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Abstract: Power consumption is one of the main challenges to achieve Exascale performance. Current research trends aim at
overcoming power consumption constraints using low-power processors. Although new processors feature sensors that enable
precise power measurements, they provide different interfaces to collect data, making it difficult to correlate performance with
energy consumption. To overcome this issue, the authors developed a platform-independent tool that collects power and
energy data from homogeneous and heterogeneous systems. Using this tool, they provide a detailed comparison between a
low-power processor (ARM big.LITTLE) and a high performance processor (Intel Sandy Bridge-EP) using all applications
from the NAS parallel benchmarks and a real-world soil irrigation simulator. The results show that the average power demand
of Intel Sandy Bridge-EP is within 12.6× to 152.4× higher than ARM big.LITTLE, whereas its average energy consumption
is within 1.6× to 7.1× superior. Overall, ARM big.LITTLE presented a better performance/energy trade-off when it takes
<9.2× the execution time of Intel Sandy Bridge-EP to solve the same problem.
1 Introduction

Scientific applications that represent natural phenomena, such
as molecular dynamics simulations, seismic wave
propagation and weather forecasting usually rely on
high-performance computing (HPC) platforms to achieve
more accurate results and shorter execution times. Research
on the HPC field aims at providing faster supercomputers to
run even greater simulations.
Until the last decade, the performance of supercomputers

was quantified almost exclusively by their computing
performance (Flops). For instance, the Top500 list was
established to rank supercomputers regarding processing
speed. Nonetheless, the development of computing
platforms with exponentially scaling performances over the
years also led to an exponential growth in power
consumption [1, 2]. In this context, saving power is one of
the main concerns of current HPC design. Compliant with
this idea, more recent initiatives consider speed and power
demand to rank supercomputers. One example is the
Green500 list, which considers the ratio between Flops and
power consumption of the platform (Flops/W) [3, 4].
A main challenge in the development of future HPC

platforms lies on increasing their performance while
reducing their power consumption. In this sense, energy
consumption constraints have to be taken into account
[5, 6]. This is key for attaining Exascale systems matching
the increased demands of scientific applications. Exascale
supercomputers conceived by just scaling current cutting
edge technology would demand over a GW of power. To
avoid this scenario, specialists alerted on the official
DARPA report that the acceptable power budget for
Exascale platforms would be 20 MW [7, 8], which
requires an energy efficiency of at least 50 GFlops/W. To
put things into perspective, the number one supercomputer
on the June 2014 Top500 list, Tianhe-2, performs 33.8
PFlops while consuming 17.8 MW, which results at only
1.9 GFlops/W.
A possible approach to increase the computing

performance without incurring in the growth of power
consumption relies on using low-power processors
commonly used on embedded systems. These processors
are developed respecting power consumption constraints to
improve the battery life of autonomous devices, such as
smartphones and tablets. One example of embedded
processor architecture is developed by ARM. The first
generation of ARM architectures targeted mostly low power
consumption, being unsuitable for HPC because of three
main reasons: a moderate processing speed, a lack of
floating-point units (FPUs) and the absence of hardware
support for single instruction, multiple data (SIMD)
instructions. However, recent ARM Cortex-A processors
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feature more powerful cores, FPUs and SIMD instructions
while increasing power consumption only slightly when
compared with their predecessors. Owing to these
characteristics, some research efforts conducted towards
Exascale bet on ARM processors. For instance, the
Mont-Blanc Project is one of the first to introduce the idea
of an ARM-based supercomputer. The project bets on
highly heterogeneous multiprocessor systems-on-chip
(MPSoCs) combining ARM and graphics processing units
(GPUs) to achieve high processing speed at a low power
consumption.
To better understand the potential of using low-power

processors for HPC systems, we present in this paper a
detailed study comparing the use of an ARM big.LITTLE
embedded processor and an Intel Sandy Bridge-EP
multicore for scientific computing. We benefit from energy
sensors available in new processors and boards to measure
their power and energy consumption at a fine granularity
for several parallel applications, correlating these metrics to
the performance attained by these processors. Our main
contributions with this research are the following:

(1) We develop an energy monitoring tool (EMonDaemon) to
measure the instantaneous power demand and energy
consumption on homogeneous and heterogeneous systems;
(2) We study the performance/energy trade-off on ARM big.
LITTLE and Intel Sandy Bridge-EP processors, comparing
their performance, power demand and energy consumption;
(3) We examine the processors’ growth in power demand for
different numbers of cores employed; and
(4) We evaluate a wide range of parallel scientific applications
on these platforms. More precisely, we use all applications
from the NAS parallel benchmark (NPB) suite and a
real-world soil irrigation simulator (SIS).

