
 Copyright  2012 Michel Dubois, Murali Annavaram and Per Stenström

24

the potential speedup of superpipelining the 5-stage pipeline is quite small.

Problem 3.13

a. Tomasulo algorithm--no speculation.

The values between parentheses show resources reserved by an instruction at the time of dispatch.
Store I10 can issue to cache at clock 23 because no memory instruction is pending in the L/S queue.
Load I12 can issue to cache at clock 18 because the only preceding and pending memory instruction
is the store I10 and the address of the store is known at the end of clock 12. Load I12 cannot dis-
patch until it knows the outcome of branch I11, at the end of clock 14.

b. Tomasulo algorithm with speculation.

Table 17: Tomasulo algorithm--no speculation

Dispatch Issue Exec
start

Exec
complete

Cache CDB COMMENTS

I1 L.D F0,0(R1) 1 2 (3) 3 (4) (5)

I2 L.D F2,0(R2) 2 3 (4) 4 (5) (6)

I3 L.D F4,0(R3) 3 4 (5) 5 (6) (7)

I4 MUL.D F6,F2,F0 4 7 (8) 12 -- (13) wait for F2

I5 ADD.D F8,F6,F4 5 14 (15) 19 -- (20) wait for F6

I6 ADDI R1,R1,#8 6 7 (8) 8 -- (9)

I7 ADDI R2,R2,#8 7 8 (9) 9 -- (10)

I8 ADDI R3,R3,#8 8 9 (10) 10 -- (11)

I9 S.S-A F8,-8(R2) 9 11 (12) 12 -- -- wait for R2

I10 S.S-D F8,-8(R2) 10 21 (22) 22 (23) -- wait for F8

I11 BNE R4,R2,LOOP 11 12 (13) 13 -- (14)

I12 L.D F0,0(R1) 15 16 (17) 17 (18) (19) wait for I11
in dispatch

Table 18: Tomasulo algorithm with speculation

Dispatch Issue Exec
start

Exec
complete

Cache CDB Retire COMMENTS

I1 L.D F0,0(R1) 1 2 (3) 3 (4) (5) 6

I2 L.D F2,0(R2) 2 3 (4) 4 (5) (6) 7

I3 L.D F4,0(R3) 3 4 (5) 5 (6) (7) 8

I4 MULT.D F6,F2,F0 4 7 (8) 12 -- (13) 14 wait for F2

I5 ADD.D F8,F6,F4 5 14 (15) 19 -- (20) 21 wait for F6

I6 ADDI R1,R1,#8 6 7 (8) 8 -- (9) 22

I7 ADDI R2,R2,#8 7 8 (9) 9 -- (10) 23

I8 ADDI R3,R3,#8 8 9 (10) 10 -- (11) 24

I9 S.D-A F8,-8(R2) 9 11 (12) 12 -- -- -- wait for R2

I10 S.D-D F8,-8(R2) 10 21 (22) 22 24 -- 25 wait for F8, then wait to
reach top of ROB

I11 BNE R4,R2,LOOP 11 12 (13) 13 -- (14) 26

I12 L.D F0,0(R1) 12 13 (14) 14 (15) (16) 27 Address of store is
known since cycle 13

 Copyright  2012 Michel Dubois, Murali Annavaram and Per Stenström

25

Store I10 reaches the L/S queue at the end of clock 22. To proceed to cache it must verify that it is at
the top of the ROB. The previous instruction in process order is I8 and it retires at clock 24. There-
fore the store is at the top of the ROB during clock 24 and it may issue to cache in clock 24. Note
that now load I12 can dispatch before it knows the outcome of branch I11.
c. Speculation with speculative scheduling

Because of speculative scheduling the MULT instruction I4 does not have to wait for F2 anymore
because F2 is forwarded right on time through the common data bus in clock 7. By issuing I4 ahead
of time, the forwarded F2 value is the input to the FP unit at the beginning of cycle 7. Instruction I8
cannot issue in clock 9, although it has no hazards with prior instructions because it cannot reserve
the CDB for clock 12 (because it was reserved at clock 5 by I4). Store I10 waits for F8 to issue. F8
is put on the CDB in clock 17 and the store can execute in the AGU in clock 17 and is issued spec-
ulatively at clock 15. Then the store reaches the L/S queue where it waits to reach the top of the
ROB, in clock 21. At the beginning of clock 21 the store is at the top of the ROB because the pre-
ceding instruction (I8) is in the retirement unit in clock 21.

d.
Each instruction in the data-flow graph is labeled as follows.

