

DAT105: Project – Laboratory Assignment 3, Study Period II, 2017 Page 1 of 7

DAT105 Computer Architecture
Study Period I, 2019

Department of Computer Science and Engineering
Chalmers University of Technology, Göteborg, Sweden

Laboratory Assignment 3:

Power-Performance Trade-offs

Contributors: Mehrzad Nejat, Mohammad Waqar Azhar, Per Stenstrom

Background: In the previous lab assignments, you studied the effect of different
architectural parameters of a processor with a simple memory subsystem on
performance. You started with a simple in-order single-issue processor with a small
single-level cache and improved the performance step-by-step. First, you improved
the instruction and data cache, then you increased the branch prediction accuracy,
and finally you exploited ILP by allowing out-of-order execution and multiple issue in
a superscalar processor. You have managed to reduce the program execution time
significantly by increasing the resources. But, it doesn’t come for free. Adding
resources increases the energy consumption of the processor.

Learning objective: In this assignment you will study the power/energy costs of
adding resources. For this purpose, you are going to design a high performance
processor using the Sniper simulator [1]. Then, you will perform power/energy
measurements using McPAT [3]. There is usually an upper limit on the power
consumption of a processor called the power budget. If the power goes beyond this
limit, the cooling system fails to keep the chip temperature within a safe bound. So, in
the next step you will review your design choices to reduce the chip power
consumption below the limits. Furthermore, higher energy consumption means lower
battery lifetime for portable devices and higher electricity cost for high-performance
computer systems. Thus, in the final step you will study the energy-performance
trade-off in your processor model with the goal of improving energy efficiency.

At the end of this assignment, you should be able to:

• Measure and report the performance of a single-core processor model with
the Sniper simulator.

• Measure and report power/energy consumption of different components of a
processor and a memory hierarchy using McPAT

• Understand how design choices affect the power consumption in order to
meet the power limits

• Understand energy efficiency and the trade-off between energy consumption
and performance

References:

[1] <http://snipersim.org/w/The_Sniper_Multi-Core_Simulator>

[2] <https://groups.google.com/forum/#!forum/snipersim>

[3] <http://www.hpl.hp.com/research/mcpat/>

DAT105: Project – Laboratory Assignment 3, Study Period II, 2017 Page 2 of 7

Evaluation: You must write a report that includes: A brief description of the problem
and the method you used, important assumptions you have made, simulation results
and observations, your design choices and the reason behind them and limitations of
the methodology. Detailed report guidelines will be available on Canvas.

Simulation Environment
In this assignment, you are going to use a new simulation environment. Since you are
already familiar with Simple-Scalar, it should be easy for you to start working with
Sniper + McPAT. You only need to use the basic Sniper simulator with “--power" option
that will generate power/energy results using McPAT.

There are more advanced capabilities such as simulator APIs1 that enable you to
interact with the simulator from the program code under simulation or several tools
already available in ‘tools’ and ‘scripts’ directories. But, you are not required to use
these tools here. If you are interested, you can study the references for more details.

The basic simulation environment is depicted in Figure 1. If you look carefully at this
figure, you will notice that there are several configuration files. That is because you
can pass several configurations each containing a subset of the full configuration to
Sniper using “-c” in the command line2. It is also possible to set a single parameter
from the command line using “-g”. For further details, check the simulator manual3.
The simulator will generate a configuration file named “sim.cfg” in the simulation
folder that contains the final settings of all the parameters.

Figure 1: Simulation Environment.

Similar to the previous simulations, there is a script that will run the simulator and
pass the required configurations and settings. The script is named “runsim.sh” and it
could be found under the “Lab3” directory. You must enter the simulation home
directory and the name of the configuration file (without “.cfg”) as the first and second
command line arguments when executing this script. You can deactivate the

1 Application Programming Interface
2 If you provide multiple configurations for the same parameter, the later one will overwrite the previous ones.

3 Manuals are available in Ping-Pong documents. You can easily find them online as well.

DAT105: Project – Laboratory Assignment 3, Study Period II, 2017 Page 3 of 7

simulation of each benchmark application by adding a “#” sign at the beginning of the
corresponding lines in the script. You must be able to understand how this simple
script works. If you have any problem understanding the parameters ask the teaching
assistants and/or check the simulator manual.

Simulation Results: The performance results could be found in a file named “sim.out”
while the power results are available in “power.txt” and a summary of Power/Energy
measurements are printed on the standard output which is redirected to a text file1.
The energy breakdown is also plotted in “power.png”. But, you will mostly use
“sim.out” and “power.txt”.