The remaining sections of this paper are organised as
follows. Section 2 presents our tool (EMonDaemon) to
collect power and energy consumption on homogeneous
and heterogeneous systems. Section 3 gives an overview of
the processors used in this paper and discusses our
measurement methodology and applications. Experimental
results are discussed in Section 4. Some relevant related
works on the evaluation of energy consumption and
performance of low-power and general-purpose processors
are presented in Section 5. Finally, our concluding remarks
and future work perspectives are presented in Section 6.
2 Energy monitoring tool: EMonDaemon

Correlating performance with power and energy consumption
during run-time can be difficult as current platforms have
different interfaces to collect information from their
components. Moreover, some of the existing tools provide
data to be analysed only after execution. To provide a
single solution to measure instantaneous power and energy
consumption during the execution of applications on
homogeneous and heterogeneous systems, we developed a
new tool named EMonDaemon. It works in two
consecutive phases when executed along with applications,
as described below:

† Discovery phase: At the very beginning, the tool obtains
mostly static information from the platform, such as
processor manufacturer, processor model, available clock
frequencies and current clock frequency. This information
28
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will guide the decisions on how power and energy data will
be collected from the underlying platform.
† Monitoring phase: During the execution of the application,
EMonDaemon monitors the system to collect power or energy
information with a periodicity defined by the user. It
maintains some statistical data such as the minimum,
maximum and average power, and the energy consumption.
In addition to that the tool can also trace instantaneous
power and clock frequency of the processors during
execution. In this case, data are stored in output files that
can be visualised with standard graphing utilities such as
Gnuplot.

Our tool collects power and energy through the platform’s
specific power measurement sensors. Recent Intel and AMD
processors provide power and energy information of the
whole CPU package (cores and cache memory) from power
measurement sensors available in the processor’s chip. This
information is stored in model-specific registers (MSRs) in
the processor, which are mapped to pseudo files by the
Linux MSR kernel module. EMonDaemon reads these files
using the file input/output application programming
interface (API) from the MSR-tools package.
Documentation regarding which MSRs a certain processor
supports is usually provided by the processor manufacturer.
EMonDaemon selects the correct MSRs based on the
platform information collected in the discovery phase. The
support for power and energy measurements is currently
available for Sandy Bridge-EP or newer microarchitectures
from Intel and Family 15 h or newer microarchitectures
from AMD.
On ARM processors, our tool relies on special on-board

power measurement circuits such as current/voltage sensors,
since these processors do not feature any on-chip MSRs.
This is the case of the Odroid-XU + E ARM big.LITTLE
architecture used in this paper, which has four on-board
sensors to measure the instantaneous current, voltage and
power for the Cortex-A15, the Cortex-A7, the GPU and the
dynamic RAM (DRAM) individually. Since these sensors
are exposed to the user as MSRs, they can be accessed in
the same way as Intel and AMD on-chip MSRs.
3 Experimental methodology

This section describes the methodology used in our
performance/energy trade-off study. We first present the
execution environment, followed by the measurement
methodology and the applications used in our experiments.
3.1 Execution environment

As discussed in the previous section, this work benefits from
sensors available in recent architectures in order to measure
power and energy consumption at a fine granularity. Two
processors were used in this paper: an ARM big.LITTLE
and an Intel Sandy Bridge-EP. Their characteristics are
presented below and summarised in Table 1.

