
 tag_req.we = ‘0;
 /*direct map index for tag*/
 tag_req.index = cpu_req.addr[13:4];

 /*read current cache line by default*/
 data_req.we = ‘0;
 /*direct map index for cache data*/
 data_req.index = cpu_req.addr[13:4];

 /*modify correct word (32-bit) based on address*/
 data_write = data_read;
 case(cpu_req.addr[3:2])
 2’b00:data_write[31:0] = cpu_req.data;
 2’b01:data_write[63:32] = cpu_req.data;
 2’b10:data_write[95:64] = cpu_req.data;
 2’b11:data_write[127:96] = cpu_req.data;
 endcase

 /*read out correct word(32-bit) from cache (to CPU)*/
 case(cpu_req.addr[3:2])
 2’b00:v_cpu_res.data = data_read[31:0];
 2’b01:v_cpu_res.data = data_read[63:32];
 2’b10:v_cpu_res.data = data_read[95:64];
 2’b11:v_cpu_res.data = data_read[127:96];
 endcase

 /*memory request address (sampled from CPU request)*/
 v_mem_req.addr = cpu_req.addr;
 /*memory request data (used in write)*/
 v_mem_req.data = data_read;
 v_mem_req.rw = ‘0;

FIGURE 5.12.6 FSM in SystemVerilog, part II. Th is section describes the default value of all signals. Th e following fi gures will set these
values for one clock cycle, and this Verilog will reset it to these values for the following clock cycle.

 5.12 Advanced Material: Implementing Cache Controllers 5.12-9

 //------------------------------------Cache FSM-------------------------
 case(rstate)
 /*idle state*/
 idle : begin
 /*If there is a CPU request, then compare cache tag*/
 if (cpu_req.valid)
 vstate = compare_tag;
 end
 /*compare_tag state*/
 compare_tag : begin
 /*cache hit (tag match and cache entry is valid)*/
 if (cpu_req.addr[TAGMSB:TAGLSB] == tag_read.tag && tag_read.valid) begin
 v_cpu_res.ready = ‘1;

 /*write hit*/
 if (cpu_req.rw) begin
 /*read/modify cache line*/
 tag_req.we = ‘1; data_req.we = ‘1;

 /*no change in tag*/
 tag_write.tag = tag_read.tag;
 tag_write.valid = ‘1;
 /*cache line is dirty*/
 tag_write.dirty = ‘1;
 end

 /*xaction is fi nished*/
 vstate = idle;
 end
 /*cache miss*/
 else begin
 /*generate new tag*/
 tag_req.we = ‘1;
 tag_write.valid = ‘1;
 /*new tag*/
 tag_write.tag = cpu_req.addr[TAGMSB:TAGLSB];
 /*cache line is dirty if write*/
 tag_write.dirty = cpu_req.rw;

 /*generate memory request on miss*/
 v_mem_req.valid = ‘1;
 /*compulsory miss or miss with clean block*/
 if (tag_read.valid == 1’b0 || tag_read.dirty == 1’b0)
 /*wait till a new block is allocated*/
 vstate = allocate;

FIGURE 5.12.7 FSM in SystemVerilog, part III. Actual FSM states via case statement in this fi gure and the next. Th is fi gure has the
Idle state and most of the Compare Tag state.

5.12-10 5.12 Advanced Material: Implementing Cache Controllers

 else begin
 /*miss with dirty line*/
 /*write back address*/
 v_mem_req.addr = {tag_read.tag, cpu_req.addr[TAGLSB-1:0]};
 v_mem_req.rw = ‘1;
 /*wait till write is completed*/
 vstate = write_back;
 end
 end
 end
 /*wait for allocating a new cache line*/
 allocate: begin
 /*memory controller has responded*/
 if (mem_data.ready) begin
 /*re-compare tag for write miss (need modify correct word)*/
 vstate = compare_tag;
 data_write = mem_data.data;
 /*update cache line data*/
 data_req.we = ‘1;
 end
 end
 /*wait for writing back dirty cache line*/
 write_back : begin
 /*write back is completed*/
 if (mem_data.ready) begin
 /*issue new memory request (allocating a new line)*/
 v_mem_req.valid = ‘1;
 v_mem_req.rw = ‘0;

 vstate = allocate;
 end
 end
 endcase
 end

 always_ff @(posedge(clk)) begin
 if (rst)
 rstate <= idle; //reset to idle state
 else
 rstate <= vstate;
 end
 /*connect cache tag/data memory*/
 dm_cache_tag ctag(.*);
 dm_cache_data cdata(.*);
endmodule

FIGURE 5.12.8 FSM in SystemVerilog, part IV. Actual FSM states via the case statement in the prior fi gure and this one. Th is fi gure
has the last part of the Compare Tag state, plus Allocate and Write-Back states.

