
DAT 105 (DIT051) Computer Architecture Exam – Solution Exam Date: Jan 19, 2019

ASSIGNMENT 1

1A)
T = IC x (CPI0 + MPKI x MP/103) x Tc

Execution times P1 IC=2 x 106

 A: CPI0=0.5, MPKI=10, MP=100ns/1ns=100, Tc=1ns
TA,P1= 2 x 106 x (0.5 + 10x100/103) x 1ns = 2 x 106 x (0.5+1) x 1 ns = 3 ms

 B: CPI0=1, MPKI=10, MP=100ns/0.83ns=120, Tc=0.83ns
TB,P1= 2 x 106 x (1 + 10x120/103) x 0.83ns = 2 x 106 x (1+1.2) x 0.83 ns = 3.6 ms

 R: CPI0=1, MPKI=1, MP=100ns/1 ns=100, Tc=1 ns.
TR,P1= 2 x 106 x (1 + 1x100/103) x 1 ns = 2 x 106 x 1.1 x 1 ns = 2.2 ms

Execution times P2 IC=1 x 106

 A: CPI0=2, MPKI=10, MP=100ns/1ns=100, Tc=1ns.
TA,P2= 1 x 106 x (2 + 10x100/103) x 1ns = 1 x 106 x (2+1) x 1 ns = 3 ms

 B: CPI0=1.5, MPKI=10, MP=100ns/0.83ns=120, Tc=0.83ns.
TB,P2= 1 x 106 x (1.5 + 10x120/103) x 0.83ns = 1 x 106 x (1.5+1.2) x 0.83 ns = 2.2 ms

 R: CPI0=1, MPKI=1, MP=100ns/1 ns=100, Tc=1 ns.
TR,P2= 1 x 106 x (1 + 1x100/103) x 1 ns = 1 x 106 x 1.1 x 1 ns = 1.1 ms

1B) SPX = TR / TX

 P1: SPA= 2.2/3=0.73 , SPB= 2.2/3.6=0.61
 P2: SPA=1.1/3=0.37 , SPB=1.1/2.2=0.5

G-mean A=√0.73 ×0.37=0.52 , G-mean B=√0.61× 0.5=0.55 ,

Hence, B is on average slightly faster than A

1C) Speedup with enhanced functional unit:
SP = 1/(0.9 + 0.1/1000) = 1.1 (about 10% faster). This is a good example of not spending
significant engineering efforts on a rare case.

1D) Arithmetic means are sensitive to outliers. So, if a computer outperforms another one for
nine out of ten applications but underperforms significantly for one, arithmetic mean will
suggest a low average performance.

ASSIGNMENT 2

DAT 105 (DIT051) Computer Architecture Exam – Solution Exam Date: Jan 19, 2019

Assumption: No forwarding

2A)
LOOP: I1: LD F1, 0(R1)
 I2: ADD F4, F0, F2
 I3: SD F4, 0(R1)  wait for F4 value
 I4: SUBI R1, R1, #8
 I5: BNE R1, R2, LOOP  wait for R1 value

Register read happens in the decode stage. Therefore, a consumer instruction can be in the
decode stage when its input data is already available in the register file. That is one cycle after
the write-back stage of the producer instruction. Hence:

- 4 cycles should be between I3 and I2
- 2 cycles should be between I5 and I4
- I3 reads R1 in the decode stage. I4 can modify R1 value after that. So, at the same

cycle I4 can be in the WB stage. Hence, I4 can be scheduled two cycles earlier than I3
without causing a WAR hazard

Cycle LD/ST LD/ST FPop1 FPop2 INT BRANCH

1 LD F1,0(R1) ADD F4,F0,F2

2

3

4 SUBI R1,R1,#8

5

6 SD F4,0(R1)

7 BNE R1, R2, LOOP

IPC= 5/7=0.7 Not much ILP is exploited.

