
Chip multiprocessors
• Multithreading techniques (Sections 5.2.1, 8.3)

üInterleaved (fine-grain) multithreading
üBlock (coarse-grain) multithreading
üSimultaneous multithreading

• Cache coherence solutions (Sections 5.4.1-5.4.3)

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Multicore
Programming Model

Processor
(Core)

Memory

Processor
(Core)

Processor
(Core)

L2 Cache

L1 Cache L1 Cache L1 Cache

Architecture Model of a Multicore System

Programming Model of a Multicore System

Shared memory

P P P

Processors (cores)

X=0

Write X,1 Read X=1

X=1

Discussion:
Make a parallel version of vector
addition:
for(i=0;i<100;i++)
A[i] = B[i] + C[i];

On 10 processors

Thread-Level Parallelism

Shared
memory

P P P

statement1;
statement2;’
statement3;
…
statementN

statement1;
statement2;’
statement3;
…
statementN

statement1;
statement2;’
statement3;
…
statementN

Independent
programs

Thread: program code
run on one physical processor

…or part of same program
– a parallel program

Goal: Parallel Execution

Speedup (N)

N

K

K

SP < 1/f
• f – fraction of serial code
• See Amdahl’s Law

Discussion:
What are the sources for
sub-linear speedup?

Question:
Assume that 90% of a sequential
program can be parallelized.

What is the maximum speedup we
can get?

Answer:
According to Amdahl’s Law:
SP = 1/(f – (1-f)/P)
Hence, SP<1/f = 1/(1-0.90) = 10

Multithreading
(Sections 5.2.1, 8.3)

Motivation

Compute Cache Miss Latency

Time

Time

Compute Cache Miss Latency

Compute Cache Miss Latency

Compute Cache Miss Latency

Compute Cache Miss Latency …

Four programs (threads) could overlap the latency

Utilization: 25%!

1 time unit 3 time units

Utilization: 100%!

Question:
What is the utilization?

Question:
What is the utilization?

Processor
(Core)

Memory

Processor
(Core)

Processor
(Core)

L2 Cache

L1 Cache L1 Cache L1 Cache

Thread 1
Thread 2 Thread N…

Multi-threading aims at
utilizing processor resources better

T1 T3T2 TN T1 T2
Interleaved : Switch to another thread every cycle

T1 T2T1 T2 T3 T3
Blocked: Switch to another thread on costly stalls

miss miss

T1 T2

Simultaneous:Threads share microarchitecture resources

T1 T2T1 T2
T3

T3
miss miss

T2
T3

.... T1 T1

Interleaved Multithreading
Blocked Multithreading

Simultaneous Multithreading

IF

IF/ID ID/EX

EX

EX/MEM

MEM

MEM/WB

ID WB

M
U

X

Interleaved Multithreading
Blocked Multithreading

Simultaneous Multithreading

IF

TS/ID ID/EX

EX

EX/MEM

MEM

MEM/WB

ID WB

M
U

XTS

IF/TS

Thread selection

Interleaved Multithreading
Blocked Multithreading

Simultaneous Multithreading

IF

TS/ID ID/EX

EX

EX/MEM

MEM

MEM/WB

ID WB

M
U

XTS

IF/TS

Thread selection

PC1

PC2

Reg
T2

Reg
T1

Thread ID follows the instruction
Round robin

Interleaved Multithreading
Blocked Multithreading

Simultaneous Multithreading

IF

TS/ID ID/EX

EX

EX/MEM

MEM

MEM/WB

ID WB

M
U

XTS

IF/TS

Thread selection

PC1

PC2

Reg
T2

Reg
T1

Fetch
T1

Select
T2

Decode
T1

Execute
T2

Mem
T1

Write B.
T2

Hazards have less impact. Can hide long latencies

Question:
How many threads are needed to
eliminate the cycles lost for control
hazards in the multithreaded pipeline
below?

IF

TS/ID ID/EX

EX

EX/MEM

MEM

MEM/WB

ID WB
M

U
XTS

IF/TS

Reg
T2

Reg
T1

BNEZ R1, LOOPUNUSED UNUSED UNUSED

T1: BNEZ R1, LOOPT4 T3 T2

Answer:
Four threads

Question:
How many cycles are unused if T1
experiences a cache miss that
takes 10 cycles to serve?

Time
T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T1 T2 …

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Miss
Data
Returned

Answer:
5 cycles are unused. T2 can make
use of half of the cycles.

