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Exam in DAT 105 (DIT 051) Computer Architecture 
  
 
Time: January 13, 2017 14 – 18 Lecture Halls at Civil Engineering Bldng 
 
 
Person in charge of the exam: Per Stenström, Phone: 0730-346 340 
 
Supporting material/tools: Chalmers approved calculator. 
 
Exam Review: On January 26, 2017 13-15 in Room 4128   
 
Grading intervals:   
 
• Fail:  Result < 24 
• Grade 3: 24 <= Result < 36 
• Grade 4: 36 <= Result < 48 
• Grade 5: 48 <= Result 
 
NOTE 1: Bonus points from Real-stuff studies and Quizzes will be added to the exam 
results for approved exams used solely for higher grades. 
 
NOTE 2: Answers must be given in English 
 
GOOD LUCK! 
Per Stenström 
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[General disclaimer: If you feel that sufficient facts are not provided to solve a 
problem, either 1) ask the teacher when he visits the exam, or 2) make your own 
additional assumptions. Additional assumptions will be accepted if they are 
reasonable and required to solve the problem. Always make sure to motivate 
your answers.]  

 
ASSIGNMENT 1 

 
 

The tables below show the relative instruction frequency and CPI on two machines (A and 
B) and a reference machine (R) with the same Instruction Set Architecture (ISA) for two 
single-threaded programs, P1 and P2, respectively, where P1 executes twice as many 
instructions as P2 which executes 1 million instructions. The operating frequencies of the 
three machines (A, B and R) are also shown.  
 

Program P1 A 
(Frequency in 
percent/CPI) 

B R 

Integer/branches 40/2 40/1 40/3 
Loads 25/4 25/1 25/3 
Stores 10/2 10/1 10/3 
FP Multiply  5/100 5/200 5/800 
Misc. 20/2 20/1 20/3 

 
 

Program P2 A 
(Frequency in 
percent/CPI) 

B R 

Integer/branches 20/2 20/1 20/3 
Loads 35/4 35/1 35/3 
Stores 20/2 20/1 20/3 
FP Multiply  1/100 1/200 1/800 
Misc. 24/2 24/1 24/3 

 
Clock freq. 
(GHz) 

 

Machine A 1 
Machine B 1.2 
Machine R 1 

 
1A) Calculate the execution time for P1 and P2 on A, B and R (4 points) 
 
1B) Determine which of the machines is the fastest using both arithmetic means and 
geometric means and explain which machine is the fastest based on each of the means        
(4 points) 
 
 
 



 Page 3(12) 

 

 
1C) What would be the speedup if FP MULT could be implemented with a CPI of 1? Which 
machine is now the fastest? 
(2 points) 

ASSIGNMENT 2 
 
 
We consider in this assignment a VLIW architecture that can issue two memory, two 
floating-point, one integer, and one branch instruction each cycle according to the pipeline 
organization below.  There are no forwarding units. 
 

2A)  Consider the following code: 
 
LOOP: LD F1,0(R10) 
             LD F2,0(R11) 
            ADD F3, F1,F2 
            SD F3,0(R12) 
            SUBI R1,R1,#1 
            ADDI R10, R10, #8 
            ADDI R11, R11, #8 
            ADDI R12, R12, #8 
            BNE R1, R2, LOOP 
 
How many cycles does it take to execute one iteration of the code on the VLIW pipeline?  
(2 points) 
 
 
2B) Consider again the code in Assignment 2A. Assume that the program is run for an 
infinite number of iterations. Show a static schedule of the code in which instructions inside 
an iteration are reordered to minimize the number of cycles lost due to RAW hazards.  
(3 points) 
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2C) Consider again the code in Assignment 2A. Now use software pipelining to minimize 
the number of cycles to execute a single iteration. Show the prologue, epilogue and the 
kernel for the software pipelined code. (3 points) 
 
2D)  The following code contains four basic blocks: A, B, C and D. Either the trace A, B, C 
is executed or A, D, C depending on whether R5=R4 (second trace) or not (first trace). 
 
Assume that the first trace is much more likely than the second one. Rewrite the code to 
minimize the number of instructions in the first trace using software speculation. The 
program must produce correct results regardless of what trace is executed. (4 points) 
 
 
LW R4,0(R1) 
ADDI R6,R4,#1 
/* block A */ 
BEQ R5,R4,LAB 
LW R6,0(R2) 
/* block B */ 
/* block D */ 
LAB: SW R6,0(R1) 
/* block C */ 
 

ASSIGNMENT 3 
 
 
 

The diagram below shows a pipeline with support for Tomasulo’s algorithm. There are 
two functional units for adding floating-point numbers and a single functional unit for 
floating-point division. It takes 2 cycles to carry out an addition/subtraction and 5 cycles 
to carry out a division. 

