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It has been a long time that computer architecture and systems are optimized to enable efficient execution of
machine learning (ML) algorithms or models. Now, it is time to reconsider the relationship between ML and
systems, and let ML transform the way that computer architecture and systems are designed. This embraces a
twofold meaning: the improvement of designers’ productivity, and the completion of the virtuous cycle. In this
paper, we present a comprehensive review of work that applies ML for system design, which can be grouped
into two major categories, ML-based modelling that involves predictions of performance metrics or some
other criteria of interest, and ML-based design methodology that directly leverages ML as the design tool. For
ML-based modelling, we discuss existing studies based on their target level of system, ranging from the circuit
level to the architecture/system level. For ML-based design methodology, we follow a bottom-up path to review
current work, with a scope of (micro-)architecture design (memory, branch prediction, NoC), coordination
between architecture/system and workload (resource allocation and management, data center management,
and security), compiler, and design automation. We further provide a future vision of opportunities and
potential directions, and envision that applying ML for computer architecture and systems would thrive in
the community.

CCS Concepts: • Computing methodologies → Machine learning; • Computer systems organization
→ Architectures; • General and reference → Surveys and overviews.

Additional Key Words and Phrases: machine learning for computer architecture and systems

1 INTRODUCTION
Machine learning (ML) has been doing wonders in many fields, including computer vision [81,
207, 213], speech recognition [76, 83], natural language processing [38, 146, 210], drug discovery
[148, 198], robotics [77, 86, 140], playing video games [15, 167, 226], and many other domains [103,
128, 195, 206]. Under some circumstances, ML is capable to reach or surpass human performance.
For example, ResNet [81] achieves a better top-5 error rate than that of human on the large scale
ImageNet dataset; AlphaGo Zero can beat human professional Go players [206]; there has also
made significant progress in training artificial agents playing video games, from single-player
games (e.g. Atari [167]) to multi-player games (e.g. StarCraft II [226] and Dota 2 [15]).
Current ML models, most of which are deep neural networks (DNNs) and their variants (e.g.

multi-layer perceptrons, convolutional neural networks, and recurrent neural networks), already
have high demands of memory and computational resource. As people are seeking better artificial
intelligence, there is a trend towards larger, more expressive and more complex models. With
diminishing gains brought by the Moore’s Law, this trend urges advancements in computer archi-
tecture/system for faster and more energy-efficient implementations of ML models. Aiming at ML
workloads, improvements have been made in different levels of system and architecture designs. In
the algorithm level, pruning, quantization and compression of ML models [79, 92] are applied to
eliminate computation complexity and improve hardware efficiency; in the hardware level, there is
a renaissance of processing in memory (PIM) and near-data processing (NDP) [12, 73, 179], there
also arise specialized architectures and accelerators, ranging from those specifically optimized for
convolutional neural networks (CNNs) (e.g. ShiDianNao [57], Eyeriss [31] and SCNN [178]) to
those designed for general-purpose DNN acceleration (e.g. DaDianNao [30], TPU [108], and DNPU
[204]); in the device level, applying emerging non-volatile memory technologies in architecture
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design, such as resistive random-access memory (ReRAM) [234], phase-change memory (PCM)
[25], spin-transfer torque magnetic random-access memory (STT-MRAM) [85], which can integrate
computation and memory together, provides another promising alternative (e.g. PRIME [35], ISAAC
[200] and Resparc [7]).
Driven by increasingly complicated workloads and their diverse performance, accuracy, and

power targets, it is non-trivial and laborious to design architecture/systems. Usually these designs
are made by human experts based on intuitions and heuristics, which requires expertise in both
ML and architecture/system and where great scalability and optimal results cannot be guaranteed
especially in the case of more complicated systems. As such, it seems natural to move towards more
automated and powerful methodologies for architecture and system designs, and the relationship
between ML and system design is being reconsidered. Conventionally, architectural and system
optimizations are conducted to accelerate the execution and improve the performance of MLmodels,
and it is undeniable that revolutions in ML to some extent do count on advancements of processing
capabilities, e.g. better utilization of parallelism, data reuse and sparsity, etc. Recently, there have
been signs of emergence of applying ML to enhance system designs, indicating promising potentials.
Applying ML for system designs embraces a twofold meaning: 1○ the reduction of burdens on
human experts designing systems manually so as to improve designers’ productivity, and 2○ the
close of the positive feedback loop, i.e., architectures/systems for ML and simultaneously ML for
architecture/system, formulating a virtuous cycle to encourage improvements in both sides.
Generally, existing work related to applying ML for system designs falls into two categories.

1○ ML techniques are employed for system modelling, which involves performance metrics
or some criteria of interest (e.g. power consumption, latency, throughput, etc.). During the
process of designing systems, it is necessary to make fast and accurate predictions of system
behaviors. Traditionally, the system modelling is achieved through the forms of cycle-accurate or
functional virtual platforms, and instruction set simulators (ISSs) (e.g. gem5 [18], Simics [150]). Even
though these methods can provide accurate estimations, they also bring expensive computational
costs associated with performance modeling, limiting the scalability to large-scale and complex
systems; meanwhile, the long simulation time constrains designers’ talents, since only small
subsets of the full design space can be explored. 2○ ML techniques are employed as a design
methodology to directly enhance architecture/system designs. ML is skilled at extracting
features, making decisions without explicit programming, and improving itself automatically with
experience. Therefore, applying ML techniques as designs tools has great capabilities to explore
design space more proactively and intelligently, manage resource through better understanding
of resources’ complicated, non-linear interactions, etc., which is possible to deliver true optimal
solutions.
In this paper, we present an overview of applying ML for computer architecture/systems, and

summarize what system problems can be solved by ML techniques and how ML techniques resolve
them, as illustrated in Figure 4. We also discuss challenges and future prospects of applying ML for
system designs. This paper is organized as follows. Section 2 is a brief introduction of common
ML techniques; Section 3 reviews studies that employ ML techniques for system modelling, from
the circuit level to the architecture/system level level; Section 4 presents studies that employ ML
techniques as design tools to directly enhance architecture/system designs, with a scope of (micro-
)architecture design (memory, branch prediction, NoC), coordination between architecture/system
and workload (resource allocation and management, data center management, and security),
compiler, and design automation; Section 5 discusses challenges and future prospects of applying
ML for system designs, to convey insights of design considerations; Section 6 concludes this paper.
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2 DIFFERENT ML TECHNIQUES
There are three general frameworks in ML: supervised learning, unsupervised learning and rein-
forcement learning. These frameworks mainly differentiate on what data are sampled and how
these sample data are used to build learning models. Under each framework, we will introduce
several mainstream models. Sometimes, multiple learning models may work well for one given
problem, and the appropriate selection can be made based on available hardware resources and
data, implementation overheads, performance targets, etc.

2.1 Supervised Learning
Supervised learning is the process of learning a set of rules that are able to map an input to an
output based on labeled datasets, where these learned rules can be generalized to make predictions
for new, unseen inputs. According to the taxonomy of supervised learning [119], we provide a brief
introduction to several prevalent models, as shown in Fig. 1.

(1) Decision trees, the representatives of logical learning methods, use tree structures to classify
input instances, where each node represents a feature and branches of this node represent possible
values of the corresponding feature. Starting from the root node, inputs are classified by sequentially
passing nodes and branches, based on observed features and their values.
(2) Support vector machines (SVM) try to find the best hyperplanes to separate data classes by

maximizing margins. Predictions or classifications of new inputs can be decided by their relative
positions to these hyperplanes.

(3) Bayesian networks, one well-known representative of statistical learning algorithms, take the
form of direct acyclic graphs (DAGs) to represent probability relationships among a set of random
variables (i.e. features). In the DAG, each vertex denotes a random variable; each (directed) edge
encodes the causal influences between the pair of random variables, while the absence of edge
between variables indicates conditional independence.
(4) Artificial neural networks (ANNs) are capable to approximate a broad family of functions.

With inspirations from neuroscience, ANNs employ collections of artificial neurons, and connect
these neurons with learned weights, enabling particular neurons more sensitive to certain types of
features. The versatility of ANNs to handle different learning tasks attributes to their various neural
network structures: a single-layer perceptron is usually used for linear regression; complex DNNs
consisting of multiple layers are able to approximate non-linear functions, such as the multi-layer
perceptron (MLP); variants of DNNs that achieve excellent performance in specific fields benefit
from the utilization of certain computation operations, e.g., convolutional neural networks (CNNs)
with convolution operations taking advantage of spatial features, and recurrent neural networks
(RNNs) with recurrent connections enabling learning from sequences and histories.

... ... ...

...
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Fig. 1. Examples of supervised learning: (a) a decision tree, (b) a SVM, (c) a Bayesian network, and (d) an
ANN.
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Different learning models have different preference of input features: SVMs and ANNs generally
perform much better with multi-dimension and continuous features, while logic-based systems
tend to perform better when dealing with discrete/categorical features. In system design, supervised
learning is commonly used for performance modeling, configuration predictions, or predicting
higher level features/behaviors from lower level features, due to its great capability of function
approximation and classification. One major bottleneck is the demand to create labeled training
data prior to the training phase, indicating the necessity of human expertise and engineering; and
in the meantime strongly labeled datasets are often laborious and expensive to obtain.

2.2 Unsupervised Learning
Unsupervised learning is the process of finding previously unknown patterns based on unlabeled
datasets. Two prevailing methods are clustering analysis [94] and principal component analysis
(PCA) [238], as depicted in Fig. 2.

(1) Clustering is a process of grouping data objects into disjoint clusters based on a measure
of similarity, such that data objects in the same cluster are similar while data objects in different
clusters share low similarities. The goal of clustering is to classify raw data reasonably and find
possibly existing hidden structures or patterns in datasets, One of the most popular and simple
clustering algorithms is k-means clustering [170].