† ARM big.LITTLE: The first platform used in our
experiments is an Odroid-XU + E MPSoC. This model
features a Samsung Exynos5 5410 Octa based on the recent
big.LITTLE architecture. It includes four ARM Cortex-A15
cores at 1.6 GHz and four ARM Cortex-A7 cores at 1.2
GHz organised in two homogeneous clusters. The system
contains 2 GB of low-power DDR3 random access memory
IET Comput. Digit. Tech., 2015, Vol. 9, Iss. 1, pp. 27–35
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Table 1 Detailed configuration of our execution environments

Platform
manufacturer

ARM big.LITTLE
Samsung

Intel Sandy
Bridge-EP Intel

processor model Cortex-A7 Cortex-A15 E5-4640
clock frequency, GHz 1.2 1.6 2.2
number of cores 4 4 8
memory, GB 2 32
cache L1, kB 64 64 64
cache L2 512 kB 2 MB 256 kB
cache L3 – – 20 MB
processor
technology, nm

28 28 32

instruction set
architecture/
extensions

ARMv7l ARMv7l AVX

advanced SIMD NEON NEON —
FPU VFPv3 VFPv3 VFPv3
out-of-order
execution

no yes yes

Fig. 1 Cylindrical tube which models the root while being
infiltrated with water and its sampled surface
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and an integrated PowerVR SGX544MP3 GPU. Each core
has 32 kB instruction and 32 kB data L1 private caches.
The Cortex-A7 cores have 512 kB of L2 cache, whereas the
Cortex-A15 cores have 2 MB of L2 cache with
error-correcting code.
† Intel Sandy Bridge-EP: The second platform features an
Intel Xeon E5-4640 Sandy Bridge-EP processor [9]. This
processor is a ×86-64 processor with eight cores running at
2.40 GHz. Each core has private 32 kB instruction and 32
kB data L1 caches and a 256 kB L2 cache. The eight cores
share a 20 MB L3 cache and 32 GB of DDR3 memory.

The operating systems used in our tests were the ones
provided by the manufacturers: GNU/Linux distribution
with kernel version 3.4.67 on ARM big.LITTLE and
UV2000 GNU/Linux distribution with kernel version
3.0.101–0.29 on Intel Sandy Bridge-EP. The applications
were compiled with GCC version 4.8.

3.2 Measurement methodology

We employ different compilation flags in order to compare
performance, energy consumption and power demand.
Besides the classical optimisation flags ‘-O’, we used:
‘-march’ to enable ARM/Intel architecture specific
optimisations; ‘-mtune’ to specify the name of the target
ARM processor; ‘-mfpu’ to specify what floating-point
hardware (or hardware emulation) is available on the target;
and ‘-mfloat-abi’ to specify which floating-point application
binary interface to use. We also employ the floating-point
operations optimisation flag ‘-ffast-math’.
Although ARM big.LITTLE contains two heterogeneous

processors (Cortex-A15 and Cortex-A7), it is not possible
to use both at the same time. The selection between them
can be done transparently depending on the application’s
load, but its simple mechanism results on our HPC
applications always running on the Cortex-A15 cores. For
this reason, we disabled the cluster switching option and
tested the two processors separately.
Overall, we used ‘-O3 -march = armv7-a -mfpu =

neon-vfpv4 -mfloat-abi = hard -ffast-math’ on ARM
big.LITTLE, including ‘-mtune = cortex-a7’ when using
the Cortex-A7 cores and ‘-mtune = cortex-a15’ for the
Cortex-A15ones. On Intel Sandy Bridge-EP, we used
‘-O3 -march = corei7-avx -ffast-math’. We highlight the use
IET Comput. Digit. Tech., 2015, Vol. 9, Iss. 1, pp. 27–35
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of the ‘-march’ flag since it enables the advanced vector
extensions (AVXs) support on Intel Sandy Bridge-EP and
the new ‘armv7-a’ instruction set on ARM big.LITTLE.
All results presented in this paper are the average of a

minimum of ten runs. The relative error was <5% using a
95% statistical confidence with Student’s t-distribution.
3.3 Applications