 

 
 

 
3A) Explain in detail what happens in each of the three pipeline stages: Issue, Execute, 
and Write result. In particular explain how data hazards are resolved and in which cycle 
each instruction in the sequence below enters the different stages by filling out a 
pipeline diagram similar to the one below for the following instruction sequence. (6 
points) 
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ADDF   F1, F2, F3 
DIVD    F4, F1, F2 
SUBD   F2, F5, F6 
 

 Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 
ADD Issue       
DIVD   Issue     
SUBD   Issue    
 
 

3B) We want to add support for speculative execution. Explain how a reorder buffer and 
another pipeline stage called COMMIT can allow the following instruction sequence to 
execute speculatively and what is done in each of the four stages. 

 
BNEZ R1, LABEL 
ADDF   F1, F2, F3 
DIVD    F4, F1, F2 
SUBD   F2, F5, F6 
 

Assume that the branch instruction is predicted to NOT be taken and that the prediction is 
correct. (3 points) 

 
3C) Explain what problem a branch target buffer solves and how it is organized                   
(3 points) 
 
 
 

ASSIGNMENT 4 
 

 
4A) A computer architect wants to establish the relative performance between a system with 
a blocking and a non-blocking cache. The cache-hit time is 1 and the miss penalty is 100 
cycles for both caches. Each data element occupies 4 bytes and the block size is 16 bytes. 
Consider the following code: 
 
for (i=0; i<N; i++) 
     C+=A[i]; 
 
 
 
Assuming that there are 4 instructions between each load instruction, the CPI is 1 for all 
instructions except load instructions that miss in the cache. How many MSHRs (Miss Status 
Holding Registers) are needed to avoid having the cache to block on a load access?  
 
How much faster does the code runs on the non-blocking cache with sufficient number of 
MSHRs in comparison with on a blocking cache? (6 points) 
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4B) In the table below, cache miss rates for a number of organizations are shown. 
Determine from the data the cold miss rate, the capacity miss rate and the conflict miss rate 
for a 2-way 16-KB cache. (3 points) 
 

Cache organization Miss rate 
16-KB direct mapped cache 10% 
16-KB 2-way assoc. cache 8% 
16-KB fully associative cache 6% 
Cache with infinite size 2% 

 
4C) Consider the following code: 
   LOOP: LD F0, 0(R10) 
                ADD F1,F0,F0 
                SD F1, 0(R10) 
                ADDI R10,R10,#8 
                SUBI R1,R1,#1 
                BNEZ R1, LOOP 
 
A computer system supports software prefetching through an instruction PF D(Rx) that 
prefetches the data at address D + (Rx).  Augment the code with software prefetching 
instructions. Assume that the memory latency corresponds to two iterations. (3 points) 
 

ASSIGNMENT 5 
 

 
5A) Consider a multicore system comprising a number of processors (cores) on a chip that 
are connected to a single-level private cache. The private caches use the write-back write 
policy. Xi=Ri and Xi=Wi, mean a read and a write request to the same address from 
processor i, respectively, where Wi=C means that the value C is written by processor i. Now 
consider the following access sequence: 
R1 
W1=0 
R2 
W1=1 
R2 
What is returned by the second read operation from processor 2 and what is the reason that 
the correct value is not returned given the cache write policy assumed? How can we modify 
the cache controller to make sure that the right value is returned? 
(6 points) 
 
5B)  
Assume a write-back cache and the MSI-protocol. What bus transaction will cause a state 
transition from state S to state M and what transaction will cause a transition from state M to 
state S? (2 points) 
5C) Explain the concept of block (coarse-grain) multithreading.  Consider a five-stage 
pipeline. What additional mechanisms must be added to support block multithreading? How 
many cycles are lost on a thread switch? (4 points) 
 

*** GOOD LUCK! *** 
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Solutions 
 

ASSIGNMENT 1 
 
 
 

1A)  
 
 
TExec = IC x CPI x Tc 
 
Program P1: 
 
A: TExec = 2x106 x (0.40x2 + 0.25x4 + 0.10x2 + 0.05x100 + 0.20x2) x 1 x 10-9 s = 14.8 ms 
B: TExec=2x106 x (0.40x1 + 0.25x1 + 0.10x1 + 0.05x200 + 0.20x1)x 1 x 10-9/1.2 s = 9.13 ms 
R: TExec=2x106 x (0.40x3 + 0.25x3 + 0.10x3 + 0.05x800 + 0.20x3)x 1 x 10-9 s = 42.9 ms 
 
 
Program P2: 
 
