CHALMERS

2018-01-05

Exam in DAT 105 (DIT 051) Computer Architecture

Time: January 13, 2017 14 — 18 Lecture Halls at Civil Engineering Bldng

Person in charge of the exam: Per Stenstrom, Phone: 0730-346 340
Supporting material/tools: Chalmers approved calculator.

Exam Review: On January 26, 2017 13-15 in Room 4128

Grading intervals:

Fail: Result <24

Grade 3: 24 <= Result <36
Grade 4: 36 <= Result <48
Grade 5: 48 <= Result

NOTE 1: Bonus points from Real-stuff studies and Quizzes will be added to the exam
results for approved exams used solely for higher grades.

NOTE 2: Answers must be given in English

GOOD LUCK!
Per Stenstrom

CHALMERS UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
412 96 Goteborg

Visiting address: Rédnnvidgen 5

Phone: 031-772 1761 Fax: 031-772 3663

Org. Nr: 556479-5598

E-mail: pers@chalmers.se

Page 2(12)
[General disclaimer: If you feel that sufficient facts are not provided to solve a
problem, either 1) ask the teacher when he visits the exam, or 2) make your own
additional assumptions. Additional assumptions will be accepted if they are
reasonable and required to solve the problem. Always make sure to motivate
your answers.]

ASSIGNMENT 1

The tables below show the relative instruction frequency and CPI on two machines (A and
B) and a reference machine (R) with the same Instruction Set Architecture (ISA) for two
single-threaded programs, P1 and P2, respectively, where Pl executes twice as many
instructions as P2 which executes 1 million instructions. The operating frequencies of the
three machines (A, B and R) are also shown.

Program P1 A B R
(Frequency in
percent/CPI)
Integer/branches 40/2 40/1 40/3
Loads 25/4 25/1 25/3
Stores 10/2 10/1 10/3
FP Multiply 5/100 5/200 5/800
Misc. 20/2 20/1 20/3
Program P2 A B R
(Frequency in
percent/CPI)
Integer/branches 20/2 20/1 20/3
Loads 35/4 35/1 35/3
Stores 20/2 20/1 20/3
FP Multiply 1/100 1/200 1/800
Misc. 24/2 24/1 24/3
Clock freq.
(GHz)
Machine A 1
Machine B 1.2
Machine R 1

1A) Calculate the execution time for P1 and P2 on A, B and R (4 points)

1B) Determine which of the machines is the fastest using both arithmetic means and
geometric means and explain which machine is the fastest based on each of the means

(4 points)

Page 3(12)

1C) What would be the speedup if FP MULT could be implemented with a CPI of 1? Which
machine is now the fastest?

(2 points)
ASSIGNMENT 2

We consider in this assignment a VLIW architecture that can issue two memory, two

floating-point, one integer, and one branch instruction each cycle according to the pipeline
organization below. There are no forwarding units.

: | st | LostT FPopt | FPop2 | INT | BRANCH |

S h a0 6 0
S hhhdd

v v
| M M IWB | |WB I

o

}EI*

m j¢—

od]

W wB

v v

W

Halle

2A) Consider the following code:

LOOP: LD F1,0(R10)
LD F2,0(R11)
ADD F3, F1,F2
SD F3,0(R12)
SUBI R1,R1,#1
ADDI R10, R10, #8
ADDIRI1, R11,#8
ADDIRI12, R12, #8
BNE R1, R2, LOOP

How many cycles does it take to execute one iteration of the code on the VLIW pipeline?
(2 points)

2B) Consider again the code in Assignment 2A. Assume that the program is run for an
infinite number of iterations. Show a static schedule of the code in which instructions inside

an iteration are reordered to minimize the number of cycles lost due to RAW hazards.
(3 points)

Page 4(12)
2C) Consider again the code in Assignment 2A. Now use software pipelining to minimize
the number of cycles to execute a single iteration. Show the prologue, epilogue and the
kernel for the software pipelined code. (3 points)

2D) The following code contains four basic blocks: A, B, C and D. Either the trace A, B, C
is executed or A, D, C depending on whether R5=R4 (second trace) or not (first trace).

Assume that the first trace is much more likely than the second one. Rewrite the code to
minimize the number of instructions in the first trace using software speculation. The
program must produce correct results regardless of what trace is executed. (4 points)

LW R4,0(R1)
ADDI R6,R4.#1

/* block A */

BEQ R5,R4,LAB
LW R6,0(R2)

/* block B */

/* block D */

LAB: SW R6,0(R1)
/* block C */

ASSIGNMENT 3

The diagram below shows a pipeline with support for Tomasulo’s algorithm. There are
two functional units for adding floating-point numbers and a single functional unit for
floating-point division. It takes 2 cycles to carry out an addition/subtraction and 5 cycles
to carry out a division.