To analyse the performance, power demand and energy
consumption of ARM big.LITTLE and Intel Sandy
Bridge-EP processors and define their performance/energy
trade-off, we chose the widely-used NPBs [10] and a real
application from the agroforestry domain for our experiments.
The NPB are a set of benchmarks derived from

computational fluid dynamics well recognised for
evaluating current and emerging multicore architectures. We
used nine different applications, namely, block tri-diagonal
(BT), conjugate gradient (CG), embarrassingly parallel
(EP), Fourier transform (FT), integer sort (IS), lower upper
(LU), multi-grid (MG), scalar penta-diagonal (SP) and
unstructured adaptive (UA). For our evaluation, we used
Class B workloads.
The case-study application, here called ‘SIS’, searches for

an optimal irrigation system model [11, 12]. The
understanding of the behaviour of water absorption is of
great interest for agroforestry and agriculture because it can
prevent water from being wasted while irrigating the soil. In
previous works, this application was parallelised on a
cluster using message passing interface (MPI). It was also
used as a case-study for investigating the energy efficiency
and power supply constraints of heterogeneous CPU + GPU
architectures [13].
The application uses a model that represents water

infiltrating a cylindrical tube that models the soil. The
model considers the irrigation time on the cylinder centre
with a fixed continuous flow of water, depicted in Fig. 1.
Water infiltrates through the tube on directions r and z,
varying the humidity of each root cell over time. The
solution is based on an iterative method with fixed time
steps. The computation is divided in two parts: the
simulation itself and the fitting of the model with real
experiments (at each iteration). The iterations’ complexity is
related to the matrices’ orders, that is, the number of cells
on the cylinder.
29
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Fig. 2 Performance improvements over the unoptimised sequential version with compilation flags on different processors

a Intel Sandy Bridge-EP
b ARM big.LITTLE Cortex-A15
c ARM big.LITTLE Cortex-A7
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To run several experiments in feasible time, our tests
simulate the water absorption for 18 min with a cylinder
with 100 cm of radius and 50 cm of height, with 100
iterations per second. We obtained results for this
configuration with three matrices’ sizes: 128 × 128 (small),
256 × 256 (medium) and 512 × 512 (large). Although these
parameters define simulations of representative phenomena,
a specialist on the agroforestry domain would still need
larger scale simulations.
To increase this application’s performance on multicore

systems, we implemented a parallel version using OpenMP,
a popular programming model for shared memory systems.
The parallel version of the application distributes slices of
root cells among the available cores.
We describe our tests and experimental results using NPB

and SIS as case studies in the next section.
4 Experimental evaluation of ARM big.
LITTLE and Intel Sandy Bridge-EP

This section describes the results obtained from executing the
NPBs and the SIS application on the test platforms previously
described. Measurements were obtained using the
EMonDaemon tool presented in Section 2.
As discussed in Section 3, in order to better compare the

platforms, we evaluate the applications using different
configurations:

(1) Sequential version without flags (‘w/o flags’);
(2) Sequential version using optimisation flags (‘-O3’);
(3) Sequential version with optimisation and architecture
specific flags (‘-O3 -m’), including all flags discussed in
Section 3.2; and
(4) Parallel version using OpenMP (‘-fopenmp’).

This section is organised as follows: the performance
achieved on each platform is discussed in Section 4.1;
power demand is analysed in Section 4.2; energy
consumption is studied in Section 4.3; and the performance/
energy trade-off of the different platforms is the subject of
Section 4.4.
4.1 Performance evaluation

4.1.1 Analysis of compilation flags: The performance
gains resulting from the cumulative use of the different
30
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optimisation flags are illustrated in Fig. 2 as stacked
speedups over the original version without optimisation.
The gains for BT, EP, FT, IS and LU were similar on the
three processors. In general, the use of ‘-O3’ had the largest
impact and its use conducted to an average speedup of 4.71
on Intel Sandy Bridge-EP. The speedups achieved for SIS
with the large problem size were 7.47, 3.72 and 4.09 on
Intel Sandy Bridge-EP, Cortex-A15 and Cortex-A7,
respectively. In other words, the impact of ‘-O3’ was
almost two times larger on Intel Sandy Bridge-EP than on
ARM big.LITTLE.
The architecture specific optimisation flags (‘-m’) enable

the AVXs support on Intel Sandy Bridge-EP and the new
‘armv7-a’ instruction set on ARM big.LITTLE. These flags
affect the performance of the different applications by
reducing their total execution time when compared with
using only ‘-O3’ by 19% on all platforms on average. The
larger impact in performance seen for SIS comes from the
use of SIMD instructions by the compiler.
Optimisation flags have a larger impact on the performance

