
 

THEME ARTICLE: Top Picks 

Motivation for and 
Evaluation of the First 
Tensor Processing Unit 

The first-generation tensor processing unit (TPU) 

runs deep neural network (DNN) inference 15-30 

times faster with 30-80 times better energy efficiency 

than contemporary CPUs and GPUs in similar 

semiconductor technologies. This domain-specific architecture (DSA) is a custom chip 

that has been deployed in Google datacenters since 2015, where it serves billions of 

people. 

DNNs have led to breakthroughs such as cutting the error rate in an image recognition competi-
tion from 26 to 3.5 percent since 2011 and beating a human champion at Go. Ironically, the suc-
cess of DNNs led to a potential crisis in 2013. If users searched by voice for three minutes a day 
using speech recognition DNNs, computation demands on Google’s datacenters would double. 
This increase would be unaffordable using conventional CPUs. Indeed, matrix multiply, which is 
at the heart of DNN computations, rose significantly in popularity in our datacenter workload. 

In response, Google started a high-priority project to produce a custom chip for DNNs. The goal 
was to improve cost-performance by 10X over CPUs in just 15 months, including design, fabri-
cation, testing, and deployment. This article gives an overview of the motivation, architecture, 
power, and performance of the resulting TPU. Our original article goes into greater depth.1 

DNN 
The two phases of DNN are called training (or learning) and inference (or prediction), and they 
refer to development versus production. The goal for the first-generation TPU was to accelerate 
inference by 10X. (The second-generation TPU tackles training.2) 

Training computes the weights (parameters) of a DNN, adjusting them repeatedly until the DNN 
produces the desired results. Virtually all training is in floating point. Quantization transforms 
floating-point numbers into narrow integers—often only 8 bits—which are usually good enough 
for inference. Eight-bit integer multiplies can be 6X less energy and 6X less area than IEEE 754 
16-bit floating-point multiplies, and the edge for integer addition is 13X and 38X, respectively. 
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MOORE’S LAW AND CPU VERSUS DSA DESIGN 
CPU architects historically used the O(n2) more transistors per chip provided by a Moore’s-law 
scaling by a factor of n to build single-core computers with increasingly aggressive implementa-
tions and bigger cache memories, up to the limits of single-core design. After this limit was 
reached (circa 2003 with Intel Core Duo), they used transistors to increase throughput, so the 
number of cores essentially grows with O(n2).  

Alas, the peak power per mm2 of chip was increasing (due to the end of Dennard scaling), but 
the power budget per chip was limited (due to electromigration, mechanical, and thermal limits), 
and we already tried switching to multiple cores (limited by Amdahl’s law). Given these con-
straints, the architects needed to take a radically different approach to deliver the next 10X. 

They decided to build a DSA, which allowed either omitting or reallocating conventional CPU 
resources that DNNs do not need. Unlike some DSA targets, DNNs cover numerous problems, 
allowing reuse of a DNN-specific ASIC for speech, vision, language, translation, and search 
ranking. Ideas in Mark Horowitz’s keynote speech inspired the design.3 Figure 1 shows the ener-
gy overhead to perform a single addition on the traditional CPU: An 8-bit add that uses only 0.03 
picoJoules (pJ) has an overhead of 70 pJ. If a single instruction did hundreds or thousands of 8-
bit additions or multiplies, it could perform 10X more operations per second and live within the 
power constraints of the chip. 

 
Figure 1. Energy breakdown (not to scale) of instruction fetch and execute of a traditional CPU on 
the left versus a TPU on the right. 

The good news is that DNNs are dominated by tensors, so the architects created instructions that 
operate on tensors of data rather than one data element per instruction. As vectors are tensors of 
Order 1 (O(n)) and 2D matrices are tensors of Order 2 (O(n2)), they could use the O(n2) transis-
tors from Moore’s law to support multiplication of 2D matrices natively. While a straightforward 
matrix multiply requires O(n3) operations, a chip could compute it in O(n) time given a large 2D 
array in the matrix multiply unit.  

From a historical perspective, 1D vectors have been in Cray supercomputers since the Cray-1 in 
1976 and in desktop computers since the x86 MMX extension in 1997. The TPU generalizes 
such hardware structures to 2D, which greatly expands the operations per instruction. The matrix 
operations use a 256x256 array for 8-bit data. This approach reduced the energy overhead per 
computation by more than 10X by increasing the reuse of fetched memory and register values by 
more than 100X. Figure 1 illustrates the slim energy overhead per operation for the TPU. 