I-cache

tags I-fetch
instruction

inteder fotoh FRONT-END
regigters queus FP registels

I-decode/
l dispatch l
< >
2

3 tags

v+
Y - cDB
integer memory floating-point
BACK-END
Clssue ssue (ssue) W tag:
v
branch AGU | . I
CcDB_4 l l < value + tag
< 'y »>
—
Load ——1 store
queue ——— queue
——1

3A) Explain in detail what happens in each of the three pipeline stages: Issue, Execute,
and Write result. In particular explain how data hazards are resolved and in which cycle
each instruction in the sequence below enters the different stages by filling out a
pipeline diagram similar to the one below for the following instruction sequence. (6
points)

Page 5(12)

ADDF F1,F2, F3
DIVD F4,Fl1,F2
SUBD F2,F5, F6

Cyclel | Cycle2 | Cycle3 |Cycle4 |Cycle5 | Cycle6
ADD Issue
DIVD Issue
SUBD Issue

3B) We want to add support for speculative execution. Explain how a reorder buffer and
another pipeline stage called COMMIT can allow the following instruction sequence to
execute speculatively and what is done in each of the four stages.

BNEZ R1, LABEL
ADDF F1,F2, F3
DIVD F4,F1,F2
SUBD F2,F5, F6

Assume that the branch instruction is predicted to NOT be taken and that the prediction is
correct. (3 points)

3C) Explain what problem a branch target buffer solves and how it is organized
(3 points)

ASSIGNMENT 4

4A) A computer architect wants to establish the relative performance between a system with
a blocking and a non-blocking cache. The cache-hit time is 1 and the miss penalty is 100
cycles for both caches. Each data element occupies 4 bytes and the block size is 16 bytes.
Consider the following code:

for (i=0; i<N; i++)
C+=A[i];

Assuming that there are 4 instructions between each load instruction, the CPI is 1 for all
instructions except load instructions that miss in the cache. How many MSHRs (Miss Status
Holding Registers) are needed to avoid having the cache to block on a load access?

How much faster does the code runs on the non-blocking cache with sufficient number of
MSHRs in comparison with on a blocking cache? (6 points)

Page 6(12)
4B) In the table below, cache miss rates for a number of organizations are shown.
Determine from the data the cold miss rate, the capacity miss rate and the conflict miss rate
for a 2-way 16-KB cache. (3 points)

Cache organization Miss rate
16-KB direct mapped cache 10%
16-KB 2-way assoc. cache 8%
16-KB fully associative cache 6%
Cache with infinite size 2%

4C) Consider the following code:
LOOP: LD F0, 0(R10)
ADD F1,F0,F0
SD F1, 0(R10)
ADDI R10,R10,#8
SUBI R1,R1,#1
BNEZ R1, LOOP

A computer system supports software prefetching through an instruction PF D(Rx) that
prefetches the data at address D + (Rx). Augment the code with software prefetching
instructions. Assume that the memory latency corresponds to two iterations. (3 points)

ASSIGNMENT 5

5A) Consider a multicore system comprising a number of processors (cores) on a chip that
are connected to a single-level private cache. The private caches use the write-back write
policy. X;=R; and X;=W, mean a read and a write request to the same address from
processor i, respectively, where W;=C means that the value C is written by processor i. Now
consider the following access sequence:

Ry

Wi-0

R>

Wi=1

R>

What is returned by the second read operation from processor 2 and what is the reason that
the correct value is not returned given the cache write policy assumed? How can we modify
the cache controller to make sure that the right value is returned?

(6 points)

5B)

Assume a write-back cache and the MSI-protocol. What bus transaction will cause a state
transition from state S to state M and what transaction will cause a transition from state M to
state S? (2 points)

5C) Explain the concept of block (coarse-grain) multithreading. Consider a five-stage
pipeline. What additional mechanisms must be added to support block multithreading? How
many cycles are lost on a thread switch? (4 points)

w45 GOOD LUCK! ***

Page 7(12)

Solutions

ASSIGNMENT 1

1A)

TExec = ICxCPIx Tc

Program P1:

A: Texec = 2x10°x (0.40x2 + 0.25x4 + 0.10x2 + 0.05x100 + 0.20x2) x 1 x 10? s = 14.8 ms
B: Trxee=2x10%x (0.40x1 + 0.25x1 + 0.10x1 + 0.05x200 + 0.20x1)x 1 x 10°/1.2 s =9.13 ms
R: Texec=2x10°x (0.40x3 + 0.25x3 + 0.10x3 + 0.05x800 + 0.20x3)x 1 x 107 s =42.9 ms
Program P2:

A: Tixec = 1x10°x (0.20x2 + 0.35x4 + 0.20x2 + 0.01x100 + 0.24x2) x 1 x 10? s = 3.68 ms
B: Trxee=1x10%x (0.20x1 + 0.35x1 + 0.20x1 + 0.01x200 + 0.24x1)x 1 x 10/1.2 s = 2.99 ms
R: Texee=1x10°x (0.20x3 + 0.35x3 + 0.20x3 + 0.01x800 + 0.24x3)x 1 x 10 s = 10.97 ms
1B)

Arithmetic mean:

A: Arith. Mean = (14.8 + 3.68)/2 ms = 9.24 ms
B: Arith. Mean = (9.13 + 2.99)/2 ms = 6.06 ms

B is the fastest.

Geometric mean:
Use R as a reference machine
Geom mean = SQRT(S: x S2)

A: Geom mean = SQRT(42.9 x 42.9/(14.8 x 3.68)) = 7.55
B: Geom mean = SQRT(42.9 x 42.9/9.13 x 2.99)) = 8.21

B is the fastest (higher is better). However, the difference is smaller because geometric
means tend to smooth out the difference.

10)

Program P1:

Page 8(12)

A: Tixee = 2x10°x (0.40x2 + 0.25x4 + 0.10x2 + 0.05x1 + 0.20x2) x 1 x 10 s = 3.50 ms
B: Trxee=2x10%x (0.40x1 + 0.25x1 + 0.10x1 + 0.05x1 + 0.20x1)x 1 x 10/1.2 s = 1.66 ms
R: Texee=2x10°x (0.40x3 + 0.25x3 + 0.10x3 + 0.05x1 + 0.20x3)x 1 x 10 s = 5.8 ms

Program P2:

A: Tixee = 1x10°x (0.20x2 + 0.35x4 + 0.20x2 + 0.01x1 + 0.24x2) x 1 x 107 s = 2.69 ms
B: Texee=1x10%x (0.20x1 + 0.35x1 +0.20x1 + 0.01x1 +0.24x1)x 1 x 10/1.2 s = 0.83 ms
R: Texec=1x10°x (0.20x3 +0.35x3 + 0.20x3 + 0.01x1 + 0.24x3)x 1 x 10 s = 2.98 ms

B is still the fastest

ASSIGNMENT 2

2A)
LD/STI1 LD/ST2 FPOP1 FPOP2 | INT BRA
LD F1,0(R10) | LD F2,0(R11) SUBIRI...

ADDI R10..

ADDIRI11

ADD F3...
ADDI R12... | BNERI

SD F3,0(R12)

It takes eight cycles. Note how we schedule the ADDI instructions in such a way that they
write back to the register file to avoid WAR hazards with respect to the memory
instructions. Note also that the branch will be executed in the same cycle as the store

instruction.

2B)

If the loop is unrolled a sufficient number of times (here three times), one can fill all the

slots before the first ADD with Load instructions and respect the dependences:

LD/ST1

LD/ST2

FPOP1

FPOP2

INT

BRA

LD F1,0(R10)

LD F2,0(R11)

SUBIRI...

LD F4,8(R10)

LD F5,8(R11)

LD

LD

ADDIRIO..

Page 9(12)

F7,16(R10) F8,16(R11)
ADD F3... ADDIRI11
ADD F6...
ADD F9...
SD F3,0(R12) BNE R1
SD F6,8(R12) ADDI RI12...
SD
F9,16(R12)
2C) software pipelining of the loop in 2A)
Cycle | ITE1 ITE2 |ITE3 |ITE4 |ITES |ITE6 |ITE7 |ITE8 |ITE9
1 LD/LD
2 LD/LD
3 LD/LD
4 LD/LD
5 ADD LD/LD
6 ADD LD/LD
7 ADD LD/LD
8 ADD
9 SD ADD LD/LD
10 SD ADD LD/LD
11 SD ADD
12 SD ADD
13 SD ADD

Prologue: Rows 1 — 8

Kernel: Row 9

Epilogue: Rows 11-13 (and thereafter until all instructions have left the pipeline which
happens five cycles later.

2D) See textbook and Fig 3.34 d) on page 152.