Task 1: Design a high performance processor in Sniper
You have learnt how different architectural parameters of a processor and a cache
impacts on the performance in the first two lab assignments. In this assignment you
will use Sniper. The available configuration parameters are slightly different.
Therefore, you cannot directly use the values from previous lab assignments. You will
be provided a new base configuration file for Sniper named “base4.cfg”. One major
difference is that this base configuration uses a two-level cache hierarchy where the
second level is a a combined instruction and data cache reflecting what is typically
used on the market.

1.1. Simulate the base configuration

Task 1.1. Assess the performance of the base model.

Here, the goal is to establish the performance of the base model in terms of execution
time and relevant statistics to understand what limits its performance (Hint:
CPI=1/IPC, Number of instructions executed and speedup relative to base). Collect
performance results in a table such as Table 1 using the benchmarks listed there.
Devise a suitable methodology for this task.

Create a directory for your simulation and place the configuration file there. Run the
script by passing the directory address and configuration file name as two command
line arguments. Once the simulation is done, you can find the results for each
benchmark application inside the corresponding sub-directory. Open one “sim.cfg”
file and check the full list of configuration settings. Notice how the values of the
“gainestown” architecture2 are overwritten by the base configuration. Also check data
and tag access times to each cache. Open one “sim.out” file and check the available
performance results.

1 The gsm benchmark generates unreadable output on stdout which was redirected to a file that you never opened
in the previous labs. But, now we also have Power/Energy summaries on stdout as well. So, don’t be alarmed if
you see unreadable characters when you open the file that contains the redirected stdout for gsm. Actually, if you
don’t see these characters, it means that something didn’t work!

2 Some basic configurations such as “gainestown” are provided with the simulator in a directory named “config”

DAT105: Project – Laboratory Assignment 3, Study Period II, 2017 Page 4 of 7

If you compare the instruction counts with the previous lab assignments, you will
notice some difference. The reason is that the benchmarks were compiled differently
for SimpleScalar simulations. But the instruction counts should be relatively the same.

1.2. Design a high performance processor

Task 1.2:

Configure and assess the performance of a high-performance processor (HPP).

Here, the goal is to configure HPP to maximize the performance by establishing the
execution time and use relevant statistics to understand what limit its performance
(Hint: CPI=1/IPC, Number of instructions executed and speedup relative to base).
Devise a suitable methodology for this task.

Using the experience from previous assignments, modify the processor parameters to
maximize the performance in a new configuration named “HPP1”. The configuration
space is shown in Table 2. It differs from the configurations space for SimpleScalar in
lab assignments 1 and 2. Note for example that you cannot change the branch
prediction method. On the hand, it is possible to change the parameters of the second-
level cache. Therefore, keep the level-1 cache parameters unchanged except for block
size that should be the same for all the caches.

There are a few differences compared to previous assignments. In this case, you are
not modifying the branch predictor. Some other parameters such as number of
functional units are hard coded in the simulator and you are not modifying them
either2. Table 1 shows a suggested way of reporting the performance of the base
configuration and HPP.

However, you have a second-level cache that can further improve the memory sub-
system. Therefore, keep the level-1 cache parameters unchanged with the exception

1 High Performance Processor
2 It is possible to modify the simulator since the source code is available. You can even find some suggestions and
hints from the designers in the google group [2]

Table 1: Example report of performance results

 Application dijkstra qsort stringsearch gsm-untoast jpeg-cjpeg GM*

base
Instructions NA

Time NA
CPI NA

HPP
Time NA
CPI NA

SP**

HPP+PW
Time NA
CPI NA
SP

*Geometric Mean
** Speedup relative to base (use CPI values)

DAT105: Project – Laboratory Assignment 3, Study Period II, 2017 Page 5 of 7

of the block size. First, the block size of all caches must be the same. Second, the
number of sets (size / (associativity*block size)) must be greater than or equal to the
block size. So, occasionally, you might need to increase the L1 size if you use bigger
block sizes.

Hint: In order to reduce the simulation time you can deactivate the simulation of the longest benchmark
when doing some of the tests. Removing “--power” argument would also save you some simulation
time, but make sure that you are not going to need the power measurement results for that simulation
later. You can also run the simulations in parallel to speed up. One way to do that is to create one copy
of the script for each benchmark application and deactivate the rest of the applications in that script.
Then run each script in a separate terminal. Another method is to execute each simulation in
background.

• How does a second level cache affect the performance? Is it the same as the

first level caches?