of SIS and benchmarks such as MG, SP and UA on the most
complex processor Intel Sandy Bridge-EP than Cortex-A15
and Cortex-A7. For instance, Fig. 3 compares the execution
times of the benchmarks with different flags enabled on the
different platforms. The performance difference between
Intel Sandy Bridge-EP and Cortex-A15 (Cortex-A7) for
SIS-small goes from 1.6 (6.6) when using no compilation
flags in Fig. 3a, to 4.5 (10.9) with ‘-O3’ in Fig. 3b and up
to 5.8 (25.1) with ‘-O3 and –m’ in Fig. 3c. The obtained
results pointed that the use of compilation flags improve the
performance of the applications by 9.44× , 6.28× and 4.89×
on average for Intel Sandy Bridge-EP, Cortex-A15 and
Cortex-A7, respectively.

4.1.2 Analysis of the parallel version: The benefits of
executing the application in parallel using OpenMP are
illustrated in Fig. 4 and compared in Fig. 3d. It is important
to highlight that Intel Sandy Bridge-EP has double the
number of cores than Cortex-A15and Cortex-A7, which
enables bigger performance gains with the introduction of
parallelism. This is the reason why the scale in Fig. 3d is
two times larger than the other illustrations in Fig. 3.
When compared with the optimised sequential version

using ‘-O3 and –m’, speedups vary from 2.00 to 7.63 on
Intel Sandy Bridge-EP, depicted in Fig. 4a and from 1.33
(1.74) to 3.83 (3.87) on Cortex-A15 (Cortex-A7). The
greatest performance gains over the optimised were
IET Comput. Digit. Tech., 2015, Vol. 9, Iss. 1, pp. 27–35
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Fig. 3 Performance comparison between ARM big.LITTLE (Cortex-A15 and Cortex-A7) and Intel Sandy Bridge-EP

a w/o flags
b -O3
c -O3 –m
d -O3 -m -openmp
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achieved with SIS-medium on Intel Sandy Bridge-EP, which
benefits from the use of the compilation flags. Meanwhile, the
largest speedups over the optimised version between the NPB
were achieved for EP, which is the benchmark that most
benefits from parallelisation.
The small workload of SIS-small limits the performance

gains on Intel Sandy Bridge-EP to a speedup of 2.00.
Nevertheless, it did not represent the same kind of limitation
on ARM big.LITTLE, where speedups of 3.83 and 3.87
were achieved for Cortex-A15 and Cortex-A7, respectively.
A performance degradation with the increase in problem

size for SIS can be noted on the Intel Sandy Bridge-EP
processor, as seen in Fig. 4a and on the ARM big.LITTLE
processor, in Figs. 4b and c. Several factors are responsible
for this. SIS has a complexity of O(n4), where the
computation of humidity in each cell depends of the
neighbouring cells. This data dependency is a strong
constraint of the parallel solution [13]. Another factor is that
several matrices are concurrently accessed by the threads.
Fig. 4 Performance improvements over the optimised sequential versio

a Intel Sandy Bridge-EP
b ARM big.LITTLE Cortex-A15
c ARM big.LITTLE Cortex-A7
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This results in multiple copies of data on caches and a large
number of invalidations. These limitations together with an
intense memory usage were noted on different scales on the
different tested architectures. We also see a memory
bandwidth limitation on ARM. Although the bandwidth of
the DDR3 on Intel Sandy Bridge-EP is 32 GB/s, the
bandwidth of the LP-DDR3 on our ARM big.LITTLE
architecture is only 12.8 GB/s. This memory bandwidth
bottleneck became evident on both Cortex-A15and
Cortex-A7clusters. Although on Intel Sandy Bridge-EP, the
speedup was decreased in 10%, from 7.1 (medium size) to
6.5 (large size), on the Cortex-A15it was decreased in 18%,
from 3.2 (medium size) to 2.7 (large size) and in 28%, from
3.5 (medium size) to 2.6 (large size), on the Cortex-A7.
When comparing the performance per core for the different

processors, which can be easily computed by dividing by two
the time ratios involving the Intel Sandy Bridge-EP processor
presented in Fig. 3d, Intel Sandy Bridge-EP cores outperform
Cortex-A15 and Cortex-A7 core by 4.58 and 13.28 times on
n with parallel execution on different processors
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Fig. 5 Instantaneous power against execution time to different number of cores in each processor

a Intel Sandy Bridge-EP
b ARM big.LITTLE Cortex-A15
c ARM big.LITTLE Cortex-A7
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average, respectively. In other words, one Intel Sandy
Bridge-EP core is able to outperform a whole Cortex-A15
processor or three Cortex-A7 processors for these
applications. Nevertheless, this comes at a price of an
increased power demand, as discussed in the following
section.

