

DAT105: Project – Laboratory Assignment 2, Study Period II, 2017 Page 1 of 4

DAT105 Computer Architecture
Study Period I, 2019

Department of Computer Science and Engineering
Chalmers University of Technology, Göteborg, Sweden

Laboratory Assignment 2:

Exploring the Impact of Branch Prediction and Instruction-Level
Parallelism (ILP) on Processor Performance

Contributors: Mehrzad Nejat, Mohammad Waqar Azhar, Per Stenstrom

Learning outcome: The main objective of this lab assignment is two-fold: (1) to
understand the impact of branch prediction on processor performance and (2) to
explore several micro-architectural techniques to exploit Instruction-Level Parallelism
(ILP). At the end of this assignment, you should be able to

§ Explore the design space of popular branch predictors and assessment of the
impact on performance of the prediction accuracy

§ Evaluate the impact of dynamic scheduling, multiple issue and hardware-based
speculation on performance

Background: You must have finished the first assignment before starting this one.
Therefore, you should already be familiar with the simulation environment and the
basic simulation methodology. You should also have some basic knowledge about
branch prediction, dynamic scheduling and out of order (OoO) execution, and
multiple-issue superscalar architectures as covered by lecture 2-4 in the course.

In the first assignment, you have studied the impact of basic cache parameters (cache
size, associativity, and block size) on overall performance. You tried to get close to the
maximum possible speedup and proposed a new optimal configuration for instruction
and data caches.

In this assignment, we continue to explore other performance enhancing techniques
including branch prediction and different instruction scheduling techniques. Check the
related sections of the simulator user guide to see what parameters are available and
what each parameter refers to. You may need to have another look at the course
material and references to make sure that you understand the concept and
functionality of these configurations and parameters. If you have any doubts, discuss
it with the teaching assistants.

Evaluation: You must write a report that includes: A brief description of the problem
and the method you used, important assumptions (if any), simulation results and
observations, your design choices and the reason behind them. Detailed report
guidelines will be available on Ping-Pong.

DAT105: Project – Laboratory Assignment 2, Study Period II, 2017 Page 2 of 4

Task 1: Branch Prediction
Start from the last configuration you proposed in the previous lab assignment (OPT2)
as a base for this task and call it “base2”. If you check the branch predictor type, you
will notice that it is set to “not taken”. This is a static branch predictor. There are also
several types of dynamic predictors: Bimodal, two-level, and combined. Think about
the following questions:

Ø Static branch predictors always assume the same prediction for all the
branches. Therefore, they have a minimum overhead. But, what about their
prediction accuracy compared to dynamic predictors? How big is the
difference?

Ø How much variation do you expect in branch prediction accuracy among
different types of dynamic predictors?

Ø How big is the effect of the accuracy of branch predictors on the overall
performance?

Ø How much does the answer to the previous questions depend on the
application?

Similar to the methodology in the previous assignment, start by finding the maximum
possible speedup when improving branch prediction. You can use the ‘Perfect’
predictor available in the simulator configuration. First, perform the simulations for
base2. Then, create new models by changing the branch predictor type1 to perfect,
bimodal, two-level, and combined.

The design space to be explored is specified by the entries in the configuration file.
You will notice more configuration details for each branch predictor, plus return
address stack (RAS) and branch target buffer (BTB). In the final step try to alter these
values to see how much further improvement you can make. But, you are limited to
the following changes:

• Doubling the table size for bimodal
• Doubling of the L1 and/or L2 size of the two-level predictor
• Doubling of the table size of combined

Step 1: Devise a methodology for establishing how to explore the design space of
branch predictors with respect to performance. The goal is to find the best performing
branch predictor. The exploration should take into account the type of branch
predictors (bimodal, two-level, combined) and the size of the tables they use.

Step 2: Carry out the design space exploration.

Step 3: State your conclusions on what is the best design point backed up by numbers
(tables, diagrams) and state what are the limitations of the methodology.

1 Do not change anything else

DAT105: Project – Laboratory Assignment 2, Study Period II, 2017 Page 3 of 4

Task 2: Exploiting Instruction-Level Parallelism
In a simple single-issue in-order pipeline, CPI is usually more than one. The reason is
that during the execution of the program there are some additional cycles wasted on
waiting for memory accesses, recovering from a branch miss prediction, or handling
dependencies between instructions. You have already minimized the number of
wasted cycles due to memory accesses and branch prediction inaccuracy.

The goal now is to reduce the number of wasted cycles due to instruction
dependencies by improving the processor core and allowing out-of-order execution.
Then, you will further utilize ILP by increasing the pipeline width such that multiple
instructions can be issued and executed in parallel at the same time. Use the best
configuration you proposed in the previous task as a base for this task and name it
“base3.txt”. Similar with the previous assignment, improve the design in a structured
step-wise fashion.

2.1. Increasing the Functional Units (FU)
In the first step, increase the number of FUs. These FUs are Arithmetic-Logical-Units
(ALU) and Multiplier/Dividers for integer and floating-point operations. However, if
you have checked the results of the previous simulations more carefully, you have
noticed that floating point units are never used. This is because the benchmark
programs you are using in this lab use only integer arithmetic. So, you should focus on
the number of integer units.

Task 2.1:

Goal: Establish the number of ALUs and Multiplier/Dividers needed to maximize
performance.

Step 1: Devise a methodology for establishing the impact of the number of functional
units on performance

Step 2: Carry out the design space exploration

Step 3: State your conclusion backed up by numbers (tables, diagrams). And discuss
the limitations of the methodology.

2.2. Out-of-order execution
In this part, you will simulate a single-issue out-of-order processor (core). Keep
decode, issue, and commit widths equal to one and change the issue to out-of-order.

Your task is to study the impact of the size of the Reorder Buffer (RUU in the table)
and Load/Store Queue (LSQ in the table) has on the performance for a single-issue
out-of-order processor (core).

DAT105: Project – Laboratory Assignment 2, Study Period II, 2017 Page 4 of 4

Parameter Possible values
IF Queue size 2,4,8

RUU size 16,32,64,128
LSQ RUU size ÷2

Number of ALUs 1-8
Number of Mults 1-4
Issue wrong path True/False

Task 2.2:

Step 1: Devise a methodology for establishing the impact of the size of the Reorder
buffer on performance

Step 2: Carry out the design space exploration

Step 3: State your conclusion backed up by numbers (tables, diagrams).

2.3. Wide issue

Here, we will go beyond single-issue out-of-order processors and especially consider
the impact the issue, decode and commit width have on the performance, where the
width is varied between 2 and 8. You should consider how the width may affect the
size of the Reorder buffer and the number of functional units.

Task 2.3:

Goal: Establish the width and the number of functional units to maximize
performance.

Step 1: Devise a methodology for establishing the impact of the issue/decode/commit
width on performance

Step 2: Carry out the design space exploration

Step 3: State your conclusion backed up by numbers (tables, diagrams).

Look back and summarize
At this point, you have improved the performance step-by-step from cache
optimization via increasing branch prediction accuracy to exploiting ILP.

• Compare the best CPI you achieved with the CPI of the first base configuration.
• Compare the improvements you made in each task. Which improvements

were more effective?
• Reflect qualitatively upon how much you increased the hardware resources to

achieve this improvement?

