O
Ontional Lecture 1

Basic Microarchitecture Concepts

* Instruction set architecture (ISA) (Ch 3.2)
« Statically scheduled pipelines (Ch 3.3.1)

Chalmers University of Technology
Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Instruction Set Architecture (ISA)
(Ch 3.2)

Chalmers University of Technology
Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Instruction Set Architecture

The ISA is the interface between software and hardware

Des i g NoO bj e Ct i ves Semiconductor physics

Application

Compiler /Libraries of macros and procedures

Operating system
Instruction set (ISA)

Computer architecture (organization)

Circuits (implementation of hardware functions)

Functionality and flexibility for OS and compilers
Implementation efficiency in available technology
Backward compatibility

ISAs are typically designed to last through trends of
changes in usage and technology

Tend to grow over time b

N

Chalmers University of Technology
Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

-
Instruction Set Architectures (ISA)

Agenda

Instruction types and opcode
Instruction operands
Exceptions

RISC vs CISC

Microcoded implementations
The ISA used in the course

Chalmers University of Technology
Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Instruction Types and Operands

Chalmers University of Technology
Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

-
Instruction Types and Opcodes 1(2)

The opcode of an instruction specifies the operation to perform
Four classes of instructions are considered:
1. Integer Arithmetic/Logic instructions
ADD, SUB, MULT
-ADDU, SUBU,MULTU
*OR, AND, NOR, NAND
2. Floating-point instructions
FADD, FMUL, FDIV
*COMPLEX ARITHMETIC
3. Memory transfer instructions
LOADS AND STORES
TEST AND SET, AND SWAP PN
. CHALMERSM b)

Chalmers University of Technology AN _//’
Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

-
Instruction Types and Opcodes 2(2)

4. Control instructions

* Branches are conditional
« Condition may be condition bits (ZCVXN)
» Condition may test the value of a register (set by SLT instruction)

» Condition may be computed in the branch instruction itself

« Jumps are unconditional with absolute address or address in
register

«JAL (JUMP AND LINK) needed for procedures

Chalmers University of Technology

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

-
CPU Operands

Include accumulators, evaluation stacks, registers and immediate

values
-> Accumulators = Load/Store ISAs
*ADDA <mem_address> Management by the compiler:
*MOVA <mem_address> register spill/fill
-> Stack => Immediate
EBEH <mem_address> . ADDIR1,R2#5
*POP <mem_address>
=>» Registers

LW R1, <memory-address>

*SW R1, <memory_address>
*ADD R2, <memory_address>
ADD R1,R2,R4

Chalmers University of Technology

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Example

How is B:=C+D coded in different register models?
Accumulator model: Register model (w/ memory

CLRA operands):

ADDA C LW R1,C

ADDA D ADD R1,D

MOVA B SWR1, B

Register model: (w/ reg

Stack model: operands)

PUSH C LW R1 ,C-

PUSH D LW R2,D

ADD ADD R3,R1,R2

POP B SW R3, B

RN
))
h//

Chalmers University of Technology
Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

-
Memory Operands 1(2)
11

Operand alignment

/ ~ \\
m ‘
Universi \J /

Chalmers University of Technology
Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Byte addressable machines

Operands of size S must be
stored at an address that is a
multiple of S

Bytes are always aligned,;
words (32 bits) are aligned at
0,4,8...

Compiler is responsible for
aligning operands. Hardware
checks for traps if misaligned

Opcode indicates size (also
tags in memory)

10

O =~ N W » 01 O N 00 ©

A
)]

-
Memory Operands 2(2)

Little vs. big endian

Big endian: MSB is stored
at address XXXXXX00

Little endian: LSB is
stored at address
XXXXXX00

Portability problems,
configurable endianness

Register content

Big Endian:

BO

AO

FO

OF

31

Little Endian:

OF

FO

AO

BO

31

Chalmers University of Technology
Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

-
o -

© =~ N W » 00 O N 00 ©

OF

FO

AO

BO

Addressing Modes

Chalmers University of Technology
Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