 5.12 Advanced Material: Implementing Cache Controllers 5.12-11

Basic Coherent Cache Implementation Techniques
Th e key to implementing an invalidate protocol is the use of the bus, or another
broadcast medium, to perform invalidates. To invalidate, the processor simply
acquires bus access and broadcasts the address to be invalidated on the bus. All
processors continuously snoop on the bus, watching the addresses. Th e processors
check whether the address on the bus is in their cache. If so, the corresponding data
in the cache is invalidated.

When a write to a block that is shared occurs, the writing processor must
acquire bus access to broadcast its invalidation. If two processors attempt to write
shared blocks at the same time, their attempts to broadcast an invalidate operation
will be serialized when they arbitrate for the bus. Th e fi rst processor to obtain bus
access will cause any other copies of the block it is writing to be invalidated. If the
processors were attempting to write the same block, the serialization enforced by
the bus also serializes their writes. One implication of this scheme is that a write
to a shared data item cannot actually complete until it obtains bus access. All
coherence schemes require some method of serializing accesses to the same cache
block, by serializing access either to the communication medium or another shared
structure.

In addition to invalidating outstanding copies of a cache block that is being
written into, we also need to locate a data item when a cache miss occurs. In a
write-through cache, it is easy to fi nd the recent value of a data item, since all
written data are always sent to the memory, from which the most recent value of
a data item can always be fetched. In a design with adequate memory bandwidth
to support the write traffi c from the processors, using write-through simplifi es the
implementation of cache coherence.

For a write-back cache, fi nding the most recent data value is more diffi cult, since
the most recent value of a data item can be in a cache rather than in memory.
Happily, write-back caches can use the same snooping scheme both for cache misses
and for writes: each processor snoops all addresses placed on the bus. If a processor
fi nds that it has a dirty copy of the requested cache block, it provides that cache
block in response to the read request and causes the memory access to be aborted.
Th e additional complexity comes from having to retrieve the cache block from a
processor’s cache, which can oft en take longer than retrieving it from the shared
memory if the processors are in separate chips. Since write-back caches generate
lower requirements for memory bandwidth, they can support larger numbers of
faster processors and have been the approach chosen in most multiprocessors,
despite the additional complexity of maintaining coherence. Th erefore, we will
examine the implementation of coherence with write-back caches.

Th e normal cache tags can be used to implement the process of snooping,
and the valid bit for each block makes invalidation easy to implement. Read
misses, whether generated by an invalidation or by some other event, are also
straightforward, since they simply rely on the snooping capability. For writes, we’d
like to know whether any other copies of the block are cached, because if there are

5.12-12 5.12 Advanced Material: Implementing Cache Controllers

no other cached copies, the write need not be placed on the bus in a write-back
cache. Not sending the write reduces both the time taken by the write and the
required bandwidth.

To track whether or not a cache block is shared, we can add an extra state bit
associated with each cache block, just as we have a valid bit and a dirty bit. By
adding a bit indicating whether the block is shared, we can decide whether a write
must generate an invalidate. When a write to a block in the shared state occurs, the
cache generates an invalidation on the bus and marks the block as exclusive. No
further invalidations will be sent by that processor for that block. Th e processor
with the sole copy of a cache block is normally called the owner of the cache block.

When an invalidation is sent, the state of the owner’s cache block is changed
from shared to unshared (or exclusive). If another processor later requests this
cache block, the state must be made shared again. Since our snooping cache also
sees any misses, it knows when the exclusive cache block has been requested by
another processor and the state should be made shared.

Every bus transaction must check the cache-address tags, which could potentially
interfere with processor cache accesses. One way to reduce this interference is to
duplicate the tags. Th e interference can also be reduced in a multilevel cache by
directing the snoop requests to the L2 cache, which the processor uses only when
it has a miss in the L1 cache. For this scheme to work, every entry in the L1 cache
must be present in the L2 cache, a property called the inclusion property. If the
snoop gets a hit in the L2 cache, then it must arbitrate for the L1 cache to update the
state and possibly retrieve the data, which usually requires a stall of the processor.
Sometimes it may even be useful to duplicate the tags of the secondary cache to
further decrease contention between the processor and the snooping activity.