TPU HARDWARE 
Figure 2 shows the block diagram of the TPU. The internal blocks are connected by 256-byte-
wide paths. The matrix multiply unit is the heart of the TPU. It contains 256x256 multiply-
accumulators (MACs) that can perform 8-bit multiplies on integers. The 16-bit products are 
summed in the 4 mebibytes (MiB) of 32-bit accumulators below the matrix unit. It holds 4,096 
256-element, 32-bit accumulators. The matrix unit produces one 256-element partial sum per 
cycle.  

The weights that the DNN needs for the matrix unit are staged through an on-chip weight FIFO 
that reads from an off-chip 8- gibibyte (GiB) DRAM called weight memory. The intermediate 
results are held in the 24-MiB on-chip unified buffer, which can serve as input to the matrix unit. 
A programmable DMA controller transfers data to or from CPU host memory and the unified 
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buffer. To deploy dependably at Google scale, internal and external memory have error detection 
and correction hardware. 

 
Figure 2. TPU block diagram. The main computation is the yellow matrix multiply unit. Its inputs are 
the blue weight FIFO and the blue unified buffer, and its output is the blue accumulators. The 
yellow activation unit operates on the accumulators, whose results go to the unified buffer. 

The philosophy of the TPU microarchitecture is to keep the large matrix unit busy. Toward that 
end, the instruction that reads the weights follows the decoupled-access/execute philosophy,4 in 
that it can complete after sending its address, but before the weight is fetched from weight 
memory. The matrix unit will stall if the input activation or weight data is not ready. 

As reading a large SRAM uses much more power than arithmetic, the matrix unit uses systolic 
execution to save energy by reducing reads and writes of the unified buffer.5 It relies on data 
from different directions arriving at cells in an array regularly where they are combined. A given 
256-element matrix-vector multiplication moves through the matrix as a diagonal wavefront. The 
weights are preloaded and take effect with the advancing wave alongside the first data of a new 
block. Control and data are pipelined to give software the illusion that the matrix unit reads 256 
inputs simultaneously, and that they instantly update one location of each of the 256 accumula-
tors.  

To reduce time of deployment, the TPU was designed to be a coprocessor on the PCI Express 
(PCIe) I/O bus rather than be tightly integrated with a CPU, allowing it to plug into existing 
servers just as a GPU does. The goal was to run whole inference models in the TPU to reduce 
I/O between the TPU and the host CPU.  

Moreover, to simplify hardware design and debugging, the host server sends TPU instructions 
over the PCIe bus for it to execute rather than having the TPU sequence itself. Hence, the TPU is 
closer in spirit to a floating-point coprocessor than it is to a GPU. As instructions travel over this 
relatively slow bus, the TPU follows the CISC tradition. It has about a dozen instructions, such 
as Read_Host_Memory, Read_Weights, Matrix_Multiply, and Write_Host_Memory. The aver-
age clock cycles per instruction of these CISC instructions is typically 10 to 20. 

Figure 3 shows the floor plan of the TPU die. The 24-MiB unified buffer is almost a third of the 
die and the matrix multiply unit is a quarter, so the data path is nearly two-thirds of the die. Con-
trol is just 2 percent. Control is much larger (and harder to design) in a CPU or GPU. Figure 4 
shows the TPU on its printed circuit card, which inserts into existing servers such as a serial 
advanced technology attachment (SATA) disk. 
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Figure 3. Floorplan of TPU die. The shading follows Figure 2. The blue data path is 67 percent, the 
green I/O is 10 percent, and the red control is only 2 percent of the die. 

 
Figure 4. TPU printed circuit board, which can be inserted into the slot for a disk in a server. 

TPU BENCHMARKS 
Most architecture articles rely on simulations running small, easily portable benchmarks that 
project potential performance if the hardware is ever implemented. This article is not one of 
those. It is a retrospective evaluation of real machines running large production workloads in 
datacenters since 2015, some of which more than 1 billion people use routinely.  

Table 1 shows the six production DNN applications that we used to evaluate the TPU, which 
represented 95 percent of inference workload in our datacenters in 2016. As most research arti-
cles in computer architecture concentrated on convolutional neural networks (CNNs), we were 
surprised that they were only 5 percent of Google’s production inference workload. The portion 
of the production applications running on the TPU is surprisingly small, only 100 to 1,500 lines 
of TensorFlow.6 Our benchmarks are small pieces of larger applications that run on the host 
server, which can be thousands to millions of lines of C++ code. The applications are often user-
facing, which leads to rigid response-time limits. 