1
Addressing Modes

I . .
] — s — O — 1 N 17—
i
[UIOTCACTWCIN T U JO s S IO
I v
INDEXED ADD R3, (R1+R2) reg[R3] «- reg[R3] + Mem[reg[Rl] + reg[RZ]]
DIRECT OR ARSOLUTE ADD R1, (1001) reg[R1] <- reg[R1] + Mem[1001]
i T2 A o2y i iR e e | = e aa - =
I POST INCREMENT ADD R1, (R2) ADD R1, (R2) then R2 «- R2+d
PC-RELATIVE BEZ R1, 100 if R1==0, PC <- PC+100
PC-RELATIVE JUMP 200 Concatenate bits of PC and of fset

/| A
) |
Chalmers University of Technology AN ///

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

e
Actual Use of Addressing Modes

Optimize the common case
Displacement and immediate are the most common modes
* 16 bits is usually enough for both types of values

Several addressing modes are special cases of displacement and
immediate

 Register indirect and memory absolute

More complex addressing modes can be synthesized
e Memory indirect: LW R1, @(R2)
LW R3, 0(R2)

« Postincrement: LW R1, (R2)++
LW R1, O(R2)
ADDI R2, R2, #fsize

))
h/

Chalmers University of Technology
Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

-
Number of Memory Operands

in ALU OPs

Consider HLL statement C := A+B
With 3 memory operands (memory-to-memory instruction)

ADD C,A,B
* Long instruction
* No memory-operand re-use

With 1 memory operand and 1 register
LW R1,A

ADD R1,B
SWR1,C

With no memory operand (Load/Store architecture)
LW R1,A
LW R2,B
ADD R3,R1,R2

SW R3,C

4 \§
»;} jl ;|
J

Chalmers University of Technology
Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Exceptions

Chalmers University of Technology
Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

-
Exceptions, Traps and Interrupts

Exceptions are rare events triggered by the hardware and forcing
the processor to execute a handler

« Includes traps and interrupts

Examples:
-1/O device interrupts *Misaligned memory accesses
*Operating system calls Memory protection violations
*Instruction tracing and *Undefined instruction
breakpointing execution
Integer and floating-point *Hardware failure/alarm
arithmetic exceptions *Power failures

*Page faults

IR
) ||
J

Chalmers University of Technology
Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

-
Precise Exceptions

* Synchronized with an instruction
* Must resume execution after handler
« Save the process state at the faulting instruction

« Often difficult in architectures where multiple instructions execute

N\
))
J

Chalmers University of Technology
Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

-
Encoding the ISA

Theoretically any encoding will do. However, watch out for code
size and decoding complexity. Decoding is simplified if

Operation and
no. of operands | specifier 1 field 1

(a) Variable (e.g., VAX, Intel 80x86)

Address Address
field 1 field 2

Operation

(b) Fixed (e.g., Alpha, ARM, MIPS, PowerPC, SPARC, SuperH)

Operation Address Address
specifier field

Operation Address Address Address
specifier 1 specifier 2 field

Operation Address Address Address
specifier field 1 field 2

(c) Hybrid (e.g., IBM 360/70, MIPS16, Thumb, TI TMS320C54x)

AN
\
/\." '.\\‘
) ||
v,‘ / VY
Chal iversi / /
almers University of Technology 74

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

CISC vs RISC
(Complex vs Reduced Instruction
Set Computers)

Chalmers University of Technology
Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

e
CISC vs RISC

Complex vs reduced (i.e., simple) instruction set computers

Not directly related to implementation
* Complex RISC implementations
» Simple CISC implementations

Simple implementation of CISC machines use microcode

micro-machine
E .Ac<=(PC)+7 Jassume 7 bytes
mi&r‘o's-)stor / Load Tr1, A /of instruction
B Load Tr2, B /Tr’s are temporary reg.
'"s"“"“‘:" " miciocode Add Tr1, Tr2 /not visible from ISA
) r Store Tr1, C
IR<=IM[PC]
\Jtmp MS[opcode]
! l A 4
| ADD C,A,B | simple data-path
Instruction register(If) —— I
\
data memory