An Example Cache Coherency Protocol
A snooping coherence protocol is usually implemented by incorporating a fi nite-
state controller in each node. Th is controller responds to requests from the
processor and from the bus (or other broadcast medium), changing the state of
the selected cache block, as well as using the bus to access data or to invalidate
it. Logically, you can think of a separate controller being associated with each
block; that is, snooping operations or cache requests for diff erent blocks can
proceed independently. In actual implementations, a single controller allows
multiple operations to distinct blocks to proceed in interleaved fashion (that is,
one operation may be initiated before another is completed, even though only one
cache access or one bus access is allowed at a time). Also, remember that although
we refer to a bus in the following description, any interconnection network that
supports a broadcast to all the coherence controllers and their associated caches
can be used to implement snooping.

Th e simple protocol we consider has three states: invalid, shared, and modifi ed.
Th e shared state indicates that the block is potentially shared, while the modifi ed
state indicates that the block has been updated in the cache; note that the modifi ed

 5.12 Advanced Material: Implementing Cache Controllers 5.12-13

state implies that the block is exclusive. Figure 5.12.9 shows the requests generated
by the processor-cache module in a node (in the fi rst nine rows of the table) as well
as those coming from the bus (in the last fi ve rows of the table). Th is protocol is for
a write-back cache, but it can be easily changed to work for a write-through cache
by reinterpreting the modifi ed state as an exclusive state and updating the cache
on writes in the normal fashion for a write-through cache. Th e most common
extension of this basic protocol is the addition of an exclusive state, which describes
a block that is unmodifi ed but held in only one cache; the caption of Figure 5.12.9
describes this state and its addition in more detail.

When an invalidate or a write miss is placed on the bus, any processors with
copies of the cache block invalidate it. For a write-through cache, the data for a
write miss can always be retrieved from the memory. For a write miss in a writeback
cache, if the block is exclusive in just one cache, that cache also writes back the
block; otherwise, the data can be read from memory.

Figure 5.12.10 shows a fi nite-state transition diagram for a single cache block
using a write invalidation protocol and a write-back cache. For simplicity, the three
states of the protocol are duplicated to represent transitions based on processor
requests (on the left , which corresponds to the top half of the table in Figure 5.12.9),
as opposed to transitions based on bus requests (on the right, which corresponds to
the last fi ve rows of the table in Figure 5.12.9). Boldface type is used to distinguish
the bus actions, as opposed to the conditions on which a state transition depends.
Th e state in each node represents the state of the selected cache block specifi ed by
the processor or bus request.

All of the states in this cache protocol would be needed in a uniprocessor cache,
where they would correspond to the invalid, valid (and clean), and dirty states.
Most of the state changes indicated by arcs in the left half of Figure 5.12.10 would be
needed in a write-back uniprocessor cache, with the exception being the invalidate
on a write hit to a shared block. Th e state changes represented by the arcs in the
right half of Figure 5.12.10 are needed only for coherence and would not appear at
all in a uniprocessor cache controller.

As mentioned earlier, there is only one fi nite-state machine per cache, with
stimuli coming either from the attached processor or from the bus. Figure 5.12.11
shows how the state transitions in the right half of Figure 5.12.10 are combined
with those in the left half of the fi gure to form a single state diagram for each cache
block.

To understand why this protocol works, observe that any valid cache block is
either in the shared state in one or more caches or in the exclusive state in exactly
one cache. Any transition to the exclusive state (which is required for a processor
to write to the block) requires an invalidate or write miss to be placed on the bus,
causing all caches to make the block invalid. In addition, if some other cache had
the block in exclusive state, that cache generates a write back, which supplies the
block containing the desired address. Finally, if a read miss occurs on the bus to a
block in the exclusive state, the cache with the exclusive copy changes its state to
shared.

5.12-14 5.12 Advanced Material: Implementing Cache Controllers

Request Source

State of
addressed

cache block
Type of

cache action Function and explanation

Read hit processor shared or
modifi ed

normal hit Read data in cache.

Read miss processor invalid normal miss Place read miss on bus.

Read miss processor shared replacement Address confl ict miss: place read miss on bus.

Read miss processor modifi ed replacement Address confl ict miss: write-back block, then place read miss
on bus.

Write hit processor modifi ed normal hit Write data in cache.

Write hit processor shared coherence Place invalidate on bus. These operations are often called
upgrade or ownership misses, since they do not fetch the data
but only change the state.

Write miss processor invalid normal miss Place write miss on bus.

Write miss processor shared replacement Address confl ict miss: place write miss on bus.

Write miss processor modifi ed replacement Address confl ict miss: write-back block, then place write miss
on bus.

Read miss bus shared no action Allow memory to service read miss.