2B)

DAT 105 (DIT051) Computer Architecture Exam – Solution Exam Date: Jan 19, 2019

Cycle LD/ST LD/ST FPop1 FPop2 INT BRANCH

1 LD F1,0(R1) LD F6,-8(R1) ADD F4,F0,F2 ADD F9,F5,F7

2 LD F11,-16(R1) LD F16,-24(R1) ADD F14,F10,F12 ADD F19,F15,F17

3 LD F21,-32(R1) LD F26,-40(R1) ADD F24,F20,F22 ADD F29,F25,F27

4 LD F31,-48(R1) ADD F34,F30,F32

5

6 SD F4,0(R1) SD F9,-8(R1)

7 SD F14,-16(R1) SD F19,-24(R1)

8 SD F24,-32(R1) SD F29,-40(R1) SUBI R1,R1,#56

9 SD F34,-48(R1)

10 BNE R1, R2, LOOP

IPC= 23/10=2.3

2C)
for (i = 0; i < N; i++)
 {A[i+2] = A[i] + 2;
 B[i] = A[i+2] + 1;}

This is translates into
Loop: L.S F0, 0(R2) ; –O1

ADD.S F3, F0, F1 ; –O2
ADD.S F4, F3, F1 ; –O3
S.S. F3, 16(R2) ; –O4
S.S. F4, 0(R3) ; –O5
ADDI R2,R2, 8
ADDI R3,R3, 8
BNE R2,R4, Loop

See schedule in Table 3.25 on page 150 in the textbook. It contains the software pipelined
schedule for the same code, assuming full forwarding. With the assumption of no forwarding,
the distances between dependent instructions increases.

- Between a load operation (O1) and a dependent instruction (O2) we need 3 cycles
- Between a floating-point operation (O2, O3) and a dependent instruction (O3 & O4,

O5) we need 4 cycles
- In this case, we also have a data dependency between iterations. O1 of iteration i+2

will read the value from O4 of iteration i as they are pointing to the same memory
address. To respect this data dependency, O1(i+2) should be in memory stage when
O4(i) has already passed that stage and written its value to memory (assuming a single
cycle memory access time). Therefore, O1(i+2) should be scheduled one cycle after
O4(i)

Hence, we have the following schedule assuming no forwarding:

DAT 105 (DIT051) Computer Architecture Exam – Solution Exam Date: Jan 19, 2019

ITE1 ITE2 ITE3 ITE4 ITE5
INST1 O1
INST2
INST3
INST4
INST5 O2
INST6 O1
INST7
INST8
INST9
INST1
0

O3,O4 O2

INST1
1

O1

INST1
2
INST1
3
INST1
4
INST1
5

O5 O3,O4 O2

INST1
6

O1

INST1
7
INST1
8
INST1
9
INST2
0

O5 O3,O4 O2

INST2
1

O1

INST2
2
INST2
3
INST2
4
INST2
5

O5 O3,O4 O2

INST2
6
INST2
7
INST2
8
INST2
9
INST3
0

O5 O3,O4

INST3
1

DAT 105 (DIT051) Computer Architecture Exam – Solution Exam Date: Jan 19, 2019

INST3
2
INST3
3
INST3
4
INST3
5

O5

The kernel is INST15 to INST19 that repeats over different iterations.

ASSIGNMENT 3

3A)
Assumptions: 2 FP add units with 2 cycle latency, 1 FP division unit with 5 cycle latency

O1: ADDD F1, F2, F3
O2: DIVD F4, F1, F2  wait for F1
O3: SUBD F2, F4, F6  wait for F4
O4: ADDD F4, F1, F1  wait for F1

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13
O
1

Issu
e

Exe
c

Exe
c

CD
B
(F1)

O
2

Issu
e

Issu
e

Issu
e

Exe
c

Exe
c

Exe
c

Exe
c

Exe
c

CD
B
(F4)

O
3

Issu
e

Issu
e

Issu
e

Issu
e

Issu
e

Issu
e

Issu
e

Issu
e

Exe
c

Exe
c

CD
B
(F2)

O
4

Issu
e

Exe
c

Exe
c

CD
B
(F4)

1. O1 flows through the pipeline without encountering any hazards
2. O2 has a RAW hazard with respect to O1 and cannot execute until cycle 5 when the

result from O1 is broadcast over the CDB.
3. O3 has a RAW hazard with respect to O2 and cannot execute until cycle 11
4. O4 has a RAW hazard with respect to O1 and cannot execute before cycle 5
5. WAR (O3 with respect to O2) and WAW (O4 with respect to O2) hazards are resolved

through renaming. Note that O2 will not write back to the register-file as register F4 is
linked to the destination operand of O4. (See section 3.4.1 of the text book)

DAT 105 (DIT051) Computer Architecture Exam – Solution Exam Date: Jan 19, 2019

3B)
BNEZ R1, LABEL
ADDD F1, F2, F3 ;- O1
DIVD F4, F1, F2 ;- O2
SUBD F2, F5, F6 ;- O3

The reorder buffer (ROB) is the main mechanism to keep track of register values when
instructions are speculatively executed. It buffers speculatively executed instructions in the
order they appear in the program, that is, in program order. Each entry has room for the
status of each instruction whether it is speculatively executed or committed. When an
instruction is committed, it will be removed from the reorder buffer in the next cycle. When
an instruction is speculatively executed, the entry also contains the value of the destination
register, if it is available.