Each model needs between 5 and 100 million weights (see Table 1), which can take a lot of time 
and energy to access. To amortize the access costs from the off-chip DRAM, the same weights 
are reused across a batch of independent examples, which improves performance. Table 2 com-
pares the TPU to two large chips contemporary to the TPU: an 18-core Intel Haswell CPU and 
the Nvidia Kepler K80 GPU. The TPU is about half the area of Haswell and Kepler, and half the 
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power, yet packs 25 times the MACs (65,536 8-bit versus 2,496 32-bit) and 3.5 times the on-chip 
memory (28 MiB versus 8 MiB) as the GPU. 

Table 1. Six DNN applications (two per DNN type). MLP stands for multi-layer perceptron, and 
LSTM stands for long short-term memory. 

Name 
Lines 

of Code 
Weights TPU Ops / Weight 

Byte 
Percent of Deployed TPUs in 

July 2016 

MLP0 100 20 M 200 
61% 

MLP1 1,000 5 M 168 

LSTM0 1,000 52 M 64 
29% 

LSTM1 1,500 34 M 96 

CNN0 1,000 8 M 2,888 
5% 

CNN1 1,000 100 M 1,750 

Table 2. Benchmarked servers use Haswell CPUs, K80 GPUs, and TPUs. The GPU and TPU use 
the Haswell server as host. The TPU die is less than half the Haswell die size. 

Model mm2 nm MHz 
Thermal Design 
Power (TDP) per 

Chip 
Cores 

TeraOps/s Memory 
Gbyte/s 

Chips/ 
Server 

TDP per 
Server 8 bit FP32 

Haswell 662 22 2,300 145 W 18 2.6 1.3 51 2 504 W 

Nvidia 
K80 561 28 560 150 W 13 -- 2.8 160 8 1,838 W 

TPU < 331 28 700 75 W 1 92 -- 34 4 861 W 
 

To illustrate the performance of the six applications, we adapt the Roofline Performance model 
from high-performance computing.7 This simple visual model offers insights into the causes of 
performance bottlenecks. The assumption behind the model is that applications don’t fit in on-
chip memory, so they are either computation-limited or memory bandwidth-limited. The y-axis 
is performance in operations per second, thus the peak computation rate forms the “flat” part of 
the roofline. The x-axis is operational intensity, measured as operations per DRAM byte ac-
cessed. Memory bandwidth is bytes per second, which turns into the “slanted” part of the roof-
line because (flops/s) / (flops/byte) = bytes/s. Without sufficient operational intensity, a program 
is memory bandwidth-bound and lives under the slanted part of the roofline. Figure 5 shows the 
rooflines and the performance of the six programs on our platforms. The TPU’s roofline is most 
slanted because it has very high peak performance comparatively, but relatively slow memory 
bandwidth. 

The six DNN applications are close to the TPU ceiling but generally further below their ceilings 
for Haswell and K80. Response time is the surprising reason. For example, the application de-
veloper of MLP0 required a 99th-percentile response-time limit of 7 ms. The reason for tight 
response-time limit is that inference applications like MPL0 are part of end-user-facing services, 
which have notoriously rigid limits to maintain user satisfaction. 

At that limit, Table 3 shows that Haswell and the K80 run at just 42 and 37 percent, respectively, 
of the highest throughput achievable for MLP0. If the response-time limit was relaxed, these 
applications would run much closer to the CPU and GPU rooflines. These bounds affect the 
TPU, as well. But at 80 percent, it is operating much closer to its highest MLP0 throughput, so 
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the applications are closer to the TPU roofline. Compared to CPUs and GPUs, the single-
threaded TPU has no sophisticated microarchitectural features that consume transistors and ener-
gy to improve the average case but not the 99th-percentile case: no caches, branch prediction, 
out-of-order execution, multiprocessing, speculative prefetching, address coalescing, multi-
threading, context switching, and so on. Minimalism is a virtue of domain-specific processors. 
Table 4 shows that the TPU is, on average, 29 and 15 times faster than the CPU and GPU.  

 
Figure 5. Roofline performance model of the TPU (stars), K80 (triangles), and Haswell (circles). All 
TPU stars are at or above the other two rooflines. 

Table 3. 99th-percentile response time versus throughput (inferences per second) for MLP0. 