Read miss bus modifi ed coherence Attempt to share data: place cache block on bus and change
state to shared.

Invalidate bus shared coherence Attempt to write shared block; invalidate the block.

Write miss bus shared coherence Attempt to write block that is shared; invalidate the cache
block.

Write miss bus modifi ed coherence Attempt to write block that is exclusive elsewhere: write-back
the cache block and make its state invalid.

FIGURE 5.12.9 The cache coherence mechanism receives requests from both the processor and the bus and responds
to these based on the type of request, whether it hits or misses in the cache, and the state of the cache block specifi ed
in the request. Th e fourth column describes the type of cache action as normal hit or miss (the same as a uniprocessor cache would see),
replacement (a uniprocessor cache replacement miss), or coherence (required to maintain cache coherence); a normal or replacement action
may cause a coherence action depending on the state of the block in other caches. For read misses, write misses, or invalidates snooped from
the bus, an action is required only if the read or write addresses match a block in the cache and the block is valid. Some protocols also introduce
a state to designate when a block is exclusively in one cache but has not yet been written. Th is state can arise if a write access is broken into
two pieces: getting the block exclusively in one cache and then subsequently updating it; in such a protocol this “exclusive unmodifi ed state” is
transient, ending as soon as the write is completed. Other protocols use and maintain an exclusive state for an unmodifi ed block. In a snooping
protocol, this state can be entered when a processor reads a block that is not resident in any other cache. Because all subsequent accesses are
snooped, it is possible to maintain the accuracy of this state. In particular, if another processor issues a read miss, the state is changed from
exclusive to shared. Th e advantage of adding this state is that a subsequent write to a block in the exclusive state by the same processor need not
acquire bus access or generate an invalidate, since the block is known to be exclusively in this cache; the processor merely changes the state to
modifi ed. Th is state is easily added by using the bit that encodes the coherent state as an exclusive state and using the dirty bit to indicate that
a block is modifi ed. Th e popular MESI protocol, which is named for the four states it includes (modifi ed, exclusive, shared, and invalid), uses
this structure. Th e MOESI protocol introduces another extension: the “owned” state.

 5.12 Advanced Material: Implementing Cache Controllers 5.12-15

Th e actions in gray in Figure 5.12.11, which handle read and write misses on the
bus, are essentially the snooping component of the protocol. One other property
that is preserved in this protocol, and in most other protocols, is that any memory
block in the shared state is always up to date in the memory, which simplifi es the
implementation.

Although our simple cache protocol is correct, it omits a number of complications
that make the implementation much trickier. Th e most important of these is that
the protocol assumes that operations are atomic—that is, an operation can be done
in such a way that no intervening operation can occur. For example, the protocol
described assumes that write misses can be detected, acquire the bus, and receive
a response as a single atomic action. In reality, this is not true. Similarly, if we used

Exclusive
(read/write)

Exclusive
(read/write)

Invalidate for
this block

Write miss for this block

Write miss
for this block

CPU write hit
CPU read hit

Cache state transitions based
on requests from the bus

CPU write

P
la

ce
 w

ri
te

m
is

s
o

n
 b

u
s

CPU re
ad

 m
iss

W
rit

e-
bac

k b
lo

ck

Pla
ce

 in
va

lid
at

e
on b

us

Plac
e r

ea
d m

iss
 o

n b
us CPU w

rit
e

Place read miss on bus

Place read
miss on bus

W
ri

te
-b

ac
k

b
lo

ck
;

ab
o

rt
 m

em
o

ry
ac

ce
ss

W
rit

e-
bac

k b
lo

ck
; a

bort

m
em

ory
 ac

ce
ss

CPU read

Cache state transitions
based on requests from CPU

Shared
(read only)

CPU read hit

CPU write miss

Write-back cache block
Place write miss on bus

CPU
read
miss

Read miss
for this block

Invalid Invalid

Read miss
for this block

Shared
(read only)