4.2 Power demand evaluation

This section presents an analysis of the power demand
behaviour of the processors using different numbers of
cores. We focus on SIS-large for this analysis, as it has
shown the largest power demand among the tested
benchmarks, as illustrated in Fig. 6c. This power demand
comes from an intense use of SIMD instructions.
Fig. 5 illustrates the power demand measured for ARM big.

LITTLE (Cortex-A15 and Cortex-A7) and Intel Sandy
Bridge-EP when executing SIS-large using one or more
cores. The horizontal axis represents time, whereas the
Fig. 6 Evaluated metrics on ARM big.LITTLE and Intel Sandy Bridge-

a Execution time
b Energy consumption
c Average power demand
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vertical axis represents power demand. Each line represents
the power consumption behaviour measured for a different
number of used cores. Intel Sandy Bridge-EP shows the
smallest proportional power demand increase (2×), as the
average consumption goes from 39.59 W on one core only
to 79.90 W for eight cores. This small difference happens
because the static power consumption of Intel Sandy
Bridge-EP is already very high when compared with the
other processors. Additionally, each core employed by Intel
Sandy Bridge-EP increases its power consumption by
almost the whole power demand of Cortex-A15.
The power demand changes on ARM big.LITTLE are

much smaller in number, but bigger in proportion to the
ones on Intel Sandy Bridge-EP. The power consumed by
one core running SIS-large on Cortex-A15is 1.61 W on
average, whereas 6.57 W were measured when using all
four cores, which represents an increase of 4.07×.
Meanwhile, the power demanded by Cortex-A7varies from
0.13 to –0.39 W, which represents an increase of 3.05×.
EP

IET Comput. Digit. Tech., 2015, Vol. 9, Iss. 1, pp. 27–35
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Nevertheless, the power consumption of Cortex-A7 running
SIS-large on all its cores is still 100× smaller than one Intel
Sandy Bridge-EP core only. More precisely, when
considering the use of all cores in a processor, Intel Sandy
Bridge-EP, Cortex-A15 and Cortex-A7 present power
demands per core of 9.99, 1.64 and 0.097 W, respectively.
In other words, Intel Sandy Bridge-EP demands 6.07×
(102.2×) more power per core than Cortex-A15
(Cortex-A7). These differences are very important because
they define the base of the trade-off between the studied
platforms.

4.3 Energy consumption evaluation

This section presents the processors’ energy consumption
analysis. The energy consumption represents the cost of
maintaining the processors turned-on during the execution
of an application. Fig. 6b reports the total energy
consumption measured for the different applications on
Intel Sandy Bridge-EP and ARM big.LITTLE.
Although Intel Sandy Bridge-EP is the most power

demanding processor tested, as illustrated in Fig. 6c,
Cortex-A15 was the one that consumed the most energy for
EP. This happens because Intel Sandy Bridge-EP is more
adapted to handling compute-intensive applications that
work with double precision floating-point data. Cortex-A15
still consumes 39% less energy than Intel Sandy Bridge-EP
on average for the evaluated applications, but this is mostly
influenced by the results achieved for IS and SIS-small.
When considering the other applications only, this
difference is reduced to 22%.
In general, Cortex-A7 consumes almost one order of

magnitude less than Intel Sandy Bridge-EP (more
specifically, 7.10×). This is most clear in the case of the IS
benchmark, where Cortex-A7consumes 14.46× and 5.01×
less than Intel Sandy Bridge-EP and Cortex-A15,
respectively. As Cortex-A7cores are well-optimised for
integer workloads, the processor is able to achieve a fair
performance while still keeping its low power consumption.