Type Batch Size 99th% Response Inferences/s (IPS) % Max IPS 

CPU 
16 7.2 ms 5,482 42% 

64 21.3 ms 13,194 100% 

GPU 
16 6.7 ms 13,461 37% 

64 8.3 ms 36,465 100% 

TPU 
200 7.0 ms 225,000 80% 

250 10.0 ms 280,000 100% 
 

In datacenters, cost-performance trumps performance. We can’t disclose our costs, but power is 
correlated with total cost of ownership, and we can report performance/Watt. Figure 6 shows the 
relative performance/Watt of GPU versus CPU (blue bar), TPU versus CPU (red), and TPU ver-
sus GPU (orange). The relative performance/Watt (ignoring host power) is 83 for TPU versus 
CPU and 29 for TPU versus GPU. We also evaluated a hypothetical TPU (TPU’) using the same 
much-faster GDDR5 memory as used in the GPU. As two-thirds of the benchmarks are memory-
bound, Figure 6 shows that the relative performance/Watt (ignoring host power) of TPU’ leapt to 
an amazing 196X over Haswell (green bar) and 68X over the K80 (purple). 

15May/June 2018 www.computer.org/micro



 

 TOP PICKS 

Table 4. K80 GPU die and TPU die performance relative to CPU for the DNN workload. The mean 
uses the actual mix of the six apps in Table 1. 

Type 
DNN LSTM CNN 

Weighted Mean 
0 1 0 1 0 1 

GPU 2.5 0.3 0.4 1.2 1.6 2.7 1.9 

TPU 41.0 18.5 3.5 1.2 40.3 71.0 29.2 

 
Figure 6. Relative performance/Watt (TDP) of GPU server (blue bar) and TPU server (red bar) to 
CPU server, and TPU server to GPU server (orange bar). TPU’ is an improved TPU using the 
K80’s GDDR5 memory. The green bar shows its ratio to the CPU server, and the lavender bar 
shows its relation to the GPU server. Total includes host server power, but incremental doesn’t. 

DISCUSSION 
This section presents fallacies and a pitfall in the rebuttal style popular in architecture textbooks. 

Fallacy: DNN Inference Applications in Datacenters Value 
Throughput as much as Response Time. 
We were surprised that our developers had strong response-time demands, as some suggested in 
2014 that batch sizes would be large enough for the TPU to reach peak performance or that la-
tency requirements wouldn’t be as tight. One driving application was off-line image processing, 
and the intuition was that if interactive services also wanted TPUs, most would just accumulate 
larger batches. Even the developers of one application in 2014 that cared about response time 
(LSTM1) said the limit was 10 ms in 2014, but shrank it to 7 ms when they ported it to the TPU. 
The unexpected desire for TPUs by many such services combined with the impact on and prefer-
ence for low response time changed the equation, with application writers often opting for re-
duced latency over waiting for bigger batches to accumulate. Fortunately, the TPU has a simple 
and repeatable execution model to help meet the response-time targets of interactive services and 
such high peak throughput that even relatively small batch sizes result in higher performance 
than contemporary CPUs and GPUs. 

Fallacy: The K80 GPU Architecture Is a Good Match to DNN 
Inference. 
GPUs have traditionally been seen as high-throughput architectures that rely on high-bandwidth 
DRAM and thousands of threads to achieve their goals. This perspective helps explain why the 

16May/June 2018 www.computer.org/micro



  

 IEEE MICRO 

K80 is only a little faster at latency-bound inference than Haswell and much slower than the 
TPU. (The K80 was designed long before the recent popularity of DNNs, so it provides no spe-
cific support for them.) Successors to the K80 will surely include optimizations to improve peak 
inference performance, but given their throughput-oriented architectural approach, it might be 
challenging to do so while meeting strict latency limits. Figure 6 illustrates that there is also 
plenty of headroom to improve the TPU, so it’s not an easy target.     

Pitfall: Being Ignorant of Architecture History when 
Designing a DSA. 
Ideas that didn’t fly for general-purpose computing might be ideal for DSAs. For the TPU, three 
important architectural ideas date from the early 1980s: systolic arrays,5 decoupled-
access/execute,4 and CISC instructions. The first reduced the area and power of the large matrix 
multiply unit, the second fetches weights concurrently during operation of the matrix multiply 
unit, and the third better utilizes the limited bandwidth of the PCIe bus for delivering instruc-
tions. History-aware architects could have a competitive edge in this DSA era. 