Interleaved Multithreading
Blocked Multithreading

Simultaneous Multithreading

IF

TS/ID ID/EX

EX

EX/MEM

MEM

MEM/WB

ID WB

M
U

XTS

IF/TS

Thread selection

PC1

PC2

Reg
T2

Reg
T1

Miss/completion event

On miss/completion event

Interleaved Multithreading
Blocked Multithreading

Simultaneous Multithreading

IF

TS/ID ID/EX

EX

EX/MEM

MEM

MEM/WB

ID WB

M
U

XTS

IF/TS

Thread selection

PC1

PC2

Reg
T2

Reg
T1

Fetch
T1

Select
T1

Decode
T1

Execute
T1

Mem
T1

Write B.
T1

Miss

Cycle X

Must be flushed

Interleaved Multithreading
Blocked Multithreading

Simultaneous Multithreading

IF

TS/ID ID/EX

EX

EX/MEM

MEM

MEM/WB

ID WB

M
U

XTS

IF/TS

Thread selection

PC1

PC2

Reg
T2

Reg
T1

Fetch
T2

Unused Unused Unused Unused Unused

Cycle X + 1

Only effective for long-latency operations
Significant overhead in deep out-of-order pipelines

IF ID CDB

INT

FP

MEM

CT
IF
IF

ID
ID

CDB
CDB

CT
CT

Interleaved Multithreading
Blocked Multithreading

Simultaneous Multithreading

IF ID CDB

INT

FP

MEM

CT
IF
IF

ID
ID

CDB
CDB

CT
CT

Interleaved Multithreading
Blocked Multithreading

Simultaneous Multithreading

Cache Coherence Solutions
(Sections 5.4.1-5.4.3)

Latest Write to a Location:
Single Processor

• Processor i reads from location X: Ri(X)

• Processor i writes a value Y to location X: Wi(X)=Y

Example: Consider the following sequence of reads and writes to location X:

Wi(X)=1 Ri(X) Wi(X)=2 Ri(X) Wi(X) = 3 Ri(X)

Question:
What value is returned by the last
read request?

Answer:
The returned value is 3 because it
is reflected by the latest write to
location X.

Notation:

Latest Write to a Location:
Two Processors

Example: Consider the following sequence of reads and writes to location X
from two processors 1 and 2:

W1(X)=1 R1(X) W1(X)=2 R1(X) W1(X) = 3 R1(X)

Question:
What value is returned by the last
read request from processor 1?

Answer:
It all depends on the order by
which writes arrive at memory!

W2(X)=4 R2(X) W2(X)=5 R2(X) W2(X) = 6 R2(X)

Latest Write to a Location:
Two Processors – One Scenario

W1(X)=1 R1(X) W1(X)=2 R1(X) W1(X) = 3 R1(X)

Question:
What value is returned by the last
read request from processor 1?

Answer:
Now it’s unambiguously 6 because
the last write from Processor 2 is
the last write.

W2(X)=4 R2(X) W2(X)=5 R2(X) W2(X) = 6 R2(X)

Program-order relation
Happens-before relation

Latest Write to a Location:
Two Processors – Another Scenario

W1(X)=1 R1(X) W1(X)=2 R1(X) W1(X) = 3 R1(X)

Question:
What value is returned by the last
read request from processor 2?

Answer:
It’s unambiguously 3 and the last
write from Processor 1 is the last
write.

W2(X)=4 R2(X) W2(X)=5 R2(X) W2(X) = 6 R2(X)

Program-order relation
Happens-before relation

Definition: Cache Coherence

For any execution (beyond the two shown) a memory system is coherent if:
• Memory operations form one serial order with respect to the same memory location
• Memory operations from each thread respect program order
• The value returned by a read is the value of the latest write in the serial order

W1(X)=1 R1(X) W1(X)=2 R1(X) W1(X) = 3 R1(X)

W2(X)=4 R2(X) W2(X)=5 R2(X) W2(X) = 6 R2(X)

W1(X)=1 R1(X) W1(X)=2 R1(X) W1(X) = 3 R1(X)

W2(X)=4 R2(X) W2(X)=5 R2(X) W2(X) = 6 R2(X)

Two executions:

Why Coherence is Important!

Programmer expectation:
If first read from P2 returns a value X, second read must return a value >=X

Examples of correct (coherent) interleavings:
W1(A)=1 R21(A) W1(A)=2 R22(A)

W1(A)=1R21(A) W1(A)=2 R22(A)

R21(A)W1(A)=2 W1(A)=1 R22(A)
Examples of incorrect (incoherent) interleavings:

Assume A=0, initially
P1 P2
A=1 ..=A
A=2 W1(A)=2 ..=A

..

W1(A)=1 R21(A)
R22(A)

R22(A)W1(A)=1 W1(A)=2 R21(A)

Assume A=0, initially
P1 P2
A=1 ..=A
A=2 W1(A)=2 ..=A

W1(A)=1 R21(A)
R22(A)

Answer:

R21(A) R22(A)
S1 R21(A) R22(A) W1(A)=1 W1(A)=2 0 0
S2 R21(A) W1(A)=1 R22(A) W1(A)=2 0 1
S3 R21(A) W1(A)=1 W1(A)=2 R22(A) 0 2
S4 W1(A)=1 R21(A) R22(A) W1(A)=2 1 1
S5 W1(A)=1 R21(A) W1(A)=2 R22(A) 1 2
S6 W1(A)=1 W1(A)=2 R21(A) R22(A) 2 2

Question:
List all correct serial orders of the
program and what R21 and R22
return in each case.