(2) PCA is essentially a coordinate transformation leveraging information from data statistics. It
aims to reduce the dimensionality of the high-dimensional variable space by representing it with a
few orthogonal (linearly uncorrelated) variables that capture most of its variability.

(a) (b)

Cluster 1

Cluster 2

Cluster 3

Fig. 2. Two prevalent methods in unsupervised learning: (a) clustering, and (b) PCA.

Since there are no labels in unsupervised learning, it is difficult to both measure the performance
of learning models and decide when to stop the learning process. One noteworthy approach is
semi-supervised learning [263], which uses a small amount of labeled data together with a large
amount of unlabeled data. This approach stands between unsupervised and supervised learning,
requiring less human effort and producing higher accuracy. The unlabeled data are used to either
finetune or re-prioritize hypotheses obtained from labeled data alone. Several common models
include expectation-maximization (EM) with generative mixture models, transductive learning, etc.

2.3 Reinforcement Learning
In standard reinforcement learning (RL) [211], an agent interacts with an environment E over a
number of discrete time steps, as shown in Fig. 3. At each time step 𝑡 , the agent receives a state
𝑠𝑡 from the state space S, and selects an action 𝑎𝑡 from the action space A according to its policy
𝜋 , where 𝜋 is a mapping from states 𝑠𝑡 to actions 𝑎𝑡 . In return, the agent receives the next state
𝑠𝑡+1 and a scalar reward 𝑟𝑡 : S × A → R. This process continues until the agent reaches a terminal

state after which the process restarts. The return 𝑅𝑡 =
∞∑
𝑘=0

𝛾𝑘𝑟𝑡+𝑘 is the total accumulated rewards at
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st rt at

Fig. 3. A typical framing of RL.

the time step 𝑡 with a discount factor 𝛾 ∈ (0, 1]. The goal of the agent is to maximize the expected
return for each state 𝑠 .
The state-action value 𝑄𝜋 (𝑠, 𝑎) = E𝜋 [𝑅𝑡 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] is the expected return of selecting

action 𝑎 at state 𝑠 with policy 𝜋 . Similarly, the state value 𝑉𝜋 (𝑠) = E𝜋 [𝑅𝑡 |𝑠𝑡 = 𝑠] is the expected
return starting from state 𝑠 by following policy 𝜋 . There are two general types of methods in RL:
value-based, and policy-based.

(1) In value-based RL, the state-action value function 𝑄𝜋 (𝑠, 𝑎) is approximated by either tabular
approaches or function approximations. At each state 𝑠𝑡 , the agent is always selecting the optimal
action 𝑎∗𝑡 that could bring the maximal state-action value 𝑄𝜋 (𝑠𝑡 , 𝑎∗𝑡 ). One well-known example of
value-based methods is Q-learning [235].

(2) In policy-based RL, it directly parameterizes the policy 𝜋 (𝑎 |𝑠 ;𝜃 ) and updates the parameters
𝜃 by performing gradient ascent on E[𝑅𝑡 ]. One example is the REINFORCE algorithm [237]. In
standard REINFORCE, the policy parameters 𝜃 are updated in the direction of ∇𝜃 log𝜋 (𝑎𝑡 |𝑠𝑡 ;𝜃 )𝑅𝑡 ,
which is an unbiased estimate of ∇𝜃E[𝑅𝑡 ].

RL is modeled based on Markov decision process, and thus it is suitable to handle control
problems or sequential decision-making processes. With these characteristics, RL is able to explore
design space proactively and intelligently, and learn how to achieve resource management or task
scheduling in system designs through interactions with environments. The optimal behaviors can
be found by embedding optimization goals into reward functions.

3 ML FOR SYSTEMMODELLING
This section reviews studies that employ ML techniques for system modelling, which involve
predictions of performance metrics or some other criteria of interest. Although cycle-accurate
simulators, which are commonly used in system performance prediction, can provide accurate
estimations, they usually run multiple orders of magnitude slower than native executions. In
contrast, ML-based techniques are capable to balance the simulation cost and prediction accuracy,
showing great potentials in exploring huge configuration spaces and learning non-linear impacts
of configurations. Among most of existing work, supervised learning is widely applied, for either
pure system modelling or efficient design space exploration enabled by fast predictions. We discuss
these studies with respect to different levels of system that they are targeting, from circuit analysis,
sub-systems to the system level.

3.1 Circuit Analysis
Circuit design is usually a manual process that requires many trial-and-error iterations between the
pre-layout and post-layout phases, since subtle changes in the pre-layout phases can cause large
impacts to circuit performance in an intricate manner. One effective way to circumvent the large
number of iterations is to adopt performance modeling during the design flow. Conventional circuit
performance modelling methods have high simulation costs, and this situation is exacerbated with
the increasing complexity of integrated circuits, and the advent of newer process nodes.
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Fig. 4. A comprehensive overview of applying ML for computer architecture and systems. Existing work
roughly falls into two categories: ML for system modelling, and ML as design methodology. Different system
problems can be formulated as different ML problems. Natural language processing, graph analysis with
GNNs and sequential decision making problems may span across multiple ML frameworks.

To leverage the hierarchical structure of integrated circuits, Alawieh et al. [6] propose a hierar-
chical performance modeling technique based on semi-supervised learning, which takes advantage
of the Bayesian co-learning framework. This technique can generate pseudo samples from a large
amount of unlabeled data, demonstrating the feasibility of performance modelling with inadequate
labeled samples.
To leverage the inherent graph structures of circuit schematics, circuits can be modeled as

graphs, and their related modelling in the pre-layout phases can be resolved by graph neural
networks (GNNs). ParaGraph [190] builds a GNN model to predict layout-dependent parasitics
and physical device parameters, and uses the ensemble modeling to further improve prediction
accuracy. MLParest [205] shows that non-graph based method (e.g., random forest) can be used
to estimate interconnect parasitics, whereas the lack of placement information may cause large
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variations in predictions. PEA [137] focuses on how circuit placement affects its performance,
which problem is formulated as a classification problem. A customized GNN model, which can
transfer knowledge across different topologies of the same circuit type, takes a placement solution
as input, and predicts whether the post-routing performance meets certain specifications.

3.2 Sub-System Modelling and Performance Prediction
3.2.1 Memory Systems. In memory systems, especially non-volatile memories (NVMs), many
efforts have been done to achieve different trade-offs between lifetime, performance and energy
efficiency. To efficiently explore NVM-based cache hierarchies, Dong et al. [56] propose a circuit-
architecture co-optimization framework that uses an ANN to predict higher level features (e.g.
miss of cache read/write, and instruction-per-cycle (IPC)) from lower-level features (e.g. cache
associativity, capacity and latency). To adaptively select architectural techniques in NVMs for
different applications and objectives, Memory Cocktail Therapy (MCT) [52] estimates lifetime,
IPC, and energy consumption through lighweight online predictors by gradient boosting and
quadratic regression with lasso. MCT also conducts a comparison of different ML techniques
regarding prediction accuracies, computation overheads, etc. To optimize placements of memory
controllers in throughput processors, Lin et al. [141] build a DNNmodel to provide fast performance
predictions, which takes memory controller placements and several features as inputs and uses
multiple convolutional layers to analyze spatial localities. With expedited performance predictions,
the search progress of optimizing memory controllers placements achieves speedup by two orders
of magnitude.

3.2.2 Network-on-Chip (NoC). In NoCs, several performance metrics of interest are latency, energy
consumption, and reliability. As to latency predictions, Qian et al. [184] use a support vector
regression (SVR) model to predict the traffic flow latency and the average channel waiting time
in mesh-based NoCs, which relaxes some assumptions in classical queuing theory. One major
cause that deteriorates the average communication latency is the traffic hotspot, an intensive form
of network congestion that significantly degrades the effective throughput of an NoC. There is
a lightweight hardware-based ANN to predict hotspots in 2D-mesh NoC [111], using the buffer
utilization rates from neighboring NoC routers to monitor the formation of hotspots. This ANN
is trained by synthetic traffic pattern data offline, and evaluated using both synthetic and real
application traces, achieving accuracy ranging from 65% to 92%. Their following work [208]
combines this predictor with a proactive hotspot-preventive routing algorithm to avert hotspot
formations, attaining significant improvements for synthetic workloads while modest melioration
for real-world benchmarks.

As to energy consumption modelling, a few related criteria are often predicted. Aiming to save
dynamic energy in NoCs, Clark et al. [36] leverage several ridge regression models to predict buffer
utilization, changes in buffer utilization, or a combined metric of energy and throughput, based on
which the router can select proper voltage/frequency. Similarly, Winkle et al. [221] also uses the
ridge regression to predict the number of packets to be injected into each router in the following
time window, under the scenario of photonic NoCs. With these predictions, they can scale the
number of wavelengths and thus reduce the static energy consumed by photonic links. When
considering both static and dynamic energy, DiTomaso et al. [55] use per-router decision trees to
predict link utilization and traffic direction, which are then combined with sleepy link storage units
to power-gate links/routers with low utilization and change link directions.
As to reliability of NoCs, which has become an issue in view of technology scaling down,

aging, soft errors, process-voltage-temperature (PVT) variations, etc., there is a per-link decision
tree trained offline to predict timing faults on links during runtime [54]. Equipped with these
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fault predictions, a proactive fault-tolerant technique is developed to mitigate errors, using the
strengthened cyclic redundancy check with error-correction codes and relaxed transmission.

3.3 System Modelling and Performance Prediction
Accurate and fast performance estimation is a necessity for system optimization and design space
exploration. With the increasing complexity of systems and variety of workloads, ML-based tech-
niques, which have great generalization abilities, can provide high accuracy performance estima-
tions with reasonable simulation costs, surpassing the capability of commonly-used cycle-accurate
simulators that require high computational costs and long simulation time.