A: TExec = 1x106 x (0.20x2 + 0.35x4 + 0.20x2 + 0.01x100 + 0.24x2) x 1 x 10-9 s = 3.68 ms 
B: TExec=1x106 x (0.20x1 + 0.35x1 + 0.20x1 + 0.01x200 + 0.24x1)x 1 x 10-9/1.2 s = 2.99 ms 
R: TExec=1x106 x (0.20x3 + 0.35x3 + 0.20x3 + 0.01x800 + 0.24x3)x 1 x 10-9 s = 10.97 ms 
 
 
1B)  
 
Arithmetic mean: 
 
A: Arith. Mean = (14.8 + 3.68)/2 ms = 9.24 ms 
B: Arith. Mean = (9.13 + 2.99)/2 ms = 6.06 ms 
 
B is the fastest. 
 
Geometric mean: 
 
Use R as a reference machine 
 
Geom mean = SQRT(S1 x S2) 
A: Geom mean = SQRT(42.9 x 42.9/(14.8 x 3.68)) = 7.55 
B: Geom mean = SQRT(42.9 x 42.9/9.13 x 2.99)) =  8.21 
 
B is the fastest (higher is better). However, the difference is smaller because geometric 
means tend to smooth out the difference. 
 
 
1C) 
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Program P1: 
 
A: TExec = 2x106 x (0.40x2 + 0.25x4 + 0.10x2 + 0.05x1 + 0.20x2) x 1 x 10-9 s = 3.50 ms 
B: TExec=2x106 x (0.40x1 + 0.25x1 + 0.10x1 + 0.05x1 + 0.20x1)x 1 x 10-9/1.2 s = 1.66 ms 
R: TExec=2x106 x (0.40x3 + 0.25x3 + 0.10x3 + 0.05x1 + 0.20x3)x 1 x 10-9 s = 5.8 ms 
 
 
Program P2: 
 
A: TExec = 1x106 x (0.20x2 + 0.35x4 + 0.20x2 + 0.01x1 + 0.24x2) x 1 x 10-9 s =  2.69  ms 
B: TExec=1x106 x (0.20x1 + 0.35x1 + 0.20x1 + 0.01x1 + 0.24x1)x 1 x 10-9/1.2 s = 0.83 ms 
R: TExec=1x106 x (0.20x3 + 0.35x3 + 0.20x3 + 0.01x1 + 0.24x3)x 1 x 10-9 s = 2.98 ms 
 
 
B is still the fastest 
 
 

ASSIGNMENT 2 
 
 

2A)   
 
 
LD/ST1 LD/ST2 FPOP1 FPOP2 INT BRA 
LD F1,0(R10) LD F2,0(R11)   SUBI R1…  
    ADDI R10..  
    ADDI R11  
  ADD F3…    
      
    ADDI  R12… BNE R1 
      
 SD F3,0(R12)     
 
It takes eight cycles. Note how we schedule the ADDI instructions in such a way that they 
write back to the register file to avoid WAR hazards with respect to the memory 
instructions. Note also that the branch will be executed in the same cycle as the store 
instruction.  
 
2B) 
 
If the loop is unrolled a sufficient number of times (here three times), one can fill all the 
slots before the first ADD with Load instructions and respect the dependences: 
 
 
LD/ST1 LD/ST2 FPOP1 FPOP2 INT BRA 
LD F1,0(R10) LD F2,0(R11)   SUBI R1…  
LD F4,8(R10) LD F5,8(R11)     
LD LD   ADDI R10..  
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F7,16(R10) F8,16(R11) 
  ADD F3…  ADDI R11  
  ADD F6…    
  ADD F9…    
      
SD F3,0(R12)     BNE R1 
SD F6,8(R12)    ADDI  R12…  
SD 
F9,16(R12) 

     

 
 
2C) software pipelining of the loop in 2A) 
 
Cycle ITE1 ITE2 ITE3 ITE4 ITE5 ITE6 ITE7 ITE8 ITE9 
1 LD/LD         
2  LD/LD        
3   LD/LD       
4    LD/LD      
5 ADD    LD/LD     
6  ADD    LD/LD    
7   ADD    LD/LD   
8    ADD      
9 SD    ADD   LD/LD  
10  SD    ADD   LD/LD 
11   SD    ADD   
12    SD    ADD  
13     SD    ADD 
 
 
Prologue: Rows 1 – 8 
Kernel: Row 9 
Epilogue: Rows 11-13 (and thereafter until all instructions have left the pipeline which 
happens five cycles later. 
 