Page 10(12)

ASSIGNMENT 3

3A)

Issue: Instruction is sent to the corresponding issue queue of the functional unit to be
used. If no free entry, it waits in the issue stage. It will wait for its operands there and
when available it is issued for execution.

Execute: The instruction is executed and (2 cycles for add/sub and five cycles for
division)

Werite result (CDB): When the instruction is done the result will be broadcast to all
issue queues and to the register file on the common data bus.

Cl C2 C3 C4 C5 Co6 C7]C8|C9|Cl10 |Cl1]|C12
ADD Issue | Ex Ex CDB
DIVD Issue | Issue | Issue | Ex Ex Ex | Ex | Ex | CDB
SUBD Issue | Ex Ex CDB

This table shows when instructions pass each stage. Note that due to the RAW hazard
between the ADD and the DIVD, DIVD cannot execute until C5. SUBD has a WAR
hazard with respect to DIVD that is resolved by the tag so it can start executing right
after the ADD has left the execution unit in C4.

3B)

Branch prediction is done in the instruction fetch stage. Assuming that branch not taken is
predicted the subsequent instructions will be speculatively executed until the branch
instruction is executed four cycles later. Each speculatively executed instruction is inserted
in the reorder buffer in the order it appears in the program. When the branch instruction has
been executed and assuming that the prediction is correct, it will go to the COMMIT stage
and at that point it will leave the reorder buffer. All subsequent speculatively executed
instructions up until the next branch will also commit successfully and will be removed
from the reorder buffer, one by one.

3C) Explain what problem a branch target buffer solves and how it is organized

For certain branch instructions, for example J (R12) which branches to the address
contained in register 12, the branch target is needed already in the instruction fetch stage.
Here, a branch target buffer uses the program counter to index into a table in which branch
targets are stored. The branch target buffer is organized as a cache where the program
counter is used as an address. Portions of it are used as an index and the rest is compared
with a tag associated with each entry in the branch target buffer.

Page 11(12)
ASSIGNMENT 4

4A)

With a blocking cache, the load instruction in every fourth iteration will miss because a
block contains four vector elements and all of them are accessed in consecutive iterations.
Since CPI=1 and there are four instructions in each iteration, the first iteration takes 103
cycles and the next 3 take 4 x 3 cycles so four iterations take in total 115 cycles.

With a non-blocking cache an MSHR is occupied for as long as it takes to service the miss,
i.e., 100 cycles. In that time, 25 iterations are executed, and each iteration needs an MSHR
so 25 MSHRs are needed. With a non-blocking cache, four iterations are executed in 16
cycles. The speedup is 115/16 = 7 times.

4B)

Cold miss rate is the miss rate for an infinite cache: 2%

Capacity miss rate is the miss rate for a fully associative cache minus the cold miss rate:
(6-2)%=4%

Conflict miss rate is the miss rate for the cache minus the capacity and the cold miss rates:
B8-2-49H%=2%

4C)
LOOP: PF 16(R10)

LD F0, O(R10)
ADD F1,F0,FO
SD F1, O(R10)
ADDI R10,R10,4#8
SUBIR1,R1,#1
BNEZ R1, LOOP

We have added PF 16(R10) which corresponds to the address the load instruction will use
two iterations ahead.

ASSIGNMENT 5

5A)

The second read operation will return the value contained at the memory address initially
which may not be the same as that of the second write by processor 1. The reason is that the
modifications by processor 1 happens locally in processor 1’°s cache. By forcing all writes to
generate a memory write and let all caches inspect the address of these memory writes a
local copy containing the written location can be invalidates forcing a miss to happen which
will load data from memory which is now up to date.

Page 12(12)
5B) If a block is in the S(hared) state it means that memory is up to date. What brings that
block into the M(odified) state is a write to the block. Then an Upgrade message will be sent
to memory and to all other caches forcing them to invalidate the block. On a subsequent
read miss from some other cache, a Bus read request is posted on the bus. This will be
intercepted by the cache having the block in the M(odified) state which will respond with
the block in what is called a Flush operation. The new state is then S(hared).

5C) Explain the concept of block (coarse-grain) multithreading. Consider a five-stage
pipeline. What additional mechanisms must be added to support block multithreading? How
many cycles are lost on a thread switch? (4 points)

In block or coarse-grain multithreading, a switch to another thread happens when
encountering a long-latency operation such as a cache miss. Since that is detected in the
memory stage in a five stage pipeline, all instructions in the stages preceding that stage must
be flushed. A thread switch stage is added between the instruction fetch stage