I1 L.D F0,0(R1) /X[i] loaded in F0
I2 L.D F2,0(R2) /Y[i] loaded in F2
I3 L.D F4,0(R3) /Z[i] loaded in F4
I4 MUL.D F6,F2,F0 /Multiply X by Y
I5 ADD.D F8,F6,F4 /Add Z
I6 ADDI R1,R1,#8 /Update address registers
I7 ADDI R2,R2,#8
I8 ADDI R3,R3,#8
I9 S.D F8, -8(R2) /store in Y[i]
I10 BNE R4,R2,LOOP /(R4)-8 points to the last element of Y

Table 19: Tomasulo algorithm with speculation and speculative scheduling

Dispatch Issue Register
Fetch

Exec
start

Exec
complete

Cache CDB Retire Comments

I1 L.D F0,0(R1) 1 2 3 (4) 4 (5) (6) 7

I2 L.D F2,0(R2) 2 3 4 (5) 5 (6) (7) 8

I3 L.D F4,0(R3) 3 4 5 (6) 6 (7) (8) 9

I4 MULT.D F6,F2,F0 4 5 6 (7) 11 -- (12) 13

I5 ADD.D F8,F6,F4 5 10 11 (12) 16 -- (17) 18 wait for F6

I6 ADDI R1,R1,#8 6 7 8 (9) 9 -- (10) 19

I7 ADDI R2,R2,#8 7 8 9 (10) 10 -- (11) 20

I8 ADDI R3,R3,#8 8 10 11 (12) 12 -- (13) 21 CDB conflict with
I4

I9 S.D-A F8,-8(R2) 9 10 11 (12) 12 -- -- --

I10 S.D-D F8,-8(R2) 10 15 16 17 17 21 -- 22 wait for F8, then
wait to reach top

of ROB

I11 BNE R4,R2,LOOP 11 12 13 (14) 14 -- (15) 23

I12 L.D F0,0(R1) 12 14 15 (16) 16 (17) (18) 24 CDB conflict with
I5

 Copyright  2012 Michel Dubois, Murali Annavaram and Per Stenström

26

The data-flow graph is given in Figure 2. The critical path in the data-flow graph is shown in bold
(I1->I4->I5). The store I9 is off the critical path because there is no RAW memory dependencies on
memory, either within one iteration or across iterations of the loop.

It is a challenge to figure out the exact execution rate in a single iteration of a loop. The exercise
asks to measure execution time from issue to issue of the first load. The results are shown in the
first row of Table 20. Speculative execution is better than execution with no speculation. This is
because of the delay needed to obtain the branch outcome. For this particular code speculative exe-
cution with speculative scheduling is slightly worse than without speculative scheduling. Looking
at the schedule speculative scheduling for this particular code causes two conflicts on the CDB.
Table 20 also shows two other possible measures. The first one is between the starts of execution of
the two loads. The numbers are unchanged. The second measure is the time between retirement of
the two loads. This metric may be better because it only considers instructions that are non-specula-
tive. In this case the store is included in the critical path. Under this metric, speculative scheduling
improves on speculative execution without speculative scheduling.