3.3.1 Graphics Processing Unit (GPU). There are two types of predictions for GPU modelling:
cross-platform predictions and GPU-specific predictions. Cross-platform predictions aim to decide
in advance whether to offload an application from a CPU to a GPU, since not every application
benefits from GPU execution and the porting process requires significantly additional efforts;
GPU-specific predictions are often used to model the performance of interest and assist GPU
design space exploration, helpful to handle high irregularities of the design space and complicated
interactions between configurations.
Cross-platform predictions can be made by using either dynamic program properties from

execution or static analysis from code or intermediate representations. Using dynamic instruction
profiles, Baldini et al. [13] formulate this as a binary classification problem to identify whether an
application would achieve a GPU speedup over a threshold, where multiple supervised learning
algorithms (i.e., nearest neighbor with generalized exemplars and SVMs) are tried. Using both
both dynamic and static program properties from single-threaded CPU code, Ardalani et al. [8]
predicts the GPU execution time through an ensemble of one hundred regression-based learners.
Using merely static analysis of the source CPU code, their later work [9] employs a random forest
composing of one thousand decision trees to make binary predictions that whether the potential
speedup is greater than a given threshold.
GPU-specific predictions consist of both application-specific and general predictions. Among

application-specific performance predictions, Stargazer [96] uses a stepwise regression modeling,
which can recognize the most important parameters so as to achieve high prediction accuracy even
with sparse and random samples, i.e., less than 3.8% average prediction error with 300 sampled
design points in a design space with nearly 1 million possibilities. Jooya et al. [105] train multiple
NN predictors and select the subset with the best generalization abilities to form an ensemble;
with these performance/power predictions they further perform the Pareto-optimal multi-objective
optimization. Among general predictions for performance of interest in GPUs, Wu et al. [240] model
scaling behaviors of general-purpose GPUs (GPGPUs). They group training kernels with similar
performance scaling behaviors by k-means clustering, and then build an ANN-based classifier
to map a new kernel to the cluster that describes its scaling performance most properly. O’Neal
et al. [174] predict cross-generation GPU performance by using an ensemble of 12 linear and 1
non-linear regression models. They use profiling results from earlier-generation GPUs (Haswell
GT2) to train performance predictors for later/future-generation GPUs (Broadwell GT2/3, Skylake
GT3), with more than 10,000 speedup compared to cycle-accurate GPU simulators. Li et al. [138]
reassess prevailing assumptions of GPGPU traffic patterns, and propose a scheme that combines a
CNN with a t-distributed stochastic neighbor embedding to classify different traffic patterns.

3.3.2 Single-Core Processor. In predictive performance modeling of single-core processors, early-
stage work mostly targets superscalar processors. To predict the application-specific cycle-per-
instruction (CPI) of superscalar processors, Joseph et al. [106] introduce an iterative procedure to
build linear regression models using 26 key micro-architectural parameters. Later they construct



A Survey of Machine Learning for Computer Architecture and Systems 9

predictive models by non-linear regression techniques (i.e., radial basis function networks generated
from regression trees) with 9 key micro-architectural parameters [107]. They compare non-linear
models with their linear counterparts, and experiment results indicate that the non-linear models
can achieve better prediction accuracy (2.8% prediction error on average). In parallel with Joseph’s
work, Lee and Brooks [130, 132] use regression modeling with cubic splines to predict application-
specific performance (billions of instructions per second) and regional power.

Later work focuses on performance modelling of existing hardware (e.g., Intel, AMD and ARM
processors). Eyerman et al. [62] construct mechanistic-empirical models for CPI predictions of three
Intel processors (i.e., Pentium 4, Core 2 and Core i7), with average prediction errors around 9% to
13%. These models are generated from mechanics where parameters are derived by regressions,
and thus benefit from both mechanistic modeling (i.e., interpretability) and empirical modeling
(i.e., ease of implementation). Zheng et al. [259, 260] explore two approaches to cross-platform
predictions of program execution time, where program profiling results on Intel Core i7 and AMD
Phenom processors are used to estimate the execution time on a target ARM processor. The first
one [260] relaxes the assumption of global linearity to local linearity in the feature space, to apply
constrained locally sparse linear regression; the other one [259] applies lasso linear regression with
phase-level performance features.

3.3.3 General Modelling and Performance Prediction. Regression-based techniques are the main-
stream to predict performance metrics from micro-architectural parameters or other features,
thanks to their capability to make high-accuracy estimations by merely sampling a small subset of
the large design space.
For regression-based models, ANN and (non-)linear regression with different designs are the

common practice. Ipek et al. [89] use an ensemble of ANNs to predict IPC. Similarly, Khan et
al. [117] employ an ANN to predict program execution time and the energy-delay product in
chip-multiprocessor (CMP) systems. Lee and Brooks et al. use regression-based techniques with
restricted cubic splines to predict Pareto frontiers in the power-delay space [129, 131]; they also
propose the composable performance regression (CPR) [134], a hierarchical method estimating the
multi-processor performance by combining baseline performance of each core and interference
from other cores. Wu et al. [244] present strategies for integrated hardware-software performance
predictions based on regression, where effective model specifications are constructed by the genetic
search.Mantis [126] is an automatic performance modeling framework for Android applications on
smartphones, which builds performance predictors by sparse non-linear regression using program-
execution features with program slicing.

The are several comparisons among different regression techniques. Lee et al. [133] compare the
piecewise polynomial regression with ANNs, with emphasis that conventional regression-based
methods offer better explainability while ANNs have better generalization ability. Ozisikyilmaz et
al. [175] make comparisons with respect to several methods for creating linear regression models
and different types of ANNs, indicating that pruned ANNs achieve best accuracy though requiring
longer training time. Agarwal et al. [4] estimate parallel execution speedups of multi-threaded
applications on a target hardware, by using features and statistics extracted from the single-threaded
execution. They also explore different learning-based methods and find that Gaussian process
regression performs the best in their case.

More recent work tends to utilize data-driven approaches in regression-based systems. Ithemal
[158] leverages a hierarchical multiscale RNN with long short term memory (LSTM) to predict
throughput of basic blocks, where basic blocks are referred as sequences of instructions with no
branches or jumps. Evaluations are conducted against two analytical throughput estimators, IACA
[88] from Intel and llvm-mca [17] from LLVM, demonstrating that Ithemal is more accurate and as
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fast as these analytical tools. By employing a variant of Ithemal [158] as a differentiable surrogate to
approximate original CPU simulators, DiffTune [191] is able to apply gradient-based optimization
techniques to learn the parameters of x86 basic block CPU simulators such that the simulator’s
error is minimized, even within non-differentiable programs. The learned parameters finally are
plugged back into the original simulator. Ding et al. [53] give some insights in learning-based
modeling methods: the improvement of prediction accuracy may receive diminishing returns; it
will be helpful to consider domain knowledge for system optimizations, even if the overall accuracy
may not be improved. To this end, they propose to use a generative model to handle data scarcity by
generating more training data, and apply a multi-phase sampling to improve prediction accuracy.
ML-based predictive performance modeling enables efficient resource management and rapid

design space exploration to improve throughput. Bitirgen, Martinez and Ipek [19, 155] develop a
framework for resource management in CMP, in which allocation decisions are made based on
IPC predicted by an ensemble of ANNs. Likewise, equipped with an ANN for IPC predictions,
Nemirovsky et al. [172] design a task scheduling policy to maximize system throughput in heteroge-
neous CPUs, which always selects the scheduling that would bring the best predicted IPC. ESP [164]
constructs the regression model with elastic-net regularization to predict application interference
(i.e., slowdown), which is integrated with schedulers to increase throughput. In consideration of
rapid design space exploration of the uncore (i.e., both memory hierarchies and NoCs), Sangaiah et
al. [196] uses a regression-based model with restricted cubic splines to estimate the CPI of CMP,
reducing the exploration time by up to four orders of magnitude.

ML-based predictive performance modeling benefits adaptation of the trade-off between perfor-
mance and certain power constraints or budgets. Curtis-Maury et al. [43–45] take advantage of
different predictive performance models such as off-line (multivariate) linear regression models
and ANNs, aiming to maximize performance of OpenMP applications in a power-aware manner by
dynamic concurrency throttling (DCT) and dynamic voltage and frequency scaling (DVFS). A simi-
lar method [11] uses kernel clustering and off-line multivariate linear regression to predict power
and performance of different applications, which is combined with hardware frequency-limiting
techniques to select optimal hardware configurations under given power constraints. To effectively
and efficiently apply DVFS towards various optimization goals, the corresponding strategy can
adopt predictions for either power consumption by a constrained-posynomial model [109] or job
execution time by a linear regression model [145]. To conduct smart power management in a
more general manner, LEO [165] employs probabilistic graphical models (i.e., hierarchical Bayesian
models) to predict performance and power, and when integrated for runtime energy optimization,
it is capable to figure out the performance-power Pareto frontier and select the configuration
satisfying the performance constraint with minimized energy. CALOREE [163] further breaks up
the power management task into two abstractions: a learner for performance modelling and an
adaptive controller leveraging predictions from the learner. These abstractions enable both the
learner to use multiple ML techniques and the controller to maintain control-theoretic formal
guarantees. As no user-specified parameter except the goal is required, CALOREE is applicable
even for non-experts.