4.4 Performance/energy trade-off evaluation

An analysis of the performance/energy trade-off between the
evaluated architectures requires understanding the time,
power and energy results obtained for the different
applications considered. The results indicate that
Cortex-A15 and Cortex-A7 perform 9.16× and 26.55×
slower than Intel Sandy Bridge-EP on average as illustrated
in Fig. 6a. This performance difference is changed to 9.67×
and 23.74× when considering the applications from NPB
only. These differences for Cortex-A15 vary from 4.1× and
6.3× for benchmarks IS and BT, to 12.4× and 12.8× for EP
and LU. For Cortex-A7, the performance difference varies
from 7× for IS to 32.3× and 36.2× for benchmarks FT and
CG. Meanwhile, the performance differences for SIS on
Cortex-A15 (Cortex-A7) vary between 3.1× (12.9×) for the
small size and 12.3× (63.1×) for the large size. Finally, the
performance differences between Cortex-A15 and
Cortex-A7 vary between 1.4× and 1.7× for EP and IS, and
3.9× and 5.1× for CG and SIS-large.
Although Cortex-A7 presented the worst performance

among the evaluated processors, it also showed the best
energy efficiency with an energy consumption 7.10× and
4.37× smaller than Intel Sandy Bridge-EP and Cortex-A15
on average. The largest energy consumption difference
between Cortex-A7 and Intel Sandy Bridge-EP was
IET Comput. Digit. Tech., 2015, Vol. 9, Iss. 1, pp. 27–35
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registered for SIS-small (15.79×). For this benchmark,
Cortex-A7 takes 12.94× longer to execute, but it demands
1

204.4 of the power. Nevertheless, this kind of behaviour is
only sustained for small workloads or applications working
with integers, such as IS.
The energy efficiency of Cortex-A15 was highly variable,

depending on the application and the input problem size.
For instance, Cortex-A15 consumed more energy than Intel
Sandy Bridge-EP to compute both EP and SIS-large, but
consumed 2.89× and 3.9× less to execute IS and SIS-small.
Even though Cortex-A15 presents, in general, a better
performance/energy trade-off than Intel Sandy Bridge-EP
(with power demands and energy consumption measured
for the processors 12.62× and 1.63 smaller on average,
respectively), its use may not be justifiable for
high-performance scientific computing yet, since its 9.16×
slower execution time on average could incur in a larger
energy consumption of the whole system.
5 Related work

Energy consumption is a central issue on the development of
the next generation of supercomputers. Research efforts have
been focusing on evaluating the power consumption of
general-purpose and low-power processors. However, there
is still a lack of studies with the ARM Cortex-A15
architecture.
Blake et al. [14] compared multicore processors, such as

ARM Cortex-A9, Intel Atom, XMOS XS1-G4, Intel Core
i7 and Sun Niagara T2, according to aspects such as cache
and microarchitecture. Dongarra and Luszczek [15]
analysed the energy efficiency of ARM, Intel, AMD and
NVIDIA processors. Their results point to a better energy
efficiency of ARM processors. However, their energy
consumption measurements considered the whole system
and not the processor only. Valero [16] presented similar
results with the Cortex-A9 architecture and estimated that
ARM Cortex-A15 may achieve 8 GFlops/W.
Stanley-Marbell and Cabezas [17] showed that ARM-based
platforms present low power dissipation than PowerPC and
Intel Atom when running light-weight workloads.
Nonetheless, they also showed that Intel Atom was two
times more energy efficient than the others for
heavy-weight workloads.
The energy efficiency of ARM processors has been well

researched outside the scope of HPC systems. Ou et al. [18]
compared ARM and Intel Nehalem-based clusters for web
services, and conclude that ARM provides 1.3 times better
energy efficiency on average and is able to outperform the
Intel one in some scenarios. McKenney et al. [19] achieved
energy efficiency gains of 10% on Cortex-A15 systems for
mobile workloads by tuning pre-existing Linux parameters.
The use of different clock frequencies on Cortex-A9 and
A8 processors for web pages was studied by Zhu and Reddi
[20]. To measure energy consumption, they built an
external power-sensing circuit. Using this circuit and web
pages with different characteristics, they were able to build
statistical inference models that estimate web page load
time and energy consumption. In the context of web
servers, Aroca and Gonçalves [21] analysed the feasibility
of building servers based on low-power processors. They
compared the power usage, CPU load, temperature and
other characteristics of ×86 and ARM-based computers
running as web and database servers, and concluded that
33
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ARM systems are from 3 to 4 times more power efficient for
running hypertext transfer protocol and SQL services.
The use of ARM and Intel processors for scientific

