Problem 5.11

Processor 1 Processor 2 Processor 3 Miss type
1| R, cold
2 Ry cold
3 Re cld
a|w,

Processor 1 Processor 2 Processor 3 = Miss type
5 Re false-sharing miss
[ Ry true-sharing miss
7 | wa
8 Ry true-sharing miss
9 Rp
a) [t is obvious that the first three accesses result in cold misses as it is the first access by each pro-

cessor to the block. The miss at time slot 5 is a false-sharing miss because word A will not be
accessed for as long as the block is in the cache; it is invalidated at time-slot 7. As for the miss
experienced by processor 2 at time slot 6, it is obviously a true-sharing miss as it brings in a new
value in the cache. For the same reason, the miss at slot 8 is also a true-sharing miss as processor 3
will subsequently access word B.

b) The false-sharing miss at time-slot 5 can be ignored.

)

Number of read requests: 6 (traffic: 6 x 38 bytes = 228 bytes)
Number of bus updates: 2 (traffic: 2 x 10 bytes = 20 bytes)
Total traffic: 248 bytes

The only non-essential traffic is the read request associated with the false-sharing miss: 38 bytes.
The essential traffic is 248 - 38 bytes = 210 bytes. The fraction of essential wraffic is 210/248 = 85%



Problem 5.14

a) When the home node is the same as the requesting node the miss penalty is the same as the time
it takes to process a directory request which is 50 cycles according to the assumptions.

Cache miss time: 1 + 50 = 51 cycles.

Traffic: There is no traffic outside the node.

b) In the case when the memory copy is dirty some other node will have to service the cache miss.
The time it takes to do that involves a directory lookup (50 cycles) at the home node, a remote read
request (20 cycles), a lookup at the remote node (50 cycles), a flush operation that brings a copy of
the block back to the home node, which is the same as the local node (100 cycles), and finally
installing the block copy (50 cycles). Hence,

Cache miss time: 1 + 50 + 20 + 50 + 100 + 50 cycles = 271 cycles

Traflic involves sending a remote read request and flushing the block.

Traffic: 6 + 6 + 32 = 44 bytes

¢) This scenario involves sending a read request to the home node (BusRd), doing a directory
lookup, flushing the block back, and installing it at the requesting node,

Cache miss time: 1 + 20 + 50 + 100+ 50 cycles = 221 cycles

Traffic: 6 + 6 + 32 bytes = 44 bytes

d) This scenario involves sending a read request to the home node, doing a directory lookup, flush-
ing the block back to the requesting node, and installing it there,

Cache miss time: 1 + 20 + 50 + 100 + 50 cycles = 221 cycles

Traffic: 6 + 6 + 32 bytes = 44 bytes

e) This scenario involves sending a read request to the home node (20 cycles), doing a directory
lookup (50 cycles), sending a remote read request to the remote node (20 cycles), doing a lookup at
the remote node (50 cycles), flushing the block back to the home node (100 cycles), processing it at

the directory (50 cycles), flushing the block back to the local node (100 cycles) and installing it
there (50 cycles).

Cache miss time: 1 + 20 + 50 + 20 + 50 + 100 + 50 + 100 + 50 cycles = 441 cycles

Traffic: 6 + 6+ 6 + 32 + 6 + 32 bytes = 88 bytes



Problem 5.15

a) Same as in Problem 5.14a.

b) Same as in Problem 5.14b

¢) Same as in Problem 5.14¢

d) Same as in Problem 5.14d

¢) This scenario involves sending a read request to the home node, doing a directory lookup, send-
ing a request to the remote node, flushing the block back to the requesting node, and installing it
?:;;.E' miss time: 1 + 20 + 50 + 20 + 50 + 100 + 50 cycles = 291 cycles

Traffic: 6 + 6 + 6 + 32 bytes = 50 bytes

f) The time to process a cache miss will be shorter only in the case when the requesting node, the

home node, and the remote node are all different. In that case a four-hop transaction is converted
into a three-hop transaction.



Problem 5.17

a) Intra-cluster protocol:

A directory entry is associated with each 2-level cache block frame. Since there are eight processors
per cluster, each presence-flag vector consists of eight bits. With a 32-byte block size, the overhead
becomes 8/(32x8) = 1/32 = 0.03. The overhead is approximately 3%.

Inter-cluster protocol:

Since there are 128 processors and eight processors per cluster, there are 16 clusters. Therefore,
each directory entry at the memory contains 16 bits and yields twice as high an overhead as inside
each cluster: Approximately 6%.

b) A limited-pointer directory protocol with two pointers inside each cluster and a coarse-vector
directory protocol that partitions the clusters into groups of four clusters in each across clusters.

Intra-cluster protocol:
With eight processors per cluster each pointer contains 3 bits. With two pointers per 2-level cache
block frame, the overhead is 6/(8 x 32) = 0.023. The overhead is approximately 2%.

Inter-cluster protocol:

There are 16 clusters. If we group them into groups of four clusters each, there are 4 groups and
each presence flag in the coarse vector represents a group. There will be four bits in the presence
flag vector which yields an overhead of 4/(8 x 32) = 1/64 = 0.016. The overhead is approximately
1.6%.

Since there are 128 processors and eight processors per cluster, there are 16 clusters. Therefore,
each directory entry at the memory contains 16 bits and yields almost 3X as high an overhead as
inside each cluster: Approximately 6%.



Problem 8.2

Execution schedule for block (coarse grain) multithreading:

Table 68: Block multithreading

Instruction | Dispatch | Issue | Register | Exec Exec CDB | Retire | Retire

(latency) (issue Q) fetch start | complete (T1) (T2)
X1(2) 1(1) 2 3 4 5 6 7
X2(2) 1(2) 4 5 6 7 8 9
X3(4) 2(3) 4 5 6 9 10 1
X4(2) 2(4) 8 9 10 11 12 13

X5(1,20) 9(3) 10 1 12 12 13 14
X6(1) 9(4) 11 12 13 13 14 15
Y1(2) 15(1) 16 17 18 19 20 21
Y2(3) 15(2) 18 19 20 22 23 24
Y3(2) 16(3) 21 22 23 24 25 26
Y4(2) 16(4) 23 24 25 26 27 28
Y5(3) 24(3) 25 26 27 29 30 31
Y6(1) 24(4) 28 29 30 30 31 32

Execution schedule for interleaved (fine grain) multithreading:

Table 69: Speculative scheduling with interleaved multithreading

Instruction | Dispatch | Issue | Register | Exec Exec CDB | Retire | Retire
(latency) fetch start complete (T1) (T2)
X1(2) 1(1) 2 3 4 5 6 7
X2(2) 1(2) 4 5 6 7 8 9
Y1(2) 2(3) 3 4 5 6 7 8
Y2(3) 2(4) 5 6 7 9 10 1
X3(4) 8(3) 9 10 11 14 15 16
X4(2) 8(4) 13 14 15 16 17 18
Y3(2) 11(3) 12 13 14 15 16 17
Y4(2) 11(4) 14 15 16 17 18 19
X5(1,20) 17(3) 18 19 20 20 21 22
X6(1) 17(4) 19 20 21 21 22 23
Y5(3) 19(3) 20 21 22 24 25 26
Y6(1) 19(4) 23 24 25 25 26 27

Looking at the issue, execution start and retire stages, interleaved multithreading is five cycles
faster than block multithreading.

If the clock rate for interleaved multithreading is 20% slower, the time taken by interleaved
multithreading is 27x1.2=32.4 and is a bit of slower than block multithreading.