Table 20: Execution time comparisons

Execution time metric Tomasulo w/o spec Tomasulo with spec Spec scheduling Data-flow

Issue-to-issue 16-2=14 13-2=11 14-2=12 7

Execution-to-execution 17-3=14 14-3=11 15-3=12 7

Retirement --- 27-6=21 24-7=17 7

Figure 2Data-flow graph

I1

I2

I3

I5I4 I9

I6 I7 I8

I1’ I10

F0

F2

F4

F6 F8

R1

R2

R2 R3

2

2

2

5 5

1

1 1 1

 Copyright  2012 Michel Dubois, Murali Annavaram and Per Stenström

28

Execution Time per Iteration (issue-to-issue; second iteration) = 34 - 11 = 23 cycles. Comparing
this to the execution time in part b (single dispatch) of Exercise 3.13 (11 cycles), we find that dual
dispatch degrades the performance significantly. The main bottleneck is the number of ROB entries
available, compounded by the fact that the machine waits until two instructions are structural haz-
ard free to dispatch. This machine definitely needs more ROB entries.
Also, since there are a lot of data dependencies between instructions, the machine stalls instructions
in issue queues while waiting for their operands and this reduces the benefits of dual dispatch. The
last bottleneck is structural hazards on functional units (ALU’s, cache ports, FP units), and on the
single CDB.

Problem 3.15

a. Conservative Disambiguation:

I22 BNE R4,R2,LOOP 28(0) 31 (32) 32 -- (33) 45 wait to get 2 ROB
entries, wait for
R2, and CDB

conflict with I15

I23 L.D F0,0(R1) 33(1) 34 (35) 35 (36) (37) 46 wait to get 2 ROB
entries

I24 L.D F2,0(R2) 33(0) 35 (36) 36 (37) (38) 47 wait to get 2 ROB
entries and con-

flict with I23

Table 22: Tomasulo algorithm with speculation (two-way superscalar)-Conservative disambiguation

Dispatch Issue Exec
start

Exec
complete

Cache CDB Retire Comment

I1 L.D F2,0(R1) 1(7) 2 (3) 3 (4) (5) 6

I2 ADDI R1,R1,#8 1(6) 2 (3) 3 -- (4) 7

I3 ADDI R2,R2,#8 2(5) 4 (5) 5 -- 6 8 CDB conflict with
I1

I4 S.D-A F2,-8(R2) 2(5) 7 (8) 8 -- -- -- wait for R2

I5 S.D-D F2,-8(R2) 3(4) 6 (7) 7 9 -- 10 wait for F2 and
wait for address

I6 BNEQ R1,R3,LOOP 3(3) 5 (6) 6 -- (7) 11 wait for R1

I7 L.D F2,0(R1) 4(2) 5 (6) 6 10 11 12 wait for address
of previous store
and CDB conflict

with I9

I8 ADDI R1,R1,#8 4(1) 7 (8) 8 -- (9) 13 FU conflict with I6
and CDB conflict

with I7

I9 ADDI R2,R2,#8 5(0) 8 (9) 9 -- (10) 14 CDB conflict with
I7and FU conflict

with I8

I10 S.D-A F2,-8(R2) 5(0) 11 (12) 12 -- -- -- wait for R2

I11 S.D-D F2,-8(R2) 7(1) 12 (13) 13 (14) -- 15 wait to get 2 ROB
entries, wait for

F2

I12 BNEQ R1,R3,LOOP 7(0) 10 (11) 11 -- (12) 16 wait for R1

I13 L.D F2,0(R1) 10(1) 13 (14) 14 (15) (16) 17 wait to get 2 ROB
entries and AGU
conflict with I10 &

I11

I14 ADDI R1,R1,#8 10(0) 11 (12) 12 -- (13) 18 wait to get 2 ROB
entries

Dispatch Issue Exec
start

Exec
complete

Cache CDB Retire COMMENTS

 Copyright  2012 Michel Dubois, Murali Annavaram and Per Stenström

29

At the time of issue, load I7 reserved the cache for clock 7 and the CDB for clock 8. However, the
load must wait in the L/S queue until the address of the previous store is known, at the end of clock
8. However if the load issues to cache in clock 9, it will conflict with I9 at clock 10. Therefore I7
must wait one more clock to issue to cache, at clock 10. Meanwhile I8 cannot issue at clock 5
because I6 has already reserved the integer unit for clock 6. It also cannot issue at clock 6 because
load I7 has reserved the CDB for clock 8 (a false conflict and a CDB cycle that is lost). Similarly I9
fails to issue at first in clock 6 because of the CDB conflict with I7. Then it cannot issue at clock 7
because of the conflict with I8 on the integer unit.
b. Speculative Disambiguation:

I15 ADDI R2,R2,#8 11(0) 12 (13) 13 -- (14) 19

I16 S.D-A F2,-8(R2) 11(0) 15 (16) 16 -- -- -- wait for R2

I17 S.D-D F2,-8(R2) 13(1) 17 (18) 18 (19) -- 20 wait to get 2 ROB
entries, wait for

F2

I18 BNEQ R1,R3,LOOP 13(0) 15 (16) 16 -- (17) 21 wait to get 2 ROB
entries and CDB
conflict with I13

I19 L.D F2,0(R1) 15(1) 16 (17) 17 (18) (19) 22 wait to get 2 ROB
entries

Table 23: Tomasulo algorithm with speculation (two-way superscalar)-Speculative disambiguation

Dispatch Issue Exec
start

Exec
complete

Cache CDB Retire Comment

I1 L.D F2,0(R1) 1(7) 2 3 3 4 5 6

I2 ADDI R1,R1,#8 1(6) 2 3 3 -- 4 7

I3 ADDI R2,R2,#8 2(5) 4 5 5 -- 6 8 CDB conflict with
I1

I4 S.D-A F2,-8(R2) 2(5) 7 8 8 -- -- -- wait for R2

I5 S.D-D F2,-8(R2) 3(4) 6 7 7 9 -- 10 wait for F2 and
wait for address

I6 BNEQ R1,R3,LOOP 3(3) 5 6 6 -- 7 11 wait for R1

I7 L.D F2,0(R1) 4(2) 5 6 6 7 8 12

I8 ADDI R1,R1,#8 4(1) 7 8 8 -- 9 13 FU conflict with I6
and CDB conflict

with I7

I9 ADDI R2,R2,#8 5(0) 8 9 9 -- 10 14 CDB conflict with
I7 and FU conflict

with I8

I10 S.D-A F2,-8(R2) 5(0) 11 12 12 -- -- -- wait for R2

I11 S.D-D F2,-8(R2) 7(1) 9 10 10 14 -- 15 wait to get 2 ROB
entries, wait for
F2, then wait to

reach top of ROB

I12 BNEQ R1,R3,LOOP 7(0) 10 11 11 -- 12 16 wait to get 2 ROB
entries then wait

for R1

I13 L.D F2,0(R1) 10(1) 12 13 13 14 15 17 wait to get 2 ROB
entries and AGU
conflict with I10

I14 ADDI R1,R1,#8 10(0) 11 12 12 -- 13 18 wait to get 2 ROB
entries

I15 ADDI R2,R2,#8 11(0) 12 13 13 -- 14 19

I16 S.D-A F2,-8(R2) 11(0) 15 16 16 -- -- -- wait for R2

Table 22: Tomasulo algorithm with speculation (two-way superscalar)-Conservative disambiguation

Dispatch Issue Exec
start

Exec
complete

Cache CDB Retire Comment

 Copyright  2012 Michel Dubois, Murali Annavaram and Per Stenström

30

Looking again at load I7, the load is (successively) issued to cache speculatively at clock 7. This
avoids load delays, and eliminates the wasted cycle on the CDB.

Problem 3.16

a. With one-bit state machine, 0 is not taken (NT) and 1 is taken (T).
The values are: 8,9,10,11,7,20,29,30,31
b1: T,U,T,U,U,T,U,T,U
b2: T,T,U,T,T,U,T,U,T

If a prediction and the actual branch direction are the same in a given entry of Table 24, it means
that the branch prediction is correct, and these cases are in bold in the table above.
Also the branch direction in the iteration is the prediction in the next iteration.
Therefore, the prediction accuracy for b1 is 1/9 = 11%
The prediction accuracy for b2 is 2/9 = 22%.
The overall prediction accuracy for both branches is 3/18 = 1/6 = 16.67%

b. 2-level branch prediction scheme.
If the previous branch, either b1 or b2, is taken, g is set to 1. If the previous branch is not taken, then
g is 0 in the history register. If a prediction and an actual branch direction are same, they are shown
in bold in Table 25.
Thus, the prediction accuracy for b1 is 4/9 = 44.4%.
The prediction accuracy for b2 is also 6/9=66.7%.
The overall accuracy is 55.5%.

