
Michel Dubois, Murali Annavaram, Per Stenström © 2019

Basic Microarchitecture Concepts

• Instruction set architecture (ISA) (Ch 3.2)
• Statically scheduled pipelines (Ch 3.3.1)

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Instruction Set Architecture (ISA)
(Ch 3.2)

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Instruction Set Architecture
The ISA is the interface between software and hardware

Design objectives
• Functionality and flexibility for OS and compilers
• Implementation efficiency in available technology
• Backward compatibility
• ISAs are typically designed to last through trends of

changes in usage and technology
• Tend to grow over time

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Instruction Set Architectures (ISA)
Agenda
• Instruction types and opcode
• Instruction operands
• Exceptions
• RISC vs CISC
• Microcoded implementations
• The ISA used in the course

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Instruction Types and Operands

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Instruction Types and Opcodes 1(2)
The opcode of an instruction specifies the operation to perform
Four classes of instructions are considered:
1. Integer Arithmetic/Logic instructions

•ADD, SUB, MULT
•ADDU, SUBU,MULTU
•OR, AND, NOR, NAND

2. Floating-point instructions
•FADD, FMUL, FDIV
•COMPLEX ARITHMETIC

3. Memory transfer instructions
•LOADS AND STORES
•TEST AND SET, AND SWAP

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Instruction Types and Opcodes 2(2)
4. Control instructions

• Branches are conditional
• Condition may be condition bits (ZCVXN)
• Condition may test the value of a register (set by SLT instruction)
• Condition may be computed in the branch instruction itself

• Jumps are unconditional with absolute address or address in
register

•JAL (JUMP AND LINK) needed for procedures

Michel Dubois, Murali Annavaram, Per Stenström © 2019

CPU Operands
Include accumulators, evaluation stacks, registers and immediate

values
Accumulators

•ADDA <mem_address>
•MOVA <mem_address>

Stack
•PUSH <mem_address>
•ADD
•POP <mem_address>

Registers
•LW R1, <memory-address>
•SW R1, <memory_address>
•ADD R2, <memory_address>
•ADD R1,R2,R4

Load/Store ISAs
• Management by the compiler:

register spill/fill
Immediate
• ADDI R1,R2,#5

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Example
How is B:=C+D coded in different register models?
Accumulator model:

CLRA
ADDA C
ADDA D
MOVA B

Register model (w/ memory
operands):
LW R1,C
ADD R1, D
SW R1, B

Stack model:
PUSH C
PUSH D
ADD
POP B

Register model: (w/ reg
operands)
LW R1,C
LW R2,D
ADD R3,R1,R2
SW R3, B

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Memory Operands 1(2)
Operand alignment
• Byte addressable machines
• Operands of size S must be

stored at an address that is a
multiple of S

• Bytes are always aligned;
words (32 bits) are aligned at
0,4,8…

• Compiler is responsible for
aligning operands. Hardware
checks for traps if misaligned

• Opcode indicates size (also
tags in memory) 0

1
2
3
4
5
6
7
8
9
10
11

Byte

Word

Long
word

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Memory Operands 2(2)

Little vs. big endian
• Big endian: MSB is stored

at address XXXXXX00
• Little endian: LSB is

stored at address
XXXXXX00

• Portability problems,
configurable endianness

0F
F0
A0
B00

1
2
3
4
5
6
7
8
9
10
11

Big Endian:
B0 A0 F0 0F

Little Endian:
0F F0 A0 B0

Register content

31

31

0

0

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Addressing Modes

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Addressing Modes

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Actual Use of Addressing Modes
Optimize the common case
Displacement and immediate are the most common modes

• 16 bits is usually enough for both types of values
Several addressing modes are special cases of displacement and

immediate
• Register indirect and memory absolute

More complex addressing modes can be synthesized
• Memory indirect: LW R1, @(R2)
LW R3, 0(R2)
LW R1, 0(R3)
• Postincrement: LW R1, (R2)++
LW R1, 0(R2)
ADDI R2, R2, #size

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Number of Memory Operands
in ALU OPs

Consider HLL statement C := A+B
With 3 memory operands (memory-to-memory instruction)
ADD C,A,B

• Long instruction
• No memory-operand re-use

With 1 memory operand and 1 register
LW R1,A
ADD R1,B
SW R1,C

With no memory operand (Load/Store architecture)
LW R1,A
LW R2,B
ADD R3,R1,R2
SW R3,C

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Exceptions

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Exceptions, Traps and Interrupts
Exceptions are rare events triggered by the hardware and forcing

the processor to execute a handler
• Includes traps and interrupts

Examples:
•I/O device interrupts
•Operating system calls
•Instruction tracing and

breakpointing
•Integer and floating-point
arithmetic exceptions

•Misaligned memory accesses
•Memory protection violations
•Undefined instruction

execution
•Hardware failure/alarm
•Power failures
•Page faults

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Precise Exceptions
• Synchronized with an instruction
• Must resume execution after handler
• Save the process state at the faulting instruction
• Often difficult in architectures where multiple instructions execute

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Encoding the ISA
Theoretically any encoding will do. However, watch out for code

size and decoding complexity. Decoding is simplified if
instruction format is highly predictable.