Snoopy Cache
Coherence Protocols

The Cache Coherence Problem

Write-back caches

A=1

A=1

L2 Bank 1

L1 Cache
A=1

L1 Cache

A=2 A=3 A=2

A=2

P1 P2

Inconsistent
view of content
of A

Inconsistent
view of content
of A

Bus
A=1

A=1

L2 Bank 1

L1 Cache
A=1

L1 Cache

P1 P2

Write-through caches

A=2

A=2

A=1

A=1 A=1

P1 P2

Write-through caches

A=2

A=2

Invalidation request

A Simple Snoopy Cache Protocol

• Bus acts as serialization point

• Write atomicity is maintained

Implementing the Simple Cache Protocol

Processor-side requests:
• Processor read – PrRd
• Processor write – PrWr

Bus-side requests:
• Bus read – BusRd
• Bus read exclusive (inval.) - BusRdX
• Bus write (inval.) – BusWr

Cache states per block:
• Valid – V
• InValid – I

I V

PrRd/BusRd
PrWr/BusRdX

PrRd/--
PrWr/BusWr

BusWr/--
BusRdX/--

BusWr/--
BusRdX/--

A=1

A=1 A=1

P1 P2

PrRd/BusRd
PrWr/BusRdX

PrRd/--
PrWr/BusWr

BusWr/--
BusRdX/--

BusWr/--
BusRdX/-- I V

PrRd/BusRd
PrWr/BusRdX

PrRd/--
PrWr/BusWr

BusWr/--
BusRdX/--

BusWr/--
BusRdX/-- I V

A=1

A=1 A=1

P1 P2

PrRd/BusRd
PrWr/BusRdX

PrRd/--
PrWr/BusWr

BusWr/--
BusRdX/--

BusWr/--
BusRdX/-- I V

PrRd/BusRd
PrWr/BusRdX

PrRd/--
PrWr/BusWr

BusWr/--
BusRdX/--

BusWr/--
BusRdX/-- I V

A=2

A=2

A=2

A=2 A=1

P1 P2

PrRd/BusRd
PrWr/BusRdX

PrRd/--
PrWr/BusWr

BusWr/--
BusRdX/--

BusWr/--
BusRdX/-- I V

PrRd/BusRd
PrWr/BusRdX

PrRd/--
PrWr/BusWr

BusWr/--
BusRdX/--

BusWr/--
BusRdX/-- I V

A=2

A=2 A=2

P1 P2

PrRd/BusRd
PrWr/BusRdX

PrRd/--
PrWr/BusWr

BusWr/--
BusRdX/--

BusWr/--
BusRdX/-- I V

PrRd/BusRd
PrWr/BusRdX

PrRd/--
PrWr/BusWr

BusWr/--
BusRdX/--

BusWr/--
BusRdX/-- I V

A=2

A=2 A=2

P1 P2

PrRd/BusRd
PrWr/BusRdX

PrRd/--
PrWr/BusWr

BusWr/--
BusRdX/--

BusWr/--
BusRdX/-- I V

PrRd/BusRd
PrWr/BusRdX

PrRd/--
PrWr/BusWr

BusWr/--
BusRdX/--

BusWr/--
BusRdX/-- I V

A=2

A=2 A=2

P1 P2

PrRd/BusRd
PrWr/BusRdX

PrRd/--
PrWr/BusWr

BusWr/--
BusRdX/--

BusWr/--
BusRdX/-- I V

PrRd/BusRd
PrWr/BusRdX

PrRd/--
PrWr/BusWr

BusWr/--
BusRdX/--

BusWr/--
BusRdX/-- I V

Question:
What transactions
are launched in
response to a
write request
issued by P2?

A=2

A=2 A=1

P1 P2

PrRd/BusRd
PrWr/BusRdX

PrRd/--
PrWr/BusWr

BusWr/--
BusRdX/--

BusWr/--
BusRdX/-- I V

PrRd/BusRd
PrWr/BusRdX

PrRd/--
PrWr/BusWr

BusWr/--
BusRdX/--

BusWr/--
BusRdX/-- I V

A=3

A=3

A=1

A=1 A=1

P1 P2

Write-back caches

MSI – A Write-Back Cache-Protocol 1(3)

• Writes carried out locally if
block is not shared

A=1

A=1 A=1

P1 P2

Write-back caches

MSI – A Write-Back Cache-Protocol 2(3)

A=2

BusUpgrade request invalidates other
copies, including memory BusUpgr

A=1

A=1 A=1

P1 P2

Write-back caches

MSI – A Write-Back Cache-Protocol 3(3)

A=3

Subsequent writes from P1 happen
locally in P1’s cache

MSI – State Transition Diagram

BusRd/Flush

BusRd/--
BusUpgr/--
BusRdX/--

PrRd/--
PrWr/-- M

PrRd/--
BusRd/--S

PrRd/BusRd

PrWr/BusRdX

I

BusRdX/Flush

PrWr/BusUpgr

BusUpgr/--
BusRdX/--