Table 2: Configuration Parameters

Parameter Possible values HPP HPP+PW E-eff
in_order True/False

Outstanding loads and stores (LSQ) 1,8,16
RS* entries 1,16,32

Interval timer window size (ROB) 16,64,128
Dispatch & Commit width 1,4,8

L2 cache size (KB) 4,8,16,32
L2 cache associativity 1,2,4,8

block size** (B) 16,32,64
* Reservation Stations
** block size should be the same for all the caches
Rule: Make sure that for each cache the number of sets (size / (associativity*block size)) is bigger than or equal to block size. So,
you might need to increase the L1 size if you use bigger block sizes.

Task2: Power Measurements
Here, we want to consider the impact of processor resources on power/energy cost.
The two important costs are power/energy consumption and area overhead. Power
measurements were already activated in the script by using the “--power” argument.
If you check a simulation output directory, you can find an image file that shows the
energy break down. Detailed power values could be found in “power.txt” and
“power.py” and a final power/energy summery was printed in the standard output
and redirected to a text file. However, you are going to collect the power data from
“power.txt”. You can also find some estimations of area in this file. Notice the
hierarchy of components. We are only interested in the core that contains the two
levels of cache. So, only focus on the section related to the core. The total values could
be found on top of the section followed by the detailed results for different
components inside the core.

DAT105: Project – Laboratory Assignment 3, Study Period II, 2017 Page 6 of 7

2.1. Compare the power/energy/area of base and HPP

Task 2.1: Assess the power/energy/area of base and HPP.

Here, we will use Sniper to compare base and HPP with respect to power, energy and
area consumed. Devise a suitable methodology for this task by reading the rest of this
section and carry out the task.

Look back at the simulation results for the base and HPP configurations. As a hint, you
can collect the power and area measurement results for the core (total values) and
use a table such as Table 3. You have noticed that there are 3 important power values1:
peak-dynamic, runtime-dynamic, and leakage. Peak-dynamic is usually used when
analyzing whether power is within the power budget and temperature bounds
whereas runtime-dynamic is the average power consumption used for energy
measurements. Leakage is another component of the power consumption that exists
as long as the system is powered up, even if the system is idle with no operation.
Power gating in sleep modes is one of the dynamic power management techniques
used to reduce the leakage. But, we are not considering this in this assignment.

Use the following formula to calculate the energy:

𝐸𝑛𝑒𝑟𝑔𝑦 = (𝑃*+,-./0	23,4/.5 + 𝑃7048490) × 𝑇𝑖𝑚𝑒 (1)

• How big are the power, energy, and area costs of the performance improvements

obtained by HPP?
• Compare the share of different components in power, energy, and area costs.
• Is your observation the same for different benchmark applications? If not, what

could be the reason?

2.2. Meet the power budget
In this step, we introduce a power budget of 11.5 W. Now, you probably need to make
some modifications to your HPP design to make sure the “core Peak power + leakage
power” remains below this limit for all the applications2. Name your new configuration
“HPP+PW” and fill Table 1, Table 2 and Table 3.

• How much performance did you lose when trying to meet the power budget?

1 Ignore the “power gating” results
2 Hint: If you manage to reduce the power for the most power hungry application, then other applications will
probably meet the power wall limitation as well. So, you don’t need to simulate all the applications for intermediate
tests. But you need to confirm the final result for all of them.

DAT105: Project – Laboratory Assignment 3, Study Period II, 2017 Page 7 of 7

Task3: Energy Efficiency
You have noticed a trade-off between performance and energy consumption during
the last task. In this task you will further study this trade-off by using the Energy-Delay-
Product (EDP). EDP is one of the common metrics for measuring energy efficiency of
a system. It combines both performance and energy improvement in a single metric.
Use the following formula for calculating EDP:

𝐸𝐷𝑃 = 𝐸𝑛𝑒𝑟𝑔𝑦 × 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛	𝑇𝑖𝑚𝑒 (2)

First calculate the EDP for the base and HPP configurations. Then, propose one design
with lower EDP and call it “E-eff”. Use your experience from the last two tasks. You
could use a table such as Table 4 to summarize your results. You don’t need to consider
the power wall for this task.

• Is your E-eff design closer to the base or HPP?

Table 3: Power, Energy, and Area results

 Application dijkstra qsort stringsearch gsm-untoast jpeg-cjpeg

base

Area
Peak Dynamic Power

Runtime Dynamic Power
Subthreshold Leakage

Power

Energy

HPP

Area
Peak Dynamic Power

Runtime Dynamic Power
Subthreshold Leakage

Power

Energy
Area Increment* (%)

Energy Increment* (%)

HPP+PW
Area

Peak Dynamic Power
Energy

Table 4: Energy Efficiency Results

 Configuration dijkstra qsort stringsearch gsm-untoast jpeg-cjpeg

EDP
base
HPP
E-eff