Michel Dubois, Murali Annavaram, Per Stenström © 2019

CISC vs RISC
(Complex vs Reduced Instruction

Set Computers)

Michel Dubois, Murali Annavaram, Per Stenström © 2019

CISC vs RISC
Complex vs reduced (i.e., simple) instruction set computers
Not directly related to implementation

• Complex RISC implementations
• Simple CISC implementations

Simple implementation of CISC machines use microcode

• Translation overhead from instruction to micro instruction

Michel Dubois, Murali Annavaram, Per Stenström © 2019

ISA used in the Course

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Pipelining
(Ch 3.1.1)

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Instruction Formats

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Execution Steps in Instructions

Michel Dubois, Murali Annavaram, Per Stenström © 2019

5-Stage Pipeline

Instructions go through every stage in order, even if not used
Note: Control implementation

• Instruction carries control
• This is a general approach: ”Each instruction carries its baggage”

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Pipeline Hazards

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Pipeline Hazards
Structural hazards

• Caused by resource contention (e.g. register file, memory fetch)
• Can be avoided by adding resources (unless too costly)
• No such hazard in the 5-stage pipeline
Example: single memory in the 5-stage pipeline

Data hazards
• Due to program dependencies (RAW, WAW, WAR)
• Both for memory and register operand accesses
• Difference between data dependencies and data hazards
• Software vs. hardware implementation
• In 5-stage pipeline: Only RAW dependencies on registers cause hazards

because all instructions go through pipeline stage in process order.

Control hazards
• Branch, jump, exceptions

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Data Hazards

Michel Dubois, Murali Annavaram, Per Stenström © 2019

RAW Hazards on Register Values
RAW hazard with a preceding ALU instruction

I1 and I5 are fine

Forwarding: Provides direct paths between ME/WB into EX. Forwarding
is implemented by detecting in a forwarding unit (FU) that the instruction in
ME/WB writes into one input register of the instruction in EX.

Michel Dubois, Murali Annavaram, Per Stenström © 2017

Between I1 and I4:
• Register forwarding: value stored = value read
Between I1 and I2
• Value is available and can be forwarded from ME input to EX input
Between I1 and I3
• Value is available and can be forwarded from WB input to EX input

Michel Dubois, Murali Annavaram, Per Stenström © 2019

RAW Hazards on Register Values
Dependencies with prior Loads pose special complications

In this case it is not possible to forward the value from I1 to I2 because
the value is available only in cycle C5
• However, the value can be forwarded from I1 to I3
• I2 must be stalled to wait for the value of I1

I2 and I3 must be stalled in IF and ID for one cycle (C4) by a hazard
detection unit (HDU) in cycle C4. A NOOP has been clocked in EX

Michel Dubois, Murali Annavaram, Per Stenström © 2019

5-Stage Pipeline with FU and HDU

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Control Hazards

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Control Hazards
Need target address (computed in ID) and condition (computed in EX)
• Predict Branch not Taken and take it in EX if taken

If the branch must be taken then IF and ID must be flushed and the target
address must be clocked into the PC

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Exceptions 1(2)
Pipeline benefits come from overlapped instruction executions
• Things go wrong when the flow of instructions is suddenly

interrupted (EXCEPTIONS)
Many exceptions must be precise. On a precise exception:
1. All instructions preceding the faulting instruction must complete
2. The faulting instruction and all following instructions must be

squashed (flushed)
3. The handler must start its execution.

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Exceptions 2(2)
It is not practical to take an exception in the cycle when it happens
• Multiple exceptions in the same cycle
• It is complex to take exceptions in various pipeline stages
• The major reason is that exceptions must be taken in processor

order and not in temporal order
Instead, flag the exception and record its cause when it happens.
Keep it “silent” and wait until the instruction reach the WB stage to take

it.

Michel Dubois, Murali Annavaram, Per Stenström © 2019

You should know up to now
• Major components of an instruction-set architecture (ISA)

• Instruction types
• Register and memory operands
• Addressing modes
• Impact of usage on the design of the ISA
• Exceptions
• Instruction format

• Structure of a basic 5-stage pipeline
• The different hazard types and how to deal with them
• Precise exceptions and how to deal with them