3.3.4 Data Center Performance Modelling and Prediction. Data centers have been widespreadly
applied, from traditional enterprise applications to a variety of cloud services. With the increasing
demand of data centers, several performance-wise issues arise, including optimization in the
design space, improvement of resource utilization, etc. In view of these issues, majority studies
predict job/task length, resource demand, workload pattern, and related performance metrics, for
configuration auto-tuning or elastic resource provisioning purposes. These predictions must be
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completed in advance so that the management system can either tune the configurations or adjust
resource allocations ahead of the needs.
For job/task length prediction, Ganapathi et al. [68] propose to predict several performance

metrics (e.g. the actual elapsed times, disk I/Os, etc.) of database queries, where the model is trained
by kernel canonical correlation analysis (KCCA) and makes predictions based on information from
the𝑚-nearest neighbors. Yigitbasi et al. [250] use SVR to predict the job completion time of Hadoop
MapReduce applications on different clusters by using both application characteristics and cluster
configurations. For resource demand prediction, light-weight statistical learning algorithms can
be leveraged to predict dynamic resource demands of both cyclic and non-cyclic workloads [75],
which achieve good prediction accuracy with less than 5% over-estimation error and near zero
under-estimation error. The upcoming resource demands can be predicted by using MLP or linear
regression [91]. For workload prediction/forecasting, a second order autoregressive moving average
(ARMA) method can estimate incoming workloads of the system for future time periods [193]. Its
generalization, the autoregressive integrated moving average (ARIMA) model, is able to serve cloud
workload forecasting [27]. To predict variations of workload patterns, the hidden Markov modeling
(HMM) can be used to characterize the temporal correlations in clusters [116].

Some work has been evaluated in commercial data centers. Jim Gao [69] builds an MLP model to
predict power usage effectiveness (PUE) of data centers, which is extensively tested and validated
at Google data centers. Cortez et al. [40] predict several virtual machine (VM) behaviors (including
VM lifetimes, maximum deployment sizes, and workload classes) for a broader set of purposes
(including health management and power capping). They introduce the Resource Central (RC), a
system that ingests VM telemetry, periodically learns VM behaviors offline, and provides predictions
online to various resource management systems. In their design, RC does not automatically select
the proper ML modeling approach, leaving this task for experts. To demonstrate RC’s capability,
they use random forests and extreme gradient boosting trees for metrics modelling, and modify
Microsoft Azure’s VM scheduler to leverage predictions in oversubscribing servers, which increases
resource utilization and prevents physical resource exhaustion.

4 ML AS DESIGN METHODOLOGY
This section introduces how ML can be employed as a design methodology to directly enhance
architecture/system designs. Computer architecture and systems have been becoming increasingly
complicated, making it prohibitively expensive and inefficient for human efforts to either design or
optimize them. In response, visionaries have argued that computer architecture and systems should
be imbued with the capability to design and configure themselves, adjust their behaviors according
to workloads’ needs or user-specified constraints, diagnose failures, repair themselves from the
detected failures, etc. With strong learning and generalization capabilities, ML-based techniques
are naturally suitable to resolve these considerations, which can adjust their policies according to
long-term planning and dynamic workload behaviors during system designs.

4.1 Memory System Design
The "memory wall" has been a performance bottleneck in von Neumann architectures for many
years, where the computation is orders of magnitude faster than the memory access. To alleviate this
problem, hierarchical memory systems are widely used and there arise optimizations for different
levels of memory systems. As both the variety and the size of modern workloads are drastically
growing, conventional memory system designs that are based on heuristics or intuitions can not
catch up with the demand of these ever-growing workloads, leading to sharply degradation in
system performance. Additionally, the scalability is another concern in these heuristic-based designs.
In contrast, ML provides promising potentials, whose generalization ability naturally addresses the
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scalability issue. By performing analogies from memory address predictions to label predictions,
and from memory access sequences analysis to sequence predictions in natural language process,
ML can become a powerful tool to optimize performance of memory systems.

4.1.1 Cache. The conspicuous disparity in latency and bandwidth between CPUs and memory
systems motivates investigations of efficient cache management. There are two major types of
studies on cache optimization: improving cache replacement policies, and designing intelligent
prefetching policies.

To develop better cache replacement policies, Teran et al. [217] use perceptron learning to predict
whether to bypass or reuse a referenced block in the last-level cache (LLC). Their following work,
multiperspective reuse prediction [102], achieves further improvements in cache performance by
employing multiple types of features and considering both the reuse information and placement
positions of the referenced block. Instead of using perceptrons, Beckmann et al. [14] model the
cache replacement problem as a Markov decision process and adopt the idea of replacing lines
according to their economic value added (EVA), i.e., the difference between their expected hits and
the average hit. Shi et al. [201] train an attention-based LSTM model offline to extract informative
insights from history program counters (PCs), which are then used to build an online SVM-based
hardware predictor to form their "Glider" cache replacement policy.
To devise intelligent prefetchers, there are studies ranging from tuning configurations to im-

proving their policies. With regard to optimizing configurations, program characterizations and
hardware performance counters can be used to predict whether to enable prefetchers at different
cache levels [185], and there is a in-depth comparison [139] among multiple ML models regarding
different benchmarks. With regard to designing prefetching policies, Wang et al. [228] propose a
prefetching mechanism that uses conventionally table-based prefetchers to provide prefetching
suggestions and a perceptron trained by spatio-temporal locality to reject unnecessary prefetch-
ing decisions, ameliorating the cache pollution problem. Similarly, Bhatia et al. [16] integrate
perceptron-based prefetch filtering with conventional prefetchers, increasing the coverage of
prefetches without hurting accuracy. Instead of the commonly used spatio-temporal locality, a
context-based memory prefetcher [182] leverages the semantic locality that characterizes access
correlations inherent to program semantics and data structures to prefetch data blocks accordingly,
which is approximated by the contextual bandits model in RL. Interpreting and understanding
semantics in memory access patterns are analogous to sequence analysis in natural language pro-
cessing (NLP), and thus several studies use LSTM-based models and treat the prefetching as either a
regression problem [255] or a classification problem [80]. Even with better performance, especially
for long access sequences and noise traces, the LSTM-based prefetcher suffers from long warm-up
and prediction latency, and considerable storage overheads. The discussion of how hyperparameters
impact LSTM-based prefetcher performance [24] highlights that the lookback size (i.e. memory
access history window) and the LSTM model size strongly affect the prefetcher learning ability
under different noise levels or workload patterns. To accommodate the large memory space, Shi
et al. [202] introduce a neural hierarchical sequence model to decouple predictions of pages and
offsets by using two separate attention-based LSTM layers, whereas its hardware implementation
is impractical for actual processors.

4.1.2 Memory Controller. Smart memory controllers can further improve memory bandwidth
utilization. Aiming at a self-optimizing memory controller that is adaptive to dynamically changing
workloads [90, 155], the memory controller is modeled as an RL agent that always selects legal
DRAM commands with the highest expected long-term performance benefits (i.e., Q-values). To
allow optimizations toward various objectives, this memory controller is improved in two major
aspects [168]. First, the rewards of different actions (i.e., legal DRAM commands) are automatically



A Survey of Machine Learning for Computer Architecture and Systems 13

calibrated by genetic algorithms to serve different objective functions (e.g.,energy, throughput, etc).
Then, a multi-factor method that considers the first-order attribute interactions is employed to
select attributes used for state representations. Since both of them use table-based Q-learning and
select limited attributes to represent states, the scalability may be a concern and their performance
could be improved with more informative representations.

4.1.3 Others. Instead of focusing on a specific object, some researchers consider more general
issues. For example, early-stage work predicts the repetitive memory access patterns of parallel
scientific applications on multiprocessors with several trainable techniques [194]. From the storage
side, Block2Vec [46] tries to mine disk block correlations by training a DNN to learn the best
multi-dimensional vector representation of each block and capturing block similarities via vector
distances, which enables further optimizations for caching, prefetching, etc. From the program
side, Shi et al. [203] use a GNN to learn fused representations of the static code and its dynamic
execution. This unified representation is capable to model both the data-flow (i.e., prefetching) and
the control-flow (i.e., branch prediction).

A variety of work targets different parts of the memory system. Margaritov et al. [154] accelerate
virtual address translation through learned index structures [120]. The results are encouraging
in terms of the accuracy that reaches almost 100% for all tested virtual addresses, yet still with
unacceptably long inference latency, leaving practical hardware implementation as the future
work. Wang et al. [233] reduce data movement energy in interconnects by exploiting asymmetric
transmission costs of different bits, in which transmitted data blocks are dynamically grouped
by the k-majority clustering to derive energy-efficient expressions for transmission. In terms of
garbage collection in NAND flash, Kang et al. [112] propose an RL-based method to reduce the
long-tail latency. The key idea is to exploit the inter-request interval (idle time) to dynamically
decide the number of pages to be copied or whether to perform an erase operation, and decisions
are made by the table-based Q-learning. Their following work [113] considers more fine-grained
states, and introduces the Q-table cache to manage key states among enormous amount of states.

4.2 Branch Prediction
Branch predictor is one of the mainstays of modern processors, significantly improving the
instruction-level parallelism. As pipelines gradually deepen, the penalty of mis-prediction in-
creases. Traditional branch predictors often consider limited history length, which may hurt the
prediction accuracy. In contrast, the perceptron/MLP-based predictors can handle long histories
with reasonable hardware budgets, outperforming prior state-of-the-art non-ML-based predictors.

Starting with a static branch predictor that is trained with static features from program corpus and
control flow graphs [26], it employs an MLP to predict the direction of the branch at compile time.
Later, a dynamic branch predictor [101] uses a perceptron-based method, which hashes the branch
address to select the proper perceptron and computes the dot product accordingly to decide whether
to take this branch, showing great performance on linearly separable branches. Its latency and
accuracy can be further improved by applying ahead pipelining and selecting perceptrons based on
path history [97]. To attain high accuracy in non-linearly separable branches, the perceptron-based
prediction is generalized as piecewise linear branch prediction [98]. In addition to the path history
that is used in the above work, multiple types of features from different organizations of branch
histories can be leveraged to enhance the overall performance [100]. SNAP [209] proposed a practical
hardware implementation, which makes use of current-steering digital-to-analog converters to
transfer digital weights into analog currents and replaces the costly digital dot-product computation
to the current summation. Its optimized version, OH-SNAP [99], equips several new techniques
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such as the use of global and per-branch history, trainable scaling coefficients, dynamic training
thresholds, branch cache, etc.
Rather than making binary decisions of whether to take a certain branch, perceptron-based

predictors [72] can directly predict the target address of an indirect branch at the bit level. Even
though high accuracy is achieved by current perceptron/MLP-based predictors, Tarsa et al. [216]
notice that a small amount of static branch instructions are systematically mispredicted, referred
to as hard-to-predict branches (H2Ps). Consequently, they propose CNN helper predictors that
encode history branches to form history matrices and leverage a CNN to take advantage of pattern
matching, ultimately improving accuracy for H2Ps in conditional branches.