Now, when the branch instruction is validated as correctly predicted, it will be removed from
the ROB in the next cycle. This happens, according to the assumptions, when the last
instruction has been executed.

Let’s make a pipeline diagram to track the execution of the last three instructions:

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11
O1 Issue Exec Exec CDB
O2 Issue Issue Issue Exec Exec Exec Exec Exec CDB
O3 Issue Exec Exec CDB

We note that from the point the branch instruction has retired from the ROB (in C7 according
to the assumptions), it takes another four cycles until the result is written back to the register-
file.

3C) See textbook, page 121 with respect to Figure 3.19.

ASSIGNMENT 4

4A)

 Show how the code is annotated with prefetch instructions to hide all cache misses.

According to the assumptions a loop iteration containing a prefetch instruction (CPI=2) and
five other instructions (CPI=1) takes 7 cycles assuming that all load instruction hits. However,
one of the five instructions is a load instruction and since the block size is four words, the load

DAT 105 (DIT051) Computer Architecture Exam – Solution Exam Date: Jan 19, 2019

instruction in every fourth iteration misses. A cache miss takes 100 cycles. The question is
how many iterations in advance we must launch a prefetch instruction.

i x 7 > 100  i = 15

for (i=0; i<1000; i++){
 prefetch(A[i+15]
 C+=A[i];}

 How many MSHRs are needed to make software prefetching maximally effective?

We need 15 MSHRs because there are 15 outstanding prefetch instructions. However, since
only every fourth load will miss we could optimize the program to launch a prefetch
instruction only once every fourth iteration. This is however beyond the scope of the
assignment.

 How much faster does the program run on the system with a non-blocking cache using
software prefetching?

The program without prefetching:

Consider four iterations as there is a miss every fourth iteration:

Four iterations execute 4 x 4 + 3= 19 instructions that take a single cycle and 1 load
instruction that takes 100 cycles. In total: 119 cycles

The program with prefetching:

Four iterations execute 4 x 5 = 20 instructions and four prefetch instructions that take two
cycle each so 4 prefetch instructions that take 8 cycles. In total: 28 cycles

4B)

Let’s calculate the miss rates. In one thousand instructions 10% are memory instructions, that
is, 100. So in 100 instructions an infinite-sized cache experience 2 misses. This is a miss rate
of 2%. So we have the following miss rates:

Cache organization MR
16-KB direct mapped cache 10
16-KB 2-way assoc. cache 8
16-KB fully associative cache 6
Cache with infinite size 2

The cold miss rate is 2%, the capacity miss rate is (6-2=) 4% and the conflict miss rate is (10-
4 -2=) 4%.

DAT 105 (DIT051) Computer Architecture Exam – Solution Exam Date: Jan 19, 2019

4C) See textbook, page 209

ASSIGNMENT 5

5A)

R1

R2

W1=0
W2=1
R1

R2

In a write-through cache, the memory is updated but not the content of any cache that has a
copy of that block. The first two reads from P1 and P1 creates copies of the original content of
the block. The next two writes, from P1 and P2 updates their respective private caches and
memory with the values 0 and 1, from P1 and P2, respectively, in that order. Finally, the read
from P1 returns the 0, not 1, which is incorrect as the last write, in the order, writes 1, not 0,
breaking the correctness. The first write, by P1, should have invalidated the block in P2’s
cache.

5B) See textbook on page 254.

I->S: Any cache miss will result in a read request on the interconnect (bus in this case) that
will return an up-to-date copy from memory.

S->I: This state transition is triggered by another processor that writes to a block that is
present (Upgrade) or not present (BusRdX) in its cache. It will result in invalidating the local
copy in the cache resulting in downgrading the block to Invalid (I).

5C) See textbook, pages 438-439 in the textbook.