« Translation overhead from instruction to micro instruction

4 \.\7}».
))
//

Chalmers University of Technology

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

-
ISA used in the Course

Data Transfers

LB, LH, LW, LD

LW RI #ZO(RZ)

R1<-MEM[(R2)+20]

SB, SH, SW, SD

SW RL#20(R2)

MEM[(R2)+20]<=(R1)

for bytes, half-words

words, and double words

L.S FO,#20(R2)

FO<=MEM[(R2)+20]

single/double float load

single/double float store

3.5 FO,#20(R2)

MEM[(R2)+20]<=(FO)

late signed or unsignec

AND OR XOR

AND RI RZ R3

R1<=(R2).AND.(R3)

bitwise logical AND, OR, XOR

ANDI, ORI, XORI,

ANDI R1,R2 #4

RI<=(R2).ANDL.4

bitwise AND, OR, XOR immediate

SLT, SLTU

SLT R1,R2 R3

R1<=1 if R2<R3
else R1<=0

test on R2,R3 outcome in R1,
signed or unsigned comparison

SLTI, SLTUI

SLTI R1R2 #4

Ri<=1if R2<4

test R2 outcome inR1,

Branches/Jumps

BEQZ, BNEZ

BEQZ R1 label

PC«=label if (R1)=0

J target

PC<=target

target is an immediate field

JRRI

PC<=(R1)

target is in register

JAL target

<:(PC)+4;

Jjump to target after saving

ADD.D, SUB D,MUL D DIV.D

ADD.D FO F2 F4

FO<=(F2)+(F4)

float arithmetic double precision

/|

Chalmers University of Technology \

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Q
Il

<

Pipelining
(Ch 3.1.1)

Chalmers University of Technology
Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

-
Instruction Formats

31 26 25 2120 16 15 o)
opcode Rs Rt displacement/immediate/offse

LW Rt, displacement(Rs)
SW Rt, displacement(Rs)
ADDI Rft, Rs, immediate
BEQ Rft, Rs, offset

26 25 2120 1615 1110

R I I L

ADD Rd, Rt, Rs

31 26 25 o

J target
JAL target

RN
))
h/

Chalmers University of Technology

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

-
Execution Steps in Instructions

LW RI#20(R2)

[oERE_ —I

l | ADDL KLKRZ IMMm. | [reicn,. [DE(‘I‘I' e | LOMDI 'l(_ — ____vvrlie In kKl | l

BEQ R1 R2,offset ; Decode; Subtract (R1) and (R2)
Fetch R1 and R2 Take branch if zero
Compute target--

N 7| Toke g

THESE STEPS CAN BE PIPELINED

WE'LL DEAL WITH FLOATING-POINT INSTRUCTIONS LATER

QA
T N\
\ \\
.." \ il
)]
/]
//
Chalmers University of Technology é’

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

5
Ze

AR

InstruCtiIoNs go thro
Note: Control implementation

* Instruction carries control
This is a general approach: "Each instruction carries its baggage”
/h\\\
|

7

Chalmers University of Technology

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Pipeline Hazards

Chalmers University of Technology
Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Pipeline Hazards

Structural hazards

Caused by resource contention (e.g. register file, memory fetch)
Can be avoided by adding resources (unless too costly)
No such hazard in the 5-stage pipeline

Example: single memory in the 5-stage pipeline

Data hazards

Due to program dependencies (RAW, WAW, WAR)

Both for memory and register operand accesses
Difference between data dependencies and data hazards
Software vs. hardware implementation

In 5-stage pipeline: Only RAW dependencies on registers cause hazards
because all instructions go through pipeline stage in process order.