4.3 NoC Design
The aggressive transistor scaling has paved the way for integrating more cores in a single chip or
processor. With the increasing number of cores per chip, NoC, which is responsible for both inter-
core communication and data movement between cores and memory hierarchies, plays a gradually
crucial role. There are several emerging problems attracting attention. First, the communication
energy scales slower than the computation energy [21], implying necessity to improve power
efficiency of NoCs. This is a challenging problem, especially in those heterogeneous multi-core or
many-core systems. Second, the complexity of routing or traffic control grows with the number
of cores per chip and this problem is even exacerbated by the rising variety and irregularity of
workloads. Third, with the continuous scaling down of transistors, NoCs are more vulnerable to
different types of errors and thus reliability becomes a key concern. Last but not the least, some
non-conventional NoC architectures might bring promising potentials in the future, while they
usually come with large design spaces and complex design constraints to comply, which is nearly
impossible for manually optimization. Among all these fields, the ML-based design techniques
display their strength and charm.

4.3.1 Link Management and DVFS. Power consumption is one crucial concern in NoCs, in which
links usually consume a considerable portion of network power.While turning on/off links according
to a static threshold of link utilization is a trivial way to reduce power consumption, it can not adapt
to dynamically changing workloads. Savva et al. [197] use ANNs for dynamic link management,
where each ANN is responsible for one region of the NoC and dynamically computes a threshold
for each time interval to turn on/off each link by using the link utilization of each region. Despite
significant power savings with low hardware overheads, this approach causes long latency in
routing. In order to meet certain power and thermal budgets, hierarchical ANNs [192] are used to
predict optimal NoC configurations (i.e., link bandwidth, node voltage and task assignment to nodes),
where the global ANN predicts globally optimal NoC configurations exploiting local optimal energy
consumption predicted by local ANNs. To save dynamic power, several investigations [65, 258]
employ per-router based Q-learning agents that are built by offline trained ANNs to select optimal
voltage/frequency levels for each router.

4.3.2 Routing and Traffic Control. With the increasing variety and irregularity of workloads
and their traffic patterns, learning-based routing algorithms and traffic control approaches show
superior performance due to their excellent adaptability. Since routing problems can be formulated
as sequential decisionmaking processes, suitable to the realm of RL, several studies apply Q-learning
approaches, namely the Q-routing algorithm [23]. Q-routing uses local estimations of delivery time
to minimize total packets delivery time, which is able to handle irregular network topologies and
keep a higher network load than the conventional shortest path routing. It is then extended to
several other scenarios, for example, combining with dual RL to improve both the learning speed
and the routing performance [125], resolving packets routing in dynamic NoCs whose network
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structures/topologies are dynamically changing during runtime [152], handling irregular faults in
bufferless NoCs by the reconfigurable fault-tolerant Q-routing [64], and enhancing the capability to
reroute messages around congested regions by the congestion-aware non-minimal Q-routing [59].
In addition to routing problems, deep Q-network is also capable for NoC arbitration policies [251],
where the agent/arbiter always grants a certain output port to the input buffer with the largest
Q-value. The following work [252] thoroughly compares three reward functions (i.e., the global age
of messages, the reciprocal of average accumulated latency, and NoC link utilization), among which
the global age based reward function has better performance. Even displaying some improvements
in both latency and throughput, the direct hardware implementation is impractical due to the
complexity of deep Q-networks, thus from which they distill insights to derive a relatively simple
circuitry implementation.
Adjusting injection rates is an efficient way to control congestion in NoCs. The SCEPTER

NoC architecture [49], a bufferless NoC with single-cycle multi-hop traversals and a self-learning
throttling mechanism, controls the injection of new flits into the network by Q-learning, where
each node in the network independently selects whether to increase, decrease or retain the throttle
rate according to their Q-values, conspicuously improving bandwidth allocation fairness and
network throughput. Wang et al. [227] design an ANN-based admission controller to determine
the appropriate injection rate and control policy of each node in a standard NoC.

4.3.3 Reliability and Fault Tolerance. With the aggressive technology scaling down, transistors
and links in NoCs are more prone to different types of errors, indicating that reliability is a crucial
concern and proactive fault-tolerant techniques are required to guarantee performance. Wang et
al. [231] employ per-router Q-learning agents to independently select one of four fault-tolerant
modes, minimizing the end-to-end packet latency and power consumption. These agents are pre-
trained and then fine-tuned during runtime. In their following work [232], these error-correction
modes are extended and combined with various multi-function adaptive channel configurations,
retransmission settings and power management strategies, eventually reducing the latency, and
improving the energy efficiency and mean-time-to-failure.

4.3.4 General Design. With the growing number of cores per chip/system, the increasing hetero-
geneity of cores and various performance targets, it is complicated to optimize NoC designs, which
involves optimizing copious variables simultaneously. One attempt to the automatic NoC design
flow is the MLNoC [186], which utilizes supervised learning to quickly find near-optimal NoC
designs under multiple optimization goals. MLNoC is trained by data from thousands of real-world
and synthetic SoC (system-on-chip) designs with a wide range of characteristics, and evaluated only
with real-world SoC designs. Despite disclosure of limited details and absence of comprehensive
comparison with other design methods, it shows superior performance to manually optimized NoC
designs, delivering encouraging results.
Apart from conventional 2D mesh NoCs, a series of investigations focuses on designs of 3D

NoCs. Das et al. [47, 48] apply the STAGE algorithm [22] to optimize both vertical and planar
placement of communication links in small-world network based 3D NoCs. The STAGE algorithm
repeatedly alternates between two stages, the base search that tries to find the local optima based
on the original objective, and the meta search that uses SVR to learn evaluation functions. Later, the
STAGE algorithm is extended for multi-objective optimization in heterogeneous 3D NoC systems
[104], which jointly considers the GPU throughput, average latency between CPUs and LLCs,
temperature and energy.

In terms of routerless NoCs that any two nodes are connected via at least one ring/loop, Lin et al.
[142] develop a deep RL framework to optimize loop placements, with a Monte-Carlo tree search
for efficient design space exploration. The RL agent leverages a deep convolutional neural network
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to approximate policy and value functions, and the design constraints can be strictly enforced by
carefully devising the reward function.

4.4 Resource Allocation or Management
Resource allocation or management is the coordination between computer architecture/systems
and workloads. Consequently, its optimization difficulty occurs with the booming complexity from
both sides and their intricate interactions. ML-based approaches have blazed the trail to adjusting
policies wisely and promptly pursuant to dynamic workloads or specified constraints, surpassing
conventional techniques.

4.4.1 Power Management. ML-based techniques have been applied broadly to improve power
management, due to two main reasons. First, power/energy consumption can be recognized as
one metric of runtime costs. Second, under certain circumstances there could be a hard or soft
constraint/budget of power/energy, making power efficiency a necessity.

Several investigations consider power management for different parts of systems. PACSL [1] uses
a supervised learning technique, namely the propositional rule, to adjust dynamic voltage scaling
(DVS) for CPU cores and the on-chip L2 cache. Results indicate an improvement in the energy-delay
product by 22% on average (up to 46%) over independently applying DVS for each domain. Instead
of focusing on CPU cores, Won et al. [239] coordinate an ANN controller with a proportional
integral (PI) for uncore DVFS. The ANN controller can be either pre-trained offline by a prepared
dataset or trained online by bootstrapped learning; once the ANN training phase is completed,
tandem ANN-PI control operations are applied to better accommodate different workloads. Manoj et
al. [181] deploy Q-learning to adaptively adjust the level of output-voltage swing at transmitters of
2.5D through-silicon interposer I/Os, under constraints of both communication power and bit error
rate.
From the system level, DVFS is one of the most prevalent techniques. Pack & Cap [37, 189]

builds a multinomial logistic regression (MLR) classifier, which is trained offline and queried during
runtime, to accurately identify the optimal operating point for both thread packing and DVFS
under an arbitrary power cap. GreenGPU [149] focuses on the heterogeneous systems with CPUs
and GPUs, and applies the weighted majority algorithm [144] to scale the frequency levels for
both GPU cores and memory in a coordinated manner. CHARSTAR [187] integrates the power
gating with DVFS in a single-core processor, and employs a reconfiguration mechanism aware
of the clock hierarchy, where the frequencies and configurations are dynamically predicted by
a lightweight offline trained MLP predictor. To minimize energy consumption, Imes et al. [87]
use ML-based classifiers to predict the most energy-efficient resource settings (specifically, tuning
socket allocation, the use of HyperThreads, and processor DVFS) by using low-level hardware
performance counters.
A series of studies leverages RL for dynamic power management in multi/many-core systems,

since RL is excelled at sequential decision making and adjusting policies through continuous
observations of workload dynamics. One possible issue is the scalability. As systems scale up, these
RL-based methods often suffer from state space explosion, which could significantly impact the
training costs. To this end, there are two main types of methods: combining RL with supervised
learning, and hierarchical RL. Regarding the first type, a semi-supervised RL-based approach
[110] achieves linear complexity with the number of cores, which is able to maximize throughput
ensuring power constraints and cooperatively control cores and uncores in synergy. As for the
second type, hierarchical Q-learning can reach the time complexity 𝑂 (𝑛 lg𝑛) with the number of
cores. Multi-Level RL (MLRL) [177] is a scalable and effective online policy to select target power
modes, where the Q-values are approximated by the generalized growing and pruning radial basis
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function. Similarly, table-based distributed Q-learning also performs well for DVFS [32], and there
is one variant, Profit [33], aware of the priorities of different applications.
Some energy management policies target specific applications or platforms. JouleGuard [84]

is a runtime control system coordinating approximate applications with system resource under
energy budgets. It uses RL (i.e., the multi-armed bandit approach) to identify the most energy
efficient system configuration, and given this configuration it further determines the application
configuration satisfying the energy goal with maximized accuracy. Bai et al. [10] considers the
on-chip regulator efficiency loss during DVFS, trying to minimize the energy under a parameterized
performance constraint. The online control policy is implemented by a table-based Q-learning,
portable across platforms without accurate modeling of a specific system. Tarsa et al. [215] present
a post-silicon CPU customization based on Intel SkyLake, which applies various ML models to
predict cluster gating for dynamically clock-gating unused resources.