CPU w
rit

e
m

iss

Pla
ce

 w
rit

e
m

is
s

on b
us

FIGURE 5.12.10 A write-invalidate, cache-coherence protocol for a write-back cache, showing the states and state
transitions for each block in the cache. Th e cache states are shown in circles, with any access permitted by the processor without a state
transition shown in parentheses under the name of the state. Th e stimulus causing a state change is shown on the transition arcs in regular type,
and any bus actions generated as part of the state transition are shown on the transition arc in bold. Th e stimulus actions apply to a block in the
cache, not to a specifi c address in the cache. Hence, a read miss to a block in the shared state is a miss for that cache block but for a diff erent
address. Th e left side of the diagram shows state transitions based on actions of the processor associated with this cache; the right side shows
transitions based on operations on the bus. A read miss in the exclusive or shared state and a write miss in the exclusive state occur when
the address requested by the processor does not match the address in the cache block. Such a miss is a standard cache replacement miss. An
attempt to write a block in the shared state generates an invalidate. Whenever a bus transaction occurs, all caches that contain the cache block
specifi ed in the bus transaction take the action dictated by the right half of the diagram. Th e protocol assumes that memory provides data on
a read miss for a block that is clean in all caches. In actual implementations, these two sets of state diagrams are combined. In practice, there
are many subtle variations on invalidate protocols, including the introduction of the exclusive unmodifi ed state, as to whether a processor or
memory provides data on a miss.

5.12-16 5.12 Advanced Material: Implementing Cache Controllers

a switch, as all recent multiprocessors do, then even read misses would also not be
atomic.

Nonatomic actions introduce the possibility that the protocol can deadlock,
meaning that it reaches a state where it cannot continue. On the next page we will
discuss how these protocols are implemented without a bus.

Constructing small-scale (two to four processors) multiprocessors has become
very easy. For example, the Intel Nehalem and AMD Opteron processors are
designed for use in cache-coherent multiprocessors and have an external interface
that supports snooping and allows two to four processors to be directly connected.
Th ey also have larger on-chip caches to reduce bus utilization. In the case of
the Opteron processors, the support for interconnecting multiple processors is
integrated onto the processor chip, as are the memory interfaces. In the case of the
Intel design, a two-processor system can be built with only a few additional external
chips to interface with the memory system and I/O. Although these designs cannot
be easily scaled to larger processor counts, they off er an extremely cost-eff ective
solution for two to four processors.

Exclusive
(read/write)

CPU write hit
CPU read hit

Write miss
for block

CPU write

P
la

ce
 w

ri
te

 m
is

s
o

n
 b

u
s

Rea
d

m
iss

 fo
r b

loc
k

CPU re
ad

 m
iss

W
rit

e-
bac

k b
lo

ck

Plac
e i

nv
ali

dat
e o

n b
us

CPU w
rit

e

Place read miss on bus

Write miss for this block

Place read
miss on bus

CPU read

CPU write miss

Write-back data
Place write miss on bus

Read miss
for this
block

Invalid

Invalidate for this block

W
rit

e-
bac

k d
at

a;
 p

lac
e r

ea
d m

iss
 o

n b
us

Shared
(read only)

W
ri

te
-b

ac
k

b
lo

ck

CPU w
rit

e
m

iss

Plac
e w

rit
e m

iss
 o

n b
us

CPU
read
hit

FIGURE 5.12.11 Cache coherence state diagram with the state transitions induced by
the local processor shown in black and by the bus activities shown in gray. As in Figure
5.12.10, the activities on a transition are shown in bold.

 5.12 Advanced Material: Implementing Cache Controllers 5.12-17

Implementing Snoopy Cache Coherence
As we said earlier, the major complication in actually implementing the snooping
coherence protocol we have described is that write and upgrade misses are not
atomic in any recent multiprocessor. Th e steps of detecting a write or upgrade miss;
communicating with the other processors and memory; getting the most recent
value for a write miss and ensuring that any invalidates are processed; and updating
the cache cannot be done as if they took a single cycle.

In a simple single-bus system, these steps can be made eff ectively atomic by
arbitrating for the bus fi rst (before changing the cache state) and not releasing
the bus until all actions are complete. How can the processor know when all the
invalidates are complete? In most bus-based multiprocessors, a single line is used to
signal when all necessary invalidates have been received and are being processed.
Following that signal, the processor that generated the miss can release the bus,
knowing that any required actions will be completed before any activity related
to the next miss. By holding the bus exclusively during these steps, the processor
eff ectively makes the individual steps atomic.

In a system without a bus, we must fi nd some other method of making the steps
in a miss atomic. In particular, we must ensure that two processors that attempt to
write the same block at the same time, a situation which is called a race, are strictly
ordered: one write is processed before the next is begun. It does not matter which
of two writes in a race wins the race, just that there be only a single winner whose
coherence actions are completed fi rst. In a snoopy system, ensuring that a race
has only one winner is accomplished by using broadcast for all misses, as well as
some basic properties of the interconnection network. Th ese properties, together
with the ability to restart the miss handling of the loser in a race, are the keys to
implementing snoopy cache coherence without a bus.

Th e devil is in the
details.
Classic proverb