Control hazards

A

Branch, jump, exceptions y

Chalmers University of Technology N

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

V4

Data Hazards

Chalmers University of Technology
Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

1
RAW Hazards on Register Values

RAW hazard with a preceding ALU instruction

CLOCK ==> Cl|C2|C3|Ca| CB|C6|CT | CB| CO
I1| ADDRIR2R3 |IF |ID|EX|ME|WB
I2 | ADDI R3R1 #4 IF |ID | EX | ME | WB

I3| LWR5,0(R1) IF | ID | EX | ME | WB
- I4 | ORI Ré6 R1 #20 IF | ID | EX | ME | WB
11 and |5 are fine I5| SUBIR1RI1R7 IF | ID | EX | ME | WB

Between 11 and 14:

» Register forwarding: value stored = value read
Between 11 and 12

* Value is available and can be forwarded from ME input to EX input
Between I1 and I3
e Value is available and can be forwarded from WB input to EX input

Forwarding: Provides direct paths between ME/WB into EX. Forwarding
is implemented by detecting in a forwarding unit (FU) that the instruction in
ME/WB writes into one input register of the instruction in EX.

___ ______ CHALMERSQ)

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

1
RAW Hazards on Register Values

Dependencies with prior Loads pose special complications

. LLOCK =2 gl|c2|c3|ca|c5|c6|cT|c8 | Co
§| LWRIOR3) ID |EX | ME | WB
2 | ADDIR3RL#4| | |[IF |ID | EX | ME |WB

IS TWRI ORI IF | ID | EX | ME | WB
I4| ORI R6 R1#20 IF | ID | EX | ME | WB

I5| SUBI R1R1R7 IF | ID | EX | ME | WB

In this case it is not possible to forward the value from |1 to |2 because
the value is available only in cycle C5

 However, the value can be forwarded from 11 to I3

|2 must be stalled to wait for the value of |1

CLOCK==> | Ct|C2|c3|ca| C5|C6 | CT | C8 | CO
TLL_LWRIOR3) TTF|ID[EX|ME|WB
14| ADDI R3R1 #4 IF |[ID | ID | EX | ME|WB
I3| LWR5,0(R1) IF | IF | ID | EX | ME |WB
L4 TORERGREHEE- IF | ID | EX | ME |WB
I5| SUBI R1RIR7 IF | ID | EX | ME

L__

|2 and I3 must be stalled in IF and ID for one cycle (C4) by a hazard

detection unit iHDUi N cicle C4. ANOOP has been clocked in EX

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

.'\\\
t!)
Va

th FU and HDU

line wi

5-Stage Pipe

WB

ME

EX

ID

\
|

-\\\\

<
uondNISU| H \

//

Chalmers University of Technology

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Control Hazards

Chalmers University of Technology
Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Control Hazards

Need target address (computed in ID) and condition (computed in EX)
 Predict Branch not Taken and take it in EX if taken

[e]
+®
| control |
=

B
8

S e
EE-’ §§R »

-,
4 w
74

(PC)+4 | Offset
:--------[-------------------
y
I WR | (PC)+4 |branch@ Iln reg#l

=
|m|(pq+4|

If the branch must be taken then IF and ID must be flushed and the target
address must be clocked into the PC /h\\\

) ||
Chalmers University of Technology 4,’
Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

-
Exceptions 1(2)

Pipeline benefits come from overlapped instruction executions

« Things go wrong when the flow of instructions is suddenly
interrupted (EXCEPTIONS)

Many exceptions must be precise. On a precise exception:
1. All instructions preceding the faulting instruction must complete

2. The faulting instruction and all following instructions must be
squashed (flushed)

3. The handler must start its execution.

1N
))
J

Chalmers University of Technology
Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

-
Exceptions 2(2)

It is not practical to take an exception in the cycle when it happens
* Multiple exceptions in the same cycle
« Itis complex to take exceptions in various pipeline stages

 The major reason is that exceptions must be taken in processor
order and not in temporal order

Instead, flag the exception and record its cause when it happens.

Keep it “silent” and wait until the instruction reach the WB stage to take
it.

RN
))
h/

Chalmers University of Technology
Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

You should know up to now

* Major components of an instruction-set architecture (ISA)

Instruction types

Register and memory operands
Addressing modes

Impact of usage on the design of the ISA
Exceptions

Instruction format

« Structure of a basic 5-stage pipeline
« The different hazard types and how to deal with them

* Precise exceptions and how to deal with them

Chalmers University of Technology

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