4.4.2 Resource Management and Task Allocation. Modern architectures and systems have been
becoming so sophisticated and diverse that it is non-trivial to either optimize performance or
fully utilize system resources. This rapidly evolving landscape is further complicated by various
workloads with specific requirements or targets. In order to keep the pace, it is a necessity to
develop more efficient and automatic methods, which should be capable to tailor resources to
specified requirements and adapt the hardware cost-effectively at runtime to applications’ needs.
ML-based techniques are skilled to explore extremely large design space and optimize multiple
objectives simultaneously; with careful designs, they can preserve better scalablility and great
portability to different platforms.
Starting from a single-core processor, a regularised maximum likelihood approach [58] is used

to predict the best hardware micro-architectural configuration for each phase of a program, based
on hardware counters collected at runtime. To identify optimized configurations in a multi-core
processor, statistical machine learning (SML) based auto-tuning method [67] is able to quickly
figure out configurations that simultaneously optimize running time and energy efficiency. This
method is agnostic to application and micro-architecture domain knowledge, leading to a scalable
and portable alternative to human expert-optimization. SML can also be used as a holistic method to
design self-evolving systems that optimize performance hierarchically across the circuit, platform,
and application levels [20].

In multi-core processors, dynamic on-chip resource management is crucial. One example is the
dynamic cache partitioning. In response to the changing needs of jobs, L2 cache can be dynamically
partitioned by an RNN that is evolved by the enforced subpopulations algorithm [74]. The dynamic
partitioning of LLC can be further integrated with DVFS on the cores and uncore [95], using a
table-based Q-learning as the co-optimization method, which results in much lower energy-delay
product (EDP) than any of the techniques applied individually.
To guarantee efficient and reliable execution in many-core systems, task allocation should

consider several aspects, such as heat and communication issues, where RL is often deemed as an
effective resolution. Targeting the heat interaction of processor cores and NoC routers, Lu et al.
[147] apply Q-learning to perform task assignments to specific cores based on current temperatures
of cores and routers, such that the maximum temperature in the future is minimized. Targeting
the non-uniform and hierarchical on/off-chip communication capability in multi-chip many-core
systems, core placement optimization [242] leverages deep deterministic policy gradient (DDPG)
[140] to map computation onto physical cores, able to work in a manner agnostic to domain-specific
information.

For a broader view, there are workflow management and hardware resource assignment adopted
in more general cases. SmartFlux [61] focuses on the workflow of data-intensive and continuous
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processing. It intelligently guides the asynchronous triggering of processing steps with the help of
predictions made by multiple ML models, to indicate whether to execute certain steps and their
corresponding configurations upon each wave of data. Given the target DNNmodel, the deployment
scenario, platform constraints, and optimization objectives (latency/energy), ConfuciuX [114]
applies a hybrid two-step scheme for optimal hardware resource assignments (i.e., assigning the
number of processing elements and the buffer sizes to each DNN layer), where the REINFORCE [237]
is used to perform a global coarse-grained search followed by a genetic algorithm for fine-grained
tuning.
In heterogeneous systems with CPUs and GPUs, device placement refers to the process of

mapping nodes in the computational graphs of NNs onto proper hardware devices. Mirhoseini et
al. [162] propose an RL-based method (i.e., policy gradient via REINFORCE) for device placement
optimization, which uses a sequence-to-sequence RNN model as the parameterized policy to
generate placements. This work manually groups operations and then automatically places them
on devices. Later, a hierarchical end-to-end model [160] is developed to make this manual grouping
process automatic. Spotlight [71] employs the proximal policy optimization (PPO) to achieve
better training speed and uses the softmax distributions to represent the policy. Their later work
[70] integrates PPO with cross-entropy minimization to acquire theoretically guaranteed optimal
efficiency. One thing worth noting is that these approaches are not transferable and a new policy
should be specifically trained from scratch for each new and unseen computational graph. To
get generalizable solutions, Placeto [2] uses graph embeddings to encode the structure of the
computational graph and exhibits good generalizability to unseen neural networks, while having
high computation costs. Generalize Device Placement (GDP) [261] makes use of a graph embedding
network that learns graph embeddings of arbitrary dataflow graphs, and a placement network
that uses a scalable sequential attention mechanism to learn a placement strategy given graph
embeddings. These two components are trained jointly in an end-to-end manner over a set of
dataflow graphs, and then fine-tuned for each specific graph, eventually reaching 15× faster
convergence than prior arts [160, 162].

4.4.3 Scheduling. In classical real-time scheduling problems, the key task is to merely decide the
orders, according to which the currently unscheduled jobs should be executed by a single processor,
such that the overall performance is optimized. As multi-core processors have been the mainstream,
the scheduling is gradually perplexing. One major reason is that multiple objectives besides the
performance should be carefully considered, such as balanced assignments among various cores
and response time fairness. Equipped with the capability to well understand the feedback provided
by the environment and dynamically adjust policies, RL is a common tool for real-time scheduling.
To optimize the execution order of jobs after they are routed to a single CPU, the adaptive

scheduling exploits Q-routing [236], where the proposed insertion scheduler utilizes the router’s
Q-table to assess a job’s priority and decides jobs’ ordering accordingly so as to maximize the
overall utility. In multi-core systems, Fedorova et al. [63] present a blueprint for a self-tuning
scheduling algorithm to maximize a performance function that is an arbitrary weighted sum of
metrics of interests, which is built upon the value-based temporal-difference method in RL. This
algorithm is further improved to be a general methodology for online scheduling of parallel jobs
onto multi-processor systems [223], where the value functions are approximated by a parameterized
fuzzy rulebase with temporal difference. This scheduling policy always selects jobs that have the
maximum value functions from the job queue to execute, possibly preempting some currently
running jobs and squeezing some jobs into fewer CPUs than they ideally require, while with
optimized long-term utility.
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Focusing on PIM-assisted GPU architectures, Pattnaik et al. [180] roughly categorize GPU cores
into two types: the powerful GPU cores yet far away from memory, and the auxiliary/simple
GPU cores yet close to memory. Two runtime techniques are proposed: first, a regression-based
affinity prediction model is used to accurately identify which kernels would benefit from PIM and
offload them accordingly to the auxiliary cores; then, a management mechanism is developed to
decide which kernels can be scheduled concurrently on the two types of cores, integrating the
affinity prediction model, a new regression-based execution time prediction model, and dependency
information across kernels.

4.5 Data Center Management
With the rapid expansion of the scale of data centers, issues that may be trivial in a single machine
become increasingly challenging, let alone the inherently complicated problems.
Early work aims at a relatively simple scenario of resource allocation, which is to dynamically

assign different numbers of servers to multiple applications. This problem can be modeled as
an RL problem with the service-level utility function as the reward: the arbiter will select a
joint action that would bring the maximum total return after consulting local value functions
that can be estimated via either table-based methods [219] or function approximation [218]. A
similar approach is implemented and tested in Oracle Solaris 10 [225], which demonstrates a
robust and near-optimal performance on transferring CPUs among resource partitions to match
the stochastically changing workload. To better model interactions between multiple agents, a
multi-agent coordination algorithm with fuzzy RL [224] can be used to solve the dynamic content
allocation in content delivery networks (CDNs), in which each requested content is modeled as
an agent, trying to move toward the area with a high demand while coordinating with other
agents/contents.

From the aspect of design space exploration, tuning system configurations plays an indispensable
role in improving performance. OtterTune [220] combines supervised and unsupervised learning
methods for database management system configuration tuning. It prunes redundant metrics by
feature analysis and k-means clustering, selects most important knobs by the lasso path algorithm,
dynamically maps target workloads to the most similar known workloads, and finally recommends
knob configurations by Gaussian process regression.

