EDA284 Exam 2020-03-21
John Croft 
19930814-7959

1a)
We assume that equal amounts of data are read and written to memory.
Serial phase is always 0,5s.
Parallel phase consists of 16 Gflop.
Arithmetic Intensity is 0.4 Flop/Byte.
16 Gflop / 0.4 Flop/Byte = 40 GB of data to be transferred (loads and stores) 
Memory bandwidth for CMP is 16 GB/s.
Peak performance of each core is 0.5 GFlop/s.

For 4 cores, the peak throughput is 4x0.5 GFlop/s = 2 GFlop/s. 
16 GB/s bandwidth constitutes 16GB/s x 0.4 Flop/Byte = 6.4 GFlop/s. 
Therefore, it is compute-bound in this case.

For 8 cores, peak throughput is 8x0.5 GFlop/s = 4 GFlop/s.
The system is now also compute-bound

For 16 cores, the peak throughput double but the system is now memory-bound.

	Cores
	Peak throughput
	Texe
	Notes

	4
	2 GFlops/s
	0.5s + 16 Gflop / 2 GFlop/s = 8,5s
	Compute-bound

	8
	4 GFlops/s
	0.5s + 16 Gflop / 4 GFlop/s = 4,5s
	Compute-bound

	16
	8 GFlops/s
	0.5s + 16 Gflop / 6,4 GFlop/s = 3s
	Memory-bound







1b)
Serial phase is still fixed at 0,5s.
Memory must first be transferred to and from device memory ie. 16/0.4 = 40GB/16GB/s = 2,5s.
The GPU works on its own device memory with 128GB/s of bandwidth constituting 128GB/s x 0.4 Flop/Byte = 51,2 GFlop/s.
Thus, all the possible variations, except the one with 32 SMs, are memory-bound.
	GPU SMs
	Peak throughput
	Texe
	Notes

	32
	32 GFlops/s
	0,5s + 2,5s + 16GFlop / 32GFlop/s = 3,5s
	 Compute-bound

	64
	64 GFlops/s
	0,5s + 2,5s + 16GFlop / 51,2GFlop/s = 3,3125 s
	 Memory-bound

	128
	128 GFlops/s
	3,3125 s
	 Memory-bound



Ultimately, the configuration using only a CMP with 16 cores should be chosen for this particular application. This has a lower execution time as it avoids the memory transfer bottleneck and is obviously more energy efficient as it uses only one chip instead of two, even though the GPU is ostensibly more efficient per operation.

1c)
If the CMP memory bandwidth is 32 GB/s, the peak transfer rate will be 32 GB/s x 0.4 Flop/Byte = 12,8GFlop/s. The system with 16 cores is now compute-bound, rather than memory-bound.
	Cores
	Peak throughput
	Texe
	Notes

	4
	2 GFlops/s
	0.5s + 16 Gflop / 2 GFlop/s = 8,5s
	Compute-bound

	8
	4 GFlops/s
	0.5s + 16 Gflop / 4 GFlop/s = 4.5s
	Compute-bound

	16
	8 GFlops/s
	0.5s + 16 Gflop / 8 GFlop/s = 2,5s
	Compute-bound



If the GPU memory bandwidth is increased to 256 GFlop/s, the effective throughput is 256GB/s x 0.4 Flop/Byte = 102,4 GFlop/s, and the case with 64 SMs will become compute-bound instead of memory-bound.
	GPU SMs
	Peak throughput
	Texe
	Notes

	32
	32 GFlops/s
	0,5s + 2,5s + 16GFlop / 32GFlop/s = 3,5s
	 Compute-bound

	64
	64 GFlops/s
	0,5s + 2,5s + 16GFlop / 64GFlop/s = 3,25s
	 Compute-bound

	128
	128 GFlops/s
	0,5s + 2,5s + 16GFlop / 102,4GFlop/s = 3,1563s
	 Memory-bound





1d)
In architecture i), the main bottleneck is the compute throughput which, ignoring the serial phase, can only be improved by adding more parallel cores.
In architecture ii), the main bottleneck is the memory transfer between host-memory and device-memory. 




























2a)
Assume cache lines in I state initially.
	Core
	State z4 – C0
	State z5 – C0
	State z4 – C1
	State z5 – C1

	C0(1)
	I -> E (BusRd)
	I
	I
	I

	C0(2)
	
	I->E (BusRd)
	
	

	C1(1)
	E->S (--)
	
	I->S (BusRd)
	

	C1(2)
	
	E->S (--)
	
	I->S (BusRd)

	C0(3)
	
	S->M (BusUpgr)
	
	S->I (--)

	C1(3)
	
	M->I (Flush)
	
	I->M (BusRdX)

	C1(4)
	S->I (--)
	
	S->M (BusUpgr)
	

	C0(4)
	I->M (BusRdX)
	
	M->I (Flush)
	

	C0(5)
	
	I->S (BusRd)
	
	M->S(Flush)

	C1(5)
	
	
	
	S->S (--)



2b)
This code seems to move data between different cache lines. In that case, MOESI is preferred as it has the capability to perform cache-to-cache transfers (owner to requester). In other words, it allows sharing of dirty data without memory write-back.
2c)
Cache lines may be inadvertently evicted ie. False sharing misses.

















3a)
Memory overhead for presence-flag-based directory cache protocol.
512 cores (nodes)
8 clusters of 64 cores (nodes)
Intra-cluster: 64/(64+64*8) = 11%
[bookmark: _GoBack]Inter-cluster: 8/(8+64*8) = 1,5%



























5a)
There are no loop dependencies in the integrate function, so parallelisation should not present a problem. 
Without parallelisation the entire program takes approximately 1+1+6+1 = 9 time units.
With 8 parallel CMPs for the integrate function, the execution time becomes 3 + 6/8 = 3,75.
This corresponds to a speedup of Texe(reference)/Texe(improved) = 9/3,75 = 2,4x.

The maximum speedup, when p -> inf, is simply 9/3 = 3x.