RELATED WORK 
While hardware for neural networks goes back at least 20 years,8 there has been recent enthusi-
asm both in academia9 and industry.10 Indeed, 15 percent of articles at a 2016 computer architec-
ture conference were on DNNs, and it was recently reported that there are at least 45 hardware 
startups working on chips for DNNs.11 (Space and reference limits constrain this related-work 
section; see our original article for more.1) 

CONCLUSION 
Despite having designed and deployed the TPU in only 15 months and having relatively low 
memory bandwidth—four of the six applications are memory-bound—a small fraction of a big 
number can nonetheless be relatively large. This result suggests a “cornucopia corollary” to 
Amdahl’s law: Low utilization of a huge, cheap resource can still deliver a high-performing, 
cost-effective, and power-efficient solution. 

The TPU leverages the order-of-magnitude reduction in energy and area of 8-bit integer systolic 
matrix multipliers over 32-bit floating-point data paths of a K80 GPU to pack 25 times as many 
MACs (65,536 8-bit versus 2,496 32-bit) and 3.5 times the on-chip memory (28 MiB versus 8 
MiB), while using less than half the power of the K80 in a relatively small die. This larger 
memory helps increase the operational intensity of applications to let them utilize the abundant 
MACs more fully. The single-threaded TPU is also a better match to the 99th-percentile re-
sponse-time bounds of user-facing inference applications than the highly threaded CPU and 
GPU. The TPU leverages its advantages to run 15 times as fast as the K80 GPU, resulting in a 
performance/Watt advantage of 29 times. Compared to the Haswell CPU, the corresponding 
ratios are 29 and 83. While future CPUs and GPUs will surely run inference faster, a redesigned 
TPU using circa-2015 GPU memory would go three times faster and boost the performance/Watt 
advantage to nearly 70 over the K80 and 200 over Haswell.  

Order-of-magnitude differences between commercial products are rare in computer architecture. 
Seven factors explain this energy-performance gain, listed roughly in order of importance: 

1. The TPU has one very large 2D multiply unit, while the CPU and GPU have many 
smaller, 1D multiply units (one each in the 18 cores or 13 symmetric multiprocessors). 
The matrix multiplies inherent to DNNs benefit from 2D hardware.  

2. The TPU’s DNN applications use 8-bit integers rather than 32-bit floating point to im-
prove efficiency of computation, memory bandwidth, and memory capacity.  

3. The 2D organization enables systolic arrays,5 which reduce register accesses and ener-
gy.  
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4. Because the TPU is a DSA, it can drop features required by CPUs and GPUs that 
DNNs don’t use. Such omissions make the TPU cheaper, save energy, and allow tran-
sistors to be repurposed for domain-specific optimizations.  

5. The TPU has one thread, while the K80 has 13 and the CPU has 18. A single thread 
makes it easier to stay within a fixed latency limit of our inference applications, as well 
as save energy.  

6. The TPU has enough flexibility to implement the DNNs of 2018, as well as of 2013. 
7. The production applications were written using TensorFlow, which made it easier to 

port them to the TPU at high performance rather than them having to be rewritten to 
run well on this very different DSA. 

We observe that, despite what hardware is available, machine learning (ML) researchers have a 
“patience threshold” that limits how long they are willing to wait for the results of an experi-
ment.12 This impatience is especially true for training, although fast inference helps some appli-
cations. For example, AlphaGo trains itself through self-play, with inference accounting for 98 
percent of training ML cycles. TPUs accelerated both training and inference in AlphaGo.  

Faster hardware enables larger, more-ambitious experiments within the confines of this patience 
threshold; smaller experiments run the risk that they won’t explore a large-enough space to im-
prove ML accuracy. Thus, the demand for ML cycles is effectively unbounded. Speeding up 
model evaluation by any amount is valuable; factors of 10 or 100 would likely increase the rate 
of recent breakthroughs such as those mentioned in the introduction.  

Alas, just when ML offers a burst of seemingly inexhaustible demand for computing cycles, 
computer architecture is nearing the end of Moore’s law and Dennard scaling. Their death raises 
the stakes even higher for system designers: We need to solve exponentially harder problems 
without the exponential increase in resources that Moore’s law used to deliver. Architects need 
to innovate to empower their ML colleagues to help them deliver on the promise of ML.12  

Encouraging results such as the TPU and the growing appetite for faster ML hardware suggest 
that the next decade promises to be an exciting one for computer architecture. We project anoth-
er Renaissance in computer architecture, much like the early 1980s, where the chance to have 
high impact draws many brilliant young people to the field. 
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