From the aspect of availability in data centers or cloud services, disk failure is one of the leading
reasons of service unavailability. Leveraging SMART (Self-Monitoring, Analysis and Reporting
Technology) attributes, many researchers can build disk failure prediction models via various
ML techniques, such as different Bayesian methods [78], unsupervised clustering [169], SVM and
MLP [262]. The adoption of either classification and regression trees (CART, i.e., decision trees)
[135] or gradient boosted regression trees [136], can output both classification results and health
assessments of drives. To explicitly exploit sequential information of SMART attributes, Xu et al.
[246] use RNNs to classify drives into multiple levels to assess health status, according to their
remaining lifetime. One thing worth noticing is that all the aforementioned methods rely on offline
training, which impedes the adaptation to forthcoming data, thus suffering from the ’model aging’
problem. Xiao et al. [245] propose to use online random forests (ORFs) to predict disk failures
based on the SMART data, which evolve with forthcoming data on-the-fly by generating new trees
and forget old information by discarding outdated trees, consequently avoiding the model aging
problem. In addition to complete disk failures, another threat is the partial drive failure, i.e., disk
error (e.g., sector error and latency error). Mahdisoltani et al. [151] explore five ML techniques (i.e.,
CART, random forests, SVM, NN and logistic regression) to predict sector errors, among which
random forests consistently outperform others and the training process is robust to either small
training sets or training data from a non-target system. For online disk error prediction, Cloud
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Disk Error Forecasting (CDEF) [247] incorporates both SMART attributes and system-level signals
to build a cost-sensitive ranking-based prediction model by using a multiple additive regression
trees gradient boosting algorithm, which ranks disks according to the degree of error-proneness in
the near future. Currently, CDEF is successfully applied in Microsoft Azure.
From the aspect of improving quality of experience (QoE) for users, it is essential to deploy

an intelligent data center level cache. Toward a self-adaptive caching mechanism, DeepCache
[171] employs the LSTM encoder-decoder model to predict future content popularity, which can
be combined with existing cache policies to make smarter decisions. Phoebe [243] is an online
caching framework leveraging DDPG, which targets a large variety of emerging storage models.
Considering non-history based features, Wang et al. [230] build a decision tree to predict whether
the requested file will be accessed only once inn the future. These one-time-access files will be
directly sent to users without getting into cache, to avoid cache pollution. Traffic optimization is
an alternative to improve QoE. Chen et al. [28] develop a two-level deep RL system: the peripheral
systems that are trained by DDPG make instant traffic optimization decision locally for short flows;
the central system that is trained by policy gradient aggregates global traffic information, guides
behaviors of peripheral systems, and makes individual traffic optimization decisions for long flows.
From the aspect of of workloads, video workloads on CDNs or clusters are prevalent but their

optimization is quite challenging: first, the network conditions fluctuate overtime and a variety of
QoE goals should be balanced simultaneously; second, only coarse decisions are available and the
current decisions will have long-term effects on following decisions. This scenario naturally matches
the foundation of RL-based techniques. To optimize users’ QoE of streaming videos, the adaptive
bitrate (ABR) algorithms have been recognized as the primary tool used by content providers, which
execute on client-side video players and dynamically choose a bitrate for each video chunk based on
underlying network conditions. Pensieve [153] applies asynchronous advantage actor-critic [166] to
select proper bitrate for future video chunks based on the resulting performance from past decisions.
The following work [249] integrates an RL agent designed from Pensieve to decide whether to
enhance video quality or use the video bitrate provided by Pensieve. When considering large-scale
video workloads in hybrid CPU-GPU clusters, the performance degradation often comes from the
uncertainty and variability of workloads, and the unbalanced use of heterogeneous resources. To
accommodate this, Zhang et al. [256] use two deep Q-networks to build a a two-level task scheduler,
where the cluster-level scheduler selects proper execution nodes for mutually independent video
tasks and the node-level scheduler assigns interrelated video subtasks to appropriate computing
units.

4.6 Security
Security issues include but not limited to the execution integrity and protection from malicious
attacks. However, the evolving scale and complexity of computing systems often give rise to more
proneness to faults and increasing variety of attacks, which has posed a challenge on the security
side.
In a large-scale system, faults often occur intermittently and may come from each part of the

system for a wide range of reasons. This requires diagnosis techniques to be able to reason out the
key problem from numerous potential causes of failure in time. Given observations at a web server,
Platt et al. [183] apply approximate Bayesian inference for failure diagnosis, which can quickly
determine the failure part and accurately estimate its underlying failure rates.

The proliferation and evolvement of computing systems are usually followed by the proliferation
and evolvement of malware. Malware detection is often modeled as a classification problem, to
distinguish malicious programs from benign programs. The detection is feasible based on either
hardware performance counters (HPCs) or software features. To build a robust hardware-based
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malware detector, standard supervised classification algorithms (e.g., k-Nearest Neighbors, decision
trees, random forests, and MLP) [51] can take advantage of statistics from hardware performance
counters (HPCs) to effectively detect variants of known malware in offline validation. Unsupervised
learning techniques, such as the one-class SVM classifier that uses the non-linear radial basis
function kernel [214], can recognize a potentially wider range or novel malware offline, while
requiring sophisticated analysis and complex hardware implementation. With the conjecture that
it is possible to build an online malware detector [51], a lightweight online hardware-supported
malware detector [176] takes more types of micro-architectural features as inputs to two supervised
models (i.e., logistic regression and MLPs), displaying excellent performance. To leverage software
features distilled from both static and dynamic analysis, Yuan et al. [253] adopt the deep belief
network in a semi-supervised training procedure that is composed of unsupervised pre-training
and supervised fine-tuning, to classify malware in Android applications.

4.7 Code Generation and Compiler
4.7.1 Code Generation. Due to the similarities in semantics and syntax between programming
languages and natural languages, the problem of code generation or translation is often modeled
as an NLP problem of predicting sentences’ probabilities or neural machine translation (NMT),
respectively.

Targeting code completion, Raychev et al. [188] explore several statistical language models (i.e.,
the N-gram model, RNN, and a combination of these two) that extract sequences from partial
programs with holes to predict potential candidates, where sentences with the highest probability
and satisfying constraints of each hole are selected. As for code generation, CLgen [42] employs
LSTMs to model semantics and structure of OpenCL programs from a huge corpus of hand-written
codes, and generates human-like programs via iteratively sampling from the learned model.

Targeting program translation, NMT-based techniques are widely applied to migrate codes from
one language to another. For example, a tree-to-tree model with the encoder-decoder structure [29]
effectively translates programs from source trees to target trees; the sequence-to-sequence (seq2seq)
model can also be used to translate CUDA to OpenCL [118]. Rather than translating between
high-level programming languages, Coda [66] translates binary executables to the corresponding
high-level code, and decomposes the decompilation into two phases: code sketch generation that
employs instruction-type-aware encoder and a tree decoder with attention feeding, and iterative
error correction based on an ensembled RNN-based error predictor. NMT-based techniques are also
applicable to cross-architecture code similarity comparison. Zuo et al. [265] propose an LSTM-based
cross-(assembly)-lingual basic-block embedding model. This model converts a basic block into an
embedding, so that the similarity of two basic blocks can be detected by measuring the distance
between their embeddings. It is noteworthy that these supervised NMT-based techniques may
confront several issues: difficulty to generalize to programs longer than training ones, limited sizes
of vocabulary sets, and the scarcity of aligned input-output data. Fully relying on unsupervised
machine translation, TransCoder [127] can exclusively use monolingual source codes and easily
generalized to other programming languages.

4.7.2 Compiler. The complexity of compilers grows with the complexity of computer architectures
and workloads. ML-based techniques can optimize different perspectives of compilers, such as
instruction scheduling, compiler heuristics, the order to apply optimizations, hot path identification,
auto-vectorization, and compilation for specific applications.
For instruction scheduling, the temporal difference algorithm in RL can be leveraged to com-

pute the preference function of one scheduling over another [157], which is further improved by
combined with a rollout approach [156]. Regarding scheduling under highly-constrained code
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optimization, projective reparameterization [93], which differentiably constrains the output of NNs
onto convex sets of feasible solutions, enables automatic instruction scheduling under constrains
of data-dependent partial orders over the instructions.
For improving compiler heuristics, Coons et al. [39] employ an RL technique, Neuro-Evolution

of Augmenting Topologies (NEAT), to improve the instruction placement heuristic by tuning
placement cost functions. To get rid of manual feature engineering, a DNN model is developed
to learn compiler heuristics from raw codes automatically [41]. It uses an LSTM-based model to
extract semantics and syntactic patterns of programs, followed by a dense NN to build heuristics,
so as to construct proper embeddings of program codes and simultaneously learn the optimization
process.
For choosing the appropriate order to apply different optimizations, Agakov et al. [3] develop

models (an independent distribution model and a Markov model) to predict regions of the op-
timization space that are more likely to bring great performance, which effectively shrinks the
search space to speedup the iterative compilation. To directly find good orderings, NEAT [121] can
automatically generate beneficial optimization orderings for each method in a program.
For path profiling, CrystalBall [254] uses an LSTM model to statically identify hot paths, se-

quences of instructions that are frequently executed. As CrystalBall only relies on intermediate
representation, it avoids manual feature crafting and is independent of language or platform.
For automatic vectorization, which is crucial to enhance performance of compute-intensive

programs on modern processors equipped with single instruction multiple data (SIMD), it allows
compilers to exploit better data-level parallelism. Auto-vectorization means automatic conversion
from scalar code to vector code, which is adopted in most production compilers, such as Intel’s ICC,
GNU GCC, PGI’s pgcc, IBM’s XL/C, etc. Mendis et al. [159] leverage imitation learning to train an
agent modeled by a gated GNN, whose policy aims to mimic optimal vectorization decisions.

For compilation of specific applications, there are studies improving compilation for approximate
computing or DNN applications. Considering compilation for approximate computing, a program
transformation [60] is proposed, which trainsMLPs tomimic the regions of approximable imperative
code and eventually replace the original codes with trained MLPs. The following work [248] extends
this algorithmic transformation to GPUs. Considering compilation for DNNs, RELEASE [5] utilizes
RL to search optimal compilation configurations for DNNs, which integrates an adaptive sampling
algorithm that can reduce the number of samples required to navigate the search space.

4.8 Chip Design
As the technology scales down, the increased design complexity comes with the growing process
variations and reduced design margin, making chip design and manufacturing an overwhelmingly
complex problem for human designers. Recent advancements in ML create a chance to transform
chip design workflows.
From the analog circuit level, GCN-RL circuit designer [229] combines RL with graph convolu-

tional networks (GCNs) for automatic transistor sizing, leveraging the analogy that circuits can be
converted into graphs with vertices as transistors and edges as wires; with graph embeddings of
domain knowledge, it is able to generalize across different circuit topologies or different technology
nodes, AutoCkt [199] also uses deep RL, which aims to find post-layout circuit parameters to satisfy
a target design specification. AutoCkt is trained on a sparse sub-sample of the design space, which
improves the convergence speed and achieves 40× speedup over a traditional genetic algorithm.