2D) See textbook and Fig 3.34 d) on page 152. 
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ASSIGNMENT 3 

 
 

 
3A)  
 
 
Issue: Instruction is sent to the corresponding issue queue of the functional unit to be 
used. If no free entry, it waits in the issue stage. It will wait for its operands there and 
when available it is issued for execution.  
Execute: The instruction is executed and (2 cycles for add/sub and five cycles for 
division) 
Write result (CDB): When the instruction is done the result will be broadcast to all 
issue queues and to the register file on the common data bus. 

 
 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 
ADD Issue  Ex Ex CDB         
DIVD   Issue Issue Issue Ex Ex Ex Ex Ex CDB   
SUBD   Issue Ex Ex CDB       
 
This table shows when instructions pass each stage. Note that due to the RAW hazard 
between the ADD and the DIVD, DIVD cannot execute until C5. SUBD has a WAR 
hazard with respect to DIVD that is resolved by the tag so it can start executing right 
after the ADD has left the execution unit in C4. 
 

3B)  
 
 
Branch prediction is done in the instruction fetch stage. Assuming that branch not taken is 
predicted the subsequent instructions will be speculatively executed until the branch 
instruction is executed four cycles later. Each speculatively executed instruction is inserted 
in the reorder buffer in the order it appears in the program. When the branch instruction has 
been executed and assuming that the prediction is correct, it will go to the COMMIT stage 
and at that point it will leave the reorder buffer. All subsequent speculatively executed 
instructions up until the next branch will also commit successfully and will be removed 
from the reorder buffer, one by one. 
 
 

 
3C) Explain what problem a branch target buffer solves and how it is organized                    
For certain branch instructions, for example J (R12) which branches to the address 
contained in register 12, the branch target is needed already in the instruction fetch stage. 
Here, a branch target buffer uses the program counter to index into a table in which branch 
targets are stored. The branch target buffer is organized as a cache where the program 
counter is used as an address. Portions of it are used as an index and the rest is compared 
with a tag associated with each entry in the branch target buffer. 
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ASSIGNMENT 4 
 
 

4A)  
 
With a blocking cache, the load instruction in every fourth iteration will miss because a 
block contains four vector elements and all of them are accessed in consecutive iterations. 
Since CPI=1 and there are four instructions in each iteration, the first iteration takes 103 
cycles and the next 3 take 4 x 3 cycles so four iterations take in total 115 cycles.  
 
With a non-blocking cache an MSHR is occupied for as long as it takes to service the miss, 
i.e., 100 cycles. In that time, 25 iterations are executed, and each iteration needs an MSHR 
so 25 MSHRs are needed.  With a non-blocking cache, four iterations are executed in 16 
cycles. The speedup is 115/16 = 7 times. 
 
4B) 
 
Cold miss rate is the miss rate for an infinite cache: 2% 
Capacity miss rate is the miss rate for a fully associative cache minus the cold miss rate:  
(6 – 2)% = 4% 
Conflict miss rate is the miss rate for the cache minus the capacity and the cold miss rates: 
(8 – 2 – 4)% = 2% 
 
4C)  
   LOOP: PF   16(R10) 
                LD F0, 0(R10) 
                ADD F1,F0,F0 
                SD F1, 0(R10) 
                ADDI R10,R10,#8 
                SUBI R1,R1,#1 
                BNEZ R1, LOOP 
 
We have added PF 16(R10) which corresponds to the address the load instruction will use 
two iterations ahead. 

 
ASSIGNMENT 5 

 
 
 
5A) 
 
The second read operation will return the value contained at the memory address initially 
which may not be the same as that of the second write by processor 1. The reason is that the 
modifications by processor 1 happens locally in processor 1’s cache. By forcing all writes to 
generate a memory write and let all caches inspect the address of these memory writes a 
local copy containing the written location can be invalidates forcing a miss to happen which 
will load data from memory which is now up to date. 
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5B) If a block is in the S(hared) state it means that memory is up to date. What brings that 
block into the M(odified) state is a write to the block. Then an Upgrade message will be sent 
to memory and to all other caches forcing them to invalidate the block. On a subsequent 
read miss from some other cache, a Bus read request is posted on the bus. This will be 
intercepted by the cache having the block in the M(odified) state which will respond with 
the block in what is called a Flush operation. The new state is then S(hared). 
 
5C) Explain the concept of block (coarse-grain) multithreading.  Consider a five-stage 
pipeline. What additional mechanisms must be added to support block multithreading? How 
many cycles are lost on a thread switch? (4 points) 
 
In block or coarse-grain multithreading, a switch to another thread happens when 
encountering a long-latency operation such as a cache miss. Since that is detected in the 
memory stage in a five stage pipeline, all instructions in the stages preceding that stage must 
be flushed. A thread switch stage is added between the instruction fetch stage  
 
 