c.
The prediction success rate for b2 when g=0 is 4/5 = 80%.
For b2, g is equal to 0 when the previous branch, b1, is not taken. That means the value is odd. In
the given 9 values, there is no odd number which is also a multiple of 5. Therefore, once the branch

I17 S.D-D F2,-8(R2) 13(1) 16 17 17 19 -- 20 wait to get 2 ROB
entries, then wait

for F2

I18 BNEQ R1,R3,LOOP 13(0) 14 15 15 -- 16 21 wait to get 2 ROB
entries

I19 L.D F2,0(R1) 15(1) 17 18 18 19 20 22 wait to get 2 ROB
entries and AGU
conflict with I17

Table 24: 1-bit predictor

Iteration 1 2 3 4 5 6 7 8 9

B1(Prediction/Actual
Branch Direction)

0/1 1/0 0/1 1/0 0/0 0/1 1/0 0/1 1/0

B2(Prediction/Actual
Branch Direction)

0/1 1/1 1/0 0/1 1/1 1/0 0/1 1/0 0/1

Table 23: Tomasulo algorithm with speculation (two-way superscalar)-Speculative disambiguation

Dispatch Issue Exec
start

Exec
complete

Cache CDB Retire Comment

 Copyright  2012 Michel Dubois, Murali Annavaram and Per Stenström

31

predictor is warmed-up, b2 branch with g=0 is highly predictable.

The values are: 8,9,10,11,7,20,29,30,31
b1: T,U,T,U,U,T,U,T,U
b2: T,T,U,T,T,U,T,U,T

Problem 3.17

First, let’s think about the possible aliasing for private table access. Branch1 and Branch2 are sepa-
rated by 1 instruction and their PC values differ by 8. Branch2 and Bbranch3 are separated by 2
instructions and their PC values differ by 12. Branch1 and Branch3 are separated by 4 instructions
and their PC values differ by 20. Since 10 bits of the branch PC are used, there is no possibility of
aliasing of branch addresses for the private tables for this piece of code.

1. GAg
The history pattern is global and the predictors are shared. In the following table, the first column
indicates the loop iteration and the 2nd column indicates branch. The pattern column shows the
global history and the value of the predictor. The action column shows the prediction, the actual
branch action, and the updated predictor value.

Table 25: Two-level branch prediction scheme

Iteration 1 2 3 4 5 6 7 8 9

B1 (g/Prediction/
Actual Branch Direction)

0/0/1 1/0/0 1/0/1 0/1/0 1/1/0 1/0/1 0/0/0 1/1/1 0/0/0

B2 (g/Prediction/
Actual Branch Direction)

1/0/1 0/0/1 1/1/0 0/1/1 0/1/1 1/0/0 0/1/1 1/0/0 0/1/1

Table 26:

Iteration Branch Pattern Action

1 BNEZ R2, LAB1 0/0 NT/NT/0 (Success)

1 BEQZ R0, LAB2 0/0 NT/T/1

1 BNEZ R1, LOOP 1/0 NT/T/1

2 BNEZ R2, LAB1 1/1 T/T/1 (Success)

2 BNEZ R1, LOOP 1/1 T/T/1 (Success)

3 BNEZ R2, LAB1 1/1 T/NT/0

3 BEQZ R0, LAB2 0/1 T/T/1 (Success)

3 BNEZ R1, LOOP 1/0 NT/T/1

4 BNEZ R2, LAB1 1/1 T/T/1 (Success)

4 BNEZ R1, LOOP 1/1 T/T/1 (Success)

5 BNEZ R2, LAB1 1/1 T/NT/0

5 BEQZ R0, LAB2 0/1 T/T/1 (Success)