From the chip level, chip placement optimization is a popular topic. Aiming at flip-flop placement
optimization in clock networks, this problem can be disentangled as a post-placement flip-flop
clustering by a modified K-means clustering, and the relocation of these clusters [241]. The goal is
to reduce the wirelength of clock networks by reducing the distance between flip-flops and their
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drivers, while minimizing the disruption of original placement results. Aiming at chip placement,
Mirhoseini et al. [161] use deep RL to place macros (memory cells), after which standard cells are
placed by a force-directed method. A supervised GCN is used to encode topological information of
chip netlists, generate graph embeddings as inputs to the RL agent, and provide proxy rewards to
guide the search. This method is able to generalize to unseen netlists, and outperforms RePlAce [34]
yet several times slower. DREAMPlace [143] focuses on placing standard cells in very-large-scale
integrated (VLSI) circuits, where the classical analytical placement optimization is cast into a neural
network training problem, achieving over 30× speedup without quality degradation compared
to RePlAce [34]. Moreover, ML-based techniques can be applied in different steps of chip design
flow, including pre-silicon hotspot detection by classification-based models (e.g., ANNs or SVMs),
post-silicon variation extraction by sparse Bayesian learning, and post-silicon timing tuning to
mitigate the effects caused by process variation [264].

5 DISCUSSION AND POTENTIAL DIRECTIONS
5.1 Bridging Data Gaps
Data are the backbone to ML, however, sometimes the perfect datasets are non-available or intol-
erably expensive, and there is no standardized dataset in the computer architecture and system
domain. Here, we would like to shed light on two points, the gap between small data and big data,
and non-perfect data.
In some EDA problems, such as chip placement, the simulation or evaluation is extremely

expensive, resulting in data scarcity. As ML models usually require enough data to learn the
statistics and make decisions, this gap between small data and big data often limits the capability
of ML-based techniques. There have been different attempts to bridge this gap: from the algorithm
side, algorithms that can work with small data await to be developed, where one current technique
is Bayesian optimization that is effective when the parameter space is small [115]; from the data
side, generative methods can be used to generate synthetic data [53], mitigating data scarcity.
In terms of non-perfect data, even though some EDA tools produce a lot of data, they are not

always labeled nor properly presented in the form suitable to ML. In the absence of perfectly labeled
training data, possible alternatives are to use unsupervised learning, self-supervised learning [82],
or to combine supervised with unsupervised techniques [6]. Meanwhile, RL can also be used, which
can generate training data on the fly via trial and error.

5.2 Developing Algorithms
Although there have been a lot of accomplishments, we are still expecting novel ML algorithms or
schemes to further improve both modelling and system optimization. With increasingly growing
system complexity, these algorithms should be scalable such that the running overhead is always
tolerable. ML-based techniques are often considered as black-box optimization, but sometimes we
do need clear model interpretabiliity and assistance from domain knowledge.

New ML schemes. Existing studies generally apply ML based on single-level abstractions. As
classical analytic-based methods work in either bottom-up or top-down manners, these limitations
of ML-based design encourage developments of algorithms to distill hierarchical structures of
systems/architecture. One example is hierarchical RL [122], which has flexible goal specifications
and is talented to learn goal-directed behaviors in complex environments with sparse feedback.
Such kind of models enables more flexible and effective multi-level design and control. Additionally,
many system optimizations involve participation of multiple agents, such as NoC routing, which
are naturally suitable to the realm of multi-agent RL (MARL) [257]. These agents can be fully
cooperative, fully competitive, or a mix of the two, enabling versatility of system optimization.
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Another promising approach is self-supervised learning [82], beneficial in both improving model
robustness and mitigating data scarcity.
While applying a single ML method solely has led to powerful results, hybrid methods, i.e.,

combining different ML techniques or combining ML techniques with heuristics, unleash more
opportunities. For example, supervised learning can cooperate with unsupervised learning for
malware detection [253]; RL can be combined with genetic algorithms for hardware resource
assignment [114].

Scalability. The system scaling-up poses challenges on the scalability issues. From the algorithm
side, multi-level techniques can help reduce the computation complexity, e.g., multi-level Q-learning
for DVFS [32, 33, 177]. One implicit workaround is to leverage transfer learning: the pre-training
is a one-time cost, which can be amortized in each future use; the fine-tuning provides flexibility
between a quick solution from the pre-trained model and a longer yet better one for a particular
task. Several examples [161, 199, 229] are discussed in Section 4.8.

Domain Knowledge and Interpretability. Not only can domain knowledge improve the
interpretability of MLmodels, it could also be helpful in model/algorithm selection and optimization.
Making better use of domain knowledge unveils possibilities to choose more proper models dealing
with different system problems and provide more intuitions or explanations of why and how these
models work. By making analogy of semantics/syntax between memory access patterns or program
language and natural languages, these prefetching or code generation problems can be modeled
as NLP problems, as discussed in Section 4.1.1 and Section 4.7.1. By making analogy of graphical
representations in many EDA problems, where data are intrinsically presented as graphs (e.g.,
circuits, logic netlists or intermediate representations), GNNs are expected to be powerful in these
fields [115]. Several examples are provided in Section 4.8.

5.3 Improving Implementations and Deployments
To fully exploit advantages of ML-based methods, we need efficient strategies for practical im-
plementation with reasonable overheads, and we also need to carefully consider deployment
scenarios.

Better implementations. To enable practical implementations of ML-based techniques, im-
provement can be made from either the model side or the software/hardware co-design [212]. From
the model level, network pruning and model compression reduce the number of operations and
model size [79]; weight quantization improves computation efficiency by reducing the precision
of operations/operands [92]. From the co-design level, strategies that have been used for DNN
acceleration could also be used in applying ML for system.

Appropriate scenarios: online vs. offline. When deploying ML-based techniques for system
designs, it is crucial to deliberate the design constraints under different scenarios. Generally,
existing work falls into two categories. The first one is to apply ML-based techniques online
or during runtime, no matter the training phase is performed online or offline. Obviously, the
model complexity and runtime overhead are often strictly limited by specific constraints, e.g.,
power/energy, timing/latency, area, etc. To take one more step, if the online training/learning
is further desired, the design constraint will be more stringent. One promising approach is to
employ semi-online learning models, which have been applied to solve some classical combinatorial
optimization problems, such as bipartite matching [123] and caching [124]. These models enable
smooth interpolation between the best possible online and offline training algorithms. The second
one is to apply ML-based techniques offline, which usually refers to architectural design space
exploration. Such problems leverage ML-based techniques to guide system implementation, and
once the designing phase is completed, the ML models will not be invoked again. In consequence,
these offline applications can adopt more complex ML techniques that may bring higher overheads.
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5.4 Supporting Novel Applications
ML-based techniques are supposed to be applicable in both currently existing architectures and
emerging systems, leading to long-term evolvement and advancement in computer architecture
and systems. Notably, some design areas are evergreen and some issues are universal in system
design. Several examples include caching in hardware/software/data centers (Section 4.1.1 and
Section 4.5), scheduling in multi-core CPUs and PIM-assisted GPU architectures (Section 4.4.3),
resource management and task allocation in single/multi/many-core CPUs and heterogeneous
systems (Section 4.4), NoC design under various scenarios (Section 4.3), etc. Even with limited
knowledge of novel system problems, transfer learning and meta-learning [173, 222] could also be
beneficial in either exploring new and better heuristics or directly deriving design methodology,
guaranteeing reliable guidance and strong performance in system design.

5.5 Designing General Tools
One ultimate goal of applyingML for computer architecture and systemmight be the fully automatic
design, which should entangle two principal capabilities: the holistic optimization in system-wise
under multiple objectives, the easiness to immigrate across different systems so as to enable rapid
and agile design.

Holistic optimization. Fueled by advancements in ML, there are explorations to broader ML-
based system design and optimization strategies [50]. They could be multi-objective optimizations,
or optimizing several components in a system simultaneously. We further envisage an ML-based
system-wise, holistic framework that has a panoramic vision and conducts optimization during
run-time: it should be able to take advantage of information/features from different levels of
systems in synergy, so that it could thoroughly characterize and learn system behaviors as well as
their intrinsically hierarchical abstractions; it should also be able to make decisions in different
granularity, so that it could control and improve systems precisely and comprehensively.

Portable, rapid, and agile. Striving for portable, rapid, and agile design, there are two potential
directions. The first one is to carefully design the interface between systems/architectures and
ML-based techniques. As ML-based techniques can perform well without accurate and explicit
description of domains, they could open up the portability across different systems. The other one
is endeavor to build ML-based design automation tools. ML-based techniques have more or less
transformed the workflow of design automation, from either modelling or automated exploration
perspective [115]. We expect GNNs make better use of the naturally graphical data in EDA field;
we expect deep RL be a powerful and general-purpose tool for many EDA optimization problems,
especially when the exact heuristic or objective is obscure; we expect these ML-based design
automation tools enhance designers’ productivity and thrive in the community.

6 CONCLUSION
The flourishing of ML would be retarded without the great systems and powerful architectures
supportive to run these algorithms at scale. Now, it is the time to return the favor and let ML
transform the way that computer architecture and systems are designed. Existing work that applies
ML for system roughly falls into two categories: ML-based modelling that involves performance
metrics or some other criteria of interest, and ML-based design methodology that directly leverages
ML as the design tool. We further present a future vision of opportunities and potential directions,
whichmay bring a brighter andmore promising future of applyingML for computer architecture and
systems. We hope to see the virtuous cycle, in which ML-based techniques are efficiently running
on the most powerful computers with the pursuit of designing the next generation computers. We
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hope ML-based techniques could be the impetus to the revolution of computer architecture and
systems.
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