applications is an important research topic. In a previous
work, we evaluated the feasibility of using Cortex-A9
processors as building blocks for HPC systems [22].
Nonetheless, when using the metrics ‘time-to-solution’,
power and ‘energy-to-solution’, these processors were
outperformed by Intel Xeon ones. Additionally, energy
measurements were done at a system granularity, as current
sensors for the processor only were not available at the
time. Meanwhile, Goddeke et al. [23] also conducted a
comparison between ARM and classic ×86 architecture
considering three HPC kernels. They evaluate the scalability
of ARM-based system using 96 dual core processors, and
concluded that clusters of ARMs are potentially more
efficient than ×86 clusters.
The features present on current ARM big.LITTLE systems

are the subject of studies outside scientific computing. For
instance, Muthukaruppan et al. [24] introduced a
hierarchical power management framework for asymmetric
multicores. It coordinates multiple controllers in a
synergistic manner to achieve optimal power-performance
efficiency while respecting the thermal design power budget.
Differently from the other researches discussed here, our

focus lies on evaluating the latest ARM big.LITTLE
system, which features two heterogeneous quad-core
processors (Cortex-A15 and Cortex-A7) and its use for
parallel scientific applications. To do so, we proposed a
platform-independent EMonDaemon that collects power and
energy data from the heterogeneous systems. We thus used
this tool to carry out our study on all applications from the
NPB suite and on a real-world SIS.
6 Conclusions

Processors are responsible for a large percentage of total
energy consumption in parallel platforms, so managing the
power demands of processors is crucial to save energy in
HPC. New processor architectures feature sensors that allow
measurements of instantaneous power and/or accumulated
energy consumption of the processors separately. This
allows us to have a greater control over power demand and
energy consumption at a granularity level that was not
possible before. In this context, we developed a
platform-independent tool named EMonDaemon that
collects performance, power demand and energy data from
homogeneous and heterogeneous systems. Using this tool,
we provided a ‘performance/energy trade-off’ and detailed
comparison between ARM big.LITTLE and Intel Sandy
Bridge-EP processors using the NPBs and an application
from the agroforestry domain that optimises the use of
water during irrigation.
We compared performance, power demand and energy

consumption using a sequential and parallel versions of the
applications. The obtained results pointed that the use of
compilation flags improve the performance of the
applications by 9.44× , 6.28× and 4.89× on average for
Intel Sandy Bridge-EP, Cortex-A15 and Cortex-A7,
respectively, showing that processors with more complex
organisations are able to benefit more from this kind of
optimisation.
When using all cores available in the different processors,

results show that Intel Sandy Bridge-EP has a performance
per core 4.58× and 13.28× superior to Cortex-A15 and
34
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Cortex-A7. The biggest performance differences were seen
for highly vectorised or memory-intensive applications,
whereas the smallest one was reported for a benchmark that
works with integer data.
Although the average power demand of Intel Sandy

Bridge-EP was 12.62× and 152.40× bigger than the ones
seen on Cortex-A15and Cortex-A7, its average energy
consumption was only 1.6× and 7.10× superior. In this
context, although Cortex-A15 presents a better
performance/energy trade-off than Intel Sandy Bridge-EP, it
may still not be usable for high-performance scientific
computing because of a possible increase in the total energy
consumption of the whole platform when the processor
takes a much longer time (9.16×) to compute a solution.
Our future works will focus on investigating energy

consumption and power demand using a cluster with a
larger number of processors and also extend the
‘performance/energy trade-off’ evaluation to AMD
processors. Moreover, we intend to use the EMonDaemon
as a means to decide at run-time whether the executed
application should be migrated or not from one processor to
another in order to optimise the attained performance/
energy efficiency on ARM big.LITTLE architectures.
However, because of the limitation of current ARM big.
LITTLE architectures, it would only be possible to migrate
the entire application from one processor to another. If
future generations of ARM big.LITTLE allow parallel
applications to be executed on both processors
simultaneously, it will also be possible to map specific
threads to the Cortex-A15 and Cortex-A7 cores based on
the information collected by EMonDaemon at run-time.
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